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 where a result of global well-posedness for essentially bounded vorticity is proved. A lot of works have been since dedicated to the extension of this result to more general spaces. To the best of our knowledge all these contributions lack the proof of at least one of the following three fundamental properties: global existence, uniqueness and regularity persistence. In this paper we introduce a Banach space containing unbounded functions for which all these properties are shown to be satisfied.

INTRODUCTION

We consider the Euler system related to an incompressible inviscid fluid with constant density, namely

   ∂ t u + u • ∇u + ∇P = 0, x ∈ R d , t > 0, ∇.u = 0, u |t=0 = u 0 . (1) 
Here, the vector field u = (u 2 , u 1 , ..., u d ) is a function of (t, x) ∈ R + × R d denoting the velocity of the fluid and the scalar function P stands for the pressure. The second equation of the system ∇.u = 0 is the condition of incompressibility. Mathematically, it guarantees the preservation of Lebesgue measure by the particle-trajectory mapping (the classical flow associated to the velocity vector fields). It is worthy of noting that the pressure can be recovered from the velocity via an explicit Calder ón-Zygmund type operator (see [START_REF] Chemin | Fluides Parfaits Incompressibles[END_REF] for instance). The question of local well-posedness of [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF] with smooth data was resolved by many authors in different spaces (see for instance [START_REF] Chemin | Fluides Parfaits Incompressibles[END_REF][START_REF] Majda | Vorticity and incompressible flow[END_REF]). In this context, the vorticity ω = curl u plays a fundamental role. In fact, the well-known BKM criterion [START_REF] Beale | Remarks on the Breakdown of Smooth Solutions for the 3D Euler Equations[END_REF] ensures that the development of finite time singularities for these solutions is related to the blow-up of the L ∞ norm of the vorticity near the maximal time existence. A direct consequence of this result is the global well-posedness of the two-dimensional Euler solutions with smooth initial data, since the vorticity satisfies the transport equation ( 2)

∂ t ω + (u • ∇)ω = 0,
and then all its L p norms are conserved. Another class of solutions requiring lower regularity on the velocity can be considered: the weak solutions (see for instance [START_REF] Lions | Mathematical topics in fluid mechanics[END_REF]Chap 4]). They solve a weak form of the equation in the distribution sense, placing the equations in large spaces and using duality. The divergence form of Euler equations allows to put all the derivative on the test functions and so to obtain

∞ 0 R d (∂ t ϕ + (u • ∇)ϕ).u dxdt + R d ϕ(0, x)u 0 (x) dx = 0, for all ϕ ∈ C ∞ 0 (R + × R d , R d ) with ∇.ϕ = 0.
In the two dimensional space and when the regularity is sufficient to give a sense to Biot-Savart law, then one can consider an alternative weak formulation: the vorticity-stream weak formulation. It consists in resolving the weak form of (2) supplemented with the Biot-Savart law:

(3) u = K * ω, with K(x) = x ⊥ 2π|x| 2 .
In this case, (v, ω) is a weak solution to the vorticity-stream formulation of the 2D Euler equation with initial data ω 0 if (3) is satisfied and R). The questions of existence/uniqueness of weak solutions have been extensively studied and a detailed account can be found in the books [START_REF] Chemin | Fluides Parfaits Incompressibles[END_REF][START_REF] Majda | Vorticity and incompressible flow[END_REF][START_REF] Lions | Mathematical topics in fluid mechanics[END_REF]. We emphasize that, unlike the fixed-point argument, the compactness method does not guarantee the uniqueness of the solutions and then the two issues (existence/uniqueness) are usually dealt with separately. These questions have been originally addressed by Yudovich in [START_REF] Yudovich | Nonstationary flow of an ideal incompressible liquid[END_REF] where the existence and uniqueness of weak solution to 2D Euler systems (in bounded domain) are proved under the assumptions: u 0 ∈ L 2 and ω 0 ∈ L ∞ . Serfati [START_REF] Serfati | Structures holomorphes à faible régularité spatiale en mécanique des fluides[END_REF] proved the uniqueness and existence of a solution with initial velocity and vorticity which are only bounded (without any integrability condition). There is an extensive literature on the existence of weak solution to Euler system, possibly without uniqueness, with unbounded vorticity. DiPerna-Majda [START_REF] Diperna | Concentrations in regularization for 2D incompressible flow[END_REF] proved the existence of weak solution for ω 0 ∈ L 1 ∩ L p with 2 < p < ∞. The L 1 assumption in DiPerna-Majda's paper has been removed by Giga-Miyakawa-Osada [START_REF] Giga | 2D Navier-Stokes flow with measures as initial vorticity[END_REF]. Chae [START_REF] Chae | Weak solutions of 2D Euler equations with initial vorticity in LlnL[END_REF] proved an existence result for ω 0 in L ln + L with compact support. More recently, Taniuchi [START_REF] Taniuchi | Uniformly local Lp Estimate for 2D Vorticity Equation and Its Application to Euler Equations with Initial Vorticity in BMO[END_REF] has proved the global existence (possibly without uniqueness nor regularity persistence) for (u 0 , ω 0 ) ∈ L ∞ × BMO. The papers [START_REF] Vishik | Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type[END_REF] and [START_REF] Yudovich | Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid[END_REF] are concerned with the questions of existence and uniqueness of weak solutions for larger classes of vorticity. Both have intersections with the present paper and we will come back to them at the end of this section (Remark 2). A framework for measure-valued solutions can be found in [7] and [START_REF] Lopes Filho | Existence of vortex sheets with reflection symmetry in two space dimensions[END_REF] (see also [START_REF] Gérard | Résultats récents sur les fluides parfaits incompressibles bidimensionnels[END_REF] for more detailed references). Roughly speaking, the proof of uniqueness of weak solutions requires a uniform, in time, bound of the log-Lipschitzian norm of the velocity. This "almost" Lipschitzian regularity of the velocity is enough to assure the existence and uniqueness of the associated flow (and then of the solution). Initial conditions of the type

∞ 0 R 2 (∂ t ϕ + u.∇ϕ)ω(t, x)dxdt + R 2 ϕ(0, x)ω 0 (x)dx = 0, for all ϕ ∈ C ∞ 0 (R + × R 2 ,
ω 0 ∈ L ∞ (R 2 ) ( or ω 0 ∈ BMO, B 0
∞,∞ , ...) guarantee the log-Lipschitzian regularity of u 0 . However, the persistence of such regularity when time varies requires an a priori bound of these quantities for the approximate-solution sequences. This is trivially done (via the conservation law) in the L ∞ case but not at all clear for the other cases. The main issue in this context is the action of Lebesgue measure preserving homeomorphisms on these spaces. In fact, it is easy to prove that all these spaces are invariant under the action of such class of homeomorphisms, but the optimal form of the constants (depending on the homeomorphisms and important for the application) are not easy to find. It is worth of mentioning, in this context, that the proof by Vishik [START_REF] Vishik | Hydrodynamics in Besov Spaces[END_REF] of the global existence for (1) in the borderline Besov spaces is based on a refined result on the action of Lebesgue measure preserving homeomorphisms on B 0 ∞,1 . In this paper we place ourselves in some Banach space which is strictly imbricated between L ∞ and BMO. Although located beyond the reach of the conservation laws of the vorticity this space has many nice properties (namely with respect of the action of the group of Lebesgue measure preserving homeomorphisms) allowing to derive the abovementioned a priori estimates for the approximate-solution sequences. Before going any further, let us introduce this functional space (details about BMO spaces can be found in the book of Grafakos [START_REF] Grafakos | Classical and Modern Fourier Analysis[END_REF]). Definition 1. For a complex-valued locally integrable function on R 2 , set

f LBMO := f BMO + sup B 1 ,B 2 |Avg B 2 ( f ) -Avg B 1 ( f )| 1 + ln 1-ln r 2 1-ln r 1 ,
where the supremum is taken aver all pairs of balls B

2 = B(x 2 , r 2 ) and B 1 = B(x 1 , r 1 ) in R 2 with 0 < r 1 ≤ 1 and 2B 2 ⊂ B 1 .
Here and subsequently, we denote

Avg D (g) := 1 |D| D g(x)dx,
for every g ∈ L 1 loc and every non negligible set D ⊂ R 2 . Also, for a ball B and λ > 0, λB denotes the ball that is concentric with B and whose radius is λ times the radius of B.

We recall that

f BMO := sup ball B Avg B | f -Avg B ( f )|.
It is worth of noting that if B 2 and B 1 are two balls such that 2B 2

⊂ B 1 then 1 (4) |Avg B 2 ( f ) -Avg B 1 ( f )| ln(1 + r 1 r 2 ) f BMO .
In the definition of LBMO we replace the term ln(1 + r 1 r 2 ) by ln 1-ln r 2 1-ln r 1

, which is smaller.

This puts more constraints on the functions belonging to this space 2 and allows us to derive some crucial property on the composition of them with Lebesgue measure preserving homeomorphisms, which is the heart of our analysis.

The following statement is the main result of the paper.

Theorem 1. Assume ω 0 ∈ L p ∩ LBMO with p ∈]1, 2[.
Then there exists a unique global weak solution (v, ω) to the vorticity-stream formulation of the 2D Euler equation. Besides, there exists a constant C 0 depending only on the L p ∩ LBMO-norm of ω 0 such that

(5) ω(t) L p ∩LBMO ≤ C 0 exp(C 0 t), ∀ t ∈ R + .
1 Throughout this paper the notation A B means that there exists a positive universal constant C such that A ≤ CB. 2 Here, we identify all functions whose difference is a constant. In section 2, we will prove that LBMO is complete and strictly imbricated between BMO and L ∞ . The "L" in LBMO stands for "logarithmic".

Some remarks are in order.

Remark 1. The proof gives more, namely ω ∈ C(R + , L q ) for all p ≤ q < ∞. Combined with the Biot-Savart law3 this yields

u ∈ C(R + , W 1,r ) ∩ C(R + , L ∞ ) for all 2p 2-p ≤ r < ∞. Remark 2.
The essential point of Theorem 1 is that it provides an initial space which is strictly larger than L p ∩ L ∞ (it contains unbounded elements) which is a space of existence, uniqueness and persistence of regularity at once. We emphasize that the bound ( 5) is crucial since it implies that u is, uniformly in time, log-Lipschitzian which is the main ingredient for the uniqueness. Once this bound established the uniqueness follows from the work by Vishik [START_REF] Vishik | Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type[END_REF]. In this paper Vishik also gave a result of existence (possibly without regularity persistence) in some large space characterized by growth of the partial sum of the L ∞ -norm of its dyadic blocs. We should also mention the result of uniqueness by Yudovich [START_REF] Yudovich | Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid[END_REF] which establish uniqueness (for bounded domain) for some space which contains unbounded functions. Note also that the example of unbounded function, given in [START_REF] Yudovich | Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid[END_REF], belongs actually to the space LBMO (see Proposition 3 below). Our approach is different from those in [START_REF] Vishik | Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type[END_REF] and [START_REF] Yudovich | Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid[END_REF] and uses a classical harmonic analysis "à la stein" without making appeal to the Fourier analysis (para-differential calculus).

Remark 3.

The main ingredient of the proof of ( 5) is a logarithmic estimate in the space L p ∩ LBMO (see Theorem 2 below). It would be desirable to prove this result for BMO instead of LBMO. Unfortunately, as it is proved in [START_REF] Bernicot | Sharp constants for composition with a measure-preserving map[END_REF], the corresponding estimate with BMO is optimal (with the bi-Lipschitzian norm instead of the log-Lipschitzian norm of the homeomorphism) and so the argument presented here seem to be not extendable to BMO.

The remainder of this paper is organized as follows. In the two next sections we introduce some functional spaces and prove a logarithmic estimate which is crucial to the proof of Theorem 1. The fourth and last section is dedicated to the proof of Theorem 1.

FUNCTIONAL SPACES

Let us first recall that the set of log-Lipschitzian vector fields on R 2 , denoted by LL, is the set of bounded vector fields v such that

v LL := sup x =y |v(x) -v(y)| |x -y| 1 + ln |x -y| < ∞.
The importance of this notion lies in the fact that if the vorticity belong to the Yudovich type space (say L 1 ∩ L ∞ ) then the velocity is no longer Lipschitzian, but log-Lipschitzian.

In this case we still have existence and uniqueness of flow but a loss of regularity may occur. Actually, this loss of regularity is unavoidable and its degree is related to the norm L 1 t (LL) of the velocity. The reader is referred to section 3.3 in [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF] for more details about this issue. To capture this behavior, and overcome the difficulty generated by it, we introduce the following definition.

Definition 2. For every homeomorphism ψ, we set

ψ * := sup x =y Φ |ψ(x) -ψ(y)|, |x -y| , where Φ is defined on ]0, +∞[×]0, +∞[ by Φ(r, s) = max{ 1+| ln(s)| 1+| ln r| ; 1+| ln r| 1+| ln(s)| }, if (1 -s)(1 -r) ≥ 0, (1 + | ln s|)(1 + | ln r|), if (1 -s)(1 -r) ≤ 0. Since Φ is symmetric then ψ * = ψ -1 * ≥ 1. It is clear also that every homeomorphism ψ satisfying 1 C |x -y| α ≤ |ψ(x) -ψ(y)| ≤ C|x -y| β ,
for some α, β, C > 0 has its ψ * finite (see Proposition 2 for a reciprocal property).

The definition above is motivated by this proposition (and by Theorem 2 below as well).

Proposition 1. Let u be a smooth divergence-free vector fields and ψ be its flow:

∂ t ψ(t, x) = u(t, ψ(t, x)), ψ(0, x) = x.
Then, for every t ≥ 0

ψ(t, •) * ≤ exp( t 0 u(τ) LL dτ).
Proof. It is well-known that for every t ≥ 0 the mapping x → ψ(t, x) is a Lebesgue measure preserving homeomorphism (see [START_REF] Chemin | Fluides Parfaits Incompressibles[END_REF] for instance). We fix t ≥ 0 and x = y and set

z(t) = |ψ(t, x) -ψ(t, y)|.
Clearly the function Z is strictly positive and satisfies

| ż(t)| ≤ u(t) LL (1 + | ln z(t)|)z(t).
Accordingly, we infer

|g(z(t)) -g(z(0))| ≤ t 0 u(τ) LL dτ
where

g(τ) := ln(1 + ln(τ)), if τ ≥ 1, -ln(1 -ln(τ)), if 0 < τ < 1.
This yields in particular that exp(g(z(t))) exp(g(z(0))) and exp(g(z(0))) exp(g(z(t))) are both controlled by exp(

t 0 u(τ) LL dτ) leading to Φ(z(t), z(0)) ≤ exp( t 0 u(τ) LL dτ), as claimed.
The following proposition follows directly from the definition by a straightforward computation.

Proposition 2. Let ψ be a homeomorphism with ψ * < ∞. Then for every (x,

y) ∈ R 2 × R 2 one has (1) If |x -y| ≥ 1 and |ψ(x) -ψ(y)| ≥ 1 e -1 |x -y| 1 ψ * ≤ |ψ(x) -ψ(y)| ≤ e ψ * |x -y| ψ * . (2) If |x -y| ≤ 1 and |ψ(x) -ψ(y)| ≤ 1 e -ψ * |x -y| ψ * ≤ |ψ(x) -ψ(y)| ≤ e|x -y| 1 ψ * .
(3) In the other cases

e -ψ * |x -y| ≤ |ψ(x) -ψ(y)| ≤ e ψ * |x -y|.
As an application we obtain the following useful lemma. Lemma 1. For every r > 0 and a homeomorphism ψ one has

4ψ(B(x 0 , r)) ⊂ B(ψ(x 0 ), g ψ (r)),
where 4 ,

g ψ (r) := 4e ψ * r ψ * , if r ≥ 1, 4 max{er 1 ψ * ; e ψ * r}, if 0 < r < 1. In particular, (6) | ln 1 + | ln g ψ (r)| 1 + | ln r| | 1 + ln 1 + ψ * .
Proof. The first inclusion follows from Proposition 2 and the definition of g ψ . Let us check [START_REF] Majda | Vorticity and incompressible flow[END_REF]. This comes from an easy computation using the following trivial fact: if α, β, γ > 0 then

sup(β, 1 β ) ≤ α γ ⇐⇒ | ln(β)| ≤ γ ln(α). • If r ≥ 1 then 1 ≤ 1 + | ln g ψ (r)| 1 + | ln r| = 1 + ln 4 + ψ * + ln r 1 + ln r ≤ 3 + ψ * .
• If r < 1 then we have to deal with two possible values of g ψ (r).

Case 1:

If g ψ (r) = 4er 1 ψ * then | ln g ψ (r)| = | ln 4 + 1 + ψ -1 * ln(r)|. Since ψ * ≥ 1, we get 1 + | ln g ψ (r)| 1 + | ln r| ≤ 3 + 1 ψ * | ln r| 1 + | ln r| ≤ 3 + | ln r| 1 + | ln r| ≤ 3.
To estimate

1+| ln r| 1+| ln g ψ (r)| we consider two possibilities. -If | ln(r)| ≤ 8 ψ * then 1 + | ln r| 1 + | ln g ψ (r)| ≤ 1 + | ln r| ≤ 1 + 8 ψ * . -If | ln(r)| ≥ 8 ψ * then | ln(4) + 1 + ψ -1 * ln(r)| ≥ 1 2 ψ -1 * | ln(r)|, and so 1 + | ln r| 1 + | ln g ψ (r)| ≤ 1 + | ln r| 1 + 1 2 ψ -1 * | ln(r)| ≤ 2(1 + ψ * ). Case 2: If g ψ (r) = 4e ψ * r then | ln g ψ (r)| = | ln 4 + ψ * + ln(r)|. Thus, 1 + | ln g ψ (r)| 1 + | ln r| ≤ 3 + ψ * + | ln r| 1 + | ln r| ≤ 3 + ψ * .
As previously for estimating

1+| ln r| 1+| ln g ψ (r)| , we consider two possibilities. -If | ln(r)| ≤ 2(ln(4) + ψ * ) then 1 + | ln r| 1 + | ln g ψ (r)| ≤ 1 + | ln r| ≤ 5 + 2 ψ * . -If | ln(r)| ≥ 2(ln 4 + ψ * ) then | ln(4) + ψ * + ln r| ≥ 1 2 | ln(r)| and so 1 + | ln r| 1 + | ln g ψ (r)| ≤ 1 + | ln r| 1 + 1 2 | ln(r)| ≤ 2.
Remark 4. The estimate (6) remains valid when we multiply g ψ (r) by any positive constant.

THE LBMO SPACE

Let us now detail some properties of the space LBMO introduced in the first section of this paper.

Proposition 3. The following properties hold true. (i)

The space LBMO is a Banach space included in BMO and strictly containing L ∞ (R 2 ).

(ii) For every g ∈ C ∞ 0 (R 2 ) and f ∈ LBMO one has (7) g * f LBMO ≤ g L 1 f LBMO .

Proof. (i) Completeness of the space. Let ( f n ) n be a Cauchy sequence in LBMO. Since BMO is complete then this sequences converges in BMO and then in L 1 loc . Using the definition and the the convergence in L 1 loc , we get that the convergence holds in LBMO. It remains to check that L ∞ LBMO. Since L ∞ is obviously embedded into LBMO, we have just to build an unbounded function belonging to LBMO. Take

f (x) = ln(1 -ln |x|) if |x| ≤ 1 0, if |x| ≥ 1. It is clear that both f and ∇ f belong to L 2 (R 2 ) meaning that f ∈ H 1 (R 2 ) ⊂ BMO.
Before going further three preliminary remarks are necessary.

• Since f is radially symmetric and decreasing then, for every r > 0, the mapping x → Avg B(x,r) f is radial and decreasing.

• For the same reasons the mapping r → Avg B(0,r) ( f ) is decreasing.

• Take (r, ρ) ∈]0, +∞[ 2 and consider the problem of maximization of Avg

B(x 1 ,r) ( f ) -Avg B(x 2 ,r) ( f ) when |x 1 -x 2 | = ρ.
The convexity of f implies that x 1 = 0 and |x 2 | = ρ are solutions of this problem.

We fix r 1 and r 2 such that r 1 ≤ 1 and 2r 2 ≤ r 1 . For every x 1 ∈ R 2 one defines x1 and x1 as follows:

x1 = x 1 (1 -r 2 +r 1 |x 1 | ) if |x 1 | ≥ r 2 + r 1 0, if |x 1 | ≤ r 2 + r 1 , and x1 = x 1 (1 + r 2 +r 1 |x 1 | ) if |x 1 | = 0 (r 2 + r 1 , 0) if |x 1 | = 0.
Let A(x 1 ) be the set of admissible x 2 : the set of x 2 such that 2B(x 2 , r 2 ) ⊂ B(x 1 , r 1 ). Using the two preliminary remarks above, we see that sup

x 2 ∈A(x 1 ) |Avg B(x 2 ,r 2 ) ( f ) -Avg B(x 1 ,r 1 ) ( f )| ≤ max{J 1 , J 2 }.
with

J 1 = Avg B( x1 ,r 2 ) ( f ) -Avg B(x 1 ,r 1 ) ( f ), J 2 = Avg B(x 1 ,r 1 ) ( f ) -Avg B( x1 ,r 2 ) ( f ). In fact, if Avg B(x 2 ,r 2 ) ( f ) -Avg B(x 1 ,r 1 ) ( f ) is positive (resp.
negative) then it is obviously dominated by J 1 (resp. J 2 ). Thus, we obtain sup

x 2 ∈A(x 1 ) |Avg B(x 2 ,r 2 ) ( f ) -Avg B(x 1 ,r 1 ) ( f )| ≤ J 1 + J 2 = Avg B( x1 ,r 2 ) ( f ) -Avg B( x1 ,r 2 ) ( f ).
The right hand side is maximal in the configuration when x1 = 0 and x1 the furthest away from 0. This means when |x

1 | = r 1 + r 2 , x1 = 0 and | x1 | = 2(r 1 + r 2 ).
Since f is increasing (going to the axe) then

Avg B( x2 ,r 1 ) ( f ) ≥ f (4r 1 ).
Finally, we get for all

x 1 ∈ R 2 and x 2 ∈ A(x 1 ) |Avg B(x 2 ,r 2 ) ( f ) -Avg B(x 1 ,r 1 ) ( f )| ≤ Avg B(0,r 2 ) ( f ) -f (4r 1 ).
Now it is easy to see that

f (4r 1 ) = ln(1 -ln(r 1 )) + O(1),
and (with an integration by parts)

Avg B(0,r 2 ) ( f ) = ln(1 -ln(r 2 )) + 1 r 2 2 r 1 0 1 1 -ln(ρ) ρdρ = ln(1 -ln(r 2 )) + O(1).
This yields,

|Avg B(x 2 ,r 2 ) ( f ) -Avg B(x 1 ,r 1 ) ( f )| ≤ ln 1 -ln(r 2 ) 1 -ln(r 1 ) + O(1),
as desired.

(ii) Stability by convolution. (7) follows from the fact that for all r > 0

x → Avg B(x,r) (g * f ) = (g * Avg B(•,r) ( f ))(x).
The advantage of using the space LBMO lies in the following logarithmic estimate which is the main ingredient for proving Theorem 1.

Theorem 2. There exists a universal constant C > 0 such that

f oψ LBMO∩L p ≤ C ln(1 + ψ * ) f LBMO∩L p ,
for any Lebesgue measure preserving homeomorphism ψ.

Proof of Theorem 2. Of course we are concerned with ψ such that ψ * is finite (if not the inequality is empty). Without loss of generality one can assume that f LBMO∩L p = 1. Since ψ preserves Lebesgue measure then the L p -part of the norm is conserved. For the two other parts of the norm, we will proceed in two steps. In the first step we consider the BMO term of the norm and in the second one we deal with the other term.

Step 1. Let B = B(x 0 , r) be a given ball of R 2 . By using the L p -norm we need only to deal with balls whose radius is smaller than a universal constant δ 0 (we want r to be small with respect to the constants appearing in Whitney covering lemma below). Since ψ is a Lebesgue measure preserving homeomorphism then ψ( B) is an open connected 5 set with |ψ(B)| = |B|. By Whitney covering lemma, there exists a collection of balls (O j ) j such that:

-The collection of double ball is a bounded covering:

ψ(B) ⊂ 2O j .
-The collection is disjoint and, for all j, O j ⊂ ψ(B).

-The Whitney property is verified:

r O j ≃ d(O j , ψ(B) c ).
• Case 1: r ≤ 1 4 e -ψ * . In this case g ψ (r) ≤ 1.

We set B := B(ψ(x 0 ), g ψ (r)). Since ψ preserves Lebesgue measure we get 5 We have also that ψ(B) C = ψ(B C ) and ψ(∂B) = ∂(ψ(B)).

Avg B | f oψ -Avg B ( f oψ)| = Avg ψ(B) | f -Avg ψ(B) ( f )| ≤ 2Avg ψ(B) | f -Avg B( f )|.

Using the notations above Avg

ψ(B) | f -Avg B( f )| 1 |B| ∑ j |O j |Avg 2O j f -Avg B( f ) I 1 + I 2 ,
with

I 1 = 1 |B| ∑ j |O j | Avg 2O j ( f ) -Avg 2O j ( f ) I 2 = 1 |B| ∑ j |O j | Avg 2O j ( f ) -Avg B( f ) .
On one hand, since ∑ |O j | ≤ |B| then

I 1 ≤ 1 |B| ∑ j |O j | f BMO ≤ f BMO .
On the other hand, sinc 4O j ⊂ B (remember Lemma 1) and r B ≤ 1, it ensues that

I 2 1 |B| ∑ j |O j | 1 + ln 1 -ln 2r j 1 -ln g ψ (r) 1 |B| ∑ j |O j |(1 + ln 1 -ln r j 1 -ln g ψ (r)
).

Thanks to (6) we get ln 1ln r j 1ln g ψ (r)

≤ ln 1ln r j 1ln r + ln 1ln r 1ln g ψ (r)

1 + ln 1 -ln r j 1 -ln r + ln(1 + ψ * ). (8) 
Thus it remains to prove that

I I := 1 |B| ∑ j |O j |(1 + ln 1 -ln r j 1 -ln r ) 1 + ln(1 + ψ * ). (9) 
For every k ∈ N we set

u k := ∑ e -(k+1) r<r j ≤e -k r |O j |, so that I I ≤ 1 |B| ∑ k≥0 u k 1 + ln k + 2 -ln r 1 -ln r . ( 10 
)
We need the following lemma. Lemma 2. There exists a universal constant C > 0 such that

u k ≤ Ce -k ψ * r 1+ 1 ψ * , for every k ∈ N.
Proof of Lemma 2. If we denote by C ≥ 1 the implicit constant appearing in Whitney Lemma, then

u k ≤ |{y ∈ ψ(B) : d(y, ψ(B) c ) ≤ Ce -k r}|. The preservation of Lebesgue measure by ψ yields |{y ∈ ψ(B) : d(y, ψ(B) c ) ≤ Ce -k r}| = |{x ∈ B : d(ψ(x), ψ(B) c ) ≤ Ce -k r}|, Since ψ(B) c = ψ(B c ) then u k ≤ |{x ∈ B : d(ψ(x), ψ(B c )) ≤ Ce -k r}|.
We set

D k = {x ∈ B : d(ψ(x), ψ(B c )) ≤ Ce -k r}. Since ψ(∂B) is the frontier of ψ(B) and d(ψ(x), ψ(B c )) = d(ψ(x), ∂ψ(B)) then D k ⊂ {x ∈ B : ∃y ∈ ∂B with |ψ(x) -ψ(y)| ≤ Ce -k r}.
The condition on δ 0 is just to assure that Cr ≤ 1 for all r ≤ δ 0 . In this case Proposition 2 gives

D k ⊂ {x ∈ B : ∃y ∈ ∂B : |x -y| ≤ Ce 1-k ψ * r 1 ψ * }. Thus, D k is contained in the annulus A = {x ∈ B : d(x, ∂B) ≤ Ce 1-k ψ * r 1 ψ * } and so u k ≤ |D k | e -k ψ * r 1+ 1 ψ * , as claimed.
Coming back to [START_REF] Gérard | Résultats récents sur les fluides parfaits incompressibles bidimensionnels[END_REF]. Let N a large integer to be chosen later. We split the sum in the right hand side of [START_REF] Gérard | Résultats récents sur les fluides parfaits incompressibles bidimensionnels[END_REF] Since ∑ u k ≤ |B| then

I I 1 ≤ 1 + ln N + 2 -ln r 1 -ln r . ( 11 
)
On the other hand

I I 2 ≤ ∑ k>N e -k ψ * r 1 ψ * -1 (1 + ln k + 2 -ln r 1 -ln r ).
The parameter N will be taken bigger than ψ * so that the function in k inside the sum is decreasing and an easy comparison with integral yields

I I 2 e -N ψ * ψ 2 * r 1 ψ * -1 1 + ln N + 2 -ln r 1 -ln r . ( 12 
)
Putting [START_REF] Giga | 2D Navier-Stokes flow with measures as initial vorticity[END_REF] and [START_REF] Grafakos | Classical and Modern Fourier Analysis[END_REF] together and taking N = [ ψ * ( ψ *ln r)] + 1

I I 1 + e -N ψ * ψ 2 * r 1 ψ * -1 1 + ln N + 2 -ln r 1 -ln r . Taking N = [ ψ * ( ψ * -ln r)] + 1 I I (1 + e -ψ * ψ 2 * r 1 ψ * ) 1 + ln ψ * ( ψ * -ln r) + 2 -ln r 1 -ln r . 1 + ln(1 + ψ * ),
where we have used the fact that r ≤ 1 and the obvious inequality

ψ * ( ψ * -ln r) + 2 -ln r 1 -ln r (1 + ψ * ) 2 .
This ends the proof of (9).

• Case 2: δ 0 ≥ r ≥ 1 4 e -ψ * . In this case | ln r| ψ * .

Since ψ preserves Lebesgue measure, we get

I := Avg B | f oψ -Avg B ( f oψ)| ≤ 2Avg ψ(B) | f |.
Let Õj denote the ball which is concentric to O j and whose radius is equal to 1 (we use the same Whitney covering as above). Without loss of generality we can assume δ 0 ≤ 1 4 . This guarantees 4O j ⊂ Õj and yields by definition

I 1 |B| ∑ j |O j |Avg 2O j | f -Avg Õj ( f )| + 1 |B| ∑ j |O j ||Avg Õj ( f )| 1 |B| ∑ j |O j | 1 + ln 1 -ln 2r j f LBMO + 1 |B| ∑ j |O j | f L p 1 + 1 |B| ∑ j |O j | 1 + ln 1 -ln r j .
As before one writes

I 1 |B| ∑ k≥0 u k 1 + ln k + 2 -ln r 1 + ln N + 2 -ln r + e -N ψ * ψ 2 * r 1 ψ * -1 1 + ln N + 2 -ln r) .
Taking N = [ ψ * ( ψ *ln r)] + 1 and using the fact that | ln r| ψ * leads to the desired result. The outcome of this first step of the proof is

f oψ BMO∩L p ln(1 + ψ * ) f LBMO∩L p .
Step 2. This step of the proof deals with the second term in the LBMO-norm. It is shorter than the first step because it makes use of the arguments developed above. Take B 2 = B(x 2 , r 2 ) and B 1 = B(x 1 , r 1 ) in R 2 with r 1 ≤ 1 and 2B 2 ⊂ B 1 . There are three cases to consider.

• Case 1: r 1 e -ψ * (so that g ψ (r 2 ) ≤ g ψ (r 1 ) ≤ 1 2 ).

We set Bi := B(ψ(x i ), g ψ (r i )), i = 1, 2 and

J := |Avg B 2 ( f oψ) -Avg B 1 ( f oψ)| 1 + ln 1-ln r 2 1-ln r 1 .
Since the denominator is bigger than 1 one get

J ≤ J 1 + J 2 + J 3 ,
with

J 1 = |Avg ψ(B 2 ) ( f ) -Avg B2 ( f )| + |Avg ψ(B 1 ) ( f ) -Avg B1 ( f )| J 2 = |Avg B2 ( f ) -Avg 2 B1 ( f )| 1 + ln 1-ln r 2 1-ln r 1 J 3 = |Avg B1 ( f ) -Avg 2 B1 ( f )|.
Since 2 B2 ⊂ 2 B1 and r 2 B1 ≤ 1 then

J 2 ≤ 1 + ln 1-ln g ψ (r 2 ) 1-ln(2g ψ (r 1 )) 1 + ln 1-ln r 2 1-ln r 1 f LBMO .
Using similar argument than (8) (and remembering Remark 4) we infer ln 1ln g ψ (r 2 ) 1ln(2g ψ (r 1 ))

1 + ln(1 + ψ * ) + ln 1ln r 2 1ln r 1 .

Thus,

J 2 1 + ln(1 + ψ * ).
The estimation (4) yields

J 3 f BMO .
The term J 1 can be handled exactly as in the analysis of case 1 of step 1.

• Case 2: e -ψ * r 2 . In this case we write

J ≤ Avg ψ(B 2 ) | f | + Avg ψ(B 1 ) | f |.
Both terms can be handled as in the analysis of case 2 of the proof of BMO-part in step 1.

• Case 3: r 2 e -ψ * and r 1 e -ψ * . Again since the denominator is bigger than 1 we get

J ≤ Avg ψ(B 2 ) | f -Avg B2 ( f )| + |Avg B2 ( f )| 1 + ln 1-ln r 2 1-ln r 1 + Avg ψ(B 1 ) | f | = J 1 + J 2 + J 3 .
The terms J 1 and J 3 can be controlled as before. The second term is controlled as follows (we make appear the average on B(ψ(x 2 ), 1) and use Lemma 1 with f L p ≤ 1)

J 2 ≤ 1 + ln(1 -ln r 2 ) 1 + ln 1-ln r 2 1-ln r 1 ≤ 1 + ln(1 + | ln r 1 |) ≤ 1 + ln(1 + ψ * ).

PROOF OF THEOREM 1

The proof falls naturally into three parts.

4.1.

A priori estimates. The following estimates follow directly from Proposition 1 and Theorem 2.

Proposition 4. Let u be a smooth solution of (1) and ω its vorticity. Then, there exists a constant C 0 depending only on the norm L p ∩ LBMO of ω 0 such that

u(t) LL + ω(t) LBMO ≤ C 0 exp (C 0 t),
for every t ≥ 0.

Proof. One has ω(t, x) = ω 0 (ψ -1 t (x)) where ψ t is the flow associated to the velocity u. Since u is smooth then ψ ±1 t is Lipschitzian for every t ≥ 0. This implies in particular that ψ ±1 t * is finite for every t ≥ 0. Theorem 2 and Proposition 1 yield together

ω(t) LBMO ≤ C ω 0 LBMO∩L p ln(1 + ψ -1 t * ) ≤ C ω 0 LBMO∩L p ln(1 + exp( t 0 u(τ) LL dτ)) ≤ C 0 (1 + t 0 u(τ) LL dτ).
On the other hand, one has

u(t) LL ≤ ω(t) L 2 + ω(t) B 0 ∞,∞ ≤ C( ω 0 L 2 + ω(t) BM0 ).
The first estimate is classical (see [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF] for instance) and the second one is just the conservation of the L 2 -norm of the vorticity and the continuity of the embedding BMO ֒→ B 0 ∞,∞ . Consequently, we deduce that

u(t) LL ≤ C 0 (1 + t 0 u(τ) LL dτ),
and by Gronwall's Lemma u(t) LL ≤ C 0 exp(C 0 t), ∀ t ≥ 0.

This yields in particular ω(t) LBMO ≤ C 0 exp (C 0 t), ∀ t ≥ 0, as claimed.

4.2. Existence. Let ω 0 ∈ L p ∩ LBMO and u 0 = k * ω 0 , with K(x) = x ⊥ 2π|x| 2 . We take ρ ∈ C ∞ 0 , with ρ ≥ 0 and ρ(x)dx = 1 and set ω n 0 = ρ n * ω 0 , u n 0 = ρ n * u 0 , where ρ n (x) = n 2 ρ(nx). Obviously, ω n 0 is a C ∞ bounded function for every n ∈ N * . Furthermore, thanks to (7), ω n 0 L p ≤ ω 0 L p and ω n 0 LBMO ≤ ω 0 LBMO . The classical interpolation result between Lebesgue and BMO spaces (see [START_REF] Grafakos | Classical and Modern Fourier Analysis[END_REF] for more details) implies that

ω n 0 L q ≤ ω n 0 L p ∩BMO ≤ ω 0 L p ∩BMO , ∀ q ∈ [p, +∞[.
Since, ω n 0 ∈ L p ∩ L ∞ then there exists a unique weak solution u n with ω n ∈ L ∞ (R + , L p ∩ L ∞ ).

according to the classical result of Yudovich [START_REF] Yudovich | Nonstationary flow of an ideal incompressible liquid[END_REF]. According to Proposition 4 one has

u n (t) LL + ω n (t) L p ∩LBMO ≤ C 0 exp(C 0 t), ∀ t ∈ R + . ( 13 
)
With this uniform estimate in hand, we can perform the same analysis as in the case ω 0 ∈ L p ∩ L ∞ (see paragraph 8.2.2 in [START_REF] Majda | Vorticity and incompressible flow[END_REF] for more explanation). For the convenience of the reader we briefly outline the main arguments of the proof. If one denotes by ψ n (t, x) the associated flow to u n then ( Here, we have used the Biot-Savart law to get

u n (t) L ∞ ω n (t) L p ∩L 3 ≤ ω 0 L p ∩L 3 .
The family {ψ n , n ∈ N} is bounded and equicontinuous on every compact [0, T] × B(0, R) ⊂ R + × R 2 . The Arzela-Ascoli theorem implies the existence of a limiting particle trajectories ψ(t, x). Performing the same analysis for {ψ -1 n , n ∈ N} we figure out that ψ(t, x) is a Lebesgue measure preserving homeomorphism . Also, passing to the limit6 in (14) leads to

ψ t * = ψ -1 t * ≤ C 0 exp(C 0 t), ∀ t ∈ R + .
One defines, ω(t, x) = ω 0 (ψ -1 t (x)), u(t, x) = (k * x ω(t, .))(x).

  ...) := I I 1 + I I 2 .

  14) ψ ±1 n (t) * ≤ C 0 exp(C 0 t), ∀ t ∈ R + .This yields the existence of explicit time continuous functions β(t) > 0 and C(t) such that|ψ ±1 n (t, x 2 )ψ ±1 n (t, x 1 )| ≤ C(t)|x 2x 1 | β(t) , ∀ (x 1 , x 2 ) ∈ R 2 × R 2 . ≤ |t 2t 1 | u n L ∞ ≤ C 0 |t 2t 1 |, ∀ (t 1 , t 2 ) ∈ R + × R + .

	Moreover,
	|ψ ±1

n (t 2 , x)ψ ±1 n (t 1 , x)|

If ω 0 ∈ L p with p ∈]1, 2[ then a classical Hardy-Littlewood-Sobolev inequality gives u ∈ L q with 1 q = 1 p -1 2 .

This notation means that for every ball B ⊂ ψ(B(x 0 , r)) we have 4B ⊂ B(ψ(x 0 ), g ψ (r)).

We take the pointwise limit in the definition formula and then take the supremum.
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We easily check that for every q ∈ [p, +∞[ one has ω n (., t) -→ ω(., t) in L q . u n (., t) -→ x u(., t) uniformly.

The last claim follows from the fact that

All this allows us to pass to the limit in the integral equation on ω n and then to prove that (u, ω) is a weak solution to the vorticity-stream formulation of the 2D Euler system. Furthermore, the convergence of {ω n (t)} in L 1 loc and ( 13) imply together that

as claimed.

The continuity of ψ and the preservation of Lebesgue measure imply that t → ω(t) is continuous 7 with values in L q for all q ∈ [p, +∞[. This implies in particular that

Uniqueness. Since the vorticity remains bounded in BMO space then the uniqueness of the solutions follows from Theorem 7.1 in [START_REF] Vishik | Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type[END_REF]. Another way to prove that is to add the information u ∈ C([0, +∞, L ∞ (R d )) (which is satisfied for the solution constructed above) to the theorem and in this case the uniqueness follows from Theorem 7.17 in [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF].