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SHARP CONSTANTS FOR COMPOSITION WITH A BI-LIPSCHITZ
MEASURE-PRESERVING MAP

FRÉDÉRIC BERNICOT AND SAHBI KERAANI

ABSTRACT. In this note, we aim to describe sharp constants for the composition opera-
tor with a bi-Lipschitz measure-preserving map in several functional spaces (BMO, Hardy
space, Carleson measures, ...). It is interesting to see how the measure preserving property
allows us to improve these constants. Moreover, we will prove the optimality of our results
for the BMO space and describe improved estimates for solutions of transport PDEs.

Denote by L := L(Rd) the group of all bi-Lipschitz homeomorphisms of R
d (equipped

with the composition law ◦) and for φ ∈ L let

K(φ) = Kφ := sup
x 6=y

|φ(x)− φ(y)|

|x − y|
+

|x − y|

|φ(x)− φ(y)|

denote the sum of the Lipschitz constants of φ and φ−1. An easy computation yields that

K(φ) ≥ 2, with equality if and only if φ is an isometry of R
d, and moreover this quantity

is sub-multiplicative: for φ, ψ ∈ L then

K(φ ◦ ψ) ≤ K(φ)K(ψ).

Consequently, φ 7→ log(K(φ)) is a pseudo-norm on L/E(d), where E(d) is the set of

isometries on R
d to R

d, which enables us to consider the group L/E(d) as a topologi-
cal object.
A natural question then arises: for which functional Banach space X (that is, a space of

functions from R
d to R), is the bilinear map

( f , φ) → f ◦ φ

bounded from X × (L/E(d)) to X? By boundedness, we mean that we have the estimate

‖ f ◦ φ‖X . log(K(φ))‖ f‖X .

We shall answer this question when φ ∈ L is measure preserving and X is the space of
functions of bounded mean oscillation BMO (Section 2.1 provides the precise definition
of this space). We also consider the space of Lipschitz functions (defined, again, in Section
2.1) and the space of Carleson measures (Section 2.3) and their dual spaces.
For a measure preserving φ ∈ L, the bi-Lipschitz property property implies that for a
ball B, φ(B) can be contained in a ball of radius KφrB, where rB is the radius of B. As a

consequence, φ(B) can be covered by a collection of Kd
φ balls, with same radius as B. This
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2 F. BERNICOT AND S. KERAANI

observation easily yields than for a BMOp function (the BMO space with Lp oscillation) f

on R
d

‖ f ◦ φ‖BMOp
≤ K

d/p
φ ‖ f‖BMOp

and since, by the John-Nirenberg property, BMOp coincides with BMO, by varying
p ∈ (1, ∞), if follows that for all ǫ > 0 we have

(1) ‖ f ◦ φ‖BMO .ǫ Kǫ
φ‖ f‖BMO.

The interesting point of this work is to prove that the dependency on the constant Kφ can
be improved, under the measure preservation of φ. In fact, the optimal dependency on
Kφ is logarithmic.

Similarly, it follows that for a Carleson measure µ on R
d, the pull-back measure

µ♯φ = µ(Id ⊗ φ−1)

is a Carleson measure with

(2) ‖µ♯φ‖C . Kd
φ‖µ‖C .

This can also be improved to a logarithmic dependency on Kφ in certain circumstances.
Our main results are summarized in the following theorem.

Theorem 1. Let us assume that φ bi-Lipschitz function preserving the measure on R
d, then

• [BMO FUNCTIONS] there exists an implicit constant (independent of Kφ) such that for
every BMO function f

(3) ‖ f ◦ φ‖BMO . log(Kφ)‖ f‖BMO.

• [HÖLDER FUNCTIONS] there exists an implicit constant (independent of Kφ) such that
for every function f ∈ Lipp(a)

(4) ‖ f ◦ φ‖Lipp(a)
. Ka

φ‖ f‖Lipp(a)
.

• [CARLESON MEASURES] there exist a class SC of Carleson measures and an implicit

constant (independent of Kφ) such that for every Carleson measure µ ∈ SC, µ♯φ belongs
to SC and

(5) ‖µ♯φ‖C . log(Kφ)‖µ‖C .

Moreover, we will prove that the logarithmic growth is optimal for the estimates involving the
BMO norms.

As a corollary and using H1 − BMO duality, we have

Corollary 1. Let us assume that φ is a bi-Lipschitz function preserving the measure on R
d, then

there exists an implicit constant (independent of Kφ) such that for every function belonging to the

Hardy space f ∈ H1

‖ f ◦ φ‖H1 . log(Kφ)‖ f‖H1 .

That means in some sense that the image of an atom by the composition a ◦ φ can be split into the
sum of log(Kφ) atoms.
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One of the main motivation is the study of transport PDEs, associated to a free-divergence
vector field. Indeed, such a vector field gives rise to a bi-Lipschitz measure preserving
flow, which plays a crucial role for solving the transport equation. We also describe some
consequences (we obtain an improved growth of the solution) in the last section for such
PDEs. We point out that such study have already been done for Besov spaces, see [4,
Thm 4.2] where Vishik obtained a logarithmic growth (as our result for BMO space) for
the Besov space B0

∞,1 with applications to Euler equation. More recently, the authors have

used similar ideas in [1] to get well-posedness results for Euler equation, with a vorticity
belonging to a space strictly imbricated between L∞ and BMO. In these two results, the
spaces are of completely different nature but the same idea is to understand and to have
sharp inequalities for the composition (by a measure-preserving map) in these spaces.

1. A GEOMETRIC LEMMA

Before proving Theorem 1, we would like to point out the key argument: a geometric
lemma, which describes how a ball is modified by a measure-preserving map.
For each fixed a ∈ [0, 1], define ρa : [0, ∞) → R as

(6) ρa(r) =

{

ra, if a > 0;

log(r), if a = 0.

Lemma 1. For every ball B = B(x0, r) in R
d, there exists a collection (Ok)k of balls such that

• The collection (2Ok)k is a bounded covering of φ(B)
• The collection (Ok)k is disjoint
• By writing rOk

the radius of Ok, then for all p ∈ [1, ∞)

(7)

(

1

|B| ∑
k

|Ok|ρa(rB/rOk
)p

)1/p

. ρa

(

Kφ

)

,

with an implicit constant dependent only on the dimension n, a and p.

Proof. Let us consider a Whitney covering of the open set φ(B): that is a collection of open
balls (Ok)k such that :

• the collection of double balls is a bounded covering :

φ(B) ⊂ ∪k2Ok

• the collection is disjoint and for all k, Ok ⊂ φ(B)
• the Whitney property is verified:

rOk
≃ d(Ok, φ(B)c).

So it remains for us to check (7). Indeed, this is a combinatorial argument. First, since φ is
measure preserving, it follows that |Ok| ≤ |B| and so rOk

≤ rB for all k. For a nonnegative
integer l ≥ 0, we write

ul := ∑
k, 2−lrB≤rOk

<2−l+1rB

|Ok|.

Since (2Ok)k is a bounded covering of φ(B) (and that the balls (Ok) are disjoint), we have

(8) ∑
l

ul ≃ |φ−1(B)| = |B|.
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Moreover, we see that

(∗) :=

(

1

|B| ∑
k

|Ok|ρa(rB/rOk
)p

)1/p

≤

(

1

|B|

[

∑
l≥0

ρa(2
l)pul

])1/p

.

However for all the balls Ok considered in the term ul , we know that φ(Ok) are disjoint

and are contained in a domain a distant at most Kφ2−lrB from the boundary of B (because
of the Whitney property and the Lipschitz regularity of φ). We also deduce, since the
measure is preserved, that

ul . Kφ2−lrd
B = Kφ2−l|B|.

Therefore

ul . min{Kφ2−l|B|, ul}.

We choose an integer k0 ≥ 1 such that Kφ2−k0 ≃ 1 and we compute the sum as follows:

(∗) ≤

(

1

|B|

[

∑
l≥0

ρa(2
l)p min{Kφ2−l|B|, ul}

])1/p

≤

(

1

|B|

[

k0

∑
l=0

ρa(2
l)pul

])1/p

+

(

1

|B|

[

∑
l≥k0

Kφρa(2
l)p2−l|B|

])1/p

. ρa(2
k0) + (Kφ2−k0)1/pρa(2

k0) . ρa(2
k0).

We have used (8) to estimate the first sum, and to estimate the second sum we have used
k0 ≥ 1 with

∑
l≥k0

2−llp = 2−k0k
p
0 ∑

j≥0

2−j
(

1 + k−1
0 j
)p

. 2−k0k
p
0

in the case a = 0 and

∑
l≥k0

2(ap−1)l = 2(ap−1)k0 ∑
j≥0

2(ap−1)j . 2−k02k0ap

in the case a > 0. This concludes the proof of (7) since ρa(2
k0) . ρa(Kφ) . �

2. THE BEHAVIOR OF BMO FUNCTIONS AND CARLESON MEASURES

2.1. BMO and Lipschitz functions. For p ∈ [1, ∞), a ∈ [0, 1] and a locally integrable
function f set

‖ f‖♯p,a = sup
B

(

1

|B|1+ap/d

∫

B
| f (y)− AvgB( f )|p dy

)1/p

where the suprema are taken over all balls B ⊂ R
d. As usual, we define

BMOp := { f ∈ L1
loc | ‖ f‖♯p,0 < ∞} and Lipp(a) := { f ∈ L1

loc | ‖ f‖♯p,a < ∞} for a ∈ (0, 1].

The John-Nirenberg property shows us that all the spaces BMOp (1 ≤ p < ∞) coincide,

so we write BMO1 = BMO and ‖ f‖♯p,0 = ‖ f‖BMO. The main result of this subsection is

the following one:
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Theorem 2. Let p ∈ [1, ∞), a ∈ [0, 1) and φ : R
d → R

n be a bi-Lipschitz measure-preserving
map. Then

‖ f ◦ φ‖♯p,a . ρa(Kφ)‖ f‖♯p,a

where ρa is defined in (6).

Remark 1. In the light of the John-Nirenberg inequality, it is not surprising that the required
“extra” factor ρa(Kφ) does not depend on the exponent p ∈ [1, ∞).

We will require the following well-known lemma (at least for BMO):

Lemma 2. Let f ∈ BMOp and B be a ball in R
d which contains x ∈ R

d, then for all λ > 1
∣

∣AvgB( f )− AvgλB( f )
∣

∣ . ρa(λ)|B|
a/d‖ f‖♯p,a.

For readibility and the sake of completeness, we will provide the proof.

Proof. First we remark that, using the doubling property of the Euclidean measure,

|AvgB( f )− Avg2B( f )| ≤ AvgB| f − Avg2B( f )| . Avg2B| f − Avg2B( f )|

. (Avg2B| f − Avg2B( f )|p)1/p .

So it follows that

|AvgB( f )− Avg2B( f )| . 2a|B|a/n‖ f‖♯p,a,

which corresponds to the desired result for λ = 2.

We iterate this argument k0 times, where k0 is such that 2k0 ≤ λ < 2k0+1, and obtain

∣

∣AvgB( f )− Avg2k0 B( f )
∣

∣ ≤
k0−1

∑
k=0

|Avg2kB( f )− Avg2k+1B( f )|

.
k0−1

∑
k=0

2a(1+k)|B|a/d‖ f‖♯p,a . ρ(2k0)|B|a/d‖ f‖♯p,a.

To conclude, it remains for us to estimate the following term:
∣

∣Avg2k0 B( f )− AvgλB( f )
∣

∣ . Avg2k0 B

∣

∣ f − AvgλB( f )
∣

∣

. AvgλB

∣

∣ f − AvgλB( f )
∣

∣

. λa|B|a/d‖ f‖♯p,a . ρa(λ)|B|
a/d‖ f‖♯p,a,

where we have one more time used the doubling property. �

We can now prove Theorem 2.

Proof of Theorem 2. Fix x ∈ R
d and let B be a ball in R

d containing x. We wish to estimate

I :=
(

AvgB | f ◦ φ − AvgB( f ◦ φ)|p
)1/p

and with this in mind, using the measure-preserving property of φ, we see that

I =

(

1

|B|

∫

φ(B)

∣

∣

∣
f (z)− Avgφ(B)( f )

∣

∣

∣

p
dz

)1/p

.
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Now we would like to compare φ(B) with the ball

B̃ := B(φ(x), r).

We claim that we have the following inequality

(9) I I :=
(

Avgφ(B) | f − AvgB̃( f )|p
)1/p

. ρa(Kφ)|B|
a/d‖ f‖♯p,a.

Let us first deduce the theorem from (9).
We have

∣

∣

∣
Avgφ(B)( f )− AvgB̃( f )

∣

∣

∣
. ρa(Kφ)|B|

a/d‖ f‖♯p,a,

hence

I . ρa(Kφ)|B|
a/d‖ f‖♯p,a,

where we have used (9) a second time and so we deduce the desired result.
It remains for us to prove (9). To achieve this we use the collection (Ok)k given by Lemma
1:

• The collection (2Ok)k is a bounded covering of φ(B)
• The collection (Ok)k is disjoint
• By writing rOk

the radius of Ok, then for all p ∈ [1, ∞)

(10)

(

1

|B| ∑
k

|Ok|ρa(rB/rOk
)p

)1/p

. ρa

(

Kφ

)

.

So we have

I I =

(

1

|B| ∑
k

∫

2Ok

| f − AvgB̃( f )|p

)1/p

.

Let us first remark that since φ is measure preserving then |Ok| ≤ |φ(B)| = |B| so rOk
≤ rB.

As a consequence, we see that 2Ok ⊂ 2KφB̃ and so
∣

∣

∣
Avg2Ok

( f )− AvgB̃( f )
∣

∣

∣
≤
∣

∣

∣
Avg2Ok

( f )− Avg2KφB̃( f )
∣

∣

∣
+
∣

∣

∣
Avg2KφB̃( f )− AvgB̃( f )

∣

∣

∣

.
∣

∣

∣
Avg2Ok

( f )− Avg2KφB̃( f )
∣

∣

∣
+ ρa(2Kφ)|B|

a/d‖ f‖♯p,a

.
∣

∣

∣
Avg2Ok

(

f − Avg2KφB̃( f )
)∣

∣

∣
+ ρa(2Kφ)|B|

a/d‖ f‖♯p,a

.
∣

∣

∣
AvgB(xOk

,4KφrB)

(

f − Avg2Ok
( f )
)∣

∣

∣
+ ρa(2Kφ)|B|

a/d‖ f‖♯p,a

.
∣

∣

∣
AvgB(xOk

,4KφrB)
f − Avg2Ok

( f )
∣

∣

∣
+ ρa(2Kφ)|B|

a/d‖ f‖♯p,a

.
[

ρa(2KφrB/rOk
)|Ok|

a/d + ρa(2Kφ)|B|
a/d
]

‖ f‖♯p,a

.
[

ρa(rB/rOk
) + ρa(Kφ)

]

|B|a/d‖ f‖♯p,a,

where we have used Lemma 2 once and then a second time with the fact that
B(xOk

, 4KφrB) is a dilation of 2Ok by a factor 2KφrB/rOk
. Consequently (using that (2Ok)k
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is a bounded covering of φ(B) and that the measure is preserved), we deduce that

I I .

(

1

|B| ∑
k

[

∫

2Ok

∣

∣

∣
f − Avg2Ok

( f )
∣

∣

∣

p
+ |Ok|

(

[

ρa(rB/rOk
) + ρa(Kφ)

]

|B|a/d‖ f‖♯p,a

)p
]

)1/p

.

(

1

|B| ∑
k

|Ok|
(

ρa(rB/rOk
) + ρa(Kφ)

)p

)1/p

|B|a/d‖ f‖♯p,a

. ρa(Kφ)|B|
a/n‖ f‖♯p,a +

(

|B|−1

[

∑
k

|Ok|ρa(rB/r0k
)p

])1/p

|B|a/d‖ f‖♯p,a,

where we have used that ∑k |Ok| ≃ |B|. The proof is also achieved by invoking prop-
erty (10) to compute the remaining sum and estimate it by the expected quantity

ρa(Kφ)|B|a/d‖ f‖♯p,a. �

2.2. Optimality of the logarithmic growth. We begin by observing that a measure pre-
serving function that is Lipschitz is, in fact, bi-Lipschitz.

Lemma 3. If φ ∈ L preserves the Lebesgue measure then

log(Kφ) ≃ log

(

sup
x,y

|φ(x)− φ(y)|

|x − y|

)

≃ log

(

sup
x,y

|x − y|

|φ(x)− φ(y)|

)

.

Proof. By symmetry between φ and φ−1, it remains for us to check that

(11) log(K(φ)) . log

(

sup
x,y

|φ(x)− φ(y)|

|x − y|

)

.

The map φ is bi-Lipschitz and almost everywhere differentiable, with a derivative Dφ
whose determinant is equal to the constant 1. For each of these points x,

‖Dφ(x)−1‖ ≤ max
λ∈Σ

|λ|−1 ≤

[

max
λ∈Σ

|λ|

]d−1

≤ ‖Dφ(x)‖d−1,

where Σ is the spectrum of
√

Dφ(x)∗Dφ(x). In this way, we see that

log(K(φ)) . log



sup
x,y

|φ(x)− φ(y)|

|x − y|
+

[

sup
x,y

|φ(x)− φ(y)|

|x − y|

]d−1




which yields (11). �

Our argument for the optimality of the logarithmic growth relies on properties of quasi-
conformal mappings. Given that we can restrict our attention to bi-Lipschitz functions,
we can take as our definition of φ ∈ L being K-quasi-conformal that it satisfies the in-
equality

‖Dφ(x)‖d
L∞ ≤ K det(Dφ)(x)

for all x ∈ R
d. If φ is also measure preserving, then the about inequality reduces to

(12) ‖Dφ‖d
L∞ ≤ K,
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so in this context, K-quasiconformality is simply that the size of the Lipschitz constant of

φ is bounded by K1/d. We will use the following theorem by H.M. Riemann [3, Thm. 3].

Theorem 3. Assume that φ ∈ L is orientation preserving. If the induced map f 7→ f ◦ φ is a
bijective isomorphism of BMO and satisfies

(13) ‖ f ◦ φ‖♯p,0 ≤ k‖ f‖♯p,0

for all f ∈ BMO then φ is a K-quasiconformal mapping with K = e(d−1)(Ck−1), for a fixed C > 0
depending only on the dimension d.

To show the optimality of the logarithmic growth in Theorem 1, take φ ∈ L which is
measure preserving and orientation preserving. We know that φ is K-quasi-conformal
and (12) holds. By Theorem 1 we have that there exists a constant k such that (13) holds

and so, from Theorem 3, K = e(d−1)(Ck−1). Combining these two facts, we see that

‖Dφ‖d
L∞ ≤ e(d−1)(Ck−1).

Rearranging this and applying Lemma 3 we see that

log(Kφ) . k

and so Theorem 1 gives the optimal behaviour of the constant in Kφ when a = 0.

2.3. The behavior of some Carleson measures. Let µ be a measure on R
+ × R

d a Car-
leson measure :

‖µ‖C := sup
ballB⊂Rd

|B|−1µ(T(B)) < ∞

where T(B) is the Carleson box over the ball B defined by

T(B) := {(x, t), x ∈ B, 0 < t ≤ rB} = B × (0, rB].

Definition 1. Let µ be a Carleson measure and consider φ a bi-Lipschitz measure-preserving map

on R
d. We denote µ♯φ the pull-back measure, defined by

µ♯φ(I × A) = µ(I × φ−1(A)),

for every time interval I and measurable set A ⊂ R
d.

Definition 2. Let β be a measurable map from R
+ × R

d → R and we define the measure

µ := µβ = |β(t, x)|2
dtdx

t
.

Consequently, it comes

dµ♯φ(t, x) = |β(t, φ(x))|2
dtdx

t

so µ♯φ = µβφ with βφ(t, x) = β(t, φ(x)).

Theorem 4. Let φ a bi-Lipschitz measure-preserving map on R
d and µ = µβ be a Carleson mea-

sure associated to some β ∈ L∞(R+ × R
d). Then there exists an implicit constant (only depen-

dent on n) such that µ♯φ is a Carleson measure with

‖µ♯φ‖C . ‖µ‖C + log(Kφ)‖β‖2
L∞(R+×Rd)

.
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Proof. Let consider B = B(x0, r) a ball of R
d and its Carleson box T(B). We have to esti-

mate

µ♯φ(T(B)) =
∫

[0,r]×B
|β(t, φ(x))|2

dtdx

t

=
∫

[0,r]×φ(B)
|β(t, x)|2

dtdx

t
.

Aiming that, we use the collection (Ok) given by Lemma 1 to cover φ(B) (with p = 1):

• The collection (2Ok)k is a bounded covering of φ(B)
• The collection (Ok)k is disjoint
• By writing rOk

the radius of Ok, then for all p ∈ [1, ∞)

(14)
1

|B| ∑
k

|Ok| log(rB/rOk
) . log(Kφ).

Then (we remember that as previously we have rOk
≤ r), it follows

µ♯φ(T(B)) = ∑
k

∫

[0,r]×2Ok

|β(t, x)|2
dtdx

t

≤ ∑
k

∫

[0,rOk
]×2Ok

|β(t, x)|2
dtdx

t
+∑

k

∫

[rOk
,r]×2Ok

|β(t, x)|2
dtdx

t

≤ ∑
k

µ(T(2Ok)) + ‖β‖2
L∞(R+×Rd) ∑

k

|Ok| log(
r

rOk

)

. ‖µ‖C

(

∑
k

|Ok|

)

+ ‖β‖2
L∞(R+×Rd)

log(Kφ)|B|

.
(

‖µ‖C + log(Kφ)‖β‖2
L∞(R+×Rd)

)

|B|,

where we used the doubling property of the Euclidean measure, the disjointness of the
balls (Ok)k and the property (14). The proof is also concluded. �

Corollary 2. Let define SC the class of Carleson measure dµ = |β(t, x)|2 dtdx
t satisfying

‖β‖L∞ . ‖µ‖C , equipped with the norm ‖µ‖SC := ‖µ‖C . Then we have

‖µ♯φ‖SC . log(Kφ)‖µ‖SC.

Example. We know that for some standard “approximations of unity” kernels (Kt), for a L1
loc

function g we can build the measure

dµg(t, x) =

∣

∣

∣

∣

∫

Kt(x, y)g(y)dy

∣

∣

∣

∣

2 dtdx

t
.

Then it is well-known that dµg is a Carleson measure if and only if g ∈ BMO (see [2]). Moreover,
it is easy to check that such measures belong to SC.
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3. APPLICATIONS TO SOME PDES

3.1. The Transport equation by a free-divergence vector field. Let v : R
d → R

d be a di-

vergence free1 Lipschitz vector field and consider the transport equation:

(15)

{

∂tu − v · ∇(u) = 0
u|t=0 = u0,

with an initial data u0. Then it is well-known that a smooth solution is constant along

the characteristics given by the vector field. Indeed, consider the flow φ : R+ × R
d → R

d,
solution of

{

∂tφ = v(φ)
φ(0, x) = x,

then the divergence free assumption on v yields that φ(t, ·) is a Lebesgue measure preserv-
ing diffeomorphism, for every t ∈ R. Moreover, any smooth solution u of the transport
equation is unique and is given by

u(t, x) = u0(φ
−1
t (x)).

It is well-known by using Gronwall Lemma that

K(φ(t, ·)) . e‖v‖Lipt,

where ‖v‖Lip is the Lipschitz constant of the vector field.
As a consequence, the previous Theorem and Corollary imply the following

Theorem 5. Let u be the unique solution of (15).

(1) If u0 ∈ BMO, then u ∈ L∞
loc(BMO) and

‖u(t)‖BMO .
[

1 + ‖v‖Lipt
]

‖u0‖BMO, ∀ t ≥ 0.

(2) If u0 ∈ Lipp(a) (for some a ∈ (0, 1] and p ∈ (1, ∞)), then u ∈ L∞
loc(Lipp(a)) and

‖u(t)‖Lipp(a)
. ea‖v‖Lipt‖u0‖Lipp(a)

, ∀ t ≥ 0.

3.2. The perturbed transport equation. Consider the following transport equation with
a linear Riesz-type second member term

(16)

{

∂tω + (u · ∇)ω = Rω
ω|t=0 = ω0,

where R is a Riesz operator. This type of equation naturally arises when one considers
for example the perturbed 2D Euler equations which is obtained by adding a zero order
term to the incompressible 2D Euler system. Let us for example consider the following
system

(17)







∂tu + (u · ∇)u = −∇p + Au
div(u) = 0
u|t=0 = u0,

with Au = (u1, 0). Then the vorticity ω := curl(u) = ∂1u2 − ∂2u1 satisfies the following
equation

∂tω + u · ∇ω = ∂22∆−1ω.

1That means ∇.v = 0.
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The continuity of Riez operator on Lp for every 1 < p < ∞, the divergence free condition
and Gronwall inequality imply together

(18) ‖ω(t)‖Lp ≤ ‖ω0‖Lp eCpt, ∀t ≥ 0.

Here Cp = ‖R‖L(Lp,Lp) ≃
p2

p−1 . However, it is not clear at all how one can obtain an L∞

estimates since the Riesz operator ∂22∆−1 is not continuous on that space. A natural idea
is to replace the space L∞ by another space with similar ”scaling” but stable for R (such
that BMO for example). However, in this case a problem of composition arises: an extra
term depending of the Lipschitz norm of u appears and the estimate is no longer closable.
Theorem 3 shows that we cannot avoid the constants generated by the composition with
the flow (nor even to improve them). A bound for the BMO-norm similar to (18) cannot
be obtained directly: indeed with the best constants, we already have a quadratic estimate
which is not Gronwallisable. However, Theorem 1 can be applied in order to get sharper
a priori estimates. In fact, consider u be a smooth solution of (16) and the corresponding

flow φ : R+ × R
d → R

d, solution of
{

∂tφ = u(t, φ)
φ(0, x) = x.

Hence by Gronwall Lemma and using the BMO-boundedness of the Riesz transform, it
comes

‖ω(t, φ(t, ·))‖BMO . ‖ω0‖BMO exp (ct),

for some numerical constant c > 0, and so by Theorem 1

‖ω(t, ·)‖BMO . ‖ω0‖BMO(1 + ‖u‖L1
t Lip) exp (ct).

If the vector-field satisfies

‖u‖L1
t Lip ≤ exp(αt),

for some α > 0, then one has a similar estimate than all the Lp norm. It is worthy of
noticing that a rough estimate (involving K(φ) instead of log K(φ)) gives

‖ω(t, ·)‖BMO . ‖ω0‖BMO exp(‖u‖L1
t Lip) exp (ct).

The merit of the next result is only the improvement of the estimate of the growth of the
BMO norm of the solution.

Proposition 1. Let u be a divergence free vector fields and ω a smooth solution of (16). If
ω0 ∈ BMO, then

‖ω(t)‖BMO . ‖ω0‖BMO(1 + ‖u‖L1
t Lip) exp (ct),

for all t ≥ 0.

Acknowledgment: The authors are thankful to Carlos Perez for having given the refer-
ence [3] to prove the optimality of the logarithmic growth and to David Rule for valuable
advices to improve this paper.
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