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Abstract
Let V = Rd be the Euclidean d-dimensional space, µ (resp λ) a probability measure on
the linear (resp affine) group G = GL(V ) (resp H = Aff(V )) and assume that µ is the
projection of λ on G. We study asymptotic properties of the convolutions µn ∗ δv (resp
λn ∗ δv) if v ∈ V , i.e asymptotics of the random walk on V defined by µ (resp λ), if the
subsemigroup T ⊂ G (resp Σ ⊂ H) generated by the support of µ (resp λ) is ”large”.
We show spectral gap properties for the convolution operator defined by µ on spaces of
homogeneous functions of degree s ≥ 0 on V , which satisfy Hölder type conditions. As a

consequence of our analysis we get precise asymptotics for the potential kernel
∞
Σ
0
µk ∗ δv ,

which imply its asymptotic homogeneity. Under natural conditions the H-space V is a
λ-boundary ; then we use the above results to show that the unique λ-stationary measure
ρ on V is ”homogeneous at infinity” with respect to dilations v → tv(t > 0). It follows that
ρ belongs to the domain of attraction of a stable law depending only of µ and Σ, up to a
coefficient. Our proofs are based on the simplicity of the dominant Lyapunov exponent for
certain products of Markov-dependant random matrices, on the use of a renewal theorem
for Markov walks, and on the dynamical properties of a conditional λ-boundary dual to V .

I Introduction, statement of results

We consider the d-dimensional Euclidean space V = Rd, endowed with the natural scalar
product (x, y) →< x, y >, the linear group G = GL(V ), and the affine group H = Aff(V ).
Let λ be a probability measure on H with projection µ on G, such that suppλ has no fixed
point in V . In this paper we are interested in the ”shape at infinity” of λ-stationary
measures on V , i.e probability measures ρ on V which satisfy the convolution equation
λ ∗ ρ = ρ. Under natural conditions, including negativity of the dominant Lyapunov
exponent corresponding to µ, such a measure exists, is unique, has unbounded support
and for any v ∈ V , λn ∗ δv converges weakly to ρ. The study of deeper properties of ρ is
of interest for various questions in Probability Theory and Mathematical Physics (see [12],
[19], [20], [33], [36]) and also for the analysis of the H-space (V, ρ) as a λ-boundary and
its dynamical consequences (see [16], [17], [30]). Our main geometrical hypothesis here is
on suppµ. We assume that the closed subsemigroup T generated by suppµ satisfies the
so-called i-p condition, i.e T is strongly irreductible and contains at least one element with
a unique simple dominant eigenvalue ; if d = 1, we assume furthermore that T is non
arithmetic, i.e T is not contained in a subgroup of R∗ of the form {±an;n ∈ Z} for some
a > 0. We observe that for d > 1 condition i-p is satisfied under very general conditions,
in particular if the Zariski closure of T is a ”large” subgroup of G (see [22], [41]). On the
other hand, the set of probability measures µ on G such that the associated semigroup T
satisfies condition i-p is open and dense in the weak topology. Also, if d > 1, an essential
aperiodicity consequence of condition i-p is the density in the multiplicative group R∗

+ of
the subgroup generated by the positive dominant eigenvalues of the elements of T (see [25],
[28]).
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We denote by g∗ the transposed map of g ∈ G, i.e g∗ is the linear map defined by the
relation < g∗x, y >=< x, gy >, and µ∗ is the push-forward of µ by g → g∗. For a Radon
measure η on V \{0} and t > 0, we write t.η for the push-forward of η by the map x→ tx.
For v ∈ V \ {0} we denote H+

v = {x ∈ V ; < x, v >> 1} and if η is a probability measure
on V \ {0} we write η̂(v) = η(H+

v ). The asymptotic expansion of η̂(tv) at t = o+ gives the
tail of η in direction v ; also, using map η → η̂ and the affine structures we observe that
the equation ρ = λ∗ρ implies Poisson-type equations on V \{0} and E = (V \{0})×R, for
functions associated with ρ̂. The space E is R∗

+-fibered over the space W of affine oriented
hyperplanes in V , and has a natural H-homogeneous space structure. Our analysis of the
equation ρ = λ ∗ρ will rely on the dynamical properties of ”dual” λ-walks on the H-spaces
E,W, V \ {0} and on the study of Poisson-type equations satisfied by ρ̂.
Since the dominant Lyapunov exponent of µ is negative, the random walk Sn(ω)v on V
defined by µ converges to zero a.e ; however Sn(ω)v takes arbitrarily large values with a
small probability which has a power law decay with degree α > 0. As observed in [33],
this fluctuation property of Sn(ω)v is closely related to the tail-homogeneity of ρ, i.e the
existence of lim

t→0+
t−αρ̂(tv). We consider the more precise condition of ”homogeneity at

infinity”, i.e existence and non triviality of lim
t→0+

t−α(t.ρ) in the sense of vague convergence.

This property is proved here under the above hypothesis and the product structure of the
limiting measure is described in terms of twisted µ-stationary measures on the unit sphere
Sd−1. This agrees with F. Spitzer’s conjecture to the effect that ρ belongs to the domain
of attraction of a stable law. For another general construction of such measures, in the
context of winding of geodesic flow on surfaces see [1]. The cases where λ is concentrated
on non negative matrices or λ has a density on H were studied in [33], tail homogeneity
of ρ was proved and these results were extended to the general case in [37], under some
restrictive conditions. If d = 1, tail homogeneity means homogeneity at infinity ; in this
case, more information on the convergence of t−α(t.ρ) and on the limiting measure was
given in [19] where the more general quasi linear context was also considered. Furthermore,
the case where T consists of similarities of V was studied in [8] under general conditions,
homogeneity at infinity of ρ in an appropriate sense was proved, and the structure of the
limiting measure was described. Here we complete and improve the results of [33], [37],
which are simpler in a sense than those of [8] . We observe that the recent results of [2] allow
to pass from tail-homogeneity to homogeneity at infinity if α /∈ N. No such general result
is valid for α ∈ N and the situation is different (see [45]). Here the arguments depend on a

detailed study of asymptotics for the potential kernel
∞
Σ
0
(µ∗)k ∗ δv and for certain Birkhoff

sums on the H-space W ; the homogeneity at infinity of ρ is closely related to spectral gap
properties for operators associated with µ, which are of independant interest. Hence we
begin by a description of these properties in a general setting, if d > 1.

We denote by |v| the length of v ∈ V , by |g| the norm of g ∈ G and we write γ(g) =
sup(|g|, |g−1|). We write Iµ = {s ≥ 0 ;

∫
|g|sdµ(g) <∞} and we denote ]0, s∞[ the interior
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of the interval Iµ. We consider the convolution action of µ on continuous functions on
V \ {0} which are homogeneous of degree s ≥ 0, i.e functions f which satisfy : f(tv) =
|t|sf(v) (t ∈ R). This action reduces to the action of a certain positive operator P s on
C(Pd−1), the space of continuous functions on the projective space Pd−1. More precisely,
if f(v) = |v|sϕ(v̄) with ϕ ∈ C(Pd−1), v̄ ∈ Pd−1, then P sϕ is given by :

P sϕ(x) =
∫
|gx|sϕ(g.x)dµ(g),

where x ∈ Pd−1, x → g.x denotes the projective action of g on x, and |gx| is the norm
of any vector gv with |v| = 1 and v̄ = x. Also for z = s + it ∈ C we write P zϕ(x) =∫
|gx|zϕ(g.x)dµ(g). For ε > 0 let Hε(P

d−1) be the space of ε-Hölder functions on Pd−1,
with respect to a certain natural distance. We denote by ℓs (resp ℓ) the s-homogeneous
(resp Lebesgue) measure on R∗

+ given by ℓs(dt) = dt
ts+1 (resp ℓ(dt) = dt

t ) and we write an

s-homogeneous Radon measure η on
.
V = Pd−1 × R∗

+ as η = π ⊗ ℓs where π is a bounded

measure on Pd−1. For s ∈ Iµ we define k(s) = lim
n→∞

(

∫
|g|sdµn(g))1/n where µn is the n−th

convolution power of µ and we observe that Logk(s) is a convex function on Iµ. A key tool
in our analysis for d > 1 is the

Theorem A
Assume d > 1 and the subsemigroup T ⊂ GL(V ) generated by suppµ satisfies condition i-p.
Then, for any s ∈ Iµ there exists a unique probability measure νs on Pd−1, a unique positive
continuous function es ∈ C(Pd−1) with νs(es) = 1 such that P sνs = k(s)νs, P ses = k(s)es.
For s ∈ Iµ, if

∫
|g|sγδ(g)dµ(g) < ∞ for some δ > 0 and if ε > 0 is sufficiently small, the

action of P s on Hε(P
d−1) has a spectral gap :

P s = k(s)(νs ⊗ es + Us),
where νs⊗ es is the projection on Ces defined by νs, es and Us is an operator with spectral
radius less than 1 which commutes with νs⊗es. Furthermore the function k(s) is analytic,
strictly convex on ]0, s∞[ and the spectral radius of P z is less than k(s) if t = Imz 6= 0.

We observe that, since condition i-p is open, the last property is robust under perturbation
of µ in the weak topology. If d = 1, k(s) is the Mellin transform of µ and the above
statements are also valid if T is non arithmetic. However, the last property is not robust
for d = 1. If s = 0, P s reduces to the convolution operator by µ on Pd−1 and convergence
to the unique µ-stationary measure ν0 = ν was studied in [17]. In this case, spectral gap
properties for P o were first proved in [38]. Limit theorems of Probability Theory for the
product Sn = gn · · · g1 of the random i.i.d matrices gk, distributed according to µ, are
consequences of this result and of radial Fourier Analysis on V \ {0} used in combination
with boundary theory (see[4] [16], [21], [28], [38]). Also, for s > 0, the properties described
in the theorem are basic ingredients for the study of precise large deviations of Sn(ω)v ([39]).
The Radon measure νs⊗ℓs on

.
V satisfies the convolution equation µ∗(νs⊗ℓs) = k(s)νs⊗ℓs

and the support of νs is the unique T -minimal subset of Pd−1, the so-called limit set
Λ(T ) of T . The function es is an integral transform of the twisted µ∗-eigenmeasure ∗νs.
For s > 0 and σ a probability measure on Pd−1 not concentrated on a proper subspace,
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|g|s is comparable to
∫
|gx|sdσ(x). The uniqueness properties of es and νs are based on

this geometrical fact. The proof of the spectral gap property depends on the simplicity
of the dominant Lyapunov exponent for the product of random matrices Sn = gn · · · g1
with respect to a natural shift-invariant Markov measure Qs on Ω = GN, which is locally
equivalent to the product measure Q0 = µ⊗N. As in [37] and [6] a martingale construction
(here based on ∗νs) plays an essential role in the proof of simplicity and in the comparison
of |Sn(ω)| with |Sn(ω)v| as in [28].
We observe that spectral gap properties for the family of operators P s(s ∈ R) play
an important role in various problems, for example in the localisation problem for the
Schroëdinger operator with random potential on the line (See [4], [23]). In the paper [39],
the spectral gap property for P s(s > 0) is not proved but the large deviations asymptotics
stated there for |Sn(ω)v| can be justified with the use of Theorem A. If µ has a density
with compact support, the above analysis is valid for any s ∈ R. In general and for d > 1,
it turns out that the function k(s), as defined above, looses its analyticity at some s < 0.
We endow Ω = GN with the shift-invariant measure P = µ⊗N (resp Qs). We know that
if
∫
Logγ(g)dµ(g) (resp

∫
|g|sLogγ(g)dµ(g)) is finite the dominant Lyapunov exponent Lµ

(resp Lµ(s)) of Sn = gn · · · g1 with respect to P (resp Qs) exists and :

Lµ = lim
n→∞

1

n

∫
Log|Sn(ω)|dP(ω), Lµ(s) = lim

n→∞
1

n

∫
Log|Sn(ω)|dQs(ω).

If s ∈]0, s∞[, k(s) has a derivative k′(s) and Lµ(s) =
k′(s)
k(s) . By strict convexity of Logk(s),

if lim
s→s∞

k(s) ≥ 1 and s∞ > 0, we can define α > 0 by k(α) = 1. We consider the potential

kernel U on
.
V defined by U(v, .) =

∞
Σ
0
µk ∗δv. Then we have the following multidimensional

extensions of the classical renewal theorems of Probability theory (see [15]), which describes
the asymptotic homogeneity of U(v, .) :

Theorem B
Assume T satisfies condition i-p,

∫
Logγ(g)dµ(g) < ∞ and Lµ > 0. If d = 1 assume fur-

thermore that µ is non-arithmetic. Then, for any v ∈ Pd−1 we have the vague convergence:

lim
t→0+

U(tv, .) =
1

Lµ
ν ⊗ ℓ,

where ν is the unique µ-stationary measure on Pd−1.

Theorem B’
Assume T satisfies condition i-p,

∫
Logγ(g)dµ(g) < ∞, Lµ < 0, s∞ > 0 and there exists

α > 0 with k(α) = 1,
∫
|g|αLogγ(g)dµ(g) < ∞. If d = 1 assume furthermore that µ is

non-arithmetic. Then for any v ∈ Pd−1 we have the vague convergence on
.
V :

lim
t→0+

t−αU(tv, .) =
eα(v)

Lµ(α)
να ⊗ ℓα.

Up to normalization the Radon measure να ⊗ ℓα is the unique α-homogeneous measure
which satisfies the harmonicity equation µ ∗ (να ⊗ ℓα) = να ⊗ ℓα.
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Corollary

With the notations of Theorem B’, for any v ∈ Pd−1, we have the convergence :

lim
t→∞

tαP{∃n ∈ N; |Snv| > t} = Aeα(v) > 0.

The corollary is a matricial version of the famous Cramer estimate for the probability of
ruin in collective risk theory (see [15]). Theorems B, B’ are consequences of the arguments
used in the proof of Theorem A and of a renewal theorem for a class of Markov walks on
R (see [34]). An essential role is played by the law of large numbers for Log|Snv| under
Qs(s = 0, α) ; the comparison of |Sn| and |Snv| follows from the finiteness of the limit of
(Log|Sn| − Log|Snv|). For the sake of brevity, we have formulated these theorems in the
context of

.
V instead of V . Corresponding statements where Pd−1 is replaced by Sd−1 are

given in section 4. Also the above weak convergence can be extended to a larger class of
functions. In [33], renewal theorems as above were obtained for non negative matrices, the
extension of these results to the general case was an open problem and a partial solution
was given in [37]. Theorems B and B’ extend these results to a wider setting. In view of the
interpretation of U(v, .) as a mean number of visits, Theorem B is a strong reinforcement
of the law of large numbers for Sn(ω)v, hence it can be used in some problems of dynamics
for group actions on T -spaces. In this respect we observe that the asymptotic homogeneity
of U stated in Theorem B has been of essential use in [30] for the description of the T -
minimal subsets of the action of a large subsemigroup T ⊂ SL(d,Z) of automorphisms of
the torus Td. Also the convergence in Theorem B’ gives the convergence of the µ-Martin
kernel on

.
V to the point να ⊗ ℓα of the µ-Martin boundary ; if

∫
|g|αγδ(g)dµ(g) < ∞ for

some δ > 0, να⊗ ℓα is a minimal point. On the other hand Theorem B’ gives a description
of the fluctuations of a linear random walk on V with P-a.e exponential convergence to
zero, under condition i-p and the existence in T of a matrix with spectral radius greater
than one. These fluctuation properties are responsible for the homogeneity at infinity of
stationary measures for affine random walks on V , that we discuss now.
Let λ be a probability measure on the affine group H of V , µ its projection on G, Σ the
closed subsemigroup of H generated by suppλ. As above we assume that the semigroup T
generated by suppµ satisfies condition i-p, and suppλ has no fixed point in V . If d = 1 we
assume that µ is non-arithmetic. We consider the affine stochastic recursion :

xn+1 = An+1xn +Bn+1,
where (An, Bn) are λ-distributed i.i.d random variables. From a heuristic point of view,
the corresponding Markov chain can be considered as a superposition of and additive ran-
dom walk, governed by Bn and a multiplicative random walk, governed by An. Here, as it
appears below in Theorem C, which is reminiscent of Theorem B’, the non trivial multiplica-
tive part An plays a dominant role, while the additive part Bn has a stabilizing effect since
ρ is finite if Bn is not zero. If E(Log|An|) + E(Log|Bn|) <∞ and the dominant Lyapunov

exponent Lµ for the product Πn = A1 · · ·An is negative, then Rn =
n−1
Σ
0
A1 · · ·AkBk+1

converges λ⊗N − a.e. to R, the law ρ of R is the unique λ-stationary measure on V, (V, ρ)
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is a λ-boundary and suppρ = Λa(Σ) is the unique Σ-minimal subset of V . If T contains
at least one matrix with spectral radius greater than one and Iµ = [0,∞[, then Λa(Σ) is
unbounded, there exists α > 0 with k(α) = 1 and we can inquire about the ”shape at
infinity” of ρ. According to a conjecture of F. Spitzer the measure ρ should belong to the
domain of attraction of a stable law with index α if α ∈ [0, 2[ or a Gaussian law if α ≥ 2.
Here we prove a multidimensional precise form of this conjecture, i.e α-homogeneity at
infinity of ρ, where we assume that µ satisfies the conditions of Theorem B’, λ satisfies
moment conditions and suppλ has no fixed point in V . The main idea is to express ρ̂ as a
µ∗-potential of a ”small” implicit function on V \{0}, to use the asymptotics given in The-
orem B’ and to complete the argument by a study of the ladder heights for certain Birkhoff
sums along the dual λ-walk on W and a Choquet-Deny lemma, for translation-bounded
µ-harmonic measures.
In order to state the result we need further notations related to the unit sphere Sd−1 of V
and to limit sets. We denote by Λ̃(T ) the inverse image in Sd−1 of the limit set Λ(T ) ⊂ Pd−1.
If T leaves invariant a proper convex cone in V , then Λ̃(T ) splits into two T -minimal subsets
Λ+(T ) and Λ−(T ) = −Λ+(T ) ; otherwise Λ̃(T ) is T -minimal. We denote by ν̃α the unique
symmetric measure on Sd−1 with projection να on Pd−1. If Λ̃(T ) is not T -minimal we write
ν̃α = 1

2(ν
α
+ + να−) where να+ and να− are the normalized restrictions of ν̃α to Λ+(T ) and

Λ−(T ) respectively. Then it follows that the α-homogeneous measures ν̃α ⊗ ℓα, να+ ⊗ ℓα

and να− ⊗ ℓα are µ-harmonic. If Λ̃(T ) is T -minimal, the probability measure ν̃α is uniquely
defined by the equation µ ∗ (ν̃α ⊗ ℓα) = ν̃α ⊗ ℓα. If not, any α-homogeneous harmonic
measure is a linear combination of να+ ⊗ ℓα and να− ⊗ ℓα. We compactify V by adding at
infinity the unit sphere Sd−1

∞ in the usual way and we denote by Λ∞(T ), Λ∞
+ (T ), Λ∞

− (T )

the subsets of Sd−1
∞ corresponding to Λ̃(T ), Λ+(T ), Λ−(T ) respectively. The ”shape at

infinity” of ρ depends of the relative positions of the sets Λ∞(T ), Λ∞
+ (T ), Λ∞

− (T ) with

respect to the closure Λa(Σ) of Λa(Σ) in V ∪ Sd−1
∞ as described below.

Theorem C
With the above notations we assume that T satisfies condition i-p, suppλ has no fixed
point in V , s∞ > 0, Lµ < 0 and α ∈]0, s∞[ satisfies k(α) = 1. If d = 1 we assume also
µ is non-arithmetic. Then, if E(|B|α+δ) < ∞ and E(|A|αγδ(A)) < ∞ for some δ > 0, the
unique λ-stationary measure ρ on V satisfies the following vague convergence on V \ {0} :

lim
t→0+

t−α(t.ρ) = Cσα ⊗ ℓα,

where C > 0, σα is a probability measure on Λ̃(T ) and σα ⊗ ℓα is a µ-harmonic Radon
measure supported on R∗Λ̃(T ). If T has no proper convex invariant cone in V , we have
σα = ν̃α. In the opposite case, then Cσα = C+ν

α
+ +C−να−, with C+ = 0 (resp C− = 0) if

and only if Λa(Σ)∩Λ∞
+ (T ) = φ (resp Λa(Σ)∩Λ∞

− (T ) = φ). The above convergence is also
valid on any Borel function f such that the set of discontinuities of f is σα ⊗ ℓα-negligible
and such that for some ε > 0 the function |v|−α|Log|v||1+ε|f(v)| is bounded.
This statement gives the homogeneity at infinity of ρ and the measure Cσα ⊗ ℓα can be

7



interpreted as the ”tail measure” of ρ. In the context of [36], the convergence stated in
the theorem says that ρ has ”multivariate regular variation”. If the moment condition
on |A| is replaced by E(|A|α Logγ(A)) < ∞, then convergence remains valid on the sets
H+
v . Theorem C was stated in [26]. Since the expression of ρ̂ as a µ∗-potential depends

on signed and implicit quantities, an important point is the discussion of positivity for
C,C+ and C−. For d = 1 positivity of C = C+ + C− was proved in [19] using Levy’s
symmetrisation argument, positivity of C+, C− was tackled in [26] by a complex analytic
method introduced in [12]. Here our main tool is a detailed analysis of a conditional λ-walk
on the H-space E = (V \ {0} × R considered as a R∗

+-fibered space over the space W of
affine oriented hyperplanes. The space E = (V \{0})×R has a right H-homogeneous space
structure given by h(v, r) = (g∗v, r+ < v, b >) where h = (g, b) ∈ H = G ∝ V ; also the
orientation preserving affine group D of the line acts on E by d (v, r) = (tv, tr + x) with
d = (t, x) ∈ D, this action commutes with the H-action and the quotient space is Sd−1.
Then the λ-random walk on E defines a D-valued cocycle of Z through the G-action on
Sd−1 ; also the map η → η̂ commutes with the H-actions on V and W . Then, the idea is to
study Poisson-type equations on E satisfied by ρ̂, and to express C+ in terms of the ladder
process of < Rn, v > under a conditional measure. The process < Rn, v > is closely related
to a certain R∗-valued Z-cocycle over the natural λ-walk on the space W and this space
is a 2-covering of a conditional λ-boundary. Moment estimations of the corresponding
stationary measure allows to show, using Kac’s recurrence theorem (see [44], p.195) and
a suitable stationary measure, that the ladder index and ladder height of < Rn, v > have
finite expectations , hence to establish positivity of C+. For a direct approach to this
problem, based on singularity analysis of Mellin transforms of positive measures see [8], if
T consists of similarities. For the homogeneity properties of ρ we observe that Theorem
B′ gives the convergence of t−α(t.ρ) towards C(σα ⊗ ℓα) on the sets H+

v . Then, if α /∈ N,
the recent results of [2] on homogeneity for Radon transforms of positive measures allow
to deduce the vague convergence of t−α(t.ρ) (t → 0+) towards C(σα ⊗ ℓα). If α ∈ N, as
general counterexamples show, the argument breaks down. Here we use the µ-harmonicity
and boundedness properties of the cluster values of t−α(t.ρ) (t → 0+), we apply radial
Fourier Analysis on V \ {0} and the spectral gap property stated in Theorem A, in order
to prove a strong form of Choquet-Deny lemma for µ-harmonic measures on V \ {0}.
We observe that theorem C gives a natural construction for a large class of probability
measures in the domain of attraction of an α-stable law. Using also the weak dependance
properties of the process xn, Theorem C allows to prove convergence to α-stable laws for
the normalized Birkhoff sums along the affine λ-walk on V (see [18]). If d > 1 and in
contrast to [9], this convergence is robust under perturbations of λ in the weak topology.
These convergences to stable laws are connected with the study of random walk in a random
medium on the line or the strip (see [20]). On the other hand the study of the extremal
value behaviour of the process xn can be fully developped on the basis of Theorem C and
the above weak dependance properties of xn (see [36]). The arguments developped in the
proof of homogeneity at infinity for ρ can also be used in the study of some quasi-linear
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equations which occur in Mathematical Statistics (see [19]), Fractal analysis (see [39]) or
in Statistical Mechanics (see [10], [12], [13]).
For recent information on the role of spectral gap properties in limit theorems for Prob-
ability theory and Ergodic theory we refer to [11], [27]. For information on products of
random matrices we refer to [4], [16], [24]. Theorem A (resp B, B’ and C) is proved in sec-
tions 2,3 (resp 4 and 5). Some auxiliary tools are developed in the Appendix. Preliminary
partial versions of the above results, have appeared in [29], [37]. We thank Ch.M. Goldie,
I. Melbourne and D. Petritis for useful informations on stochastic recursions.

II Ergodic properties of transfer operators on projective spaces

1) Notations, preliminary results

Let V = Rd be the Euclidean space endowed with the scalar product < x, y >=
d∑

1

xiyi

and the norm |x| =
(

d∑

1

|xi|2
)1/2

,
.
V the factor space of V by the finite group {±Id}. We

denote by Pd−1 (resp Sd−1), the projective space (resp unit sphere) of V and by v̄ (resp
ṽ) the projection of v ∈ V on Pd−1 (resp Sd−1). The linear group G = GL(V ) acts on
V ,

.
V by (g, v) → gv. If v ∈ V \ {0}, we write g.v = gv

|gv| and we observe that G acts on

Sd−1 by (g, x) → g.x. We will also write the action of g ∈ G on x ∈ Pd−1 by g.x ; we
observe that |gx| is well defined and equal to |gx̃| if x ∈ Pd−1 and x̃ ∈ Sd−1 has projection
x ∈ Pd−1. Also, if x, y ∈ Pd−1, | < x, y > | is well defined and equal to | < x̃, ỹ > | where
x̃, ỹ ∈ Sd−1 have projections x, y. Corresponding notations will be taken when convenient.
For a subset A ⊂ Sd−1 the convex envelope Co(A) of A is defined as the intersection with
Sd−1 of the closed convex cone generated by A in V . We denote by O(V ) the orthogonal
group of V and by m the O(V )-invariant measure on Pd−1. A positive measure η on Pd−1

will be said to be proper if η(U) = 0 for every proper projective subspace U 6= Pd−1.
Let P be a positive kernel on a Polish space E and let e be a positive function on E
which satisfies Pe = ke for some k > 0. Then we can define a Markov kernel Qe on E
by Qeϕ = 1

keP (ϕe). This procedure will be used frequently here ; in particular if e = es

depends of a parameter s we will write Qe = Qs. For a Polish G-space E we denote by
M1(E) the space of probability measures on E. If ν ∈ M1(E) , and P is as above, ν will
be said to be P -stationary if Pν = ν, i.e for any Borel function ϕ : ν(Pϕ) = ν(ϕ). We will
write C(E) (resp Cb(E) for the space of continuous (resp bounded continuous) functions
on E. If E is a locally compact G-space, µ ∈ M1(G), and ρ is a Radon measure on E, we
recall that the convolution µ ∗ρ is defined as a Radon measure by µ ∗ρ =

∫
δgxdµ(g)dρ(x),

where δy is the Dirac measure at y ∈ E. A µ-stationary measure on E will be a probability

measure ρ ∈ M1(E) such that µ ∗ ρ = ρ. In particular, if E = V or
.
V and µ ∈ M1(G) we

will consider the Markov kernel P on V (resp
.
P on

.
V ) defined by P (v, .) = µ ∗ δv, (resp

9



.
P (v, .) = µ ∗ δv). On Pd−1 (resp Sd−1) we will write P̄ (x, .) = µ ∗ δx (resp P̃ (x, .) = µ ∗ δx).
If u ∈ EndV , we denote u∗ ∈ EndV its adjoint map, i.e < u∗x, y >=< x, uy > if x, y ∈ V .
If µ ∈ M1(G) we will write µ∗ for its push forward by the map g → g∗. For s ≥ 0 we
denote ℓs (resp hs) the s-homogeneous measure (resp function) on R∗

+ = {t ∈ R ; t > 0}
given by ℓs(dt) = dt

ts+1 (resp hs(t) = ts). For s = 0 we write ℓ(dt) = dt
t .

Using the polar decomposition V \{0} = Sd−1×R∗
+, every s-homogeneous measure η (resp

function ψ) on V \ {0} can be written as :
η = π ⊗ ℓs (resp ψ = ϕ⊗ hs)

where π (resp ϕ) is a measure (resp function) on Sd−1. Similar decompositions are valid
on

.
V = Pd−1 ×R∗

+. If g ∈ G, and η = π ⊗ ℓs (resp ψ = ϕ⊗ hs) the directional component
of gη (resp ψ ◦ g) is given by :

ρs(g)(η) =
∫
|gx|sδg.xdη(x) (resp ρs(g)(ψ)(x) = |gx|sψ(g.x))

The representations ρs and ρs extend to measures on G by the formulas :
ρs(µ)(η) =

∫
|gx|sδg.xdµ(g)dπ(x) , ρs(µ)(ψ)(x) =

∫
|gx|sψ(g.x)dµ(g)

We will write, for ϕ ∈ C(Pd−1) (resp ψ ∈ C(Sd−1)) :
P sϕ = ρs(µ)(ϕ), (respP̃

sψ = ρs(µ)(ψ),
∗P sϕ = ρs(µ

∗)(ϕ) , (resp ∗P̃
s
ψ = ρs(µ

∗)(ψ)).
We endow Sd−1 (resp Pd−1) with the distance δ̃ (resp δ) defined by δ̃(x, y) = |x− y| (resp
δ(x̄, ȳ) = Inf{|x− y|; |x| = |y| = 1}).
For ε > 0, ϕ ∈ C(Pd−1) (resp ψ ∈ C(Sd−1)), we denote :

[ϕ]ε = sup
x 6=y

|ϕ(x) − ϕ(y)|
δε(x, y)

(resp [ψ]ε = sup
x 6=y

|ψ(x)− ψ(y)|
δ̃ε(x, y)

),

|ϕ| = sup{|ϕ(x)|;x ∈ Pd−1} (resp |ψ| = sup{|ψ(x)|;x ∈ Sd−1}),
and we write Hε(P

d−1) = {ϕ ∈ C(Pd−1); [ϕ]ε} <∞,
(resp Hε(S

d−1) = {ψ ∈ C(Sd−1); [ψ]ε <∞}.
The set of positive integers will be denoted by N.

Definition 2.1
If s ∈ [0,∞[ we denote :

k(s) = kµ(s) = lim
n→∞

(

∫
|g|sdµn(g))1/n, Iµ = {s ≥ 0; kµ(s) < +∞}.

We observe that the above limit exists, since by subadditivity of g → Log|g|, the quantity
un(s) =

∫
|g|sdµn(g) satisfies um+n(s) ≤ um(s)un(s). Also kµ(s) = Inf

n∈N
(un(s))

1/n, which

implies Iµ = {s ≥ 0;
∫
|g|sdµ(g) < +∞}. Furthermore, Hölder inequality implies that Iµ is

an interval of the form [0, s∞[ or [0, s∞], and Logkµ(s) is convex on Iµ. Also kµ∗ = kµ since
|g| = |g∗|. If µ and µ′ commute and c∈ [0, 1], µ′′ = µ+(1−c) µ′ then kµ′′(s) = ckµ(s)+(1−c)
kµ′(s), if s ∈ Iµ ∩ Iµ′ .

Definition 2.2
a) An element g ∈ EndV is said to be proximal if g has a unique and simple eigenvalue
λg ∈ R such that |λg| = lim

n→∞
|gn|1/n.
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b) A semigroup T ⊂ G is said to be strongly irreducible if no finite union of proper
subspaces is T -invariant.

Proximality of g means that we can write V = Rvg⊕V <
g with gvg = λgvg, gV <

g ⊂ V <
g and

the restriction of g to V <
g has spectral radius less than |λg|. In this case lim

n→+∞
gn.x̄ = v̄g if

x /∈ V <
g and we say that λg is the dominant eigenvalue of g. If E ⊂ G we denote by Eprox

the set of proximal elements of E.The closed subsemigroup (resp group) generated by E
will be denoted [E] (resp < E >). In particular we will consider below the case E = suppµ
where suppµ is the support of µ ∈M1(G).

Definition 2.3
A semigroup T ⊂ G is said to satisfy condition i-p if T is strongly irreducible and T prox 6= φ.

As shown in ([22], [41]) this property is satisfied if it is satisfied by Zc(T ), the Zariski closure
of T . It can be proved that condition i-p is valid if and only if the connected component
of the closed subgroup Zc(T ) is the product of a similarity group and a semi-simple real
Lie group without compact factor which acts proximally and irreducibly on Pd−1. In this
sense T is ”large”. For example, if T is a countable subgroup of G which satisfies condition
i-p then T contains a free subgroup with two generators.
We recall that in Cn, the Zariski closure of E ⊂ Cn is the set of zeros of the set of
polynomials which vanish on E. The group G = GL(V ) can be considered as a Zariski-
closed subset of Rd

2+1. If T is a semigroup, then Zc(T ) is a closed subgroup of G with a
finite number of connected components. If d = 1, condition i-p is always satisfied. Hence,
when using condition i-p, d > 1 with be understood.

Remark
The above definitions will be used below in the analysis of laws of large numbers and
renewal theorems. A corresponding analysis has been developed in [33] for the case of
non-negative matrices. We observe that proximality of an element in G as defined above
is closely related to the Perron-Frobenius property for a positive matrice. Hence condition
i-p above is also closely related to the non degeneracy conditions used in ([33] Theorem A)
for non negative matrices.

Definition 2.4
Assume T is a subsemigroup of G which satisfies condition i-p. Then the closure of the set
{v̄g; g ∈ T prox} will be called the limit set of T and will be denoted Λ(T ).

With these definitions we have the

Proposition 2.5
Assume T ⊂ G is a subsemigroup which satisfies i-p and S ⊂ T generates T . Then Λ(T ) is
the unique T -minimal subset of Pd−1. If µ ∈M1(G) is such that T = [suppµ] satisfies i-p,
there exists a unique µ-stationary measure ν on Pd−1. Also suppν = Λ(T ) and ν is proper.
Furthermore, if d > 1, the subgroup of R∗

+ generated by the set {|λg|; g ∈ T prox} is dense
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in R∗
+. Also, if ϕ ∈ C(Λ(T )) satisfies for some t ∈ R, |eiθ| = 1 : ϕ(g.x) |gx|it = eiθϕ(x) for

any g ∈ S, x ∈ Λ(T ) then t = 0, eiθ = 1, ϕ = constant.

Remark
The first part of the above statement is essentially due to H. Furstenberg ([17], Propositions
4.8, 7.4). The second part is proved in ([28], Proposition 3). For another proof and
extensions of this property see [25]. This property plays an essential role in the renewal
theorems of section 4 as well as in section 5 for d > 1. In the context of non negative
matrices a modified form is also valid ; in ([33], Theorem A) its conclusion is assumed
as an hypothesis. If d = 1, we will need to assume it, i.e we will assume that T is non-
arithmetic. If T = [suppµ] satisfies this condition, we say that µ is non-arithmetic.

2) Uniqueness of eigenfunctions and eigenmeasures on Pd−1

Here we consider s ∈ Iµ and the operator P s (resp ∗P s) on Pd−1 defined by :
P sϕ(x) =

∫
|gx|sϕ(g.x)dµ(g) (resp ∗P sϕ(x) =

∫
|gx|sϕ(g.x)dµ∗(g)).

For z = s+ it ∈ C we will also write P zϕ(x) =
∫
|gx|zϕ(g.x)dµ(g)

Below we study existence and uniqueness for eigenfunctions or eigenmeasures of P s. We
show equicontinuity properties of the normalized iterates of P s and P̃ s.

Theorem 2.6
Assume µ ∈ M1(G) is such that the semigroup [suppµ] satisfies (i-p) and let s ∈ Iµ. If
d = 1 we assume that µ is non arithmetic. Then the equation P sϕ = k(s)ϕ has a unique
continuous solution ϕ = es, up to normalization. The function es is positive and s̄ -Hölder
with s̄ = Inf(1, s).
Furthermore there exists a unique νs ∈ M1(Pd−1) such that P sνs is proportional to νs.
One has P sνs = k(s)νs and suppνs = Λ([suppµ]). If ∗νs ∈ M1(Pd−1) satisfies ∗P s(∗νs) =
k(s)∗νs, and es is normalized by νs(es) = 1, one has p(s)es(x) =

∫
| < x, y > |s d∗νs(y)

where p(s) =
∫
| < x, y > |sdνs(x)d∗νs(y).

The map s→ νs (resp s→ es) is continuous in the weak topology (resp uniform topology)
and the function s→ Logk(s) is strictly convex.
The Markov operator Qs on Pd−1 defined by Qsϕ = 1

k(s)esP
s(ϕes) has a unique stationary

measure πs given by πs = esνs and we have for any ϕ ∈ C(Pd−1) the uniform convergence of
(Qs)nϕ towards πs(ϕ). If Qz is defined by Qzϕ = 1

k(s)esP
z(esϕ), the equation Qzϕ = eiθϕ

with ϕ ∈ C(Pd−1) ϕ 6= 0 implies eiθ = 1, t = 0, ϕ = constant.

Remarks
a) If s = 0, then es = 1, and νs = ν is the unique µ-stationary measure [17]. The fact that
ν is proper is of essential use in [38], [4] and [28], for the study of limit theorems.
b) In section 3 we will also, as in [17], construct a suitable measure-valued martingale which
allows to prove that νs is proper (see Theorem 3.2) if s ∈ Iµ. We note that analyticity of
k(s) is proved in Corollary 3.20 below. Continuity of the derivative of k will be essential
in sections 3,4 and is proved in Theorem 3.10.
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The proof of the theorem depends of a proposition and the following lemmas improving
corresponding results for positive matrices in [33].

Lemma 2.7
Assume σ ∈ M1(Pd−1) is not supported by a hyperplane. Then, there exists a constant
cs(σ) > 0 such that, for any u in EndV :

∫
|ux|sdσ(x) ≥ cs(σ)|u|s

Proof
Clearly it suffices to show the above inequality if |u| = 1. The fonction u →

∫
|ux|sdσ(x)

is continuous on EndV , hence its attains its infimum cs(σ) on the compact subset of
EndV defined by |u| = 1. If cs(σ) = 0, then for some u ∈ EndV with |u| = 1, we
have

∫
|ux|sdσ(x) = 0 hence, ux = 0, σ − a.e. In other words, suppσ ⊂ Ker(u), which

contradicts the hypothesis on σ. Hence cs(σ) > 0. �

Lemma 2.8
If s ∈ Iµ there exists σ ∈ M1(Pd−1) such that P sσ = kσ for some k > 0. For any such σ,
we have k = k(s) and σ is not supported on a hyperplane.
Furthermore for every n ∈ N:

∫
|g|sdµn(g) ≥ kn(s) ≥ cs(σ)

∫
|g|sdµn(g)

Proof
We consider the non-linear operator P̂ s on M1(Pd−1) defined by P̂ sσ = P sσ

(P sσ)(1) .

Since
∫
|g|sdµ(g) < +∞, this operator is continuous in the weak topology. SinceM1(Pd−1)

is compact and convex, Schauder-Tychonov theorem implies the existence of k > 0 and
σ ∈M1(Pd−1) with P sσ = kσ, hence k = (P sσ)(1).
For such a σ, the equation

kσ(ϕ) =

∫
ϕ(g.x)|gx|sdµ(g)dσ(x)

implies that if x ∈ suppσ, then g.x ∈ suppσ µ− a.e.
Then for any g ∈ suppµ : g.suppσ ⊂ suppσ. In particular the projective subspace H
generated by suppσ satisfies [suppµ].H = H. Since [suppµ] satisfies i-p, we have H = Pd−1.
Then Lemma 2.7 gives : ∫

|gx|sdσ(x) ≥ cs(σ)|g|s.

The relation (P s)nσ = knσ implies kn =
∫
|gx|sdµn(g)dσ(x), hence using Lemma 2.7 :

cs(σ)
∫
|g|sdµn(g) ≤ kn ≤

∫
|g|sdµn(g). It follows k = lim

n→+∞

(∫
|g|sdµn(g)

)1/n

= k(s). �
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Assume e ∈ C(Pd−1) is positive and satisfies P se = k(s)e. Then we can define the Markov

kernel Qse by Qseϕ(x) = 1
k(s)

∫
ϕ(g.x)e(g.x)e(x) |gx|sdµ(g). In view of the cocycle property of

θse(x, g) = |gx|s e(g.x)e(x) we can calculate the iterate (Qse)
n by the formula :

(Qse)
nϕ(x) =

∫
ϕ(g.x)qse,n(x, g)dµ

n(g)

with qse,n(x, g) =
1

kn(s)
e(g.x)
e(x) |gx|s, and

∫
qse,n(x, g)dµ

n(g) = 1.

Lemma 2.9
Assume e is as above, f ∈ C(Pd−1) is real valued and satisfies Qsef ≤ f . Then, on
Λ([suppµ]), f is constant and equal to its infimum on Pd−1.

Proof
LetM− = {x ∈ Pd−1 ; f(x) = Inf{f(y); y ∈ Pd−1}. The relation f(x) ≥

∫
qse(x, g)f(g.x)dµ(g)

implies that if x ∈M− then g.x ∈M−, µ−a.e. Hence [suppµ].M− ⊂M−. Since Λ([suppµ])
is the unique [suppµ] -minimal subset of Pd−1, we get Λ([suppµ]) ⊂M−, i.e :

f(x) = Inf{f(y); y ∈ Pd−1}, if x ∈ Λ([suppµ]) �

The following shows the existence of e ∈ C(Pd−1) with P se = k(s)e, using Lemma 2.8
applied to µ∗.

Lemma 2.10
Assume σ ∈M1(Pd−1) and k > 0 satisfy ∗P sσ = kσ. Then the function σ̂s on Pd−1 defined
by

σ̂s(x) =
∫
| < x, y > |sdσ(y)

satisfies P sσ̂s = kσ̂s. Furthermore σ̂s is positive and Hölder of order s̄ = Inf(1, s).

Proof
We have |gx|sσ̂s(g.x) =

∫
| < x, g∗.y > |s|g∗y|sdσ(y) and ∗P sσ = kσ, hence :

P sσ̂s(x) = k
∫
| < x, z > |sdσ(z) = kσ̂s(x).

If σ̂s(x) = 0 for some x, then | < x, y > | = 0 σ − a.e, hence :
suppσ ⊂ {y ∈ Pd−1;< x, y >= 0}.

This contradicts Lemma 2.8, since [suppµ] satisfies i-p. Hence σ̂s is positive.
In order to show the Hölder property of σ̂s, we use the inequality |as−bs| ≤ ŝ|a−b|s̄ where
a, b ∈ [0, 1] ŝ = sup(s, 1), s̄ = Inf(s, 1). Then

|| < x, y > |s − | < x′, y > |s| ≤ ŝ|x− x′|s̄|y|s̄, |σ̂s(x)− σ̂s(x′)| ≤ ŝδs̄(x, x′). �

Lemma 2.11
Let e be a positive and s̄-Hölder function on Pd−1 with s̄ = Inf(s, 1), s > 0. Then for any
(x, y) ∈ Sd−1 × Sd−1, g ∈ G and a constant bs > 0 :

||gx|s−|gy|s| ≤ (s+1)|g|sδ̃s̄(x, y), δ̃(g.x, g.y) ≤ 2 |g|
|gx| δ̃(x, y), |θse(x, g)−θse(y, g) ≤ bs|g|sδ̃s̄(x, y).

Proof
We use the inequality |as − bs| ≤ |a− b|s if a, b ≥ 0, s ≤ 1.
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We get : ||gx|s − |gy|s| ≤ ||gx| − |gy||s ≤ |g(x− y)|s ≤ |g|s|x− y|s.
Hence ||gx|s − |gy|s| ≤ |g|sδ̃s̄(x, y).
If s > 1, we use 1

s |as − bs| ≤ sup(a, b)s−1|a− b| if a, b ≥ 0. We get :

||gx|s − |gy|s| ≤ s|g|s−1||gx| − |gy|| ≤ s|g|s−1|g(x− y)| ≤ s|g|s|x− y|.

Hence we get the first inequality. Furthermore :

δ̃(g.x, g.y) =

∣∣∣∣
gx

|gx| −
gy

|gy|

∣∣∣∣ ≤
|g(x− y)|

|gx| + |gy|
∣∣∣∣

1

|gx| −
1

|gy|

∣∣∣∣ ≤ 2
|g||x − y|

|gx|

Hence δ̃(g.x, g.y) ≤ 2 |g|
|gx| δ̃(x, y).

We write :

|θse(x, g)−θse(y, g)| ≤ ||gx|s−|gy|s|e(g.x)
e(x)

+ |gy|s |e(g.x) − e(g.y)|
e(x)

+ |gy|se(g.y)
∣∣∣∣

1

e(x)
− 1

e(y)

∣∣∣∣

In view of the first inequality the first term satisfies the required bound. The last term
also satifies it, since 1

e(x) is s̄- Hölder and |gy|s ≤ |g|s. For the second term we write :

|e(g.x) − e(g.y)| ≤ [e]s̄δ̃
s̄(g.x, g.y) ≤ 2s̄[e]s̄

( |g|
|gy|

)s̄
δ̃s̄(x, y).

Hence this term is bounded by :

2s̄[e]s̄δ̃
s̄(x, y)|gy|s−s̄|g|s̄ ≤ 2s̄[e]s̄|g|sδ̃s̄(x, y).

The inequalities imply the lemma. �

The following is well known (see for example [42], Theorem 6)

Lemma 2.12
Let X be a compact metric space, Q a Markov operator on X, which preserves C(X). As-
sume that all the Q-invariant continuous functions are constant and for any ϕ ∈ C(X), the
sequence Qnϕ is equicontinuous. Then Q has a unique stationary measure. Furthermore if
the equation Qψ = eiθψ, ψ ∈ C(X) implies eiθ = 1, then for any ϕ ∈ C(X) Qnϕ converges.

Proposition 2.13
Let µ ∈M1(G) and assume that the semigroup [suppµ] satisfies i-p.
Let s ∈ Iµ, s > 0 ε ∈]0, s̄] with s̄ = Inf(1, s), e ∈ C(Pd−1) is positive, s̄-Hölder with
P se = k(s)e.
Then there exists as ≥ 0 such that for any n ∈ N and ε -Hölder function ϕ on Pd−1 :

[(Qse)
nϕ]ε ≤ as|ϕ|+ ρn,s(ε)[ϕ]ε

where ρn,s(ε) = Sup
x,y

∫
qse,n(x, g)

δε(g.x, g.y)

δε(x, y)
dµn(g) is bounded independantly of n.
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In particular for any ψ ∈ C(Pd−1) the sequence (Qse)
nψ is equicontinuous.

Furthermore any continuous Qse-invariant function is constant and Qse has a unique sta-
tionary measure πse. If s = 0 and ϕ ∈ C(Pd−1) we have the uniform convergence :
lim
n→∞

P
n
ϕ = ν(ϕ).

Proof
The definition of Qse gives for any ε-Hölder function ϕ :

|(Qse)nϕ(x)−(Qse)
nϕ(y)| ≤ |ϕ|

∫
|qse,n(x, g)−qse,n(y, g)|dµn(g)+[ϕ]ε

∫
qse,n(y, g)δ

ε(g.x, g.y)dµn(g).

Lemma 2.11 shows that the first integral is dominated by bs
kn(s)δ

s̄(x, y)
∫
|g|sdµn(g) and

Lemma 2.8 gives kn(s) ≥ cs
∫
|g|sdµn(g). Hence : [(Qse)

nϕ]ε ≤ as|ϕ| + ρn,s(ε)[ϕ]ε with
as = bs/cs.

Lemma 2.4 allows to bound ρn,s(ε) :

δε(g.x, g.y) ≤ 2ε
|g|ε
|gx|ε δ

ε(x, y), ρn,s(ε) ≤
2ε

kn(s)
sup
x

∫
e(g.x)

e(x)
|gx|s−ε|g|εdµn(g).

We denote c = sup
g,x

e(g.x)

e(x)
<∞ hence using s ≥ ε, |gx|s−ε ≤ |g|s−ε we get :

e(g.x)
e(x) |gx|s−ε|g|ε ≤ c|g|s, ρn,s(ε) ≤ 2ε

kn(s)

∫
|g|sdµn(g) ≤ c2

ε

cs
.

Assume that ϕ ∈ C(Pd−1) satisfies Qseϕ = ϕ and denote :
M+ = {x ∈ Pd−1;ϕ(x) = sup

y∈Pd−1

ϕ(y)}, M− = {x ∈ Pd−1;ϕ(x) = Inf
y∈Pd−1

ϕ(y)}.

Then, as in the proof of Lemma 2.9, suppµ.M+ ⊂ M+, suppµ.M− ⊂ M−, hence by
minimality of Λ([suppµ] we have Λ([suppµ]) ⊂M+ ∩M−.
It follows M+ ∩M− 6= φ, ϕ =cte.
If ψ ∈ C(Pd−1) is ε-Hölder the above inequality gives for any x, y ∈ Pd−1 :

|(Qse)nϕ(x) − (Qse)
nϕ(y)| ≤ (as|ϕ|+ ρn,s(ε))[ϕ]ε)δ

ε(x, y).

Since ρn,s(ε) is bounded this shows that the sequence (Qse)
nψ is equicontinuous. By density

this remains valid for any ψ ∈ C(Pd−1).
Hence we can apply Lemma 2.12 to Q = Qse : there is a unique Qse-stationary measure. If
s = 0, we have ε = 0, hence the above inequality do not show the equicontinuity of P

n
ϕ.

In this case the equicontinuity follows from Theorem 3.2 in the next section : we have for

ε > 0 lim
n→∞

∫
δε(g.x, , g.y)dµn(g) = 0, which implies for ϕ ∈ Hε(P

d−1) :

(|P nϕ)(x)− P
n
ϕ(y)| ≤ [ϕ]ε

∫
δε(g.x, g.y)dµn(g).

|Pnϕ(x) − ν(ϕ)| ≤ [ϕ]ε
∫
δε(g.x, g.y)dν(y)dµn(g), lim

n→∞
|Pnϕ(x) − ν(ϕ)| = 0. �
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Remarks
a) If s < s∞, ε < s∞ − s̄, e = es it is shown in Corollary 3.18 below, if for some δ > 0∫
|g|δγδ(g)dµ(g) < ∞ then lim

n→∞
ρn,s(ε) = 0, hence ρn,s(ε) < 1 for some n = n0. Hence

(Qse)
n0 satisfies a so called Doeblin-Fortet inequality (see [27]).

b) Let Q̃se be the Markov kernel on Sd−1 defined by Q̃seϕ = 1
k(s)e P̃

s(ϕe) where e still

denotes the function on Sd−1 corresponding to e ∈ C(Pd−1). Then the inequality and its
proof remain valid for Q̃se instead of Qse. In particular for any ψ ∈ C(Sd−1) the sequence
(Q̃se)

nψ is equicontinuous. This fact will be used in the next paragraph

Proof of the theorem
As in the proof of Lemma 2.8, we consider the non linear operator ∗P̂ s onM1(Pd−1) defined
by ∗P̂ sσ =

∗P sσ
(∗P sσ)(1) . The same argument gives the existence of k and σ ∈M1(Pd−1) such

that ∗P sσ = kσ, with k = (∗P sσ)(1) > 0. We consider only the case d > 1.
Since [suppµ∗] = [suppµ]∗ satisfies i-p, Lemma 2.8 applied to µ∗ gives k = k(s) and σ is not
supported by a hyperplane. Then Lemma 2.10 implies that σ̂s(x) =

∫
| < x, y > |sdσ(y)

satisfies P sσ̂s = k(s)σ̂s and is positive, Hölder continuous of order s̄ = Inf(1, s). Hence
we can apply Proposition 2.13 with e = σ̂s ; then we get existence and uniqueness of es

with P ses = k(s)es, νs(es) = 1 and es satisfies p(s)es(x) =
∫
| < x, y > |sd ∗σ(y). Also

Qs = Qses has a unique stationary measure πs. The uniqueness of νs ∈ M1(Pd−1) with
P sνs = k(s)νs follows. Also σ = ∗νs by the same proof.
Lemma 2.8 implies that if some η ∈ M1(Pd−1) satisfies P sη = kη, then k = k(s). Since
suppνs is [suppµ]-invariant and Λ([suppµ]) is minimal we get suppνs ⊃ Λ([suppµ]). We
can again use Schauder-Tychonoff theorem in order to construct σ′ ∈ M1(Pd−1) with
suppσ′ ⊂ Λ([suppµ]), P sσ′ = kσ′. Since σ′ = νs, we get finally suppνs = Λ([suppµ]).
In order to show the continuity of s → νs, s → es we observe that, from above, νs

is uniquely defined by : P sνs = k(s)νs, νs ∈ M1(Pd−1). Also, by convexity, k(s) is
continuous. On the other hand, the uniform continuity of (x, s) → |gx|s and the fact that
|gx|s ≤ |g|s is bounded by the µ-integrable function Sup(1, |g|s2) on [s1, s2] ⊂ Iµ implies
the uniform continuity of P sϕ if ϕ is fixed. Then we consider a sequence sn ∈ Iµ, s0 ∈ Iµ
with lim

sn→s0
νsn = η ∈M1(Pd−1). We have

P snνsn(ϕ) = νsn(P snϕ), lim
sn→s0

P snνsn(ϕ) = lim
sn→s0

k(sn)ν
sn(ϕ) = k(s0)η(ϕ).

Then the uniform continuity in (s, x) of P sϕ(x) implies P s0η = k(s0)η. The uniqueness of
νs0 implies νs0 = η, and the arbitrariness of sn gives the continuity of s → νs at s0. The
same property is true for the operator ∗P s and the measure ∗νs defined by ∗P s (∗νs) =
k(s) (∗νs), ∗νs ∈M1(Pd−1).
Lemma 2.10, implies p(s)es(x) =

∫
| < x, y > |sd∗νs(y), and since the set of functions

x→ | < x, y > |s (y ∈ Pd−1, s ∈ Iµ) is locally equicontinuous : lim
s→s0

|es − es0 | = 0.

In order to show the strict convexity of Logk(s) we take s, t ∈ Iµ, p ∈ [0, 1] and we observe
that from Hölder inequality, P ps+(1−p)t[(es)p(et)1−p] ≤ kp(s)k1−p(t)(es)p(et)1−p.
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We denote f = (es)p(et)1−p and assume k(ps+ (1-p)t) = kp(s)k1−p(t) for some s 6= t.

Then Lemma 2.9 can be used with e = eps+(1−p)t andQpq+(1−p)t
e ϕ = 1

k(ps+(1−p)t)eP
ps+(1−p)t(ϕe).

It gives on Λ([suppµ]) : f = ceps+(1−p)t for some constant c > 0.
Hence, on Λ([suppµ]) we have :

P ps+(1−p)t[(es)p(et)1−p] = kp(s)k(1−p)(t)(es)p(et)1−p.

This means that there is equality in the above Hölder inequality. It follows that, for some
positive function c(x) and any x in Λ([suppµ]), g ∈ suppµ :

|gx|s e
s(g.x)

es(x)
= c(x)|gx|t e

t(g.x)

et(x)
.

Integration with respect to µ gives : c(x) = k(s)
k(t) . Since s 6= t, we get, for some constant

c > 0 and ϕ ∈ C(Pd−1), positive, for any (x, g) as above : |gx| = cϕ(g.x)ϕ(x) . It follows, if

g ∈ (suppµ)n and x ∈ Λ([suppµ]), |gx| = cn ϕ(g.x)ϕ(x) . If g ∈ [suppµ]prox, we get |λg| ∈ cN.
This contradicts Proposition 2.5.
In order to show the convergence of (Qs)nϕ, since by Proposition 2.13 the family (Qs)nϕ
is equicontinuous, it suffices to show in view of Lemma 2.12 that the relation Qsϕ = eiθϕ
with ϕ ∈ C(Pd−1), |eiθ| = 1 implies eiθ = 1, ϕ = cte.
Taking absolute values we get |ϕ| ≤ Qs|ϕ|. As in Lemma 2.9, we get that for any x in
Λ([suppµ]) : |ϕ(x)| = sup{|ϕ(y)|; y ∈ Pd−1}.
Hence we can assume |ϕ(x)| = 1 on Λ([suppµ]). Now we can use the equation

eiθϕ(x) =
∫
qs(x, g)ϕ(g.x)dµ(g)

where qs(x, g) = 1
k(s)

es(g.x)
es(x) |gx|s, hence

∫
qs(x, g)dµ(g) = 1. Strict convexity gives :

eiθϕ(x) = ϕ(g.x), for any x ∈ Λ([suppµ]), g ∈ suppµ.
We know, from Proposition 2.13 that P̄nϕ converges uniformly to ν(ϕ) where ν is the
unique P̄ -stationary measure on Pd−1. Furthermore, on Λ([suppµ]) we have P

n
ϕ = einθϕ.

The above convergence gives eiθ = 1, since ϕ 6= 0 on Λ([suppµ]). The fact that ϕ is constant
follows from Proposition 2.13.
In order to show the last assertion in case d > 1 we write Qzϕ(x) as

Qzϕ(x) =
∫
|gx|itqs(x, g)ϕ(g.x)dµ(g).

We observe that the absolute value of the function Qzϕ is bounded by the function (Qs)|ϕ|.
Hence, from above, the equation Qzϕ = eiθϕ gives Qs|ϕ| ≥ |ϕ|, hence Qs|ϕ| = |ϕ|
and |ϕ| =cte. Then the equation Qzϕ = eiθϕ gives for any x and g ∈ suppµ since∫
qs(x, g)dµ(g) = 1 : |gx|it ϕ(g.x)ϕ(x) = eiθ µ− a.e.

This contradicts Proposition 2.5 if t 6= 0. If t = 0 we have eiθ = 1, ϕ =cte from above.
�
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3) Eigenfunctions and eigenmeasures on Sd−1

Here we study the operator P̃ s on Sd−1 defined by P̃ sϕ(x) =
∫
ϕ(g.x)|gx|sµ(dg). We show

that there are 2 cases, depending of the existence of a [suppµ]-invariant proper convex
cone in V or not. We still denote by es the function on Sd−1 lifted from es ∈ C(Pd−1). We
denote Q̃s the operator on Sd−1 defined by Q̃sϕ = 1

k(s)es P̃
s(ϕes).

We already know, using the remark which follows Proposition 2.13, that for s > 0 and any
given ϕ ∈ C(Sd−1), the sequence (Q̃s)nϕ is equicontinuous. For any subsemigroup T of G
satisfying condition i-p, we denote by Λ̃(T ) the inverse image of Λ(T ) in Sd−1. We begin
by considering the dynamics of T on Sd−1. For analogous results in more general situations
see [25].

Proposition 2.15
Assume T ⊂ G is a subsemigroup which satisfies condition i-p. If d = 1, we assume that T
is non-arithmetic. Then the action of T on Sd−1 has one or two minimal sets whose union
is Λ̃(T ) :

Case I There is no T -invariant proper convex cone in V .
Then Λ̃(T ) is the unique T -minimal subset of Sd−1.

Case II T preserves a closed proper convex cone C ⊂ V .
Then the action of T on Sd−1 has two and only two minimal subsets Λ+(T ), Λ−(T ) with
Λ−(T ) = −Λ+(T ),Λ+(T ) ⊂ Sd−1∩ C. The convex cone generated by Λ+(T ) is T -invariant.

The proof depends of the following Lemma.

Lemma 2.16
Let Vi(1 ≤ i ≤ r) be vector subspaces of V . If condition i-p is valid, then there exists
g ∈ T prox such that the hyperplane V <

g does not contain any Vi (1 ≤ i ≤ r).

Proof
The dual semigroup T ∗ of T satisfies also condition i-p hence we can also consider its
limit set Λ(T ∗) ⊂ P(V ∗). Let v̄(g∗) be the point of P(V ∗) corresponding to a dominant
eigenvector of g∗. Observe that the condition that an hyperplane contains Vi defines a
subspace of V ∗. If for any g∗ ∈ (T ∗)proxv̄(g∗) contains some Vi then by density any
x ∈ Λ(T ∗) contains some Vi. Then the T ∗-invariance of Λ(T ∗) implies that T ∗ leaves
invariant a finite union of subspaces of P(V ∗), which contradicts condition i-p. �

Proof of the proposition

Let x ∈ Λ̃(T ) and S = T.x. We observe that if y ∈ Sd−1, then T.y contains x or −x, since
the projection of T.x in Pd−1 contains Λ(T ). Assume first −x /∈ T.x. If y ∈ T.x, then
T.y ⊂ S, hence x ∈ T.y. This shows the T -minimality of S. The same argument shows
that −y /∈ S, hence S ∩ −S = φ. Since the projection of S in Pd−1 is Λ(T ), we see that
the projection of Sd−1 on Pd−1 gives a T -equivariant homeomorphism of S on Λ(T ). Since
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−x /∈ S, there are two T -minimal sets, S and −S. Since for any y ∈ Sd−1, T.y contains S
or −S, these sets are the unique minimal sets.
Assume now −x ∈ T.x, hence S = −S. Since the projection of S in Pd−1 is Λ(T ), we see
that S = Λ̃(T ).
Assume now that C is a T -invariant closed proper convex cone, that we can suppose closed.
Then C ∩ Sd−1 is T -invariant and closed, hence C ∩ Sd−1 ⊃ Λ+(T ) or Λ−(T ) in the first
situation, (−x /∈ T.x). In the second situation C cannot exists, since C ∩ Sd−1 would
contain Λ̃(T ), which is symmetric.
It remains to show that, in the first situation, there exists a T -invariant closed proper convex
cone. Let C be the convex cone generated by Λ+(T ) and let us show C∩−C = {0}. Assume
C ∩ −C 6= {0} ; then we can find y1, ., yp ∈ C, z1, ., zq ∈ −C and convex combinations

y =
p

Σ
1
αiyi, z =

q

Σ
1
βjzj with y = z. The lemma shows that there exists g ∈ T prox such that

yi(1 ≤ i ≤ p) and zj(1 ≤ j ≤ q) do not belong to V <
g . Hence, with n ∈ 2N :

lim
n→+∞

gny

|gn| = lim
n→∞

p

Σ
1
αi

gnyi
|gnyi|

|gnyi|
|gn| =

(
p

Σ
1
αiui

)
vg

where ui = lim
n→∞

|gnyi|
|gn| > 0 and vg ∈ Λ+(T ) is the unique dominant eigenvector of g in

Λ+(T ). In the same way :

lim
n→∞

gnz

|gn| = −
(
q

Σ
1
βju

′
j

)
vg

with u′j > 0. Since y = z we have a contradiction. Hence we have the required dichotomy.
The last assertion follows. �

Theorem 2.17
Let µ ∈ M1(G), s ∈ Iµ and assume [suppµ] satisfies i-p. If d = 1 we assume that µ is
non-arithmetic. Then for any ϕ ∈ C(Sd−1), x ∈ Sd−1, we have the uniform convergence

lim
n→∞

1

n

n
Σ
1
(Q̃s)nϕ(x) = π̃s(x)(ϕ),

where, π̃s(x) ∈M1(Sd−1) is supported on Λ̃([suppµ]) and is Q̃s-stationary.
Furthermore there are 2 cases given by Proposition 2.15.
Case I, Q̃s has a unique stationary measure π̃s with suppπ̃s = Λ̃([suppµ]) and π̃s(x) = π̃s

for any x ∈ Sd−1. The Q̃s-invariant functions are constant.
Case II, Q̃s has two and only two extremal stationary measures πs+, π

s
−. We have suppπs+ =

Λ+([suppµ]) and π
s
− is symmetric of πs+. If π

s
+ = esνs+, then P̃

sνs+ = k(s)νs+.

Also, there are 2 minimal Q̃s-invariant continuous functions ps+, p
s
− and we have :

π̃s(x) = ps+(x)π
s
+ + ps−(x)π

s
−.

Furthermore ps+(x) is equal to the entrance probability in the set Co(Λ+([suppµ])) for the

Markov chain defined by Q̃s. In particular ps+(x) = 1 if x ∈ Λ+([suppµ]).
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If ∗νs+ ∈M1(Λ+(T
∗) satisfies ∗P s ∗νs+ = k(s)∗νs+, we have for u ∈ Sd−1,

ps+(u)e
s(u) =

∫
< u, u′ >s+ d ∗νs+(u

′) with < u, u′ >+= sup(0, < u, u′ >).

The space of Q̃s-invariant functions is generated by ps+ and ps−.

For s = 0 we will need the following lemma, which uses results of section 3.

Lemma 2.18
For u ∈ Sd−1, we denote ∆t

u = {y ∈ Pd−1 ; | < u, y > | < t}. Then, for any ε, t > 0 ,
x, y ∈ Sd−1 :

lim sup
n→∞

∫
δ̃ε(g.x, g.y)dµn(g) ≤ 2ε

tε
δ̃ε(x, y) + 2εν(∆t

x).

In particular, for any ϕ ∈ Hε(S
d−1) the sequence P̃nϕ is equicontinuous.

Proof
We write :∫
δ̃ε(g.x, g.y)dµn(g) =

∫
1[1/t,∞[(

|Sn|
|Snx|)δ̃

ε(Sn.x, Sn.y)dP(ω)+
∫
1]0,1/t[(

|Sn|
|Snx|)δ̃

ε(Sn.x, Sn.y)dP(ω).
Using Lemma 2.11 we have :

δ̃ε(Sn.x, Sn.y) ≤ (2 |Sn|
|Snx| δ̃(x, y))

ε.

On the other hand, using Theorem 3.2, we know that : lim
n→∞

|Sn|
|Snx|

=
1

| < z∗(ω), x > |
where z∗(ω) ∈ Pd−1 has law ν. Hence :

lim sup
n→∞

∫
δ̃ε(g.x, g.y)dµn(g) ≤ 2ε

tε
δ̃ε(x, y) + 2εP{| < z∗(ω), x > | < t} =

2ε

tε
δ̃ε(x, y) +

2εν(∆t
x).

We have |P̃nϕ(x) − P̃nϕ(y)| ≤ [ϕ]ε
∫
δ̃ε(g.x, g.y)dµn(g). From Theorem 3.2, we know

that ν is proper, hence lim
t→0

ν(∆t
x) = 0. Then, for x fixed we use the above estimation of

lim sup
n→∞

∫
δ̃ε(g.x, g.y)dµn(g) to choose t sufficiently small in order to get the continuity of

lim sup
n→∞

∫
δ̃ε(g.x, g.y)dµn(g).This gives that |P̃nϕ(x)− P̃nϕ(y)| depends continuously of y,

hence the equicontinuity of the sequence P̃nϕ. �

Proof of the theorem
As observed in remark b after Proposition 2.13,if s > 0 for any ϕ ∈ C(Sd−1) the set of
functions {(Q̃s)nϕ ; n ∈ N} is equicontinuous. In view of Lemma 2.18, this is also valid
if s = 0. Hence we can use here Lemma 2.12 and the results of [43]. This gives the first
convergence. Since π̃s(x) is Q̃s-stationary, its projection on Pd−1 is equal to the unique
Qs-stationary measure πs, hence suppπ̃s(x) ⊂ Λ̃([suppµ]). On the other hand suppπ̃s(x)
is [suppµ]-invariant, hence contains a [suppµ]-minimal set.
In case I, Λ̃([suppµ]) is the unique minimal set, hence suppπ̃s(x) = Λ̃([suppµ]). Further-
more, if ϕ ∈ C(Sd−1) is Q̃s-invariant, the sets :
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M− = {x ; ϕ(x) = Inf{ϕ(y); y ∈ Pd−1}}, M+ = {x ; ϕ(x) = sup{ϕ(y); y ∈ Pd−1}},
are closed and [suppµ]-invariant, hence contains minimal sets. Since Λ̃([suppµ]) is the
unique minimal set, M+ ∩ M− ⊃ Λ̃([suppµ]) 6= φ, hence ϕ = cte.
Then, using Proposition 2.13 and Lemma 2.12, we get that there exists a unique stationary
measure π̃s. It follows that π̃s is symmetric with projection πs on Pd−1.
In case II, the restriction to Co(Λ+([suppµ])) = Φ of the projection on Pd−1 is a [suppµ]-
equivariant homeomorphism. If we denote by i+ its inverse, we get that i+(π

s) is the
unique Q̃s-stationary measure supported in Φ. Hence i+(π

s) = πs+. Then πs+ and πs− are

extremal Q̃s-stationary measures.
Since the projection of π̃s(x) on Pd−1 is πs, we can write :

π̃s(x) =
∫
(ps+(x, y)δy + ps−(x, y)δ−y)dπ

s(y) = ps+(x)π
s
+ + ps−(x)π

s
−

where ps+(x) = ps+(x, .) and ps−(x) = ps−(x, .) are Borel functions of y ∈ Λ̃([suppµ]) such
that ps−(x)+p

s
−(x) = 1. Then ps+(x)π

s
+ is the restriction of π̃s(x) to Λ+([suppµ]), hence is a

Q̃s- invariant measure. In view of the uniqueness of the stationary measure of Q̃s restricted
to Λ+([suppµ]), we get that ps+(x)π

s
+ is proportional to πs+, i.e ps+(x) is independant of y

πs+ − a.e.

Hence, the first assertion of the theorem implies that the only extremal Q̃s-stationary
measures are πs+ and πs−.

Also the operator defined by lim
n→∞

1

n

n−1
Σ
0
(Q̃s)k is the projection on the space of Q̃s-invariant

functions and is equal to ps+(x)π
s
+ + ps−(x)π

s
−. The continuity and the extremality of the

Q̃s-invariant functions ps+(x) and p
s
−(x) follows.

If we restrict the convergence of 1
n

n−1
Σ
0
(Q̃s)k(δx) to x ∈ Φ, in view of the fact that the

restriction to Φ of the projection on Pd−1 is a homeomorphism onto its image, we get :
ps+(x) = 1, ps−(x) = 0 if x ∈ Φ.
Let us denote by τ the entrance time of Sn(ω).x in Φ ∪ −Φ and by aEsx the expectation
symbol associated with the Markov chain Sn(ω).x defined by Q̃s. Using theorem 2.6 we get
aEsx(1Φ∪−Φ(Sτ .x)) = 1. Since ps+(x) is a Q̃s-invariant function ps+(Sn.x) is a martingale,
hence ps+(x) =

aEsx(p
s
+(Sτ .x)). Since p

s
+(x) = 1 on Φ and ps+(x) = 0 on −Φ we get ps+(x) =

aEsx(1Φ(Sτ .x)), hence the stated interpretation for ps+(x).
As in Lemma 2.10, we verify easily that the function ϕ(u) = p(s)

∫
< u, u′ >s+ d∗νs+(u

′) on

Sd−1 satisfies P̃ sϕ = k(s)ϕ, hence the function ϕ
es satisfies Q̃s( ϕes ) =

ϕ
es . By duality, cases

II for µ and µ∗ are the same, hence there are two minimal T ∗-invariant subsets Λ+(T
∗)

and Λ−(T ∗) = −Λ+(T
∗). On the other hand the set :

Λ̂+(T ) = {u ∈ Sd−1 ; for any u′ in Λ+(T
∗), < u, u′ >≥ 0}

is non trivial, closed, T -invariant and has non zero interior, hence Λ̂+(T ) contains either
Λ+(T ) or Λ−(T ) and has trivial intersection with one of then. We can assume Λ̂+(T ) ⊃
Λ+(T ). Then, for u ∈ Λ+(T ) and any u′ ∈ Λ+(T

∗), we have < u, u′ >+=< u, u′ >, hence :
ϕ(u) = p(s)

∫
| < u, u′ > |sd ∗νs+(u

′) = es(u),
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i.e ϕ
es = 1 on Λ+(T ). Also we have < u, u′ >+= 0 for u ∈ Λ−(T ), u′ ∈ Λ+(T

∗). Since

Q̃( ϕes ) =
ϕ
es ≥ 0 and ϕ

es = 1 on Λ+(T ), we conclude from above that ps+ = ϕ
es , hence we get

the last formula. �

From above we know that if s ≥ 0 and ϕ ∈ C(Sd−1) the sequence (Q̃s)n ϕ is equicontin-
uous. Lemma 2.12 reduces the discussion of the behaviour of (Q̃s)nϕ to the existence of
eigenvalues z of Q̃s with |z| = 1. In this direction we have the following.

Corollary 2.19

For s ∈ Iµ, the equation Q̃sϕ = eiθϕ with eiθ 6= 1, ϕ ∈ C(Sd−1) has a non trivial solution

only in case I. In that case eiθ = −1, ϕ is antisymmetric, satisfies on suppµ × Λ̃(T )
ϕ(g.x) = −ϕ(x) and is uniquely defined up to a coefficient.

Proof
We observe that, since ϕ satisfies Q̃sϕ = eiθϕ, the function ϕ′ defined by ϕ′(x) = ϕ(−x)
satisfies also Q̃sϕ′ = eiθϕ′. Then ϕ+ ϕ′ is symmetric and defines a function ϕ in C(Pd−1)

with Qs
−
ϕ = eiθ

−
ϕ. If eiθ 6= 1, Theorem 2.6 gives

−
ϕ = 0, i.e ϕ is antisymmetric.

Furthermore, in case II, the restriction of ϕ to Λ̃+(T ) satisfies the same equation and
the projection of Λ̃+(T ) on Λ(T ) is an equivariant homomorphism. Then Theorem 2.6
gives a contradiction. Hence if ϕ ∈ C(Sd−1) satisfies Q̃sϕ = eiθϕ, then we are in case
I. Also, passing to absolute values as in the proof of the theorem we get Q̃s|ϕ| = |ϕ|,
|ϕ| =cte. Furthermore by strict convexity we have on suppµ × Λ̃(T ), ϕ(g.x) = eiθϕ(x),
hence ϕ2(g.x) = e2iθϕ2(x). Since ϕ2 is symmetric and satisfies Q̃sϕ2 = e2iθϕ2, we get
e2iθ = 1, i.e eiθ = −1 ; in particular ϕ(g.x) = −ϕ(x) on suppµ × Λ̃(T ). If ϕ′ ∈ C(Sd−1)

satisfies also Q̃sϕ′ = −ϕ′, we get from above Q̃s ϕ
′

ϕ = ϕ′

ϕ ,
ϕ′

ϕ (−x) = ϕ′

ϕ (x), hence ϕ
′ is

proportional to ϕ. �

III Laws of large numbers and spectral gaps.

1) Notations
As in section 2, we assume that condition i-p is valid for [suppµ]. If d = 1 we assume that
µ is non arithmetic. For s ∈ Iµ we consider the functions qs and qsn (n > 0) on Pd−1 ×G,
defined by :

qs(x, g) =
1

k(s)

es(g.x)

es(x)
|gx|s = qs1(x, g), qsn(x, g) =

1

kn(s)

es(g.x)

es(x)
|gx|s,

hence by definition of es :
∫
qsn(x, g) dµ

n(g) = 1.
We denote by Pd−1 the flag manifold of planes and by Pd−1

1,2 the manifold of contact elements

on Pd−1. Such a plane is defined up to normalisation by a 2-vector x ∧ y ∈ ∧2V and we
can assume |x ∧ y| = 1. Also a contact element ξ is defined by its origin x ∈ Pd−1 and a
line throught x. Hence we can write ξ = (x, x ∧ y) where |x| = |x ∧ y| = 1. The following
additive cocycles of the actions of G on Pd−1, Pd−1

2 ,Pd−1
1,2 will play an essential role :
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σ1(g, x) = Log|gx|, σ2(g, x ∧ y) = Log|g(x ∧ y)|, σ(g, ξ) = Log|g(x ∧ y)| − 2Log|gx|.
In addition to the norm of g we will need to use the quantity γ(g) = sup(|g|, |g−1|) ≥ 1.
Clearly, for any x ∈ V , with |x| = 1, we have −Log γ(g) ≤ Log|gx| ≤ Log γ(g).
For a finite sequence ω = (g1, g2, · · · , gn) we write :

Sn(ω) = gn · · · g1 ∈ G, qsn(x, ω) =
n
Π
k=1

qs(Sk−1.x, gk).

We denote by Ωn the space of finite sequences ω = (g1, g2, · · · , gn) and we write Ω = GN.

We observe that θs(x, g) = |gx|s es(g.x)es(x) satisfies the cocycle relation θs(x, gg′) = θs(g, g′.x)θs(g′, x),

hence qsn(x, ω) =
1

kn(s)θ
s(x, Sn(ω)).

Definition 3.1
We denoteQs

x ∈M1(Ω) the limit of the projective system of probability measures qsk(x, .)µ
⊗k

on Ωk. We write Qs =
∫
Qs
xdπ

s(x) where πs is the unique Qs-stationary measure on Pd−1.
The corresponding expectation symbol will be written Esx and the shift on Ω will be denoted
by θ. We write also Es(ϕ) =

∫
Esx(ϕ)dπ

s(x).

The path space of the Markov chain defined by Qs is a factor space of aΩ = Pd−1 × Ω,
and the corresponding shift on aΩ will be written aθ : aθ(x, ω) = (g1(ω).x, θω). Hence
(Pd−1 ×Ω, aθ) is a skew product over (Ω, θ). The projection on Ω of the Markov measure
aQs

x = δx ⊗Qs
x is Qs

x, hence
aQs =

∫
δx ⊗Qs

xdπ
s(x) projects on Qs. The uniqueness of the

Qs-stationary measure πs implies the ergodicity of the aθ-invariant measure aQs, hence Qs

is also θ-invariant and ergodic.
If s = 0, the random variables gk(ω) are i.i.d with law µ and Q◦ = P = µ⊗N. Here, under
condition (i-p), we extend the results of [28] to the case s ≥ 0, in particular we construct a
suitable measure-valued martingale with contraction properties as in [17]. This will allow
us to prove strong forms of the law of large numbers for Sn(ω) and to compare the measures
Qs
x when x varies. Then we can deduce the simplicity of the dominant Lyapunov exponent

of Sn(ω) under the θ-invariant probability Qs for s ≥ 0. Spectral gap properties for twisted
convolution operators on the projective space and on the unit sphere will follow.

2) A martingale and the equivalence of Qs
x to Qs

When convenient we identify x ∈ Pd−1 with one of its representants in Sd−1. We re-
call that the Markov kernel ∗Qs is defined by ∗Qsϕ = 1

k(s)∗es
∗P s(ϕ∗es) where ∗P sϕ(x) =∫

ϕ(g.x)|gx|sdµ∗(g), ∗P s(∗es) = k(s)(∗es) and ∗Qs has a unique stationary measure ∗πs.
Furthermore we have ∗πs = ∗es∗νs where ∗νs ∈ M1(Pd−1) is the unique solution of
∗P s(∗νs) = k(s)(∗νs). We denote by m the unique rotation invariant probability mea-
sure on Pd−1.

Theorem 3.2
Let Ω′ ⊂ Ω be the (shift-invariant) Borel subset of elements ω ∈ Ω such that S∗

n(ω).m
converges to a Dirac measure δz∗(ω). Then g∗1 .z

∗(θω) = z∗(ω), Qs(Ω′) = 1, the law of
z∗(ω) under Qs is ∗πs and ∗πs is proper.

24



In particular if ω ∈ Ω′ and | < x, z∗(ω) >< y, z∗(ω) > | 6= 0, then :

lim
n→∞

δ(Sn(ω).x, Sn(ω).y) = 0.

If ω ∈ Ω′ and ξ = (x, x ∧ y) ∈ Pd−1
1,2

lim
n→∞

|Sn(ω)x|
|Sn(ω)|

= | < z∗(ω), x > |, lim
n→∞

S∗
n.m = δz∗(ω).

In particular, if < z∗(ω), x > 6= 0 then lim
n→∞

σ(Sn, ξ) = −∞

Also for any x ∈ Pd−1 Qs
x is equivalent to Qs and dQs

x

dQs
y
(ω) =

∣∣∣<z
∗(ω),x>

<z∗(ω),y>

∣∣∣
s
es(y)
es(x) .

The proof of Theorem 3.2 is based on the following lemmas, in particular on the study of
a measure-valued martingale.

Lemma 3.3
Assume z∗ ∈ Pd−1 and un ∈ G is a sequence such that : lim

n→∞
u∗n.m = δz∗ . Then, for any

x, y ∈ Pd−1 with | < z∗, x >< z∗, y > | 6= 0, lim
n→∞

δ(un.x, un.y) = 0. If ξ = (x, x∧ y) ∈ Pd−1
1,2

and < z∗, x > 6= 0 :

lim
n→∞

|unx|
|un|

= | < z∗, x > |, lim
n→∞

σ(un, ξ) = −∞.

These convergences are uniform on the compact subsets on which < z∗, x > do not vanish.

Proof
We denote by ei(1 ≤ i ≤ d) an orthonormal basis of V , by ēi the projection of ei in Pd−1,
by Ā+ the set of diagonal matrices a = diag(a1, a2, · · · , ad) and a1 ≥ a2 ≥ · · · ≥ ad > 0.
We write un = knank

′
n with an ∈ Ā+, kn, k

′
n ∈ O(d). Then, for x ∈ Pd−1:

|unx|2 = |ank′nx|2 =
d
Σ
1
(ain)

2| < k′nx, ei > |2.

Also, u∗n.m = (k′n)
−1an.m converges to z∗ ∈ Pd−1, which implies :

lim
n→∞

an.m = δe1 , lim
n→∞

(k′n)
−1.ē1 = z∗.

In particular, if i > 1, we have ain = o(a1n) and

lim
n→∞

| < k′nx, e1 > | = | < z∗, x > | 6= 0.

It follows that |unx| ∼ a1n| < z∗, x > |. Since |un| = a1n, we get : lim
n→∞

|unx|
|un|

= | < z∗, x > |,
as asserted. We get also, if | < y, z∗ > | 6= 0, |uny| ∼ a1n| < z∗, y > |.
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On the exterior product space ∧2V these exists an O(d)-invariant scalar product such that
on a decomposable 2-vector x ∧ y :

|x ∧ y|2 = |x|2|y|2 − | < x, y > |2.

For x, y ∈ Pd−1 and corresponding x̃, ỹ ∈ Sd−1 we write |x ∧ y| = |x̃ ∧ ỹ|. Then on Pd−1,
there is an associated distance δ1 given by δ1(x, y) = |x ∧ y| and we have 1

2δ ≤ δ1 ≤ δ. We

observe that δ1(un.x, un.y) =
|unx∧uny|
|unx| |uny| .

Also |unx ∧ uny|2 = Σ
i>j

(ain a
j
n)

2 | < kn(x̃ ∧ ỹ), ei ∧ ej > |2 ≤ d(d−1)
2 (a1na

2
n|x̃ ∧ ỹ|)2.

It follows

δ1(un.x, un.y) ≤
(
d(d− 1)

2

)1/2 a1na
2
n

|unx| |uny|
|x̃ ∧ ỹ|.

Since |unx| ∼ a1n| < z∗, x > |, |uny| ∼ a1n| < z∗, y > | and a2n = o(a1n) < z∗, x >< z∗, y > 6=
0, we get :

lim
n→∞

δ1(un.x, un.y) = 0.

It follows, for any x, y ∈ Pd−1 : lim
n→∞

δ(un.x, un.y) = 0.

Also, since a2n = o(a1n), and < z∗, x > 6= 0 we get lim
n→∞

σ(un, ξ) = −∞.

The above calculations imply the uniformities in the convergences. �

Lemma 3.4
Assume νn ∈ M1(Pd−1) is a sequence such that νn is relatively compact in variation, and
each νn is proper. Let un ∈ G be a sequence such that u∗n.νn converges weakly to δz∗
(z∗ ∈ Pd−1). Then for any proper ρ ∈M1(Pd−1), u∗n.ρ converges weakly to δz∗ .

Proof
We can assume, in variation, lim

n→∞
νn = ν0 where ν0 is proper. Also we can assume going

to subsequences that u∗n converges to a quasi-projective map of the form u∗, defined and
continuous outside a projective subspace H ⊂ Pd−1. Let ϕ ∈ C(Pd−1) and denote :

In = (u∗n.νn)(ϕ) − (u∗.ν0)(ϕ) = (νn − ν0)(ϕ ◦ u∗n)− ν0(ϕ ◦ u∗n − ϕ ◦ u∗)

The first term is bounded by |ϕ| ‖νn − ν0‖, hence it converges to zero. Since ν0(H) = 0
and ϕ◦u∗n converges to ϕ◦u∗ outside H, we can use dominated convergence for the second
term : lim

n→∞
ν0(ϕ ◦ u∗n − ϕ ◦ u∗) = 0, hence lim

n→∞
In = 0. Then u∗n.νn converges to u∗.ν0

weakly. In particular u∗.ν0 = δz∗ , hence u
∗.y = z∗ ν0 − a.e. Since ν0(H) = 0, we have

u∗.y = z∗ on Pd−1 \H.
Since ρ is proper u∗.ρ = δz∗ , hence lim

n→∞
u∗n.ρ = δz∗ . �
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Lemma 3.5
For x, y ∈ Pd−1 the total variation measure of Qs

x −Qs
y is bounded by Bδs̄(x, y)Qs.

Then exists c(s) > 0 such that, for any x ∈ Pd−1, Qs
x ≤ c(s) Qs

Proof
We write qsn(g) =

∫
qsn(x, g)dπ

s(x) and we observe that for any measurable ϕ depending
on the first n coordinates :

∫
ϕ(ω)dQs(ω) =

∫
qsn(Sn(ω))ϕ(ω)dµ

⊗n(ω).

Also : |(Qs
x − Qs

y)(ϕ)| ≤
∫
|qsn(x, Sn)− qsn(y, Sn)| |ϕ(ω)|dµ⊗n. Using Lemma 2.11 we have

for any g ∈ G :

|qsn(x, g) − qsn(y, g)| ≤ bs
|g|s
kn(s)

δs̄(x, y).

Using Theorem 2.6 for some b > 0 :
qsn(g) ≥ b |g|s

kn(s) , hence |qsn(x, g)− qsn(y, g)| ≤ bs
b q

s
n(g)δ

s̄(x, y).
It follows :

|(Qs
x −Qs

y)(ϕ)| ≤
bs
b
δs̄(x, y)

∫
|ϕ(ω)|dQs(ω)

hence the first conclusion with B = bs
b .

Integrating with respect to π we get, since δ(x, y) ≤
√
2 : Qs

x ≤ (1 +B(
√
2)s̄)Qs hence the

second formula with c(s) = 1 +B(
√
2)s̄. �

Lemma 3.6
We consider the positive kernel νsx from Pd−1 to Pd−1 given by νsx = |<x,.>|s

es(x)
∗νs. Then:∫

g∗.νsg.xq
s(x, g)dµ(g) = νsx, νsx(1) = 1

es(x)

∫
| < x, y > |sd∗νs(y) = p(s) ∈]0, 1] and

x→ νsx. is continuous in variation.
In particular S∗

n.ν
s
Sn.x

is a bounded martingale with respect to Qs
x and the natural filtration.

Proof
We consider the s-homogeneous measure λs on

.
V defined by λs = ∗νs ⊗ ℓs. By definition

of ∗νs,
∫
g∗λsdµ(g) = k(s)λs. Then the Radon measure λsv defined by λsv = | < v, . > |sλs

satisfies
∫
g∗λsgvdµ(g) = k(s)λsv . This can be written, by definition of νsx and qs(x, g) :

∫
g∗.νsg.xq

s(x, g)dµ(g) = νsx.

The martingale property of S∗
n.ν

s
Sn.x

follows.

Furthermore since p(s)es(x) is equal to
∫
| < x, y > |sd ∗νs(y), Lemma 2.10 gives :

νsx(1) =
1

es(x)

∫
| < x, y > |sd ∗νs(y) = p(s) ∈]0, 1].
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The continuity in variation of x→ νsx follows from the definition.

Lemma 3.7
Let ρ ∈M1(Pd−1), H be the set of projective subspaces H of minimal dimension such that
ρ(H) > 0. Then the subset of elements H ∈ H such that ρ(H) = sup{ρ(L) ; L ∈ H} is
finite and non void. Furthermore, there exists ερ > 0 such that for any H ∈ H :

ρ(H) = cρ or ρ(H) ≤ cρ − ερ,

where cρ = sup{ρ(L) ; L ∈ H}.

Proof
If H, H ′ ∈ H, H 6= H ′, then dimH ∩H ′ < dimH, hence ρ(H ∩H ′) = 0. Then, for any
β > 0, the cardinality of the set of elements H ∈ H with ρ(H) ≥ β is bounded by 1

β . The
first assertion follows. Assume the second assertion is false. Then there exists a sequence
Hn ∈ H with

cρ
2 < ρ(Hn) < cρ, lim

n→∞
ρ(Hn) = cρ, and ρ(Hn) 6= ρ(Hm) if n 6= m. This

contradicts the fact that the cardinality of the sequence Hn is at most 2
cρ
.

Lemma 3.8
Assume that the Markovian kernel x → νx ∈ M1(Pd−1) is continuous in variation and
satisfies :

νx =

∫
qs(x, g)g∗.νg.xdµ(g)

Let Hp,r the set of finite unions of r distinct subspaces of dimension p and let h be the
function h(x) = sup{νx(W ) ; W ∈ Hp,r}. Then h is continuous and the set

X = {x ; h(x) = suph(y), y ∈ Pd−1}
is closed and [suppµ]-invariant

Proof
If W ∈ Hp,r is fixed the function x → νx(W ) is continuous since |νx(W ) − νy(W )| ≤
‖νx − νy‖. This implies |h(x)− h(y)| ≤ ‖νx − νy‖, hence the continuity of h.
We have for any W ∈ Hp,r :

νx(W ) =
∫
qs(x, g)νg.x((g

∗)−1W )dµ(g).
Hence : h(x) ≤

∫
qs(x, g)h(g.x)dµ(g). Then, as in Lemma 2.9, X is [suppµ]-invariant and

closed.

Lemma 3.9
Let νx be as in Lemma 3.8. Then for any x ∈ Pd−1, νx is proper.

Proof
We write πx = νx

νx(1)
, denote by Hk be the set of projective subspaces of dimension k and :

H = ∪
k≥0

Hk, d(x) = Inf{dimH;H ∈ H, πx(H > 0},
m(x) = sup{πx(H);H ∈ H, dimH = d(x)}, W(x) = {H ∈ H;πx(H) = m(x)}.
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Lemma 3.7 implies that the set W(x) has finite cardinality n(x) > 0. Also we denote
p = Inf{d(x);x ∈ Pd−1}, hp(x) = sup{πx(H);H ∈ Hp}.
Lemma 3.8 shows that hp(x) reaches its maximum β on a closed [suppµ]-invariant subset
X ⊂ Pd−1. Hence on Λ([suppµ]) we have hp(x) = β = m(x). It follows d(x) = p on
Λ([suppµ]). The relation n(x)m(x) ≤ 1 implies n(x) ≤ 1

β on Λ([suppµ]).
Let r = sup{n(x);x ∈ Λ([suppµ])} and denote hp,r(x) = sup{πx(W );W ∈ Hp,r}. Then
Lemma 3.8 implies : hp,r(x) = rβ on Λ([suppµ]). Since m(x) = β, this relation implies
n(x) = r on Λ([suppµ]). LetW (x) = ∪{H;H ∈W (x)} and let us show the local constancy
of the function W (x). Using Lemma 3.7 we get,

β(x) = sup{πx(H);H ∈ Hp,H /∈ W(x)} < β.

Let x ∈ Λ([suppµ]), Ux = {y; ‖πy−πx‖ < β−β(x)} and Hy ∈ Hp with πy(Hy) = β. Then:

β − πx(Hy) = πy(Hy)− πx(Hy) ≤ ‖πy − πx‖ < β − β(x).

Hence πx(Hy) > β(x) and, using Lemma 3.8, we get Hy ∈ W(x) for any y ∈ Ux. Since
πx is continuous in variation, Ux is a neighbourbood of x, hence W (x) is locally constant.
Since Λ([suppµ]) is compact, W = ∪W (x)

x∈Λ([suppµ])
is a finite union of subspaces.

On the other hand, the relations :

rβ = πx(W (x)) =

∫
qs(x, g)g∗.πg.x(W (x))dµ(g) , rβ ≥ (g∗.πg.x)(W (x))

imply that, for any x ∈ Λ([suppµ]), rβ = g∗.πg.x(W (x)) µ− a.e.
By definition of W (g.x), we get : (g∗)−1W (x) =W (g.x) µ− a.e.
Hence, for any g ∈ suppµ : (g∗)−1(W (x)) =W (g.x).
The relation (g∗)−1(W ) = ∪(g∗)−1

x∈Λ([suppµ])
(W (x)) = ∪W (g.x)

x∈Λ([suppµ])
shows that W is [suppµ∗]-

invariant. Then condition i-p implies W = Pd−1, r = 1, p = d−1, d(x) = d−1,m(x) = 1
for any x ∈ Pd−1, hence the Lemma. �

Proof of the theorem
We use the Markov kernel πsx defined by πsx = νsx

νsx(1)
with νsx given in Lemma 3.6.

Then we have the harmonicity equation :

πsx =

∫
qs(x, g)g∗.πsg.xdµ(g)

and the continuity in variation of πsx. The above equation implies that the sequence
S∗
n(ω).π

s
Sn(ω).x

is a Qs
x-martingale with respect to the natural filtration on Ω. Since

πsx ∈M1(Pd−1) we can apply the martingale convergence theorem.
Since, by Lemma 3.9, πsx is proper and, by definition, x → πsx is continuous in variation,
we can use the same method as in ([3], [6], [28]) : because of i-p condition, the martingale
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S∗
n(ω).π

s
Sn(ω).x

converges Qs
x − a.e to a Dirac measure. Then, using Lemma 3.4, S∗

n.m

converges Qs
x − a.e to a Dirac measure δz∗(ω). Then, from above, for any x ∈ Pd−1 :

Qs
x(Ω

′) = 1 , z∗(Qs
x) = πsx.

Hence the law of z∗(ω) under Qs
x is πsx. It follows, by integration :

Qs(Ω′) = 1 , z∗(Qs) =

∫
z∗(Qs

x)dπ
s(x) =

∫
πsxdπ

s(x).

In view of the formulas for νsx, π
s
x and the relation πs = esνs

νs(es) , we get z∗(Qs) = ∗πs. Then
Lemma 3.9 and the definition of πsx give that ∗πs is proper. The relations :

lim
n→∞

δ(Sn(ω).x, Sn(ω).y) = 0 , lim
n→∞

|Sn(ω)x|
|Sn(ω)|

= | < z∗(ω), x > |, lim
n→∞

σ(Sn, ξ) = −∞,

follow from the geometrical Lemma 3.3, since S∗
n.m converges to δz∗(ω).

Using Lemma 3.5 we know that Qs
x is absolutely continuous with respect to Qs. We

calculate dQs
x

dQs (ω) as follows.
By definition of Qs

x and Qs :

Esx(
dQs

x

dQs
(ω)|g1, · · · , gn) =

qsn(x, Sn(ω))∫
qsn(y, Sn(ω))dπ

s(y)

Furthermore :
qsn(x, Sn(ω))

qsn(y, Sn(ω))
=

|Sn(ω)x|s
|Sn(ω)y|s

es(Sn(ω).x)

es(Sn(ω).y)

es(y)

es(x)
.

The martingale convergence theorem gives :

dQs
x

dQs
(ω) = lim

n→∞
qsn(x, Sn(ω))∫

qsn(y, Sn(ω))dπ
s(y)

.

Using the relation lim
n→∞

|Sn(ω)x|
|Sn(ω)|

= | < z(ω), x > |, if ω ∈ Ω′, we get :

lim
n→∞

qsn(x, Sn(ω))

qsn(y, Sn(ω))
=

∣∣∣∣
< z∗(ω), x >
< z∗(ω), y >

∣∣∣∣
s es(y)

es(x)
.

Hence dQs
x

dQs (ω) =
|<z∗(ω),x>|s

es(x)

[∫ |<z∗(ω),y>|s
es(y) dπs(y)

]−1
. Since, from above πs is proper and

the Qs-law of z∗(ω) is πs, we have for any x ∈ Pd−1 : | < z∗(ω), x > | > 0, Qs − a.e.

Hence dQs
x

dQs (ω) > 0 Qs − a.e, i.e Qs
x is equivalent to Qs ; Also, using the formulas above :

dQs
x

dQs
y
(ω) =

∣∣∣<z
∗(ω),x>

<z∗(ω),y>

∣∣∣
s
es(y)
es(x) �

30



3) The law of large numbers for Log|Sn(ω)x| with respect to Qs

Here, by derivatives of a function ϕ at the boundaries of an interval [a, b] we will mean
finite half derivatives i.e we write :

ϕ′(a) = ϕ′(a+) ∈ R , ϕ′(b) = ϕ′(b−) ∈ R

Theorem 3.10
Let µ ∈M1(G), s ∈ Iµ. Assume [suppµ] satisfies i-p, and Logγ(g) is µ-integrable. Assume
also that |g|sLog γ(g) is µ-integrable and write

Lµ(s) =
∫
Log|gx|qs(x, g)dπs(x) dµ(g).

Then, for any x ∈ Pd−1, we have Qs − a.e :

lim
n→∞

1

n
Log|Sn(ω)x| = lim

n→∞
1

n
Log|Sn(ω)| = Lµ(s).

This convergence is valid in L1(Qs) and in L1(Qs
x) for any x ∈ Pd−1. Furthermore k(t) has

a continuous derivative on [0, s] and if t ∈ [0, s], x ∈ Pd−1 :

Lµ(t) =
k′(t)
k(t) = lim

n→∞
1

nkn(t)

∫
|gx|tLog|gx|dµn(g) = lim

n→∞
1

n

∫
|g|tLog|g|dµn(g)∫

|g|tdµn(g) .

In particular if α > 0 satisfies k(α) = 1, then k′(α) > 0.

Proof
We consider the function f(x, ω) on aΩ defined by f(x, ω) = Log|g1(ω)x|. If |x| = 1,
we have −Log|g−1| ≤ Log|gx| ≤ Log|g|, hence f(x, ω) is aQs-integrable.
Moreover

∫
f(x, ω)daQ(x, ω) =

∫
qs(x, g) Log|gx|dνs(x)dµ(g) = Lµ(s), and

n−1∑

0

(f◦ aθk)(x, ω) = Log|Sn(ω)x|.

As mentioned above aQs is aθ-ergodic, hence we get using Birkhoff’s theorem :

lim
n→∞

1

n
Log|Sn(ω)x| = Lµ(s),

aQs − a.e.

On the other hand, we can apply the subadditive ergodic theorem to the sequence
Log|Sn(ω)| and to the ergodic system (Ω, θ,Qs).
This gives that there exists L(s) ∈ R such that, Qs − a.e and in L1(Qs), the sequence
1
nLog|Sn(ω)| converges to L(s). We know, using Theorem 3.2 that, for fixed x and Qs−a.e,

lim
n→∞

|Sn(ω)x|
|Sn(ω)|

= | < z∗(ω), x > |,

and furthermore the law of z∗(ω) under Qs is proper. Hence, for fixed x we have :

| < z∗(ω), x > | > 0, Qs − a.e.

Then for fixed x ∈ Pd−1 and Qs − a.e :

lim
n→∞

1

n
Log|Sn(ω)x| = lim

n→∞
1

n
Log|Sn(ω)| = Lµ(s).

31



Using Lemma 3.6, since Qs
x ≤ c(s) Qs this convergence is also valid Qs

x − a.e. Hence by
definition of aQs, we have L(s) = Lµ(s). The first assertion follows.
In order to get the L1-convergences, we observe that Fatou’s Lemma gives :

lim inf
n→∞

1

n

∫
Log|Sn(ω)x|dQs(ω) ≥ Lµ(s).

On the other hand, the subadditive ergodic theorem gives :

lim
n→∞

1

n

∫
Log|Sn(ω)| dQs(ω) = L(s) = Lµ(s).

Since |Sn(ω)x| ≤ |Sn(ω)| if |x| = 1, these two relations imply, for every x ∈ Pd−1 :

lim
n→∞

1

n

∫
Log|Sn(ω)x|dQs(ω) = Lµ(s).

Now we write :

1

n
|Log|Sn(ω)x| − L(s)| ≤ 1

n
(Log|Sn(ω)| − Log|Sn(ω)x|) +

1

n
|Log|Sn(ω)| − L(s)|.

From the above calculation, the integral of the first term converge to zero. The subadditive
ergodic theorem implies the same for the second term.

Hence lim
n→+∞

∫
|Log|Sn(ω)x| − L(s)|dQs(ω) = 0. Since Qs

x ≤ c(s)Qs, this convergence is

also valid in L1(Qs
x) for any fixed x. This gives the second assertion, in particular :

Lµ(s) = lim
n→∞

1

n

∫
Log|Sn(ω)x|dQs

x(ω) = lim
n→+∞

1

n
Esx(Log|Sn(ω)x|).

The above limit can be expressed as follows.
Let ϕ be a continuous function on Pd−1. Then Theorem 2.6 implies :

lim
n→∞

Esx(ϕ(Sn(ω).x) = lim
n→∞

(Qs)nϕ(x) = πs(ϕ),

uniformly in x ∈ Pd−1.

Hence Lµ(s)πs(ϕ) = lim
n→∞

1

n
Esx(ϕ(Sn(ω).x)Log|Sn(ω)x|).

In particular with ϕ = 1
es and any x :

Lµ(s) = lim
n→∞

1

nkn(s)

∫
|gx|sLog|gx|dµn(g).

We denote vn(s) =
∫
|gx|sdµn(g) and we observe that v′n(s) =

∫
|gx|sLog|gx| dµn(g).

Using Theorem 2.6, we get : lim
n→∞

vn(s)

kn(s)
= πs

(
1

es

)
= 1.

Then the above formula for Lµ(s) reduces to Lµ(s) = lim
n→∞

1

n

v′n(s)
vn(s)

.
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On the other-hand : 1
nLogvn(s) =

1
n

∫ s
0
v′n(t)
vn(t)

dt, lim
n→∞

1

n
Logvn(s) = Logk(s).

The convexity of Logvn on [0, s] gives :
v′n(0)
vn(0)

≤ v′n(t)
vn(t)

≤ v′n(s)
vn(s)

.

Then the convergence of the sequences 1
n

v′n(0)
vn(0)

and 1
n

v′n(s)
vn(s)

implies that the sequence

1
n

v′n(t)
vn(t)

is uniformly bounded on [0, s]. On the other hand, Hölder inequality implies the

µ-integrability of |g|tLog|g| if t ∈ [0, s], and the bound :

∫
|g|t|Log|g||dµ(g) ≤

(∫
|Log|g||dµ(g)

) s−t
s
(∫

|g|s|Log|g||dµ(g)
)t/s

.

Hence, as above, we have the convergence of 1
n
v′n(t)
vn(t)

, to L(t). Then dominated convergence

gives the convergence of 1
nLogvn(s) to Logk(s) =

∫ s
0 L(t)dt.

We have L(t) =
∫
Log|gx|qt(x, g)dµ(g)dπt(x), and the continuity of qs, πs given by Theo-

rem 2.6. Then the bound of
∫
|g|t|Log|g||dµ(g) given above imply the continuity of L(t) on

[0, s]. The integral expression of Logk(s) in terms of L(t) implies that k has a derivative

and k′(t)
k(t) = L(t) if t ∈ [0, s]. This gives the first part of the last relation in the theorem. In

order to get the rest, we consider un(t) =
∫
|g|tdµn(g) and write for t ∈ [0, s] :

u′n(t)
un(t)

=

∫
|g|tLog|g|dµn(g)∫

|g|tdµn(g)

The convergence of 1
nLogun(t) to Logk(t) and the convexity of the functions Logun(t),

Logk(t) give for t ∈ [0, s] :

k′(t−)
k(t)

≤ lim inf
n→∞

1

n

u′n(t)
un(t)

≤ lim sup
n→∞

u′n(t)
un(t)

≤ k′(t+)
k(t)

.

Since if t ∈]0, s[, we have k′(t−) = k′(t+) = k′(t), we get lim
n→∞

1

n

u′n(t)
un(t)

=
k′(t)
k(t)

if t < s.

Furthermore, by continuity we have lim
n→∞

1

n

u′n(s)
un(s)

=
k′(s−)
k(s)

. Now the rest of the formula

follows from the expression of u′n(t)
un(t)

given above. The relation Lµ(α) > 0 follows from the

formula Lµ(t) =
k′(t)
k(t) and the strict convexity of Log k(t). �

4) Lyapunov exponents and spectral gaps.

We begin with a more general situation than above. As special cases, it contains the
Markov chains on Pd−1 considered in section 2. In particular simplicity of the dominant
Lyapunov exponent, given by Theorem 3.17 below, will be a simple consequence of their
special properties and of the general Proposition 3.11 below. For s = 0, this result was
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shown in [28] under condition i-p. For the use of the Zariski closure as a tool to show
condition i-p see [22], [41]. We give corresponding notations.
Let X be a compact metric space, C(X,X) the semigroup of continuous maps of X into
itself which is endowed with by the topology of uniform convergence. We denote by g.x
the action of g ∈ C(X,X) on x ∈ X and we consider a closed subsemigroup Σ of C(X,X).
Let µ be a probability measure on Σ and let q(x, g) be a continuous non negative function
on X × suppµ such that

∫
q(x, g)dµ(g) = 1. We will denote by (X, q ⊗ µ,Σ) this set of

datas and we will say that (X, q ⊗ µ,Σ) is a Markov system on (X,Σ). We write Ω = ΣN,
we denote by Ωn the set of finite sequences of length n on Σ and for ω = (g1, g2, · · · , gn) in
Ωn, x ∈ X, we write qn(x, ω) =

n
Π
1
q(Sk−1.x, gk) where Sn = gn · · · g1, S0 = Id.

We define a probability measure Qn
x on Ωn by Qn

x = qn(x, .)µ
⊗n and we denote by Qx the

probability measure on Ω which is the projective limit of this system. If ν is a probability
measure onX we setQν =

∫
Qxdν(x). We will consider the extended shift aθ on aΩ = X×Ω

which is defined by : aθ(x, ω) = (g1.x, θω), and also the Markov chain on X with kernel Q
defined by Qϕ(x) =

∫
ϕ(g.x)q(x, g)dµ(g). Clearly, when endowed with the corresponding

shift, the spaces of paths of this Markov chain is a factor system of (X×Ω,a θ). If π is a Q-
stationary measure on X, the measure Qπ on Ω is shift-invariant and aQπ =

∫
δx⊗Qxdπ(x)

is aθ-invariant. In this situation we will say that (X, q ⊗ µ,Σ, π) is a stationary Markov
system. If π is Q-ergodic, then aQπ is aθ-ergodic and Qπ is θ-ergodic. We will denote by
Ex,Eπ the corresponding expectations symbols.
In particular we will consider below Markov systems of the form (X, q ⊗ µ, T ) where Σ =
T ⊂ GL(d,R) (d > 1), and also flag-extensions of them. We can extend the action of
g ∈ T to X × Pd−1 by g(x, v) = (g.x, g.v) and define a new Markov chain with kernel
Q1 by Q1ϕ(x, v) =

∫
ϕ(g.x, g.v)q(x, g)dµ(g). Given a Q-stationary probability measure π,

we will denote by C1 the compact convex set of probability measures on X × Pd−1 which
have projection π on X. The same considerations apply if Pd−1 is replaced by Pd−1

2 , the
manifold of 2-planes or Pd−1

1,2 , the manifold of contact elements in Pd−1. Then we define
similarly the kernels Q2, Q1,2 and the convex sets C2, C1,2.
Since Sn = gn · · · g1 and the gk are Qπ-stationary random variables where Qπ is θ-invariant
and ergodic, the Lyapunov exponents of the product Sn are well defined as soon as :∫

Log|g1(ω)|dQπ(ω) and
∫
Log|g−1

1 (ω)|dQπ(ω)
are finite (see [42]). In particular the two largest ones γ1 and γ2 are given by :

γ1 = lim
n→∞

1

n

∫
Log|Sn(ω)|dQπ(ω), γ1 + γ2 = lim

n→∞
1

n

∫
Log| ∧2 Sn(ω)|dQπ(ω)

In order to study the values of γ1, γ2 we need to consider the above Markov operators
Q1, Q2, Q1,2 and the convex sets C1, C2, C1,2 of corresponding stationary measures. We
denote q(g) = |q(., g)| and we assume

∫
Logγ(g)q(g)dµ(g) < ∞. For η1 ∈ C1, we will

write I1(η1) =
∫
σ1(g, v)dη1(x, v)dµ(g). Similarly with η2 ∈ C2, η1,2 ∈ C1,2 we define

I2(η2), I1,2(η1,2). The following result will be a basic tool in this subsection.
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Proposition 3.11
With the above notations, let T be a closed subsemigroup of GL(d,R), (X, q ⊗ µ, T, π) a
stationary and uniquely ergodic Markov system. Assume that S∗

n.m converges Qπ − a.e to
a Dirac measure δz∗(ω) such that for any v ∈ Pd−1, < v, z∗(ω) > 6= 0 Qπ − a.e. Assume
that

∫
Logγ(g)q(g)dµ(g) is finite. Then we have γ2 − γ1 = sup{I1,2(η); η ∈ C1,2} < 0, and

the sequence 1
n sup
x,v,v′

Ex(Log
δ(Sn(ω).v, Sn(ω).v

′)
δ(v, v′)

) converges to γ2 − γ1 < 0.

The proof uses the same arguments as in [3] and [6], [29]. The condition lim
n→∞

S∗
n.m = δz∗(ω)

is satisfied in the examples of subsection 3.2 (see Theorem 3.2).

Lemma 3.12
Let mp be the natural SO(d)-invariant probability measure on the submanifold of p-
decomposable unit multivectors x = v1 ∧ v2 ∧ · · · ∧ vp. Then there exists c > 0 such
that for any u ∈ EndV : 0 < Log| ∧p u| −

∫
Log|(∧pu)(x)|dmp(x) ≤ c.

Proof
We write u in polar form u = kak′ with k, k′ ∈ SO(d), a = diag(a1, a2 · · · , ad) and a1 ≥
a2 ≥ · · · ≥ ad > 0. We write also x = k′′εp with k′′ ∈ SO(d), εp = e1 ∧ e2 ∧ · · · ∧ ep, hence :∫

Log| ∧p ux|dmp(x) =
∫
Log| ∧p ak′k′′εp|dm̃(k′′) =

∫
Log| ∧p akεp|dm̃(k),

where m̃ is the normalized Haar measure on SO(d). Furthermore :
| ∧p akεp| ≥ | < ∧pakεp, εp > | = | ∧p a|| < kεp, εp > |,∫

Log| ∧p ux|dmp(x) ≥ Log| ∧p u|+
∫
Log| < kεp, εp > |dm̃(k)

= Log| ∧p u|+
∫
Log| < x, εp > |dmp(x).

Hence it suffices to show the finiteness of the integral in the right hand side. But the set
of unit decomposable p-vectors is an algebraic submanifold of the unit sphere of ∧pV and
mp is its natural Riemannian measure. Since the map x→< x, εp >2 is polynomial, there
exists q ∈ N, c > 0 such that : ctq ≤ mp{x;< x, εp >2≤ t} ≤ 1.
The push forward σ of mp by this map is an absolutely continuous probability measure on
[0,1] which satisfies σ(0, t) ≥ ctq/2. Then :

∫
Log| < x, εp > |dmp(x) =

∫ 1

0
Log t dσ(t) > −∞,

since the integral
∫ 1
0 t

q/2−1dt is finite for q > 0. �

We recall from [35] the following :

Lemma 3.13
Let (E, θ, ν) be a dynamical system where ν is a θ-invariant probability measure, f a

ν-integrable function. If
n
Σ
1
f ◦ θk converges ν − a.e to −∞, then one has ν(f) < 0.
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Lemma 3.14
Let E be a compact metric space, P a Markov kernel on E which preserves the space
of continuous functions on E, C(P ) the compact convex set of P -stationary measures.

Then, for every continuous function f on E, the sequence sup
x∈E

1

n

n
Σ
1
P kf(x) converges to

sup{η(f); η ∈ C(P )}. In particular, if for all η, η′ ∈ C(P ) we have η(f) = η′(f), then we

have the uniform convergence : lim
n→∞

1

n

n
Σ
1
P kf(x) = η(f).

Proof

Let J ⊂ R be the set of cluster values of the sequences 1
n

n−1
Σ
0
(P kf)(xn) with xn ∈ E. We

will show that the convex envelope of J is equal to {η(f) ; η ∈ C(P )}. If the sequence
1
nk

nk

Σ
0
(P if)(xnk

) converges to c ∈ R, we can consider the sequence of probability measures

ηk = 1
nk

nk−1
Σ
0
P iδxnk

and extract a convergent subsequence with limit η ∈ C(P ). Then,

since f is continuous :

η(f) = lim
k→∞

1

nk

nk−1

Σ
0

(P if)(xnk
) = c.

Conversely, if η ∈ C(P ) is ergodic, Birkhoff’s theorem applied to the sequence 1
n

n−1
Σ
0
(P if)(x)

gives η − a.e :

lim
n→∞

1

n

n−1
Σ
0
(P if)(x) = η(f),

hence there exists x ∈ E such that η(f) is the limit of 1
n

n−1
Σ
0
(P if)(x). If η is not ergodic,

η is a barycenter of ergodic measures, hence η(f) belongs to the convex envelope of J . In
view of the above, this shows the claim. Since J is closed, the convex envelope of J is a

closed interval [a, b], hence b = lim
n→∞

1

n
sup
x∈E

n−1
Σ
0
(P if)(x) = sup

η∈C(P )
η(f). �

Lemma 3.15
We have the formulas

γ1 = lim
n→∞

1

n
sup
x,v

∫
Log|Sn(ω)v|dQx(ω) = sup

η∈C1

I1(η),

γ1 + γ2 = lim
n→∞

1

n
sup
x,v,v′

∫
Log|Sn(ω)v ∧ Sn(ω)v′|dQx(ω) = sup

η∈C2

I2(η).

Proof
We consider the Markov chain on X × Pd−1 with kernel Q1 defined by :

Q1ϕ(x, v) =
∫
ϕ(g.x, g.v)q(x, g)dµ(g),

and the function ψ(x, v) =
∫
σ1(g, v)q(x, g)dµ(g).

We observe that :
∫
σ1(Sn(ω), v)dQx(ω) =

n−1
Σ
0
Qk1ψ(x, v),
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and ψ is continuous since
∫
Logγ(g)q(g)dµ(g) <∞. Also, since π is the uniqueQ-stationary

measure, any Q1-stationary measure has projection π on X. Then, using Lemma 3.14 :

sup
η∈C1

I1(η) = lim
n→∞

1

n
sup
x,v

∫
σ1(Sn(ω), v)dQx(ω),

which gives the second part of the first formula. In order to show the first part we consider
η ∈ C1 which is Q1-ergodic, the extended shift θ̃ on X × Pd−1 × Ω and the function
f(x, v, ω) = σ1(g1(ω), v). Then :

θ̃(x, v, ω) = (g1.x, g1.v, θω) and σ1(Sn(ω), v) =
n−1
Σ
0
f ◦ θ̃k(x, v, ω).

Also, f(x, v, ω) is Q̂η-integrable where Q̃η =
∫
δ(x,v) ⊗Qxdη(x, v).

Using the subadditive ergodic theorem :

I1(η) =
1
n

∫
σ1(Sn(ω), v)dQx(ω)dη(x, v) ≤ lim

n→∞
1

n

∫
Log|Sn(ω)|dQπ(ω) = γ1.

We show now that for some η ∈ C1 we have γ1 = I1(η).
Using Lemma 3.12, we know that :

0 ≤ Log|Sn(ω)| −
∫
Log|Sn(ω)v|dm(v) ≤ c,

hence, integrating with respect to Qπ :
0 ≤

∫
dm(v)

∫
(Log|Sn(ω)| − Log|Sn(ω)v|dQπ(ω) ≤ c.

Then the sequence of non negative functions hn(v) on Pd−1 given by :

hn(v) =
1

n

∫
(Log|Sn(ω)| − Log|Sn(ω)v|)dQπ(ω)

satisfies 0 ≤ hn(v) ≤ c
n with c given by Lemma 3.11, lim

n→∞

∫
hn(v)dm(v) = 0. It follows

that we can find a subsequence hnj
such that hnj

(v) converges to zero m− a.e, hence :

γ1 = lim
j→∞

1

nj

∫
σ1(Snj

(ω), v)dQπ(ω) m− a.e,

in particular the convergence is valid for some v ∈ Pd−1. The sequence of probability

measures 1
nj

nj

Σ
1
Qk1(π ⊗ δv) has a weakly convergent subsequence ηj with a Q1-invariant

limit η. Furthermore, the function ψ considered above is continuous, hence :

η(ψ) = lim
j→∞

1

nj

∫
σ1(Snj

(ω)v)dQπ(ω) = γ1, γ1 = I1(η) = sup
η1∈C1

I1(η1).

The same argument is valid for Log|Sn(ω)(v∧v′)| with m replaced by m2, hence the second
formula. �

Lemma 3.16
For any η ∈ C1, we have γ1 = I1(η)

Proof

As in the proof of Lemma 3.15 we have I1(η) = lim
n→∞

1

n
σ1(Sn(ω), v) Qη − a.e, hence the
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existence of v ∈ Pd−1 such that Qπ − a.e :

I1(η) = lim
n→∞

1

n
Log|Sn(ω)v|

Then, using Theorem 3.2 and Lemma 3.15 we get, Qπ − a.e :

lim
n→∞

1

n
Log

|Sn(ω)v|
|Sn(ω)|

= lim
n→∞

1

n
Log| < z∗(ω), v > | = 0,

since < z∗(ω), v > 6= 0, Qπ − a.e.

Hence I1(η) = lim
n→∞

1

n

∫
Log|Sn(ω)|dQπ(ω) = γ1 �

Proof of the Proposition
We have γ2 − γ1 = (γ1 + γ2)− 2γ1, γ1 = I1(η1) for any η1 ∈ C1 and γ1 + γ2 = sup

η2∈C2

I2(η2).

Using the theorem of Markov-Kakutani, for the inverse image of η2 ∈ C2 in C1,2 we know
that any η2 ∈ C2 is the projection of some η1,2 ∈ C1,2, hence γ1 + γ2 = sup

η1,2∈C1,2

I2(η1,2). If

η′1 is the projection of η1,2 on Pd−1, we have I1,2(η1,2) = I2(η1,2)−2I1(η
′
1) and from Lemma

3.16, γ1 = I1(η
′
1). It follows γ2 − γ1 = sup

η1,2∈C1,2

I1,2(η1,2).

Since I1,2(η1,2) depends continuously of η1,2 and C1,2 is compact, in order to show that
γ2 − γ1 is negative it suffices to prove I1,2(η) < 0, for any η ∈ C1,2. We consider the

extended shift θ̃ on X × Pd−1
1,2 × Ω defined by θ̃(x, ξ, ω) = (g1.x, g1.ξ, θω), the function

f(ξ, ω) = σ(g1, ξ) and the θ̃-invariant measure Q̃η =
∫
δ(x,ξ) ⊗ Qxdη(x, ξ). Since S∗

n.m
converges Qπ − a.e to δz∗(ω), Lemma 3.4 implies lim

n→∞
σ(Sn(ω), ξ) = −∞, Qπ − a.e if the

origin v of ξ satisfies < v, z∗(ω) > 6= 0. By hypothesis, this condition is satified for any ξ

and Qπ − a.e, hence we have lim
n→∞

n
Σ
1
f ◦ θk = −∞ Qπ − a.e for any ξ. It follows that this

convergence is valid Q̃η − a.e, hence Lemma 3.13 gives : η(f) = I1,2(η) < 0.

We consider In = 1
nEx

(
Log δ(Sn(ω).v,Sn(ω).v′)

δ(v,v′)

)
. With |v| = |v′| = 1, δ1(v, v

′) = |v ∧ v′| :

Log
δ1(Sn(ω).v, Sn(ω).v

′)
δ1(v, v′)

= Log
|Sn(ω)v ∧ Sn(ω)v′|

|v ∧ v′| − Log|Sn(ω)v| − Log|Sn(ω)v′|.

By Lemma 3.15, we have :

γ1 + γ2 = lim
n→∞

1

n
sup
x,v,v′

Ex

(
Log

|(Sn(ω)v ∧ Sn(ω)v′|
|v ∧ v′|

)
.

Also, by Lemmas 3.14 and 3.16, we have the convergence of sup
x,v

1

n
Ex(Log|Sn(ω)v|) and
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inf
x,v

1

n
Ex(Log|Sn(ω)v|) to I1(η) = γ1. The uniform convergence of 1

nEx(Log|Sn(ω)v|) to γ1

follows. Then the equivalence of δ1, δ implies that sup
x,v,v′

1

n
In converges to γ2 − γ1. �

With the notations of paragraph 3 above we have the following corollaries, for products of
random matrices.

Theorem 3.17
Assume d > 1, the closed subsemigroup T ⊂ GL(d,R) satisfies condition i-p, s ∈ Iµ and∫
|g|sLogγ(g)dµ(g) is finite. Then the dominant Lyapunov exponent of Sn(ω) is simple

and :

lim
n→∞

1

n
sup
x,v,v′

Esx

(
Log

δ(Sn(ω).v, Sn(ω).v
′)

δ(v, v′)

)
= Lµ,2(s)− Lµ,1(s) < 0

where Lµ,1(s), Lµ,2(s) are the two highest Lyapunov exponents of Sn(ω) with respect to
Qs.

In particular : lim
n→∞

1

n
sup
v,v′

Es
(
Log

δ(Sn(ω)v, Sn(ω)v
′)

δ(v, v′)

)
≤ Lµ,2(s)− Lµ,1(s) < 0.

Proof
In view of Theorems 3.2, 2.6, the conditions of Proposition 3.11 are satisfied by :
X = Pd−1, q ⊗ µ = qs ⊗ µ, π = πs. On the other hand we have Qs =

∫
Qs
xdπ(x), hence the

second formula. �

We will use Theorem 3.17 to establish certain functional inequalities for the operators
Qs, Q̃s on Pd−1,Sd−1 defined in section 2 and acting on Hε(P

d−1) or Hε(S
d−1). Using

[32], spectral gap properties will follow. We will say that Q satisfies a ”Doeblin-Fortet
inequality” on Hε(X), where X is a compact metric space if we have for any ϕ ∈ Hε(X) :
[Qn0ϕ]ε ≤ ρ[ϕ]ε +D|ϕ| for some n0 ∈ N where ρ < 1, D ≥ 0.

Corollary 3.18

For ε sufficiently small and 0 ≤ s < s∞, if
∫
|g|sγδ(g)dµ(g) < ∞ for some δ > 0,

lim
n→∞

(sup
x,y

Es(
δε(Sn.x, Sn.y)

δε(x, y)
))1/n = ρ(ε) < 1.

If k′(s) > 0 then lim
n→∞

(sup
x

Es(
1

|Snx|ε
))1/n < 1.

Proof
The proof of the first formula is based on the theorem and is given below. The proof of
the second formula follows from a similar argument (see also [38], Theorem 1, for s = 0).

We denote αn(x, y, ω) = Log δ(Sn(ω).x,Sn(ω).y)
δ(x,y) and we observe that :

eεαn ≤ 1 + εαn + ε2α2
ne
ε|αn|, |αn| ≤ 2Logγ(Sn)
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Since t2e|t| ≤ e3|t|, there exists ε0 > 0 such that for ε ≤ ε0 :

α2
n e

ε|αn| ≤ 1

ε20
e3ε0|αn| ≤ 1

ε20
(γ(Sn))

ε0 .

We observe that In = 1
ε20

Es(γ6ε0(Sn)) is finite for s < s∞ and ε0 sufficiently small (see the

proof of Corollary 3.20. below).
It follows :

Es(eεαn(x,y,ω)) ≤ 1 + ε Es(αn(x, y, ω)) + ε2In,

sup
x,y

Es
(
δε(Sn.x, Sn.y)

δε(x, y)

)
≤ 1 + ε sup

x,y
Es
(
Log δ(Sn.x,Sn.y)

δε(x,y)

)
+ ε2In.

Also the quantity ρn(ε) = sup
x,y

Es
(
δε(Sn.x, Sn.y)

δε(x, y)

)
satisfies ρm+n(ε) ≤ ρm(ε)ρn(ε), hence

we have ρ(ε) = lim
n→∞

ρn(ε)
1/n = Inf

n∈N
(ρn(ε))

1/n. It follows that, in order to show ρ(ε) < 1,

for ε small it suffices to show ρn0
(ε) < 1 for some n0. To do that, we choose n0 such that

sup
x,y

Es
(
Log

δ(Sn0
.x, Sn0

.y)

δ(x, y)

)
= c < 0 which is possible using the theorem, and we take ε

sufficiently small so that ε2In0
+ εc < 0. Then we get :

ρn0
(ε) ≤ 1 + ε2In0

+ εc < 1. �

Corollary 3.19

Let Hε(P
d−1) be the Banach space of ε-Hölder functions on Pd−1 with the norm ϕ →

[ϕ]ε + |ϕ| and assume 0 ≤ s < s∞,
∫
|g|sγδ(g)dµ(g) for some δ > 0. Then for ε sufficiently

small the operator Qs (defined in Theorem 2.6) on Hε(P
d−1) satisfies the following Doeblin-

Fortet inequality where B ≥ 0 n0 ∈ N, ρn0(ε) ≤ ρ′(ε) < 1 : [(Qs)n0ϕ]ε ≤ ρ′(ε)[ϕ]ε +B|ϕ|.
In particular the operator P s admits the following spectral decomposition in Hε(P

d−1) :
P s = k(s)(νs ⊗ es + Us)

where Us commutes with the projection νs ⊗ es and has spectral radius less than 1.

Proof
From Lemma 3.6, we know that Qs

x ≤ c(s)Qs, hence, using Corollary 3.18, for n ≥ n0

sufficiently large and with ρ′(ε) ∈]ρn0(ε), 1[ : sup
x,y

Esx

(
δε(Sn.x, Sn.y)

δε(x, y)

)
≤ ρ′(ε).

We can write :
(Qs)nϕ(x) − (Qs)nϕ(y) = Esx(ϕ(Sn.x)− Esy(ϕ(Sn.y)) = Esx(ϕ(Sn.x)− ϕ(Sn.y))+
(Esx − Esy)(ϕ(Sn.y)).

The first term in the right hand side is bounded by [ϕ]εδ
ε(x, y) sup

x,y
Esx

(
δε(Sn.x, Sn.y)

δε(x, y)

)

i.e by [ϕ]εδ
ε(x, y)ρ′(ε).

Using Lemma 3.5, we know that the second term is bounded by B|ϕ|δs̄(x, y). Hence with
ε < s̄ we get the required inequality.
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From Theorem 2.6 we know that Qs has a unique stationary measure πs and 1 is the unique
eigenvalue with modulus one. Then the above Doeblin-Fortet inequality implies (see [32])
the relation Qs = πs ⊗ 1 + Vs where Vs commutes with the projection πs ⊗ 1 and has
spectral radius less then one, hence the required formula for P s. �

Corollary 3.20
With the notations and hypothesis of Corollary 3.19, the following Doeblin-Fortet inequal-
ity is valid, if z = s+ it , 0 ≤ s < s∞ :

[(Qz)n0ϕ]ε ≤ ρ′(ε)[ϕ]ε + (B +An0
(ε)|t|ε)|ϕ|,

where 0 ≤ An0
(ε) <∞. For t 6= 0, the spectral radius of Qz is less than 1.

Furthermore k(s) is analytic on ]0, s∞[, and 1 is a simple eigenvalue of Qs.

Proof
By definition of Qz = Qs+it we have (Qs+it)nϕ(x) = Esx(|Snx|itϕ(Sn.x)), hence :

|(Qz)nϕ(x)−(Qz)nϕ(y)| ≤ |(Esx−Esy)(|Snx|itϕ(Sn.x)|+|Esy(|Snx|itϕ(Sn.x)−|Sny|itϕ(Sn.y))|.
Using Corollary 3.18 the first term is bounded by Bδε(x, y)Es(|ϕ|) i.e by B|ϕ|δε(x, y). The
second term is dominated by

Esy(|(Snx|it − |Sny|it|)|ϕ|+ Esy(|ϕ(Sn.x)− ϕ(Sn.y)|).
As in the proof of Corollary 3.5, for n ≥ n0 :

Esy(|ϕ(Sn.x)− ϕ(Sn.y)|) ≤ [ϕ]εE
s
y(δ

ε(Sn.x, Sn.y))

≤ [ϕ]εδ
ε(x, y) sup

x,y
Esy(

δε(Sn.x, Sn.y)

δε(x, y)
) ≤ [ϕ]εδ

ε(x, y)ρ′(ε).

On the other hand, using the relation :
||u|it − |v|it| ≤ 2|t|ε|Log|u| − Log|v||ε ≤ 2|t|εsup( 1

|u| ,
1
|v|)

ε||u| − |v||ε we get :

|(|Snx| − |Sny|it|| ≤ 2|t|ε sup
|v|=1

1

|Snv|ε
|Sn(x− y)|ε ≤ 2|t|ε sup

|v|=1

|Sn|ε
|Snv|ε

δε(x, y).

Since |Snv| ≥ |S−1
n |−1 we get :

Esy(|Snx|it − |Sny|it)| ≤ 2c(s)|t|εδε(x, y)Es(γ2ε(Sn)).
Since γ(Sm+n) ≤ γ(Sm)γ(Sn ◦ θm) and Qs is shift-invariant :

Es(γ2ε(Sn)) ≤ (Es(γ2ε(S1))
n <∞.

Then for n fixed and ε sufficiently small the hypothesis implies that |Esy(|Sn|it − |Sny|it)|
is bounded by An(ε)|t|εδε(x, y). Finally for n = n0 :

[(Qz)n0ϕ]ε ≤ ρ′(ε)|ϕ]ε + (B +An0
(ε)|t|ε)|ϕ|.

Then, using [32], one gets that the possible unimodular spectral values of Qz are eigenval-
ues. Using Theorem 2.6, if t 6= 0, one get that no such eigenvalue exists, hence the spectral
radius of Qz is less than 1.
In order to show the analyticity of k(s) on ]0, s∞[, we consider the operator P z for z ∈ C

close to s. We begin by showing the holomorphy of P z for Re z ∈]0, s∞[. Let γ be a loop

contained in the strip Re z ∈
◦
Iµ and ϕ ∈ Hε(P

d−1). Then, since z → |gx|z is holomorphic:∫
γ P

zϕ(x)dz =
∫
G×γ ϕ(g.x)|gx|zdµ(g)dz =

∫
G ϕ(g.x)dµ(g)

∫
γ |gx|zdz = 0,
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On the other hand, if γ is a small cercle of center k(s) ∈ C, the spectral gap property of
the operator P s implies that k(s) is a simple pole of the function ζ → (ζI − P s)−1, hence
by functional calculus :

k(s)νs ⊗ es =
1

2iπ

∫

γ
(ζI − P s)−1dζ.

Since P z depends continuously of z, the function (ζI − P z)−1 has a pole inside the small
disk defined by γ, if z is close to s. Then by perturbation theory P z has an isolated spectral
value k(z) close to k(s). The corresponding projection νz ⊗ ez satisfies :

k(z)νz ⊗ ez =
1

2iπ

∫

γ
(ζI − P z)−1dζ.

This formula and the holomorphy of P z shows that k(z) is holomorphic in a neighbourhood
of s. The analyticity of k(s) follows. The fact that 1 is a simple eigenvalue of Qs follows
from Theorem 2.6. �

Corollary 3.21

Assume
∫
|g|sγδ(g)dµ(g) <∞ for some δ > 0. Then given ε > 0 sufficiently small, for any

ε0 > 0 there exists δ0 = δ0(ε0), n0 = n0(ε0) such that if x, y ∈ Sd−1 satisfy δ̃(x, y) ≤ δ0,
then Es(δ̃ε(Sn0

.x, Sn0
.y)) ≤ ε0δ̃

ε(x, y).
In particular, one has the following Doeblin-Fortet inequality with D ≥ 0, ρ0 = ε0c(s) < 1:
[(Q̃s)n0ϕ]ε ≤ ρ0[ϕ]ε +D|ϕ|, where c(s) satisfies Qs

x ≤ c(s)Qs.
In case I, the Q̃s-invariant functions are constant. In case II, the space of Q̃s-invariant
functions is generated by ps+ and ps−.

If t 6= 0 the spectral radius of Q̃z is less than 1.
Furthermore, 1 is the unique unimodular eigenvalue of Q̃s except in case I, where -1 is the
unique non trivial possibility.

Proof
Assume ε is as in Corollary 3.18. We will use for any n ∈ N, t > 0 the relation :

Es(δ̃ε(Sn.x, Sn.y) = Es(δ̃ε(Sn.x, Sn.y)1{γ(Sn)>t}) + Es(δ̃ε(Sn.x, Sn.y)1{γ(Sn)≤t})
In view of Corollary 3.18 we have for some n0, any x̄, ȳ ∈ Pd−1, given ε0 > 0 :

Es(δε(Sn0
.x̄, Sn0

.ȳ)) ≤ ε0
2 δ

ε(x̄, ȳ).

Using Lemma 2.11 we have for x, y ∈ Sd−1 : δ̃(Sn0
.x, Sn0

.y) ≤ 2γ2(Sn0
)δ̃(x, y), hence :

Es(δ̃ε(Sn0
.x, Sn0

.y)1{γ(Sn0
)>t}) ≤ 2Es(γ2ε(Sn0

1{γ(Sn0
)>t}).

Since, as in the proof of Corollary 3.20 we have if ε is sufficiently small, Es(γ2ε(Sn0
)) <∞,

we can choose t0 > 0 so that Es(δ̃ε(Sn0
.x, Sn0

.y)1{γ(Sn0
)>t0}) ≤ ε0

2 δ̃
ε(x, y). Then, on the

set {γ(Sn0
) ≤ t0} we have :

δ̃(Sn0
.x, Sn0

.y) ≤ 2γ2(Sn0
)δ̃(x, y) ≤ 2 t20 δ̃(x, y).

We observe that, if δ̃(u, v) ≤
√
2 with u, v ∈ Sd−1, then δ(ū, v̄) = δ̃(u, v). Hence, if

2 t20 δ̃(u, v) ≤
√
2, we get : δ̃(Sn0

.x, Sn0
.y) = δ(Sn0

.x̄, Sn0
.ȳ) on the set {γ(Sn0

) ≤ t0}.
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It follows, if δ̃(x, y) ≤
√
2

2t20
= δ0 :

Es(δ̃ε(Sn0
.x, Sn0

.y)1{γ(Sn0
)≤t0} ≤ ε0

2 δ̃
ε(x, y)

Hence we get, if δ̃(x, y) ≤ δ0 : Es(δ̃ε(Sn0
.x, Sn0

.y) ≤ ε0 δ̃
ε(x, y).

Using Qs
x < c(s)Qs we obtain : sup

δ̃(x,y)≤δ0
Esx(

δ̃ε(Sn0
.x, Sn0

.y)

δ̃ε(x, y)
) ≤ c(s)ε0.

On the other hand, if ϕ ∈ Hε(S
d−1) :

(Q̃s)nϕ(x) − (Q̃s)nϕ(y) = Esx(ϕ(Sn.x)− ϕ(Sn.y)) + (Ex − Ey)(ϕ(Sn.y))

In view of Lemma 3.5, the second term is bounded by B δ̃s̄(x, y)|ϕ|. Then, for δ̃(x, y| ≤ δ0
we obtain, since ε ≤ s̄ :

|(Q̃s)n0ϕ(x) − (Q̃s)n0ϕ(y)| ≤ c(s)ε0[ϕ]εδ̃
ε(x, y) +B|ϕ|δ̃ε(x, y)

If δ̃(x, y) ≥ δ0 we have trivially : Ẽx(|ϕ(Sn0
.x)− ϕ(Sn0

.y)|) ≤ 2 c(s) δ̃
ε(x,y)
δε0

|ϕ|
Finally on Sd−1 :

[(Q̃s)n0ϕ]ε ≤ c(s)ε0[ϕ]ε + (B + 2 c(s)δε0
)|ϕ|

hence the result with D = B + 2 c(s)δε0
. The structure of the space of Q̃s-invariant functions

is given by Theorem 2.17. Doeblin-Fortet inequality implies that the possible unimodular
spectral values of Q̃z are eigenvalues. Then, as in the end of proof of Theorem 2.7, one
would have for some ϕ ∈ Hε(S

d−1) eiθ ∈ C, and any g ∈ suppµ : |gx|itϕ(g.x) = eiθϕ(x).
This would imply |λg|it = eiθ for any g ∈ suppµ, wich contradicts Proposition 2.5 if t 6= 0.
The last assertion is a direct consequence of Corollary 2.19. �

Proof of Theorem A
The spectral decomposition P s = k(s)(νs⊗ es+U s) is part of Corollary 3.19. The analyt-
icity of k(s) on ]0, s∞[ is stated in Corollary 3.20. The strict convexity of Logk(s) is stated
in Theorem 2.6. The fact that the spectral radius of P z is less than k(s) follows from the
corresponding assertion for Qz in Corollary 3.20. �

IV Renewal theorems for products of random matrices

In this section using the results of subsections 3.2, 3.3, we show that the renewal theorem of
[34] can be applied to our situation and we give the corresponding statements for products
of random matrices. In particular, under condition i-p, if the largest Lyapunov exponent is
negative and there exists α > 0 with k(α) = 1, we get the matricial analogue of Cramer’s
estimate of ruin for random walk on R, ([15]) i.e there exists A > 0 such that for any
x ∈ Sd−1 :

lim
t→∞

tαP{sup
n>0

|Sn(ω)x| > t} = Aeα(x) where A > 0.

Hence, under i-p condition, we extend the results of [33], [37] to the general case. Theorems
4.7, 4.7’ below will play an essential role in section 5.
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1) The renewal theorem for fibered Markov chains

We begin by summarizing, with a few changes and comments, the basic notations of [34].
Let (S, δ) be a complete separable metric space, P (resp P ) a Markov kernel on S × R

(resp S) which preserves Cb(S × R) (resp Cb(S)). We assume that P commutes with the
translations (x, t) → (x, t+ a) on S ×R, P is the factor kernel of P on S, and π is a fixed
P -stationary probability measure on S. In our applications, we will have S compact and
S = Pd−1 or S ⊂ Sd−1. Here we consider paths on S × R starting from (x, 0) ∈ S × {0}.
Such a path can be written as (Xn, Vn)n∈N with V0 = 0, X0 = x, Vn − Vn−1 = Un (n ≥ 1).

The corresponding space of paths will be denoted aΩ = S×
∞
Π
1
(S×R), the Markov measures

on aΩ will be denoted by aPx, and the expectation symbol will be written aEx. The space
of bounded measurable functions on a measurable space Y will be denoted B(Y ). We
observe that the Markov kernel P on S×R is completely defined by the family of measures
F (du|x, y) (x, y ∈ S) where F (du|x, y) is the conditional law of V1 given X0 = x, X1 = y.
The number

∫
uF (du|x, y)P (x, dy)dπ(x) with be called the mean of P , if the corresponding

integral
∫
|u|F (du|x, y)P (x, dy)dπ(x) is finite. In that case, we say that P has a 1-moment.

If t ∈ R+ we define the hitting time N(t) of the interval ]t,∞[ by :
N(t) =Min{n ≥ 1 ; Vn > t} (= +∞ if no such n exists).
On the event N(t) < +∞ we take W (t) = VN(t) − t , Z(t) = XN(t). Then W (t) is the
residual waiting time of the interval ]t,∞[ (see [15]). The law of (Z(t),W (t)) under Px is
the hitting measure of S×]t,∞[ starting from (x, 0).
One needs some technical definitions concerning direct Riemann integrability, non arith-
meticity of the Markov chain defined by P on S × R, and the possibility of comparing
aPx,

aPy in a weak sense for different points x, y in S. We add some comments as follows.
Given a fibered Markov chain on S × R, we denote :

Ck = {x ∈ S ; aPx{Vmm > 1
k ∀m ≥ k} ≥ 1

2}, C0 = φ.
For any f ∈ B(aΩ) and ε > 0 we write :

f ε(x0, x1, · · · , v1 · · ·) = sup{f(y0, y1, · · · , w1, · · ·) ; δ(xi, yi) + |vi − wi| < ε if i ∈ N}.

Definition 4.1
A Borel function ϕ ∈ B(S ×R) is said to be d.R.i (for directly Riemann integrable) if :

∞∑

0

+∞∑

ℓ=−∞
(k + 1)sup{|ϕ(x, t)| ; x ∈ Ck+1 \ Ck, ℓ ≤ t ≤ ℓ+ 1} < +∞

and for every fixed x ∈ S and any β > 0, the function t → ϕ(x, t) is Riemann integrable
on [−β, β].
In our setting below we will have Ck = S for some k > 0 and for some ε > 0 any x ∈ S
and m sufficiently large aPx(

Vm
m ≥ ε) ≥ 1

2 . Then the following stronger form of the above
definition will be used
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Definition 4.1’
ϕ ∈ B(S × R) is said to be boundedly Riemann integrable (b.R.i) if

ℓ=∞
Σ

ℓ=−∞
sup{|ϕ(x, t)|;x ∈ S, t ∈ [ℓ, ℓ+ 1[} <∞

and for any fixed x ∈ S, any β > 0, the function t → ϕ(x, t) is Riemann integrable on
[−β, β].

Remark
Definition 4.1’ corresponds to sup{|ϕ(x, t)|;x ∈ S} directly Riemann integrable in the sense
of [15]. If Ck = S for some k ∈ N, then condition b.R.i implies condition d.R.i

The following will help us to express the appropriate aperiodicity condition for (P, π).

Definition 4.2
The kernel P , the space (S, δ) and the measure π ∈M1(S) beeing as above we consider a
point (ζ, λ, y) ∈ R × [0, 1] × S and we say that (P, π) satisfies distortion (ζ, λ) at y if for
any ε > 0, there exists A ∈ B(S) with π(A) > 0 and m1,m2 ∈ N, τ ∈ R such that for any
x ∈ A :

aPx{δ(Xm1
, y) < ε, |Vm1

− τ | ≤ λ} > 0, aPx{δ(Xm2
, y) < ε, |Vm2

− τ − ζ| ≤ λ} > 0.

Definition 4.3
We will say that the kernel P on S×R is non-expanding if for each fixed x ∈ S, ε > 0, there
exists r0 = r0(x, ε) such that for all real valued f ∈ B(aΩ) and for all y with δ(x, y) < r0
one has :

aPy(f) ≤ aPx(f
ε) + ε|f |, aPx(f) ≤ aPy(f

ε) + ε|f |.
We denote by I.1 -I.4 the following conditions

I.1 For every open set O with π(O) > 0, and aPx − a.e, for each x ∈ S, we have :
aPx{Xn ∈ O for some n} = 1.

I.2 P has a 1-moment and for all x ∈ S, aPx − a.e :

lim
n→∞

Vn
n

= L =

∫
uF (du|x, y)P (x, dy)dπ(x) > 0.

I.3 There exists a sequence (ζi)i≥1 ⊂ R such that the group generated by ζi is dense in
R and such that for any i ≥ 1 and λ ∈ [0, 1], there exists y = y(i, λ) ∈ S such that (P, π)
satisfies distortion (ζi, λ) at y.

I.4 The kernel P on S × R is non-expanding.

Then, the following extension of the classical renewal theorem (see [15]) is proved in [34].
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Theorem 4.4
Assume conditions I.1-I.4 are satisfied for P . Then there exists a positive measure ψ on
S such that for any x ∈ S and ϕ ∈ Cb(S×]0,∞[) :

lim
t→∞

aExϕ(Z(t),W (t)) =
1

L

∫
ϕ(z, s)1[0,t](s)

aPy{XN(0) ∈ dz, VN(0) ∈ dt}dψ(y)ds = H(ϕ)

Moreover, if ϕ ∈ Cb(S ×R) is d.R.i, then, for any x ∈ S :

lim
t→∞

aEx(
∞∑

0

ϕ(Xn, Vn − t) =
1

L

∫
ϕ(y, s)dπ(y)ds

Furthermore ψ is an invariant measure for the Markov chain on S with kernel aP (y, dz) =
aPy(XN(0) ∈ dz) and

∫
Ey(N(0))dψ(y) = 1 ,

∫
Ey(VN(0))dψ(y) = L.

Remark
If S is compact, condition I.1 is a consequence of uniqueness of the P -stationary measure
π. This follows from the law of large numbers for Markov chains with a unique stationary
measure [7] : for any continuous function with 0 ≤ f ≤ 1, π(f) > 0 we have aPx − a.e for

all x ∈ S : lim
n→∞

1

n

n−1∑

0

f(Xk) = π(f) > 0. This implies condition I.1.

The construction of ψ in [34] is based on Kac’s recurrence theorem and implies the absolute
continuity of ψ with respect to π, hence the probabilityH is independant of x and absolutely
continuous with respect to π ⊗ ℓ.

2) Under condition i-p and a moment hypothesis conditions I1-I4 are valid
We verify conditions I1-I4 in four related situations. Here R is identified with R∗

+ throught
the map t→ et. If d > 1 we use condition i-p. If d = 1 we use non arithmeticity of µ.
The first and simpler one, corresponds to S = Pd−1, S×R =

.
V , P (v, .) = µ∗ δv where P is

the operator denoted
.
P in section 2. Also we write on Pd−1 : P (x, .) = µ ∗ δx if x ∈ Pd−1.

We will begin the verifications by this case and show how to modify the arguments in the
other cases.
In the second case, S × R ⊂ V \ {0}, S is a compact subset of Sd−1 and P (resp P̃ ) will
be the restriction to S × R (resp S) of the kernel already denoted P (resp P̃ ) in section
2. Since, for any t ∈ R∗

+ and g ∈ G, we have g(tv) = tg(v), the kernels P and
.
P will

satisfy the commutation condition required in the above paragraph. As shown at the end
of section 2, we need to consider two cases for P̃ , depending of the fact that P preserves a
proper convex cone (case II) or not (case I). In case I (resp II) we will have S = Sd−1 (resp
S = Co(Λ+([suppµ]). With these choices, there exists a unique P̃ -stationary measure on
S, as follows from Theorem 2.17. We denote by α ∈ Iµ the positive number (if it exists)

such that k(α) = 1, where k(s) = lim
n→∞

(

∫
|g|sdµn(g))1/n.

We know from section 3, that for any s ∈ Iµ, there are two Markov kernels Qs on Pd−1

and Q̃s on Sd−1, naturally associated with the operator P s considered in section 2. We are
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here mainly interested in the cases s = α and s = 0, with Q0 = P and Q̃0 = P̃ , but we
observe that our considerations are valid for any s ∈ Iµ. In what follows the notation S
will be used in all the cases above.
We denote by aQs

x the natural Markov measures on the path space aΩ. If s = 0 we use the
notation aPx. We write Vk = Log|Skx|, Xk = Sk.x and we denote by ∆x the map from
Ω = GN to aΩ given by (g1, g2, · · ·) → (x,X1, V1,X2, V2, · · ·). Clearly aQα

x (resp aPx) is the
push-forward of Qα

x (resp P) by ∆x, hence we can translate the results of section 3 in the
new setting.
The validity of condition I.1, in all cases, is a direct consequence of the remark following
the theorem, since by Theorem 2.6 (see also Theorem 2.17) the kernels P̄ , Qα, P̃ , Q̃α have
unique stationary measures on S.
In order to verify I.2 we begin by S = Pd−1, S ×R =

.
V , P (x, .) = µ ∗ δx,

.
P (v, .) = µ ∗ δv .

Then F (A|x, y) = µ{g ∈ G,Log|gx| ∈ A, g.x = y} for any Borel set A ⊂ R, and π = ν
with µ ∗ ν = ν. We observe that |Log|gx|| ≤ Logγ(g) if |x| = 1 and γ(g) = sup(|g|, |g−1|).
The finiteness of

∫
|u|F (du|x, y|P̄ (x, dy)dπ(x), follows since Logγ(g) is µ-integrable. Also∫

uF (du|x, y)P̄ (x, dy)dπ(x) =
∫
Log|gx|dµ(g)dν(x) = Lµ. Then the relation aPx = ∆x(P)

and Theorem 3.10 imply, for every x ∈ Pd−1 (case s = 0), and P−a.e :

Lµ = lim
n→∞

1

n
Log|Snx| =

∫
Log|gx|dµ(g)dν(x).

This is condition I.2 in the first case. For S ⊂ Sd−1, the result is the same, since the
involved quantities depend only of |gx| with x ∈ Pd−1, and P̃ has a unique stationary
measure on S.
In the cases of Qα and Q̃α it suffices also to consider the case S = Pd−1.
The 1-moment condition of I.2 follows from

∫
|g|α|Logγ(g)|dµ(g) < +∞. The convergence

part follows from Theorem 3.10 with Lµ(α) =
∫
qα(x, g)Log|gx|dπα(x)dµ(g) = k′(α)

k(α) > 0.
We show I.3 as follows.
If d > 1, since the semigroup T = ∪

n≥0
(suppµ)n satisfies (i-p), we know, using Proposition

2.5 that the set ∆ = {Log|λh| ; h ∈ T prox} is dense in R.
The same is true of 2∆ = {Logλh2 ; h ∈ T prox}.
If d = 1, the same properties follow from the non arithmeticity of µ.
We take for ζi (i ∈ N) a dense countable subset of 2∆. Let ζi = Logλg ∈ 2∆, with λg > 0,
g = h2, h = u1 · · · un, ui ∈ suppµ (1 ≤ i ≤ n) and y = y(ζi, λ) = v̄g ∈ Pd−1 = S. We
observe that, if ε is sufficiently small and Bε = {x ∈ Pd−1; δ(x, v̄g) ≤ ε}, then g.Bε ⊂ Bε′ ,
with ε′ < ε and g as above.
Also, λ > 0 being fixed, and ε sufficiently small, we have |Logλg − Log|gx|| < λ if x ∈ Bε.
These relations remain valid for g′ instead of g if g′ is sufficiently close to g.
Then we have for x ∈ Bε, and S2n = g ∈ (suppµ)2n as above :

P{δ(S2n.x, v̄g) < ε, |Log|S2nx| − Logλg| < λ} > 0.

With ζi = Logλg, y = v̄g, A = Bε, τ = 0, m1 = 0, m2 = 2n, this implies condition I.3 for

47



the probability aPx = ∆x(P).
The definition of Qα

x shows its equivalence to P on the σ-algebra of the sets depending of
the first n coordinates. Then the relation aQα

x = ∆x(Q
α
x) implies with g as above :

aQα
x{δ(S2n.x, v̄g) < ε, |Log|S2nx| − Logλg| < λ} > 0.

Hence condition I.3 is valid for aQα
x also.

If we consider Sd−1 instead of Pd−1, i.e S = Sd−1 or S = Co(Λ+([suppµ])), and the metric
δ̃ on S, the above geometrical argument remains valid with g = h2, y = ṽg ∈ Λ+ ([suppµ])
in the second case, λg > 0 and ε sufficient small. This shows I.3 in this setting.
Condition I.4 follows from the proof of Proposition 1 of [33]. The proof of the corresponding
part of this proposition is a consequence of the condition :

aPx{∃C > 0 with |Snx| ≥ C|Sn| for all n} = 1

for all x ∈ S, which implies that |Snx| and |Sny| are comparable if x and y are close.
For the proof of the above condition, we observe that if s ∈ Iµ, in particular if s = 0 or α,

this condition has been proved in the stronger form lim
n→∞

|Snx|
|Sn|

= | < z∗(ω), x > |, Qs
x−a.e,

since as shown in Theorem 3.2 | < z∗(ω), x > | > 0, Qs
x−a.e for any fixed x ∈ Pd−1. Hence

condition I.4 is valid in all the cases under consideration.

3) Direct Riemann integrability

In case of the spaces S = Pd−1 or S ⊂ Sd−1 considered above, under condition i-p for
[suppµ], the d.R.i condition takes the simple form given by Lemma 4.5 below, in multi-
plicative notation.
We assume now that the hypothesis of Theorem 3.10 is satisfied, use the corresponding
notations, and Ck is as in Definition 4.1.

Lemma 4.5
Assume ϕ ∈ Cb(Sd−1 × R∗

+) is b.R.i, i.e ϕ is locally Riemann integrable and satisfies :
ℓ=+∞∑

ℓ=−∞
sup{|ϕ(x, t)| ; x ∈ Sd−1, t ∈ [2ℓ, 2ℓ+1]} < +∞.

Then Ck = Sd−1 for k large, hence ϕ is d.R.i with respect to P and Qα.

Proof
We consider first aPx. Using Theorem 3.10 for s = 0, we get for any fixed x :

lim
n→+∞

Log|Sn(ω)x|
n

= Lµ, P− a.e.

We observe that for any x, y ∈ Sd−1, ‖Sny| − |Snx‖ ≤ |Sn|δ̃(x, y) ≤ 2|Sn|.
It follows : ∣∣∣∣

|Sny|
|Snx|

− 1

∣∣∣∣ ≤ 2
|Sn|
|Snx|

, |Log|Sny| − Log|Snx|| ≤ 2
|Sn|
|Snx|

,
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Using Theorem 3.2, we get that the sequence |Sn|
|Snx| converges P − a.e to 1

|<z(ω),x>| < ∞,

hence the sequence 1
n

|Sn|
|Snx| converges P− a.e to zero.

It follows that 1
nLog|Snx| − 2

n
|Sn|
|Snx| converges P− a.e to Lµ.

Hence there exists m0 > 0 such that P{ 1
nLog|Snx| − 2

n
|Sn|
|Snx| >

1
2Lµ for all n ≥ m0} ≥ 1/2.

In view of the inequality 1
nLog|Sny| ≥ 1

nLog|Snx| − 2
n

|Sn|
|Snx| , we have for any y ∈ Sd−1,

P{ 1
nLog|Sny| > Lµ/2 for all n ≥ m0} > 1

2 .

This implies Ck = Sd−1, Ck+1 \ Ck = φ if 1
k ≤ Inf

(
1
m0
,
Lµ

2

)
. Then, ϕ is d.R.i.

If s = α, the argument is the same with P replaced by Qα and the relation Qα
x ≤ c(α)Qα

is used as follows.

Qα{ 1
n
Log|Sny| > Lµ(α)/2 for all n ≥ m0} > 1− 1

2c(α)
.

Since Qα
y ≤ c(α)Qα, this gives for any y ∈ Pd−1 :

Qα
y {

1

n
Log|Sny| > Lµ(α)/2 for all n ≥ m0} >

1

2
.

Then also Ck = Sd−1 for 1
k ≤ Inf

(
1
m0
,
Lµ(α)

2

)
. Hence we conclude as above

4) The renewal theorems for products of random matrices.

We consider V \ {0} = Sd−1 × R∗
+,

.
V = Pd−1 × R∗

+ and we study the asymptotics of the
potential kernels of the corresponding random walks defined by µ. We denote :

.
V1 = {v ∈

.
V ; |v| > 1}, V1 = {v ∈ V ; |v| > 1}

and we consider also the entrance measures H1(v, .) or
.
H1(v, .) of Snv in V1 or

.
V1, starting

from v 6= 0. Since conditions I are valid, their behaviours for v small are given by Theorem
4.4, and we will state them below. We denote by

.
Λ([suppµ]) the inverse image of Λ([suppµ])

in
.
V . Also we denote :

.
Λ1([suppµ]) = {v ∈

.
V ; v̄ ∈ Λ([suppµ]), |v| ≥ 1}

Λ1([suppµ]) = {v ∈ V ; v̄ ∈ Λ([suppµ]), |v| ≥ 1}.
As shown below these closed sets support the limits of

.
H1(v, .) and H1(v, .).

The results will take two forms according as Lµ > 0 or Lµ < 0. Also, each of these situations

leads to two results depending of the geometrical case
.
V or V , under consideration.

Theorem 4.6
Assume µ ∈M1(G) is such that the semigroup [suppµ] satisfies condition i-p, if d > 1 or µ

is non arithmetic if d = 1, Logγ(g) is µ-integrable and Lµ = lim
n→∞

1

n

∫
Log|g|dµn(g) > 0.
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Then if v ∈
.
V ,

∞∑

0

µk ∗ δv is a Radon measure on
.
V such that on Cc(

.
V ) we have the vague

convergence :

lim
v→0

∞∑

0

µk ∗ δv =
1

Lµ
ν ⊗ ℓ

where ν ∈M1(Λ([suppµ])) is the unique P̄ -invariant measure on Pd−1.
This convergence is valid on any bounded continuous function f which satisfy on

.
V :

+∞∑

−∞
sup{|f(v)| ; 2ℓ ≤ |v| ≤ 2ℓ+1} <∞.

Furthermore we have the weak convergence :

lim
v→0

.
H1(v, .) =

.
H1 ∈M1(

.
Λ1([suppµ]).

Proof
In view of the verifications of conditions I in subsections 2, 3 and of Lemma 4.5, this is a
direct consequence of Theorem 4.4 applied in the case S = Pd−1, S × R =

.
V \{0}.

The fact that
.
H1 is supported on

.
Λ1([suppµ]) follows from the suppµ-invariance of

.
Λ([suppµ]),

the existence of the limit and the fact that, if v̄ ∈
.
Λ([suppµ]) then

.
H1(v, .) ∈M1(

.
Λ1([suppµ]).

�

Theorem 4.6’
Assume µ is as in Theorem 4.6. Then there are 2 cases as in Theorem 2.17 :
Case I : No proper convex cone in V is suppµ-invariant.
Then, in vague topology :

lim
v→0

∞∑

0

µk ∗ δv =
1

Lµ
ν̃ ⊗ ℓ

where ν̃ is the unique µ-stationary measure on Sd−1

Case II : Some proper convex cone in V is suppµ-invariant.
Then, for any u ∈ Sd−1, in vague topology,

lim
t→0+

∞∑

0

µk ∗ δtu =
1

Lµ
(p+(u)ν+ ⊗ ℓ+ p−(u)ν− ⊗ ℓ)

where ν+ is the unique µ-stationary measure on Λ+([suppµ]), ν− is symmetric of ν+, p+(u)
is the entrance probability of Sn.u in Co(Λ+([suppµ]), p−(u) = 1− p+(u).
In the two cases these convergences are also valid on any bounded continuous functions f

on V \ {0} such that
+∞∑

−∞
sup{|f(v)| ; 2ℓ ≤ |v| < 2ℓ+1} <∞.

In addition, for any u ∈ Sd−1, in weak topology :
lim
t→0+

H1(tu, .) = H1,u ∈M1(Λ1([suppµ]).

In case I, H1,u is independent of u.
In case II, with Λ1,+([suppµ]) = {v ∈ V ; ṽ ∈ Λ+([suppµ]), |v| ≥ 1} we have :
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H1,u = p+(u)H1,+ + p−(u)H1,−,
where H1,+ ∈M1(Λ1,+(suppµ)), and H1,− is symmetric of H1,+

Proof
In case I, the proof is the same as for Theorem 4.6 with S = Sd−1 instead of Pd−1.
In case II, we take S = Co(Λ+([suppµ]) and we observe that S × R∗

+ is a suppµ-invariant
convex cone with non zero interior to which we can apply Theorem 4.4.
If u ∈ S (resp u ∈ −S) we have :

lim
t→0+

∞∑

0

µk ∗ δtu =
1

Lµ
(ν+ ⊗ ℓ) (resp lim

t→0+

∞∑

0

µk ∗ δtu =
1

Lµ
(ν− ⊗ ℓ))

If u ∈ V \ {0}, we denote by p+(u, dv) (resp p−(u, dv)) the entrance measure of Sn.u in
the cone Φ = S × R∗

+ (resp −Φ). Clearly the mass of p+(u, dv) is p+(u), and p+(u, dv) is
supported on Φ.

We denote also by U(v, .) =
∞∑

0

µk∗δv the potential kernel of the linear random walk Sn(ω)v

starting from v in V \{0}. Then, for any ϕ ∈ Cc(Φ∪−Φ), U(tu, ϕ) =
∫
U(v, ϕ)(p+(tu, dv)+

p−(tu, dv)).
Clearly the kernel p+(x, dv) commutes with the scaling x → tx (t > 0). Then it follows
from above that, on Cc(Φ ∪ −Φ) :

lim
t→0+

U(tu, .) =
1

Lµ
(p+(u)ν+ ⊗ ℓ+ p−(u)ν− ⊗ ℓ).

If ϕ ∈ Cc(V \ {0}) vanishes on Φ ∪ −Φ, Theorem 4.6 implies lim
t→0+

U(tu, ϕ) = 0.

Finally we have lim
t→0+

∞∑

0

µk ∗ δtu =
1

Lµ
(p+(u)ν+ ⊗ ℓ + p−(u)ν− ⊗ ℓ). The existence of

H1,u follow from the first formula in Theorem 4.4. In particular the right hand side of
this formula is independant of x ∈ S. Hence, in case I, H1,u is independent of u. In
case II, we use S = C0(Λ+([suppµ])) and we argue as above in order the obtain the
formula H1,u = p+(u)H1,+ + p−(u)H1,− where H1,+ = H1,u for u ∈ C0(Λ+([suppµ]) and
H1,− = H1,u for u ∈ C0(Λ−([suppµ])). �

Theorem 4.7
Assume that µ ∈ M1(G) is such that [suppµ] satisfies i-p, if d > 1 or µ is non arithmetic
if d = 1. Assume Lµ < 0, α > 0 exists with k(α) = 1,

∫
|g|αLogγ(g)dµ(g) <∞ and write :

Lµ(α) = lim
n→∞

1

n

∫
|g|αLog|g|dµn(g) = k′(α)

k(α)
.

Then Lµ(α) > 0 and for any u ∈ Pd−1, we have the vague convergence in
.
V :

lim
t→0

t−α
∞
Σ
0
µk ∗ δtu =

eα(u)

Lµ(α)
να ⊗ ℓα

where να ∈M1(Pd−1) (resp eα ∈ C(Pd−1) , να(eα) = 1) is the unique solution of Pανα = να

(resp Pαeα = eα) and να has support Λ([suppµ]).
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Furthermore, on Cb(
.
V1) and for any u ∈ Pd−1 ⊂

.
V we have the vague convergence :

lim
t→0

t−α
.
H1(tu, .) = eα(u)

.

Hα
1 ,

where
.

Hα
1 is a positive measure supported on

.
Λ1([suppµ]).

In particular, for some A > 0 and any u ∈ Pd−1 : lim
t→∞

tαP{sup
n≥1

|Snu| > t} = Aeα(u).

The first convergence is valid on any continuous function f such that fα(v) = |v|−αf(v)

satisfies
+∞∑

−∞
sup{|fα(v)| ; 2ℓ ≤ |v| ≤ 2ℓ+1} <∞.

Proof
We observe that the function eα ⊗ hα on

.
V satisfies

.
P (e

α ⊗ hα) = eα ⊗ hα, hence we can

consider the associated Markov operator
.
Qα on

.
V defined by

.
Qα(f) =

1
eα⊗hα

.
P (feα ⊗ hα).

Then the potential kernel of
.
Qα is given by

∞∑

0

(
.
Qα)

k(f) =
1

eα ⊗ hα

∞∑

0

.
P
k
(feα ⊗ hα).

Clearly
.
Qα commutes with dilations, hence defines a fibered Markov kernel on

.
V .

Also the mean of
.
Qα is Lµ(α) > 0. Then, taking f = ϕ

eα⊗hα , since conditions I are valid,
the result follows from Theorem 4.4. Cramer estimation for P{|Snu| > t} follows with

A =
.

Hα
1 (

.
V 1) > 0. �

Theorem 4.7’
Assume µ and α are as in Theorem 4.7. Then for any u ∈ Sd−1 we have the vague

convergence : lim
t→0+

t−α
∞∑

0

µk ∗δtu =
eα(u)

Lµ(α)
ν̃αu ⊗ ℓα, where ν̃αu ∈M1(Λ̃(T )) is P̃α-invariant.

These are 2 cases like in Theorem 4.6’.
Case I : ν̃αu = ν̃α has support Λ̃(T )
Case II : ν̃αu = pα+(u)ν

α
++ pα−(u)ν

α
− where pα+(u) (resp p

α
−(u)) denotes the entrance measure

under Qα
u of Sn.u in the convex enveloppe of Λ+(T ) (resp Λ−(T )).

The above convergences are valid on any continuous function f such that fα(v) = |v|−αf(v),
satisfies :

ℓ=+∞∑

ℓ=−∞
sup{|fα(v)| ; 2ℓ ≤ |v| ≤ 2ℓ+1} <∞.

Furthermore, on Cb(V1) for any u ∈ Sd−1, we have the vague convergence :

lim
t→0+

t−αH1(tu, .) = eα(u) (pα+(u)H
α
1,+ + pα−(u)H

α
1,−).

In case I, Hα
1,+ = Hα

1,− = Hα
1 is a positive measure supported on Λ1([suppµ]). In case II,

Hα
1,+ is a positive measure supported on Λ1,+([suppµ]) and H

α
1,− is symmetric of Hα

1,+.
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Proof
The proof is a simple combination of the proofs of Theorems 4.7, 4.6’. �

For the existence of α > 0 such that k(α) = 1, we have the following sufficient condition
where we denote by r(g) the spectral radius of g ∈ G.

Proposition 4.8

Let µ ∈ M1(G) and assume that k(s) = lim
n→∞

(
∫
|g|sdµn(g))1/n is finite for any s > 0. For

any p ∈ N and g ∈ (suppµ)p we have :

lim
s→∞

Logk(s)

s
≥ p Log r(g).

In particular if some g ∈ [suppµ] satisfies r(g) > 1, then k(s) > 1 for s sufficiently large.

The proof is based on the following elementary lemma which we state without proof.

Lemma 4.9
Let g ∈ G. Then for any ε > 0 these exists c(ε) > 0 and a neighbourhood V (ε) of g such
for any sequence gk ∈ V (ε) one has |gn · · · g1| ≥ c(ε) rn(g)(1 − ε)n

Proof of the proposition

The convexity of Log k(s) implies that lim
s→∞

Log k(s)
s exists. Let g ∈ suppµ, hence given

ε > 0 these exists a neighbourhood V (ε) of g such that µ(V (ε)) = C(ε) > 0. From the

lemma we have, with k(s) = lim
n→∞

(

∫
|gn · · · g1|sdP(ω))1/n :

k(s) ≥ lim
n→∞

(cs(ε)rns(g)(1 − ε)nsCn(ε))1/n = rs(g)(1 − ε)sC(ε)

Log k(s)
s ≥ Log(1− ε) + Log r(g) + Log C(ε)

s , lim
s→∞

Log k(s)
s ≥ Log r(g)

We observe that if µ is replaced by µp, then k(s) is replaced by kp(s). Hence for g ∈
(suppµ)p we have from above the required inequality.
If g ∈ [suppµ] then we can assume g ∈ (suppµ)p for some p ∈ N ; since r(g) > 1, we have

Log r(g) > 0, hence lim
s→∞

Log k(s)
s > 0. �

Proofs of Theorems B, B’ and Corollary
Theorem B (resp B’) is a direct consequence of Theorem 4.6 (resp 4.7). The assertion of
the corollary is part of Theorem 4.7. �

V The tails of an affine stochastic recursion.

1) Notations and main result
Let H be the affine group of the d-dimensional Euclidean space V, i.e the set of maps f
of V into itself of the form f(x) = gx + b where g ∈ GL(V ) = G, b ∈ V . Let λ be a
probability measure on H, µ its projection on G. We consider the affine random walk on
V = Rd defined by λ, i.e the Markov chain on V described by the stochastic recursion :

Xx
n+1 = An+1X

x
n +Bn+1, Xx

0 = x ∈ V ,
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where (An, Bn) are H-valued i.i.d random variables with law λ. We denote Ω̂ = HN and
we endow Ω̂ with the shift θ̂ and the product measure P̂ = λ⊗N ; by abuse of notation the
expectation symbol with respect to P̂ will be denoted by E. We have :

Xx
n = An · · ·A1x+

n∑

1

An · · ·Ak+1Bk.

We are interested in the case where Rn =

n∑

1

A1 · · ·Ak−1Bk converges P̂−a.e to a random

variable R and Xx
n converges in law to R. We observe that Xx

n −An · · ·A1x and Rn have
the same law. In that case we have :

R =
∞∑

0

A1 · · ·AkBk+1,

hence R satisfies the following equation : (S) R = ARoθ̂ +B,
and the law ρ of R satisfies the convolution equation ρ = λ ∗ ρ =

∫
hρdλ(h). Also, if R

is unbounded, we will be interested in the tail of R in direction u, i.e the asymptotics
(t→ ∞) of P̂{< R,u >> t} (resp P̂{| < R,u > | > t} where u ∈ Sd−1 (resp u ∈ Pd−1). We
are mainly interested in the ”shape at infinity” of ρ i.e the asymptotics (t → 0+) of the
measure t.ρ where t.ρ is the push-forward of ρ by the dilation v → tv in V (t > 0). It turns
out that this ”shape at infinity” depends only of the semigroups T and Σ ; the main burden
occurs when T preserves a convex cone but Σ does not (case II’ below). A basic role will be
played by the top Lyapunov exponent Lµ of the product of random matrices Sn = An · · ·A1,
and µ will be assumed to satisfy

∫
Logγ(g)dµ(g) < ∞ where γ(g) = sup(|g|, |g−1|). The

main hypothesis will be on µ, which is always assumed to satisfy Lµ < 0 and condition
i-p of section 2 if d > 1, or µ non arithmetic if d = 1. We recall that the function

k(s) is defined on the interval Iµ ⊂ [0,∞[ by k(s) = lim
n→∞

(

∫
|g|sdµn(g))1/n and Logk(s)

is strictly convex. Also it will be assumed that suppλ has no fixed point in V . Let Σ
(resp T ) be the closed subsemigroup of H (resp G) generated by suppλ (resp suppµ). We
denote by ∆a(Σ) the set of fixed attractive points of the elements of Σ, i.e fixed points
h+ ∈ V of elements h = (g, b) ∈ Σ such that lim

n→∞
|gn|1/n < 1. For v ∈ V \ {0} we denote

H+
v = {x ∈ V ;< v, x >> 1} and, for a bounded measure ξ on V we consider its Radon

transform ξ̂, i.e the function on V \ {0} defined by ξ̂(v) = ξ(H+
v ) = P̂{< R,u >> t}. We

also write u = tv with u ∈ Sd−1, t > 0 and ξ̂(u, t) = ξ̂(ut ). In particular, the directional

tails of ξ are described by the function ξ̂(v) (v → 0). We start with the basic :

Proposition 5.1

Assume Lµ < 0 and E(Log|B|) <∞. Then Rn converges P̂−a.e to R =

∞∑

1

A1 · · ·Ak−1Bk,

and for any x ∈ V , Xx
n converges in law to R. If β ∈ Iµ satisfies k(β) < 1 and E(|B|β) <∞,

then E(|R|β) <∞.
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The law ρ of R is the unique λ-stationary measure on V . The closure ∆a(Σ) = Λa(Σ) is
the unique Σ-minimal subset in V and is equal to suppρ. If T contains an element g with
lim
n→∞

|gn|1/n > 1 and T satisfies condition i-p then Λa(Σ) is unbounded.

If furthermore suppλ has no fixed point in V , then ρ (W ) = 0 for any affine subspace W .

Proof
Under the conditions Lµ < 0 and E(Log|B|) < ∞ the P̂ − a.e convergence of Rn is well
known as well as the moment condition E(|R|β) < ∞ if k(β) < 1 (see for example [5]).
We complete the argument by observing that, since Lµ < 0, we have lim

n→∞
|An · · ·A1x| = 0

hence, since Xx
n − An · · ·A1x has the same law as Rn, the convergence in law of Xx

n to R
for any x follows. In particular, if x ∈ V is distributed according to ξ ∈ M1(V ), the law
of Xx

n is λn ∗ ξ =
∫
λn ∗ δxdξ(x), hence has limit ρ at n = ∞. If ξ is λ-stationary, we have

λn ∗ ξ = ξ, hence ξ = ρ.
Since Lµ < 0, there exists h = (g, b) ∈ Σ, such that |g| < 1, hence lim

n→∞
|gn|1/n < 1.

If h = (g, b) ∈ Σ satisfies lim
n→∞

|gn|1/n < 1, then I − g is invertible, hence the unique

fixed point h+ of h satisfies (I − g)h+ = b, and for any x ∈ V , hnx − h+ = gn(x − h+),
hence lim

n→∞
hnx = h+. Taking x in suppρ we get h+ ∈ suppρ, since suppρ is h-invariant.

Furthermore, for any x ∈ V and h′ ∈ Σ we have lim
n→∞

h′hnx = h′(h+) and h′hn ∈ Σ satisfies

lim
n→∞

|g′gn| = 0, hence the unique fixed point xn of h′hn satisfies lim
t→∞

xn = h′(h+). Then

∆a(Σ) = Λa(Σ) is a Σ-invariant non trivial, closed subset of suppρ.
On the other hand, for x ∈ ∆a(Σ) we have : lim

n→∞
λn ∗ δx = ρ, (λn ∗ δx)(Λa(Σ)) = 1 for

all n hence ρ (Λa(Σ) = 1, i.e Λa(Σ) = suppρ. The Σ-minimality of Λa(Σ) follows from the
fact that, for any x ∈ V and h = (g, b) with |g| < 1, one has lim

t→∞
hnx = h+ ∈ Λa(Σ) hence

Σx ⊃ Λa(Σ). This implies also the uniqueness of the Σ-minimal set.
We observe that, if suppρ is bounded, then Co(suppρ) is compact. Also any h ∈ Σ preserves
suppρ and Co(suppρ). Then Markov-Kakutani theorem implies that the affine map h has a
fixed point h0 in Co(suppρ). Using condition i-p we know that the vector space generated
by h0 − suppρ is equal to V . If h = (g, b) ∈ Σ satisfies lim

n→∞
|gn|1/n > 1, then

(I − g)h0 = b and hnx− h0 = gn(x− h0).

From above we can find x ∈ Λa(Σ) with x − h0 /∈ V <
g . Then Λa(Σ) is unbounded since

lim
n→∞

|hnx| = ∞ and hnx ∈ Λa(Σ).

Let W = {Wi ; i ∈ I} be the set of affine subspaces of minimal dimension with ρ(Wi) > 0.

Since dim(Wi ∩Wj) < dimWi if i 6= j, we have ρ(Wi ∩Wj) = 0, hence
∑

i∈I
ρ(Wi) ≤ 1. It

follows that, for any ε > 0, the set {Wj ; j ∈ I and ρ(Wj) ≥ ε} has cardinality at most
1
ε , hence ρ(Wi) reachs its maximum on a finite set {Wj ; j ∈ J ⊂ I} of affine subspaces.
Then the stationarity equation λ ∗ ρ = ρ gives on such a subspace Wj :
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ρ(Wj) =
∫
ρ(h−1Wj)dλ(h).

Since ρ(h−1Wj) ≤ ρ(Wj) we get, for any h ∈ suppλ, j ∈ J :
ρ(h−1Wj) = ρ(Wj), i.e h

−1Wj =Wi, for some i ∈ J .
In other words the set {Wj ; j ∈ J} is suppλ-invariant. If dimWj > 0, one gets that the set
of directions W j(j ∈ J) is a suppµ-invariant finite set of subspaces of V , which contradicts
condition i-p. Hence each Wj(j ∈ J) is reduced to a point wj . Then the barycenter of the
finite set {wj ; j ∈ J} is invariant under suppλ, which contradicts the hypothesis. Hence
ρ(W ) = 0 for any affine subspace W . �

In order to state the main result of this section we consider the compactification V ∪ Sd−1
∞ ,

the sets Λ̃∞(T ), Λ∞
+ (T ),Λ∞

− (T ) defined in section 1. The closure Λa(Σ) of Λa(Σ) in the

compact space V ∪ Sd−1
∞ is T -invariant hence Λa(Σ) ∩ Sd−1

∞ , which is non void if suppρ =
Λa(Σ) is unbounded, is a closed T -invariant subset of Sd−1

∞ .
Then Proposition 2.15 applied to Λa(Σ)∩Sd−1

∞ ⊂ Sd−1
∞ gives the following trichotomy, since

condition i-p is satisfied by T :

case I : T has no invariant proper convex cone and Λa(Σ) ⊃ Λ̃∞(T )
case II’ : T has an invariant proper convex cone and Λa(Σ) ⊃ Λ̃∞(T )
case II” : T has an invariant proper convex cone and Λa(Σ) contains only one of the

sets Λ∞
+ (T ),Λ∞

− (T ), say Λ∞
+ (T ), hence Λa(Σ) ∩ Λ∞

− (T ) = φ.

As in Theorem 4.7’, we consider the P̃α-invariant measures ν̃α, να+, ν
α
−.

In case α ∈]0, s∞[ exists with k(α) = 1 (see Proposition 4.8 for a sufficient condition). The
following corresponds to Theorem C of the introduction and describes the asymptotics of
the probability measure t.ρ(t→ 0+) :

Theorem 5.2
With the above notations assume Lµ < 0, Σ has no fixed point in V , T satisfies condition
i-p, there exists α ∈]0, s∞[ such that k(α) = 1 and E(|B|α+δ) <∞, E(|A|αγδ(A)) <∞ for
some δ > 0. If d = 1 assume also that µ is non arithmetic.
Then suppρ is unbounded and we have the following vague convergence on V \ {0} :

lim
t→0+

t−α(t.ρ) = Λ = C(σα ⊗ ℓα),

where C > 0, σα ∈M1(Λ̃(T )) and the measure Λ = C(σα ⊗ ℓα) satisfies µ ∗ Λ = Λ.
In case I, we have σα = ν̃α.
In case II’, there exists C+, C− > 0 with Cσα = C+ν

α
+ + C−να−

In case II”, σα = να+
In case I the Radon measure ν̃α ⊗ ℓα on V \ {0} is a minimal µ-harmonic measure.
In case II, να+ ⊗ ℓα and να− ⊗ ℓα are minimal µ-harmonic measures on V \ {0}.

Remarks
In general supp(σα ⊗ ℓα) ∩ Sd−1

∞ is smaller than suppρ ∩ Sd−1
∞ and suppσα has a fractal

structure.
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As the proof below shows, if the moment condition on |A| is replaced by E(|A|α Logγ(A)) <
∞, the convergence remains valid on the sets H+

v .

2) Asymptotics of directional tails
We apply Theorem 4.7’ to µ∗-potentials of suitable functions ; we pass, using the map
η → η̂, from the convolution equation λ ∗ ρ = ρ to a Poisson type equation on V \ {0}
which involves µ∗ and ρ̂. The corresponding convergences will play an essential role in
the proof of Theorem 5.2. We denote by ρ1 the law of R − B and we consider the signed
measure ρ0 = ρ − ρ1, hence ρ0(V ) = 0. Also we show that ρ0 is ”small at infinity”, we
define C,C+, C−, σα.

Proposition 5.3

With the hypothesis of Theorem 5.2, we denote by ∗ν̃αu the positive kernel on Sd−1 given
by Theorem 4.7’ and associated with µ∗. Then one has the equations on V \ {0} :

ρ =
∞
Σ
0
µk ∗ (ρ− ρ1) , ρ̂(v) =

∞
Σ
0
((µ∗)k ∗ δv)(ρ̂− ρ̂1).

For u ∈ Sd−1, the function t → tα−1ρ̂0(u, t) is Riemann-integrable in generalised sense on
]0,∞[ and, one has with rα(u) =

∫∞
0 tα−1ρ̂0(u, t)dt :

lim
t→∞

tαρ̂(u, t) =
∗eα(u)
Lµ(α)

∗ν̃αu (rα) = C(σα ⊗ ℓα)(H+
u )

where C = 2
∗ν̃α(rα)α
Lµ(α)p(α)

≥ 0 and σα ∈M1(Λ̃(T )) satisfies µ ∗ (σα ⊗ ℓα) = σα ⊗ ℓα.

Furthermore suppρ is unbounded and,
In case I : σα = ν̃α

In case II : ∗ν̃α(rα)σα = 1
2(

∗να+(rα)ν
α
+ + ∗να−(rα)ν

α
−) where

∗να+(rα) ≥ 0, ∗να−(rα) ≥ 0.

The proof will follow from a series of Lemmas.
We start with the following simple Tauberian Lemma (see [19]).

Lemma 5.4
For a non negative and non increasing function f on R∗

+ and s ≥ 0, we denote : f s(t) =
1
t

∫ t
0 x

sf(x)dx. Then the condition lim
t→∞

f s(t) = c implies lim
t→∞

tsf(t) = c.

Proof
Let b be a positive real number with b > 1 and let us observe that, since f is non increasing :

1
t

∫ bt
t xsf(x)dx ≤ f(t)1t

∫ bt
t xsdx = ts

s+1(b
s+1 − 1)f(t).

It follows :
bs+1−1
s+1 tsf(t) ≥ b f s(bt)− f s(t).

Then the hypothesis gives :

lim inf
t→∞

bs+1 − 1

s+ 1
tsf(t) ≥ (b− 1)c
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Using the relation lim
b→1

bs+1 − 1

(s+ 1)(b− 1)
= 1 we get lim inf

t→∞
(tsf(t)) ≥ c. An analogous argu-

ment gives lim sup
t→∞

(tsf(t)) ≤ c. It follows lim
t→∞

tsf(t) = c. �

We will use the multiplicative structure of the group R∗
+ =]0,∞[, and we recall that

Lebesgue measure ℓ on the multiplicative group R∗
+ is given by dt

t .

Lemma 5.5
Assume that the V -valued random variable R satisfies equation (S), and E(|B|α+δ) < ∞,
with δ > 0. For u ∈ Sd−1 and t, x > 0 we write : rα(u, t) = 1

t

∫ t
0 x

αρ̂0(u, x)dx.

Then |rα(u, t)| ≤ tα

α+1 . For any δ′ ∈]0, δ
δ+α+1 [ there exists C(δ′) > 0 such that if t ≥ 1,

|rα(u, t)| ≤ C(δ′)t−δ
′

. In particular the function rα(u, t) is b.R.i on Sd−1 × R∗
+.

Proof
The inequality |rα(u, t)| ≤ tα

α+1 follows from |ρ̂0(u, t)| ≤ 1.
We write ρ̂0(u, x) = r1(u, x) − r2(u, x) with :

r1(u, x) = P̂{x− < B,u > << R−B,u >≤ x},
r2(u, x) = P̂{x << R−B,u >≤ x− < B,u >}

and rα1 (u, t) =
1
t

∫ t
0 x

αr1(u, x)dx, rα2 (u, t) =
1
r

∫ t
0 x

αr2(u, x)dx.
In order to estimate rα1 , we choose ε ∈]0, 1[ with ε > α

α+δ and write for t ≥ 2 :

rα1 (u, t) ≤ 1
t

∫ t
2 x

αP̂{< B,u >≥ xε}dx+ 1
t

∫ t
2 x

αP̂{x− xε << R−B,u >≤ x}dx+ 2α

t .

Then Tchebitchev’s inequality gives : P̂{< B,u >≥ xε} ≤ x−(α+δ)εE(|B|α+δ).
Hence the first term Iε1(t) in the above equality satisfies :

Iε1(t) ≤ E(|B|α+δ)1t
∫ t
2 x

α−ε(α+δ)dx ≤ E(|B|α+δ)tα−ε(α+δ).
For t− tε ≥ 2, the second term Iε2(t) satisfies :

Iε2(t) =
1
t

∫ t
2 x

αP̂{< R−B,u >> x− xε}dx− 1
t

∫ t−tε
2 xαP̂{< R−B,u >> x}dx.

In the second integral above we use the change of variables x→ x− xε and we get :
Iε2(t) ≤ 1

t

∫ t
2 [x

α − (x− xε)α(1− ε xε−1)]P̂{< R−B,u >> x− xε}dx+ k0(ε)
t

with 0 < k0(ε) <∞.
We observe that there exists k1(ε) <∞ such that for any x ≥ 2 :

xα − (x− xε)α(1− ε xε−1) ≤ k1(ε)x
α+ε−1

For any β ∈]0, α[, Proposition 5.1 implies that E(|R|β) <∞. Also R satisfies equation (S)
and A, Roθ̂ are independant. Hence Tchebitchev’s inequality gives :

P̂{< R−B,u >> x} ≤ x−βE(|A|β)E(|R|β) ≤ k2(β)x
−β with k2(β) <∞.

It follows that for any t with t− tε > 2 :
Iε2(t) ≤

k0(ε)
t + k1(ε)k2(β)

1
t

∫ t
2
xα+ε−1

(x−xε)β dx ≤ k3(ε, β)t
α−β+ε−1

We can choose β very close to α+1
α+1+δ > α

α+δ−1 such that for δ′ ∈]0, δ
δ+α+1 [ we have

sup{tδ′ |rα1 (u, t)|; t ≥ 1} <∞, as follows from the above estimations of Iε1(t) and I
ε
2(t).

Hence, there exists k3 <∞ such that for t ≥ 1 : rα1 (u, t) ≤ k3t
−δ′ .
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The same argument is valid for rα2 , hence for δ′ < δ
δ+α+1 and t ≥ 1, we have : rα(u, t) ≤

C(δ′)t−δ
′

, with C(δ′) < ∞. Furthermore, for t ∈]0, 1] we have |rα(u, t)| ≤ tα

α+1 , hence the

function rα(u, t) is b.R.i. on Sd−1 ×R∗
+ �

Lemma 5.6
We denote by r the finite measure on R∗

+ defined by r(dx) = 1]0,1[(x)x
αdx and we write

ρ0 = ρ− ρ1. Then the function fα on V \ {0} defined by
fα(v) = |v|−α(r ∗ ρ̂0)(v) = 1

t

∫ t
0 x

αρ̂0(u, x)dx , u = tv(t > 0, |u| = 1, v ∈ V \ {0})
is b.R.i and one has (δu ⊗ ℓα)(r ∗ ρ̂0) =

∫∞
0 tα−1ρ̂0(u, t)dt = rα(u) where t → tα−1ρ̂0(u, t)

is Riemann-integrable on ]0,∞[ in generalised sense.

Proof
By definition :

fα(v) = |v|−α(r ∗ ρ̂0)(v) = tα(r ∗ ρ̂0)(ut ) = 1
t

∫ t
0 y

αρ̂0(
u
y )dy = rα(u, t),

(δu ⊗ ℓα)(r ∗ ρ̂0) =
∫∞
0 tα−1 dt

tα+1

∫ t
0 y

αρ̂0(
u
y )dy = lim

T→∞

∫ T

0

dt

t2

∫ t

0
yαρ̂0(

u

y
)dy.

Lemma 5.5 implies that fα(v) is b.R.i and has limit 0 at |v| = ∞. Integration by parts in
the above formula gives :∫ T

0
dt
t2

∫ t
0 y

αρ̂0(
u
y )dy = − 1

T

∫ T
0 yαρ̂0(

u
y )dy+

∫ T
0 tα−1ρ̂0(

u
t )dt = −rα(u, T )+

∫ T
0 tα−1ρ̂0(

u
t )dt.

Since, using Lemma 5.5 lim
T→∞

rα(u, T ) = 0, it follows that
∫ T
0 tα−1ρ̂0(

u
t )dt has a finite limit

at T = ∞, hence t→ tα−1ρ̂0(
u
t ) is Riemann-integrable on R∗

+ in generalised sense and, for
u ∈ Sd−1 :

(δu ⊗ ℓα)(r ∗ ρ̂0) =
∫∞
0 tα−1ρ̂0(

u
t )dt = rα(u). �

Proof of Proposition 5.3

If u = tv with u ∈ Sd−1, t > 0 the function ρ̂(v) = P̂{< R,u >> t} is bounded, right
continuous and non increasing. Since equation (S) can be written as R − B = ARoθ̂ and
A,Roθ̂ are independant we have : ρ1 = µ ∗ ρ, ρ− µ ∗ ρ = ρ− ρ1 = ρ0. Furthermore :

ρ =
n
Σ
0
µk ∗ ρ0 + µn+1 ∗ ρ, ρ̂(v) =

n
Σ
0
((µ∗)k ∗ δv)(ρ̂0) + ((µ∗)n+1 ∗ δv)(ρ̂).

Also if r− denote the push-forward of r by x→ x−1 :

r− ∗ ρ =
n
Σ
0
µk ∗ (r− ∗ ρ0) + µn+1 ∗ (r− ∗ ρ).

Since Lµ < 0 the subadditive ergodic theorem applied to Log|Sn(ω)| gives the convergence
of Sn(ω)v to 0. In particular, for ξ ∈ M1(V ), the sequence µn ∗ ξ converges in law to δ0
hence : lim

n→∞
µ̂n ∗ ξ(v) = (µ∗)n ∗ δv(ξ̂) = 0.

From the above convergence on V : ρ− δ0 =
∞
Σ
0
µk ∗ ρ0, ρ̂(v) =

∞
Σ
0
((µ∗)k ∗ δv)(ρ̂0).

But, by Proposition 5.1, ρ({0}) = 0, hence the stated vague convergence of
∞
Σ
0
µk ∗ ρ0.

Since the sequence (µn+1 ∗ (r− ∗ ρ))(ψ) converges to zero for any bounded Borel function
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ψ on V such that lim
v→0

ψ(v) = 0, we have on such functions : r− ∗ ρ =
∞
Σ
0
(µ∗)k ∗ (r− ∗ ρ0).

We observe that, for any bounded measure ξ, we have (µk ∗ ξ̂(v) = ((µ∗)k ∗ δv)(ξ̂) and

r̂− ∗ ξ = r ∗ ξ̂. It follows from the above equality that the potential
∞
Σ
0
((µ∗)k ∗ δv)(r ∗ ρ̂0) is

finite and equal to (r ∗ ρ̂)(v).
We have observed in Lemma 5.6 that the function v → |v|−α(r ∗ ρ̂0)(v) is b.R.i, hence the
renewal Theorem 4.7’ applied to µ∗ and to the function r ∗ ρ̂0 gives for u ∈ Sd−1 :

lim
t→∞

tα(r ∗ ρ̂)(u, t) =
∗eα(u)
Lµ(α)

(∗ν̃αu ⊗ ℓα)(r ∗ ρ̂0).

Since for fixed u, ρ̂(u, x) = P̂{< R,u >> x} is non increasing, Lemma 5.4 gives :

lim
t→∞

tαρ̂(u, t) =
∗eα(u)
Lµ(α)

∗ν̃αu (rα).

In particular, we have ∗ν̃αu (rα) ≥ 0. In case I this gives ∗ν̃α(rα) ≥ 0 since ∗ν̃αu = ∗ν̃α. Also,
in case II, taking u ∈ Λ+(T

∗) and using ∗pα+(u) = 1, this gives ∗να+(rα) ≥ 0. Also, in the
same way ∗να−(rα) ≥ 0. Furthermore, in case II, using Theorem 4.7’ :

∗ν̃αu (rα) =
∗pα+(u)

∗να+(rα) +
∗pα−(u)

∗να−(rα).

If ∗ν̃α(rα) > 0, in case II we can define a probability measure σα on Λ̃(T ) by :
∗ν̃α(rα)σα = 1

2(
∗να+(rα)ν

α
+ + ∗να−(rα)ν

α
−)

while in case I : σα = ν̃α. If ∗ν̃α(rα) = 0, we have also ∗να+(rα) = ∗να−(rα) = 0, hence
we can leave σα with projection να on Pd−1 undefined in the above formulas. In any case
σα ⊗ ℓα is µ-harmonic.
We get another expression for the above limit, by using the formulas for ∗eα(u), ∗pα+(u),
∗pα−(u) of section 2, for case II as follows (see Theorem 2.17) :

∗eα(u)∗pα+(u)p(α) =
∫
< u, u′ >α+ dνα+(u

′) = α(να+ ⊗ ℓα)(H+
u ).

From above, we get :
∗eα(u)∗ν̃αu (rα) =

α
p(α)((

∗να+(rα)ν
α
+ +∗ να−(rα)ν

α
−)⊗ ℓα)(H+

u ).

Hence, with C = 2
∗ν̃α(rα)α
Lµ(α)p(α)

, σα as above and C+ =
∗ν̃α+(rα)α

Lµ(α)p(α)
, C− =

∗ν̃α
−
(rα)α

Lµ(α)p(α)

lim
t→∞

tαρ̂(u, t) = C(σα ⊗ ℓα)(H+
u ), Cσ

α = C+ν
α
+ +C−να−.

In case I we get the corresponding formula.
In order to show that suppρ is unbounded, in view of Proposition 5.1, it suffices to show
that there exists g ∈ T with lim

n→∞
|gn|1/n > 1. If not, then the trace Trg of g is bounded

by d on T . On the other hand, condition i-p implies the irreducibility of the action of T
on V ⊗ C, as shown now. Let W ⊂ V ⊗ C be a proper T -invariant subspace of V ⊗ C

and W its complex conjugate. Then W ∩W and W +W are complexified subspaces of
subpaces of V which are also T -invariant. Using irreducibility of T we get W ∩W = {0},
W +W = V ⊗ C hence V ⊗ C = W ⊕W . Let g ∈ T prox and v ∈ V \ {0} with gv = λgv
and write v = w+ w̄ with w ∈W , hence since W,W are g-invariant gw = λgw, gw̄ = λgw̄.
Since λg is a simple eigenvalue we get w = w̄ i.e W ∩W 6= {0} which gives a contradiction
with condition i-p, hence T acts irreducibly on V ⊗ C. Then Burnside’s density theorem

60



implies that End(V ⊗ C) is generated as an algebra by T , i.e there exists a base gi ∈ T
(i = 1, ., d2) of EndV . Then the linear forms u → Tr(ugi) (i = 1, ., d2) form a basis of
the dual space of EndV . In particular, for some constant c > 0 we have for any g ∈ T ,

|g| ≤ c
d2

Σ
i=1

|Tr(ggi)| ≤ cd3. Then for any n ∈ N, and s > 0 :
∫
|g|sdµn(g) ≤ cd3s, k(s) ≤ 1.

Since k′(α) > 0 with α ∈]0, s∞[, this contradicts the convexity of Logk(s). �

Corollary 5.7
For any v ∈ V \ {0}, we have :

lim
t→∞

tαP̂{| < R, v > | > t} = C
p(α)

α
(∗eα ⊗ hα)(v)

In particular, there exists b > 0 such that P̂{|R| > t} ≤ bt−α.

Proof
By definition of ∗ν̃αu and since ∗pα+(u) =

∗pα−(−u) we have : 1
2(

∗ναu +∗ να−u) =
∗ν̃α. Hence,

using the proposition :

lim
t→∞

tαP̂{| < R,u > | > t} = 2
∗eα(u)
Lµ(α)

∗ν̃α(rα) = C
p(α)

α
∗eα(u).

The formula in the corollary follows by α-homogeneity.

We take a base ui ∈ V (1 ≤ i ≤ d) and write |R| ≤ b′
d
Σ
i=1

| < R,ui > | with b′ > 0. For

t large : P̂{|R| > t} ≤
d
Σ
i=1

P̂{| < R,ui > | > t

b′
} ≤ (C ′ + ε)t−αb′α

d
Σ
i=1

∗eα(ui), with ε > 0,

C ′ = C p(α)
α , hence the result. �

3) A dual Markov walk and the positivity of directional tails
Here we go over from the process < Rn, v > to its extension (S′

nv, r+ < Rn, v >) and we
study the corresponding generalized ladder process (see([15]), p 391).
Let M be a T ∗-minimal subset of Sd−1 and X = M × R, hence M = Λ̃(T ∗) in case I and
M = Λ+(T

∗) (or Λ−(T ∗)) in case II. We denote by Λ∗
a(Σ) the set of u ∈ Sd−1 such that

the projection of ρ on the line Ru has unbounded support in direction u. The following
will play an essential role in the discussion of positivity for C,C+, C−.

Proposition 5.8

With the hypothesis of Theorem 5.2 if M ⊂ Sd−1 is T ∗-minimal and Λ∗
a(Σ) ⊃M , then for

any u ∈M :
CM (u) = lim

t→∞
tαP̂{< R,u >> t} > 0.

We begin by introducing notations for the proof. We observe that Rn =
n−1
Σ
0
A1 · · ·AkBk+1

satisfies the relation < Rn+1, v >=< Rn, v > + < Bn+1, S
′
nv > where S′

n = (A1 · · ·An)∗.
Also h ∈ H acts on E = (V \{0})×R according to the formula h(v, r) = (g∗v, r+ < b, v >),
hence the pair (S′

nv, r+ < Rn, v >) is a λ-random walk on the right homogeneous H-space
E. If D is the orientation preserving affine group of the line, we note that the above

61



action of H commutes with the D-action on E defined by d(v, r) = (tv, tr + x) where
d = (t, x) ∈ D, hence (S′

nv, r+ < Rn, v >) is also a D-fibered Markov chain over Sd−1. The
study of this Markov chain will play an essential role below.
The random walk (S′

nv, r+ < Rn, v >) has projection S
′
nv on V , hence ∗P̂ (∗eα⊗hα) = ∗eα⊗

hα, and we can consider the new relativized fibered Markov kernel ∗P̂α on E = (M×R)×R∗.
The projection xn of (S′

nv, r+ < Rn, v >) on X =M × R has a corresponding kernel ∗Q̂α

given by ∗Q̂αϕ(u, p) =
∫
ϕ(g∗.u, hup)∗qα(u, g)dλ(h) where hup = 1

|g∗u|(p+ < b, u >) and
∗qα corresponds to qα as in section 3. It will turn out that ∗Q̃α and its extension ∗Q̂α to
M × R have similar stochastic properties.
We observe that, if Hp

u is the affine hyperplane defined by < y, u > +p = 0, and h ∈ H,
the hyperplane h−1(Hp

u) is defined by < y, g∗.u > +hup = 0, hence the formula h(u, p) =
(g∗.u, hup) corresponds to the action of h−1 on the space W of affine oriented hyperplanes
in V . We will consider on Ω̂ the projective limit ∗Q̂α

u of the system ∗qαn(u, .)λ
⊗n and, by

abuse of notation, the corresponding expectation will be written Eαu . If a ∗Q̃α-stationary
measure π̃αM is given on M , we write ∗Q̂α =

∫ ∗Q̂α
udπ̃

α
M (u) and we denote by Eα the

corresponding expectation symbol. If η is a probability measure on X, the associated
Markov measure on aΩ̂ = X × Ω̂, is denoted by ∗Q̂α

η , and the extended shift by aθ̂ where
aθ̂(x, ω̂) = (h1x, θ̂ω̂). If will be convenient to use the functions a(g, u), b(h, u) defined by
hup = a(g, u)p+b(h, u), and the random variables ak, bk defined by ak(ω̂, u) = a(gk, S

′
k−1.u),

bk(ω̂, u) = b(hk, S
′
k−1.u). Then we can express the action of hn · · · h1 ∈ H on X as :

un = S′
n.u, ypn(u) = (hn · · · h1)up, where :

ypn(u) = a(S′
n, u)p+ y◦n(u) and y

◦
n(u) =

n
Σ
1
ank+1(u)bk(u)

with ank(u) = a(gn · · · gk, S′
k−1.u). The random variables ak, bk are ∗Q̂α-stationary and y◦n

has the same law as p◦n(ω̂, u) =
n−1
Σ
0
a1 · · · akbk+1.

Also if η is ∗Q̂α-stationary we will consider the bilateral associated system (Ω#, aθ̂, η#)
where Ω# = X × HZ, aθ̂ is the bilateral shift and η# is the unique aθ̂-invariant measure
with projection ∗Q̂α

η on X × Ω̂. The Birkhoff sum Log(|S′
nu||pnp |) occurs below and can

be extended as an R-valued Z-cocycle on X, again denoted by the same formula. The
following lemma is a fibered version of a well known fact in the context of generalized
autoregressive processes (see [5]).

Lemma 5.9
Let M be a T ∗-minimal subset of Sd−1, παM the unique ∗Q̃α-stationary measure on M .
With the above notations, we consider the Markov chain xn = (un, pn), on M × R given
by :

un+1 = g∗n+1.un, pn+1 =
pn+<bn+1,un>

|g∗n+1un|
, p0 = p, u◦ = u,

where (gn, bn) are distributed according to ∗Q̂α
u . Then xn converges in ∗Q̂α-law to the

unique ∗Q̂α-stationary measure κ, the projection of κ on M is παM , κ(M × {p}) = 0 for
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any p ∈ R, and
∫
|p|εdκ(u, p) <∞ for ε small. We have κ# − a.e :

lim sup
n→∞

|S′
nu||pn| = ∞, lim

n→∞
|S′

−nu||p−n| = 0.

If Λ∗
a(Σ) ⊃M , then κ(M×]0,∞[) > 0 and lim sup

n→∞
|S′
nu|pn = ∞, ∗Q̂α

κ − a.e.

Proof

We estimate Eα(|p◦n|ε) for 0 < ε < δ and ε small, where p◦n(ω̂, u) =
n−1
Σ
0
a1 · · · akbk+1. Since

(a1 · · · ak)(ω, u) = a(S′
k(ω), u) we get Eα(|a1 · · · ak|ε) = Eα(|S′

ku|−ε). Hence Corollary 3.18

gives lim
k→∞

(Eα(|a1 · · · ak|ε))1/k < 1. Also for ε small,

Eα(|bk|ε) = Eα(| < b1,u
|g∗u| > |ε) ≤ E(|B1|ε)γε(A)) <∞,

using ∗Q̂α-stationarity, Hölder inequality and the condition E(|B1|α+δ) +E(|A1|α+δ) <∞.

Since |p◦n(ω̂, u)|ε ≤
n−1
Σ
◦

|a1 · · · ak|ε|bk+1|ε, we get that Eα(|p◦n|ε/2) is bounded. The ∗Q̂α−a.e

convergence of the partial sum p◦n(ω̂, u) to p(ω̂, u) =
∞
Σ
0
a1 · · · akbk+1 and the finiteness of

Eα(|p|ε) follows. By definition, p(ω̂, u) satisfies the functional equation : p = a1 p◦ aθ̂+b1.
It follows that the probability measure κ on M ×R given by κ =

∫
δu ⊗ δp(ω̂,u)d

∗Q̂α(ω̂, u)

is ∗Q̂α-invariant.
As observed above, the ∗Q̂α-laws of y◦n and p◦n are the same. Since the product of π̃αM with

the law of y◦n is (∗Q̂α)n (παM ⊗ δ◦) we have in weak topology : lim
n→∞

(∗Q̂α)n (παM ⊗ δ◦) = κ.

Since |ypn(ω̂, u) − yp
′

n (ω̂, u)| = a(S′
n(ω), u)|p − p′| and a(S′

n(ω), u) = |S′
nu|−1 converges

∗Q̂α
u−a.e to zero, we get the convergence of (∗Q̂α)n (παM ⊗δp) to κ, for any p. On the other

hand, if η′ is a ∗Q̂α-stationary measure on M × R, its projection on M is ∗Q̃α-stationary,
hence equal to παM , since M is T ∗-minimal. Then, from above (∗Q̂α)nη′ converges to κ,

hence η′ = κ. The ∗Q̂α-ergodicity of κ implies the aθ̂-ergodicity of ∗Q̂α
κ and κ#.

Assume κ (M×]0,∞[) = 0, i.e the ∗Q̂α-invariant set suppκ is contained in M×] − ∞, 0].
Then, for any (u, p) ∈ suppκ : p+ < Rn, u >≤ 0, ∗Q̂α

u-a.e, i.e < Rn, u >≤ −p ∗qαn(u, .)λ
⊗n-

a.e for any n ∈ N, for some p ≤ 0, u ∈ M . It follows < Rn, u >≤ −p, λ⊗n-a.e, and
< R,u >≤ −p, P̂-a.e. This implies that the support of the projection of ρ on Ru is bounded
in direction u, hence contradicts the condition Λ∗

a(Σ) ⊃M . Furthermore, arguments as in
the proof of Proposition 5.1, using that suppλ has no fixed point in V , show κ(M×{p}) = 0

for any p ∈ R. From Theorem 3.10 we know that lim
n→∞

1

n
Log|S′

nu| = Lµ(α) > 0, ∗Qα
u -a.e

Furthermore since κ is ∗Q̂α-ergodic and κ(M ×{0} = 0 we have lim sup
n→∞

|pn| > 0 ∗Q̂α
κ −a.e.

Then we get lim sup
n→∞

|S′
nu| |pn| = ∞ ∗Q̂α

κ-a.e. If Λ∗
a(Σ) ⊃ M , we have κ(M×]0,∞[> 0,

and again using ergodicity : lim sup
n→∞

pn > 0. Since lim
n→∞

|S′
nu| = ∞ ∗Q̂α

u − a.e, it follows

lim sup
n→∞

|S′
nu|pn = ∞ ∗Q̂α

κ-a.e. Using Theorem 3.2, we have also , for any u ∈ M and
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∗Q̂α
u -a.e : lim

n→∞
1

n
Log|S′

−nu| = −Lµ(α) < 0. The condition
∫
|p|εdκ(u, p) < ∞ implies :

lim sup
n→∞

Log|pn|
|n| ≤ 0 κ#-a.e. Then we get : lim

n→∞
|S′

−nu||p−n| = 0 κ#-a.e. �

Remarks
The moment condition on A can be replaced by the finiteness of the expectation of
|A|αLogγ(A), without changing the conclusion. The proof uses Theorem 3.10 instead
of Corollary 3.18

We consider the N ∪ {∞}-valued optional time τ on X × Ω̂ given for p 6= 0 by :
τ = Inf{n > 0 ; p−1 < Rn, u >> 0}.

We observe that τ is independant of p as long as p > 0 or p < 0.
By definition of pn : τ = Inf{n > 0 ; p−1pn|S′

nu| > 1}, in particular p−1pτ > 0. Also
we define τn = τ ◦ (aθ̂)τn−1 , so that τ can be interpreted as the first ladder epoch and
p−1pτ |S′

τu| as the first ladder height of the Z-cocycle p−1pn|S′
nu|. These two descriptions of

τ will be used below. On the other hand, by Poincaré recurrence theorem we have, κ#-a.e
lim sup
n→∞

p−1pn > 0 ; since lim
n→∞

|S′
nu| = ∞, τ , τn are finite ∗Q̂α

κ-a.e and p−1pτn > 0.

It will be convenient to use (u, p, t′) coordinates with t′ = r−1 ∈ R∗, p|v| = r ∈ R so that,
the λ-random walk on E can be written as :

un+1 = g∗n+1.un, pn+1 =
pn+<bn+1,un>

|g∗n+1un|
, t′n+1 = t′n|g∗n+1un|−1pnp

−1
n+1

hence r+ < Rn, v >= pn|S′
nv|, t′n = t′(|S′

nu|pnp )−1, pn = p+<Rn,u>
|S′

nu| .

We consider also the stopped operator ∗P̂ τ on V \ {0} × R. In (u, p, t′) coordinates
with x = (u, p) the associated process at time n starting from (u, p, t′) ∈ X × R∗

+ is

(xτn , t
′|S′

τnu|−1p−1
τn p), hence

∗P̂ τ is a Markov fibered operator on X ×R∗
+. Since

∗P̂ (∗eα ⊗
hα) = ∗eα ⊗ hα and τ is finite ∗Qα

κ-a.e, the positive kernel ∗P̂ τα given by ∗P̂ ταϕ = (∗eα ⊗
hα)−1P̂ τ (∗eα ⊗ hαϕ) is a fibered kernel on X × R∗

+ which satisfies ∗P̂ τα1 = 1, κ⊗ ℓ a.e.

The following lemma expresses the function ρ̂(p−1v) = P̂{p−1 < R,u >> t} = ψ(v, p) as a
∗P̂ τ -potential of a non negative function. Its asymptotics will give the positivity of CM (u)
in Proposition 5.8.

Lemma 5.10
With tv = u ∈ Sd−1, t > 0 p 6= 0, we write : τ = Inf{n > 0; p−1 < Rn, u >> 0}
ψ(v, p) = P̂{p−1 < R,u >> t}, ψτ (v, p) = P̂{t < p−1 < R,u >≤ t+p−1 < Bτ , u >; τ <∞}
where Bτ =

τ−1
Σ
0
A1 · · ·AkBk+1, ψ

α = (∗eα ⊗ hα)−1ψ, ψατ = (∗eα ⊗ hα)−1ψτ . Then :

ψ =
∞
Σ
0
(∗P̂ τ )kψτ , ψα =

∞
Σ
0
(∗P̂ τα )

kψατ .

Proof
We write < R−Rn, v >=< Rn, S′

nv >, hence if τ <∞ : < R−Bτ , v >=< Rτ , S′
τv >. By
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definition of τ , since t > 0 :
ψτ (v, p) = ψ(v, p)− P̂{< R−Bτ , u > p−1 > t ; τ <∞}

On the other hand, from above, since p−1pτ > 0 :
P̂{< R − Bτ , u > p−1 > t ; τ < ∞} = P̂{< Rτ , uτ > p−1 > t

|S′
τu| ; τ < ∞} = ∗P̂ τψ(v, p),

since p−1pτ > 0. It follows ψτ = ψ − ∗P̂ τψ, ψ =
n−1
Σ
0
(∗P̂ τ )kψτ +

∗P̂ τnψ with :

∗P̂ τnψ(v, p) = P̂{t|S′
τnu|−1 < p−1 < Rτn , uτn > ; τn <∞}.

On the set {τn = ∞}, we have ∗P̂ τnψ = 0, while on the set lim
n→∞

τn = ∞, we have P̂− a.e

lim
n→∞

|S′
τnu|−1 = ∞. Since |R| < ∞, P̂ − a.e and Rτn is P̂-independant of S′

τn we get

lim
n→∞

∗P̂ τnψ = 0, ψ =
∞
Σ
0
(∗P̂ τ )kψτ .

The last relation follows from the definitions of ψατ and ∗P̂ τα . �

Let τ be as above, Λ∗
a(Σ) ⊃ M and let ∗Q̂α,τ (x, .) be the law of xτ under ∗Q̂α

x . Since
τ < ∞, ∗Q̂α − a.e and p−1pτ > 0 we have pτ > 0 if p > 0, hence the operator ∗Q̂α,τ

preserves X+ ≡M×]0,∞[ and satisfies ∗Q̂α,τ1 = 1, κ− a.e. We will also consider the first
return time to X+ and the corresponding Markov operator ∗Q̂α+ on X+. Following closely

([34], Lemma 2) we can construct a stationary measure for ∗Q̂α,τ on X+, and show the
finiteness of the corresponding expectation of τ

Lemma 5.11
Assume Λ∗

a(Σ) ⊃M and write :

τ = Inf{n > 0 ; p−1pn|S′
nu| > 1} = Inf{n > 0 ; p−1 < Rn, u >> 0}.

Then the stopped operator ∗Q̂α,τ preserves X+ and admits a stationary ergodic measure
κτ on X+ which is absolutely continuous with respect to κ.
The integral Eα0 (τ) =

∫
Eαu(τ)dκ

τ (u, p) is finite.

If γατ = Lµ(α)E
α
0 (τ) one has lim

n→∞
1

n
Log(|S′

τnu|
pτn
p

) = γατ ∈]0,∞[, ∗Q̂α
κτ -a.e.

Also Vτ = pτp
−1Log|S′

τu| has finite expectation with respect to ∗Q̂α
κτ .

Proof
Since Λ∗

a(Σ) ⊃ M , lemma 5.9 gives κ(X+) > 0. In order to deal only with positive
values of the Z-cocycle |S′

nu|pnp−1 it is convenient to consider the two sided Markov chain
xnk

(k ∈ Z, x◦ ∈ X+), induced on X+ by xn hence n1 is the first return time of xn to X+

and n1 ≤ τ since p−1pτ > 0. We note that the normalized restriction κ+ of κ is a stationary
ergodic measure for xnk

. Also the Markov kernel ∗P̂α on X ×R∗ induces a fibered Markov

kernel ∗P̂α,+ on X+ × R∗. The corresponding bilateral Markov chain is (xnk
, t′nk

) with
t′nk

= t′p p−1
nk

|S′
nk
u|−1. We observe that, if t′ > 0, p > 0, then t′ pnk

p−1 |S′
nk
u| > 0, hence

∗P̂α,+ preserves X+ ×R∗
+ and ∗P̂α,+(κ+ ⊗ ℓ) = κ+ ⊗ ℓ. We denote by Ω#

+ the subset of Ω#
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defined by the conditions x ∈ X+, xn ∈ X+ infinitely often for n > 0 and n < 0, by κ#+
the normalized restriction of κ# to Ω#

+ and by aθ̂+ the induced shift. Also let Ω#
0 be the

subset of Ω#
+ defined by the conditions x ∈ X+, sup

k>0
(pn−k

p−1 |S′
n−k

u|) < 1. From Lemma

5.9, we know that κ#+ − a.e :
lim
n→∞

|S′
−nu| p−n p−1 = 0, hence lim

k→∞
|S′
n−k

u| pn−k
p−1 = 0, |S′

n−k
u|pn−k

p−1 > 0.

If follows that the index−ν0 < 0 of the strict last maximum of the sequence pn−k
p−1 |S′

n−k
u|

(k > 0) is finite κ#+−a.e. Furthermore if ω# ∈ Ω#
0 we see that τ(ω#) is the first return time

of (aθ̂)n(ω#) to Ω#
0 , hence

aθ̂τ+ is the transformation on Ω#
0 induced by aθ̂+. This allows

to proceed as in ([34] Lemma 2) with the R∗
+-valued Z-cocycle |S′

nk
u| pnk

p−1. Since κ#+ is
aθ̂+-invariant we see that κ#+(Ω

#
0 ) > 0 and we can apply Kac’s recurrence theorem to Ω#

0 ,
aθ̂τ+ and Ω#

+ (see [43]), hence the normalized restriction κ#0 of κ#+ to Ω#
0 is aθ̂τ -ergodic and

stationary, the return time τ has finite expectation Eα0 (τ) and lim
n→∞

τn
n

= Eα0 (τ), κ
#
0 − a.e.

Since κ#0 is absolutely continuous with respect to κ#, Theorem 3.10 gives :

lim
n→∞

1

n
Log|S′

τnu| = ( lim
n→∞

1

τn
Log|S′

τnu|)( limn→∞
τn
n
) = Eα0 (τ)Lµ(α) , κ#0 − a.e.

Using Birkhoff’s theorem for the non-negative increments of Vτn = Log(pτnp |S′
τnu|), we

get the κ#0 -a.e convergence of 1
n Vτn . Since κ

#
0 is aθ̂τ -invariant 1

nLog
pτn
p converges to zero

in κ#0 -measure, hence using the κ#0 − a.e convergence of 1
nLog|S′

τnu|, we get the κ#0 − a.e
convergence of 1

nVτn to γατ . In particular Vτ has finite expectation.

In order to relate κ#0 and the kernel ∗Q̂α,τ we consider the Markov kernel adjoint to
∗Q̂α+(x, .) with respect to κ+, and we denote by ∗Q̂α

+⊗δx the corresponding Markov measure

on HZ− ×X with Z− = N ∪ {0}. Also we write ∗Q̂α
x = δx ⊗ ∗Q

α
x where ∗Q

α
x is supported

on HN and we observe that κ#+ =
∫ ∗Q̂α

+⊗ δx⊗ ∗Q̂α
xdκ+(x), hence κ

#
0 =

∫
1
Ω#

0

(∗Q̂α
+ ⊗ δx⊗

∗Q̂α
x)dκ+(x) with Ω#

0 = Ω
#
0 ×HN and Ω

#
0 ⊂ HZ− ×X. We denote by κτ the projection

of κ#0 on X+, hence κ
τ has density u(x) = (∗Q̂α

+ ⊗ δx)(Ω
#
0 ) with respect to κ+. It follows

that the projection of κ#0 on X × Ω̂ can be expressed as :
∫
u(x)δx ⊗ ∗Q

α
xdκ+(x) =

∫
δx ⊗ ∗Q

α
xdκ

τ (x) = ∗Q̂α
κτ .

Since κ#0 is invariant and ergodic with respect to the bilateral shift aθ̂τ+, the same is valid

for ∗Q̂α
κτ with respect to the unilateral shift aθ̂τ+. Since the kernel x→ ∗Q̂α

x commutes with
aθ̂τ+ and ∗Q̂α,τ the ∗Q̂α,τ -invariance and ergodicity of κτ follows. Also we have Eα0 (τ) =∫
Eαu(τ)dκ

τ (u, p) and the above convergences are valid ∗Q̂α
κτ − a.e �

Remark
If S = X+, P = ∗Pα,+, π = κ+ the measure κτ is closely connected with the measure ψ of
Theorem 4.4. However, in our context, the function Log|p| is not known to be κ-integrable.
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Proof of Proposition 5.8
Assume that for some u ∈M , CM (u) = lim

t→∞
tαP̂{< R,u >> t} = 0.

For p > 0, with the notations of Lemma 5.10, this means lim
t→∞

ψα(v, p) = 0. Using Propo-

sition 5.3 we know that this implies lim
t→∞

ψα(v, p) = 0 for any u = tv ∈ M (t > 0). Also,

from Lemma 5.11, we have, since Λ∗
a(Σ) ⊃M :

lim
n→∞

1

n
Log(|S′

τnu|
pτn
p

) = γατ > 0, ∗Q̂α
κτ − a.e.

Since the canonical Markov measure associated with κτ and ∗Q̂α,τ is a push-forward of
∗Q̂α

κτ , this convergence is also valid with respect to the canonical measure.
Then, using Lemma 5.10 and ψατ ≥ 0, we can apply Lemma A.1 to the Markov kernel ∗P̂ τα
on X+×R∗

+, the potential
∞
Σ
0
(∗P̂ τα )

kψατ of the non negative function ψατ ≤ (∗eα⊗hα)−1 and

the ∗Q̂α,τ stationary measure κτ : we get ψατ = 0, κτ ⊗ ℓ− a.e, i.e
P̂{t < p−1 < R,u >≤ t+ p−1 < Bτ , u >, τ <∞} = 0.

Since p−1 < Bτ , u >> 0, this gives p−1 < R,u >≤ 0 κτ ⊗ P̂−a.e on {τ <∞}, in particular
for some (u, p) ∈ X+, p

−1 < R,u >≤ 0 i.e < R,u >≤ 0 P̂ − a.e on {τ < ∞}. Since
Λ∗(Σ) ⊃ M , Lemma 5.9 implies that, for any u ∈ M the set {< R,u >> 0 , τ < ∞} =
{< R,u >> 0} is not P̂-negligible, hence the required contradiction. �

The following will be useful when applying Proposition 5.8.

Lemma 5.12
In cases I or II’ : Λ∗

a(Σ) = Sd−1. In case II” : Λ∗
a(Σ) ⊃ Λ+(T

∗)

Proof
Let Λ∞

a (Σ) = Λa(Σ) ∩ Sd−1
∞ and u ∈ Sd−1, u′∞ ∈ Λ∞

a (Σ) corresponds to u′ ∈ Sd−1. If
< u′, u >> 0, then u ∈ Λ∗

a(Σ). Hence the complement of Λ∗
a(Σ) in Sd−1 is contained in the

set {u ∈ Sd−1 ; < u, u′ >≤ 0 ∀u′∞ ∈ Λ∞
a (Σ)}. From the discussion at the beginning of this

section we know that Λ∞
a (Σ) 6= φ is T -invariant and closed, hence contains Λ̃∞(T ) in cases

I, II’ or only Λ∞
+ (T ) in case II” with Λ∞

− (T ) ∩ Λ∞
a (Σ) = φ.

Since Λ̃∞(T ) is symmetric and condition i-p is valid it follows Λ∗
a(Σ) = Sd−1 in cases I,

II’. In case II”, we know from the end of proof of Theorem 2.17 that the complement of
Λ∗
a(Σ) is contained in the set denoted −Λ̂+(T

∗). Since Λ+(T
∗) ∩ −Λ̂+(T

∗) = φ we get
Λ+(T

∗) ⊂ Λ∗
a(Σ). �

The following improves Corollary 5.7.

Corollary 5.13

For any u ∈ Sd−1 :

lim
t→∞

tα P{| < R,u > | > t} = C
p(α)

α
∗eα(u) > 0

In cases I, for any u ∈ Sd−1 :
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lim
t→∞

tα P{< R,u >> t} =
1

2
C
p(α)

α
∗eα(u) > 0

In case II, for any u ∈ Λ+(T
∗), if Λa(Σ) ⊃ Λ∞

+ (T ) :

lim
t→∞

tα P{< R,u >> t} =
p(α)

α
C+

∗eα(u) > 0.

Proof
This a trivial consequence of Proposition 5.3, Corollary 5.7, Proposition 5.8 and Lemma
5.12. �

Corollary 5.14
With the above notations we write :
γατ = Lµ(α)E

α
0 (τ), ψ

α
τ (v, p) = P̂{t < p−1 < R,u >≤ t+ p−1 < Bτ , u > , τ <∞}∗eα(u)−1tα

and we denote by κτ the ∗Qα,τ -stationary measure on X+, given by Lemma 5.11. Then, if
Λa(Σ) ⊃ Λ∞

+ (T ) :
C+ ≥ α

p(α)γατ

∫
]0,∞[×X+

ψατ (v, p)t
−1dκτ (u)dt > 0.

Proof

With the notations of Lemma 5.10, we have ψα =
∞
Σ
0
(∗P̂ τα )

kψατ where ∗P̂ τα is a fibered

Markov kernel on (X+ ∪ {∞}) × R∗
+ which satisfies the conditions of Lemma A.1 and ψατ

is bounded by (∗eα ⊗ hα)−1. Hence, as in the proof of the proposition, if ψ
α
τ is a Borel

function with compact support, bounded by ψατ :

lim
t→∞

ψα(v, p) ≥ lim sup
t→∞

∞
Σ
0

∗P̂ ταψ
α
τ (v, p),

and, using Corollary 5.13, since lim
t→∞

ψα(v, p) is constant on X+ :

lim
t→∞

ψα(v, p) ≥ 1

γατ

∫

]0,∞[×X+

ψ
α
τ (v

′, p)dκτ (u′, p)
dt

t
.

Hence, approximating from below ψατ by ψ
α
τ :

lim
t→∞

ψα(v, p) ≥ 1

γατ

∫

]0,∞[×X+

ψατ (v
′, p)

dt

t
dκτ (u′, p),

CM (u) = lim
t→∞

tαP̂{< R,u >> t} = ∗eα(u) lim
t→∞

ψα(v, p),

CM (u) ≥ ∗eα(u)
γατ

∫
]0,∞[×X+

ψατ (v
′, p)t−1dtdκτ (u′, p).

The final formula follows from Corollary 5.13. �

Remark
We observe that, if d = 1, and A,B are positive, a formula of this type for C = C+, with
equality, is given in [14]. We don’t know if such an equality is valid in our setting. However
if λ is non singular, then theorem 4.4 can be used instead of Lemma A.1, since from the
corollary ψατ is κτ ⊗ ℓ-integrable, hence equality in the above formula is valid.
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4) Homogeneity at infinity of the stationary measure ρ and proof of
the main result
For the proof of Theorem 5.2 we prepare the following lemmas. If α /∈ N, it follows from
[2] that Theorem 5.2 is a consequence of Propositions 5.3 and 5.8. If α ∈ N, as follows
from [45] the situation is different. Here, in general we will need to use the Choquet-Deny
type results of Appendix 2.

Lemma 5.15
For any compact subset K of V \ {0}, there exists a constant C(K) > 0 such that
sup
t>0

t−α(t.ρ)(K) ≤ C(K). In particular the family ρt = t−α(t.ρ) is relatively compact

for the topology of vague convergence and any cluster value η of the family ρt satisfies
sup
t>0

t−α(t.η)(K) ≤ C(K), hence sup
t>0

t.((eα ⊗ hα)η)(K) ≤ C ′(K) with C ′(K) > 0.

Proof
For some δ > 0 we have K ⊂ {x ∈ V ; |x| > δ}, hence using Corollary 5.7, t−αP{|R| >
δ
t } ≤ b

δα = C(K). The relative compactness of the family ρt follows. Also :
(ttn)

−α(ttn.ρ)(K) ≤ C(K), t−α(t.η)(K) = lim
n→∞

(ttn)
−α(ttn.ρ)(K) ≤ C(K),

Hence sup
t>0

t−α(t.η)(K) ≤ C(K).

Since eα ⊗ hα is α-homogeneous : t.((eα ⊗ hα)η) = (eα ⊗ hα)(t−α(t.η)).
With CK = sup

v∈K
(eα ⊗ hα)(v), we get :

t.((eα ⊗ hα)η)(K) ≤ CK t−α(t.η)(K) ≤ CKC(K) = C ′(K). �

Lemma 5.16
Assume η is the vague limit of t−αn (tn.ρ) (tn → 0+). Then η is µ-harmonic, i.e µ ∗ η = η.

Proof
Let ϕ be ε-Hölder continuous on V with compact support contained in the set {x ∈
V ; |x| ≥ δ} with δ > 0, and let us show lim

t→0+
t−αIt(ϕ) = 0 where It(ϕ) = (t.ρ−t.(µ∗ρ))(ϕ).

By definition :
It(ϕ) = E(ϕ(tR) − ϕ(tA1Roθ̂)) with ϕ(tR) = 0 if |tR| < δ and ϕ(tA1Roθ̂) = 0 if

|tA1Roθ̂| < δ. Hence : It(ϕ) ≤ [ϕ]εt
ε(E(|B1|ε1{|tR|>δ} + E(|B1|ε1{t|A1Roθ̂>δ}).

We write :
I1t = tε−αE(|B1|ε1{|tR|>δ}, I2t = tε−αE(|B1|ε1{t|A1Roθ̂|>δ}

and we estimate I1t , I
2
t as follows. We have I1t ≤ δε−αE(|B1|ε|R|α−ε1{|tR|>δ}|. Since

|R|α−ε ≤ c(α)(|A1Roθ̂|α−ε + |B1|α−ε), using independance of Roθ̂ and |B1|ε|A1|α−ε :
E(|B1|ε|R|α−ε) ≤ cE(|B1|α) + cE(|A1|α−ε|B1|ε)E(|R|α−ε).

Using Hölder inequality we get E(|A1|α−ε|B1|ε) < ∞. Also using Proposition 5.1, we get
E(|R|α−ε) < ∞. It follows that |B1|ε|R|α−ε1{|tR|>δ} is bounded by the integrable function

|B1|ε|R|α−ε. Then by dominated convergence : lim
t→0

I1t = 0.
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In the same way we have :
I2t ≤ δε−αE(|B1|ε|A1Roθ̂|α−ε1{t|A1Roθ̂|>δ})

Also, using independance and Hölder inequality :
E(|B1|ε|A1Roθ̂|α−ε) ≤ E(|B1|ε|A1|α−ε)E(|R|α−ε) <∞.

Then by dominated convergence lim
t→0+

I2t = 0. Hence lim
t→0+

t−αIt(ϕ) = 0.

By definition of η we have, for any g ∈ G : lim
tn→0+

t−αn (tn.gρ)(ϕ) = (gη)(ϕ).

Furthermore we have |ϕ(x)| ≤ |ϕ|1{x∈V ;|x|≥δ} and,

|(gη)(ϕ)| ≤ |ϕ|η({x ∈ V ; |gx| ≥ δ} ≤ |ϕ| lim
n→∞

t−αn P{|R| > δ

|g|tn
}.

Using Corollary 5.7, we get : |(gη)(ϕ)| ≤ b
δα |ϕ||g|α.

Since
∫
|g|αdµ(g) <∞ and for any g ∈ G lim

tn→0+
t−αn (tn.(gρ)(ϕ) = gη(ϕ), we have by domi-

nated convergence : lim
tn→0+

t−αn (tn.(µ∗ρ)(ϕ) = (µ∗η)(ϕ). Then the property lim
t→0+

t−αIt = 0

implies (µ ∗ η)(ϕ) = η(ϕ), hence µ ∗ η = η. �

Lemma 5.17
Assume η and σ ⊗ ℓα are µ-harmonic Radon measures on V \ {0} with σ ∈ M1(Sd−1).
Assume also that for any v ∈ V \ {0}, η(H+

v ) = (σ ⊗ ℓα)(H+
v ). Then we have η = σ ⊗ ℓα

Proof
As in the proof of Corollary 5.7, we observe that the condition η(H+

v ) = (σ ⊗ ℓα)(H+
v )

implies for any δ > 0 :
sup
t>0

t−α(t.η){x ∈ V ; |x| > δ} <∞

Hence, as in Lemma 5.14, for any compact K ⊂ V \ {0}, with ηα = (eα ⊗ hα)η :

sup
t>0

t−α(t.η)(K) ≤ C(K), sup
t>0

(t.ηα)(K) ≤ C ′(K).

It follows that ηα is dilation-bounded.
On the other hand, the projection σ ⊗ ℓα (resp

.
η) of σ ⊗ ℓα (resp η) on

.
V satisfy :

µ ∗ (σ ⊗ ℓα) = σ ⊗ ℓα (resp µ ∗
.
η =

.
η), hence Qα(e

ασ ⊗ ℓ) = eασ ⊗ ℓ,
.
Qα(

.
η
α
) =

.
η
α
.

We observe that the fibered Markov operator
.
Qα satisfies condition D of the appendix, in

view of Corollary 3.20 and of the moment condition on A.
Then Theorem 2.6 implies σ = να. Also, in view of Corollary 3.20 and the above observa-

tions, we can apply the second part of Theorem A.4 to
.
η
α
with P =

.
Qα, hence

.
η
α
is propor-

tional to πα ⊗ ℓ, i.e
.
η is proportional to να⊗ ℓα. Since σ = να and η(H+

v ) = (σ⊗ ℓα)(H+
v )

we get
.
η = να ⊗ ℓα.

We denote for v ∈ Sd−1 : λv = | < v, . > |ασ ⊗ ℓα, ηv = | < v, . > |αη. Since σ ⊗ ℓα

and η are µ-harmonic, we have
∫
gλg∗vdµ(g) = λv,

∫
gηg∗vdµ(g) = ηv The projections

.
λv and

.
ηv on

.
V satisfy the same equation hence are equal. As in section 3, we get that
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the sequences of Radon measures g1 · · · gnλg∗n···g∗1v and g1 · · · gnηg∗n···g∗1v are vaguely bounded
∗Qα

v -martingales. On
.
V we get, using Theorem 3.2, for some z(ω) ∈ Pd−1 and ∗Qα

v − a.e :
lim
n→∞

g1 · · · gn
.
λg∗n···g∗1v = lim

n→∞
g1 · · · gn

.
ηg∗n···g∗1v = δz(ω) ⊗ ℓ.

Let z+(ω) and z−(ω) be opposite points on Sd−1 with projection z(ω) on Pd−1. The mar-
tingale convergence on V \ {0} gives that g1 · · · gnλg∗n···g∗1v (resp g1 · · · gnηg∗n···g∗1v) converges
vaguely to p(ω)δz+(ω) + q(ω)δz−(ω) (resp p′(ω)δz+(ω) + q′(ω)δz−(ω)) with p(ω) + q(ω) =
p′(ω) + q′(ω) = 1. The condition η(H+

v ) = (σ ⊗ ℓα)(H+
v ) implies in the limit :

p(ω)δz+(ω) + q(ω)δz−(ω) = p′(ω)δz+(ω) + q′(ω)δz−(ω).
Hence, taking expectations we get η = σ ⊗ ℓα. �

Proof of Theorem 5.2
The convergence of ρt = t−α(t.ρ) to C(σα⊗ℓα) on the sets H+

v and the positivity properties
of C,C+, C− follows from Corollary 5.13. For the vague convergence of ρt we observe
that Lemma 5.15 gives the vague compactness of ρt. If η = lim

tn→0+
t−αn (tn.ρ), Lemma

5.16 gives the µ-harmonicity of η. Since η(H+
v ) = C(σα ⊗ ℓα)(H+

v ), Lemma 5.17 gives
Λ = C(σα ⊗ ℓα) = η, hence the vague convergence of ρt to Λ. The detailed form of Λ
follows from Proposition 5.3.
For the final minimality assertions one uses the second part of Theorem A.4 and we replace
η by (eα ⊗ hα)η. We verify condition D as follows. Condition D1 follows directly from
Corollary 3.21. For D2 we note that the replacement of µ by µ′ = 1

2 (δe + µ) don’t affect
the condition k(α) = 1, the harmonicity of ν̃α, να+, ν

α
−, but avoid unimodular eigenvalues

other than 1 for Q̃α. In case I, 1 is a simple eigenvalue of Q̃α and, if θ is positive Radon
measure with µ ∗ θ = θ, θ ≤ ν̃α⊗ ℓα, we have µ′ ∗ θ = θ, hence θ is proportional to ν̃α⊗ ℓα.
In case II and for να+, one restricts Q̃α to the convex cone generated to Λ+(T ), so as to

achieve the simplicity of 1 as an eigenvalue of Q̃α. Then condition D2 is satisfied for the
corresponding operator and the above argument is also valid for να+ ⊗ ℓα. Condition D3

follows from the moment conditions assumed on λ. �

Corollary 5.18
Let Bε,α be the set of locally bounded Borel functions on V \ {0} such that the set of
discontinuities of f is Λ-negligible and for ε > 0 :

Kf (ε) = sup{|v|−α|Logv|1+ε|f(v)| ; v 6= 0} <∞
Then for any f ∈ Bε,α : lim

t→0+
t−α(t.ρ)(f) = Λ(f).

The proof depends of two lemmas in which we will use the norm ‖v‖ = sup
1≤i≤d

| < x, ei > |

instead of |v| where ei(1 ≤ i ≤ d) is a basis of V . Also for δ > 0 and 0 < δ1 < δ2 we write
Bδ = {v ∈ V ; ‖v‖ ≤ δ}, Bδ1,δ2 = Bδ2 \Bδ1 , B′

δ = V \Bδ.
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Lemma 5.19
For any f ∈ Bε,α, 0 < δ1 < δ2 :

lim
t→0+

t−α(t.ρ)(f1Bδ1,δ2
) = Λ(f1Bδ1,δ2

).

Proof
From the fact that να gives measure zero to any projective subspace and the homogeneity
of Λ = σα ⊗ ℓα, we know that Λ gives measure zero to any affine hyperplane, hence the
boundary of Bη1,η2 is Λ-negligible. Then the proof follows from the vague convergence of
t−α(t.ρ) to Λ and the hypothesis of Λ-negligibility of the discontinuity set of f . �

Lemma 5.20
a) There exists C > 0 such that for any f ∈ Bε,α, t > 0 and δ2 > e :

|t−α(t.ρ)(f1Bδ2
)| ≤ CKf (ε)|Logδ2|−ε

b) Then exists C(ε) > 0 such that for any f ∈ Bε,α, t > 0, δ1 < e−1 :
|t−α(t.ρ)(f1Bδ1

)| ≤ C(ε)Kf (ε)|Logδ1|−ε

Proof
a) Let ϕε(x) be the function on R+ \ {1} given by ϕε(x) = xα|Logx|−1−ε. For x ≥ e we
have ϕ′

ε(x) ≤ α xα−1|Logx|−1−ε. We denote Ft(x) = P̂(‖tR‖ > x) and we observe that,
using Proposition 5.1, the non increasing function Ft is continuous. We have :

|t−α(t.ρ)(f1B′

δ2

)| ≤ t−αKf (ε)
∫∞
δ2
ϕε(x)dFt(x)

Integrating by parts, we get :
|t−α(t.ρ)(f1B′

δ2

)| ≤ t−αKf (ε)[ϕε(x)Ft(x)]
∞
δ2

+ t−αKf (ε)
∫∞
δ2
ϕ′
ε(x)Ft(x)dx.

From Corollary 5.7 we know that, for some C > 0, Ft(x) ≤ C tαx−α. Then, using the
above estimation of ϕ′

ε(x), we get :
|t−α(t.ρ)(f1B′

δ2

)| ≤ CKε(f)
∫∞
δ2

α
|Logx|1+ε

dx
x ≤ CKε(f)|Logδ2|−ε

b) The proof follows the same lines and uses the estimation of |ϕ′
ε(x)| by

(α+ 1 + ε)xα−1|Logx|−1−ε for x ≤ e−1. �

Proof of the Corollary

For δ ≥ e and with D > 0 we have
∫
B′

δ
ϕε(‖v‖)dΛ(v) ≤ D

∫∞
δ

xα

(Logx)1+ε
dx
xα+1 = D

|Logδ|ε hence

lim
δ→∞

∫

B′

δ

ϕε(‖v‖)dΛ(v) = 0. Also for δ < 1 :

∫
B′

δ
ϕε(‖v‖)dΛ(v) ≤ D

∫ δ
0

xα

|Logx|1+ε
dx
xα+1 = D

|Logδ|ε ,

hence lim
δ→∞

∫

Bδ

ϕε(‖v‖)dΛ(v) = 0.

Then the corollary follows of the lemmas. �

Proof of Theorem C
Except for the last assertion, Theorem C is a reformulation of Theorem 5.2. The last
assertion is the content of Corollary 5.18. �
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A) Appendix
Here we give the proofs of two general results used in section 5.

1) A weak renewal theorem for Markov walks

Let (X, ν) be a complete separable metric space, where ν is a probability measure. As in
section 4 we consider a general Markov chain on X × R with kernel P , we assume that P
commutes with the R-translations and we denote by ℓ Lebesgue measure on R. We assume
that the measure ν ⊗ ℓ is P -invariant. We write a path of this Markov chain as (xn, Vn)
where xn ∈ X and Vn ∈ R, we denote by aPx the Markov measure on the paths starting
form x ∈ X and we write aPν =

∫
aPxdν(x),

aEx for the corresponding expectation symbol.
In this context the following weak analogue of the renewal theorem holds.

Lemma A.1
With the above notations, assume that ψ is a bounded non negative Borel function onX×R,

supported on X × [−a, a], the potential Uψ =
∞
Σ
0
P kψ is bounded on X × [−c, c](c > 0) for

any c > and we have for any ε > 0 :

lim
n→∞

aPν{|
Vn
n

− γ| > ε} = 0, with γ > 0.

Then : lim
t→∞

1

t

∫ 0

−t
ds

∫

X
Uψ(x, s)dν(x) =

1

γ
(ν ⊗ ℓ)(ψ).

Furthermore if ψ is a non negative Borel function on X×R and lim
t→−∞

Uψ(x, t) = 0, ν−a.e
then ψ = 0, ν ⊗ ℓ− a.e.
If ψ is a Borel function on X × R which satisfies

|ψ|b =
ℓ=∞
Σ

ℓ=−∞
sup{|ψ(x, s)| ; x ∈ X, s ∈ [ℓ, ℓ+ 1[} <∞,

then the above convergence is valid.

Proof
We observe that the maximum principle implies |Uψ| = sup

x,t
|Uψ|(x, t) < ∞, since Uψ is

locally bounded. For ε > 0, t > 0 we denote n1 = n1(t) = [ 1γ εt], n2 = n2(t) = [ 1γ (1 + ε)t]
where [t] denotes integer part of t > 0.

We write :
∞
Σ
0
P kψ = Uψ,

n−1
Σ
0
P kψ = Unψ,

∞
Σ
n+1

P kψ = Unψ,
m
Σ
n
P kψ = Umn ψ

and I(t) = 1
t

∫ 0
−t ds

∫
X(Uψ)(x, s)dν(x) =

3
Σ
1
Ik(t)− I4(t) where :

I1(t) =
1
t

∫
X dν(x)

∫∞
−∞ Un2

n1
ψ(x, s)ds, I2(t) =

1
t

∫
X dν(x)

∫ 0
−t Un1

ψ(x, s)ds

I3(t) =
1
t

∫
X dν(x)

∫ 0
−t U

n2ψ(x, s)ds I4(t) =
1
t

∫
X dν(x)

∫
R\[−t,0] U

n2
n1
ψ(x, s)ds.

We estimate each term Ik(t).
We have since the measure ν ⊗ ℓ is P -invariant :

I1(t) =
n2−n1+1

t (ν ⊗ ℓ)(ψ), hence lim
t→∞

I1(t) =
1

γ
(ν ⊗ ℓ)(ψ).
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Furthermore :

|I4(t)| ≤ |ψ|
t (n2 − n1 + 1) sup

n1≤n≤n2

∫

X
(aPx{Vn ≤ a}+ aPx{Vn ≥ t− a})dν(x).

Since n−1Vn converges to γ > 0 in probability, the above integral has limit zero, hence
lim
t→∞

I4(t) = 0.

We have also : |I2(t)| ≤ ε
γ ν ⊗ ℓ(ψ).

In order to estimate I3(t) we denote for n ∈ N, s > 0 : ρsn = Inf{k ≥ n ; −a ≤ Vn−s ≤ a}
and we use the interpretation of Unψ as the expected number of visits to ψ after time n :

Unψ(x, s) ≤ |Uψ|aPx{ρsn <∞}

Taking n = [ (1+ε)tγ ] = n2 we get

I3(t) ≤ |Uψ|
∫
X
aPx {Vk − t ≤ a for some k ≥ [ (1+ε)tγ ]}dν(x).

Since Vn
n converges to γ > 0 in probability, we get lim

t→∞
I3(t) = 0.

Since ε is arbitrary we get finally : lim
t→∞

I(t) =
1

γ
(ν ⊗ ℓ)(ψ).

The second conclusion follows by restriction and truncation of ψ on X × [−a, a].
For the proof of the last assertion we observe that for any ℓ ∈ Z

∆ = |U1X×[0,1]| = |U1X×[ℓ,ℓ+1[| <∞. Writing ψ =
ℓ=∞
Σ

ℓ=−∞
ψ1X×[ℓ,ℓ+1[ we get |Uψ| ≤ ∆|ψ|b.

The quantity ψ → |ψ|b is a norm on the space H of Borel functions on X × R such that
|ψ|b < ∞. Since the set of bounded functions supported on X × [−c, c] for some c > 0 is
dense in H and ψ → (ν⊗ ℓ)(ψ) is a continuous functional on H, the above relation extends
by density to any ψ ∈ H. �

2) A Choquet-Deny type property

Here, as in section 4, we consider a fibered Markov chain on S × R but we reinforce the
hypothesis on the Markov kernel P . Hence S is a compact metric space, P commutes
with R-translations and acts continuously on Cb(S × R). We define for t ∈ R, the Fourier
operator P it on C(S) by :

P itϕ(x) = P (ϕ⊗ eit.)(x, 0)

For t = 0 P it = P 0 is equal to P , the factor operator on S defined by P . We assume that for
each t ∈ R, P it preserves the space Hε(S) of ε-Hölder functions and is a bounded operator
therein. Moreover we assume that P it(t ∈ R), and P satisfies the following condition D
(compare [30]) :
1) For any t ∈ R, one can find n0 ∈ N, ρ(t) ∈ [0, 1[ and C(t) > 0 for which

[(P it)n0ϕ]ε ≤ ρ(t)[ϕ]ε + C(t)|ϕ|.
2) For any t ∈ R, the equation P itϕ = eiθϕ, ϕ ∈ Hε(S), ϕ 6= 0 has only the trivial solution
eiθ = 1, t = 0, ϕ =cte.

3) For some δ > 1 : Mδ = sup
x∈S

∫
|a|δP ((x, 0), d(y, a)) <∞.
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Conditions 1,2 above imply that P has a unique stationary measure π and the spectrum
of P in Hε(S) is of the form {1} ∪∆ where ∆ is a compact subset of the open unit disk
(see [32] ). They imply also that, for any t 6= 0, the spectral radius of P it is less than one.
With the notations of section 4, condition 3 above will allow to estimate aE(|Vn|p) for p ≤ δ
and to show the continuity of t→ |P it|.
The following is a simple consequence of conditions 1,2,3 above.

Lemma A.2
With the above notations, let I ⊂ R be a compact subset of R \ {0}. Then there exists
D > 0 and σ ∈ [0, 1[ such that for any n ∈ N : sup

t∈I
|(P it)n| ≤ Dσn

Proof
Conditions 1 and 2 for P it(t 6= 0) imply that the spectral radius rt of P

it satisfies rt < 1
(see [30]). Hence there exists Ct > 0 such that for any n ∈ N : |(P it)n| ≤ Ct(

1
2 + rt

2 )
n.

On the other hand t→ |P it| is continuous as the following calculation shows. For a, t, t′ ∈
R, δ′ ∈ [0, 1], we have |eiat − eiat

′ | ≤ 2|a|δ′ |t− t′|δ′ hence :
|P itϕ(x)−P it′ϕ(x)| ≤ 2|ϕ| |t− t′|δ′

∫
|a|δ′P ((x, 0), d(y, a)), |P it−P it′ | ≤ 2Mδ′ |t− t′|δ

′

.
For each t ∈ I we fix nt ∈ N such that |(P it)nt | ≤ 1

3 . Then the above continuity of P it,

hence of (P it)nt , gives for t′ sufficiently chose to t : |(P it′)| ≤ 1
2 ; Then, using compactuess

of I we find n1, · · ·nk such that one of the inequalities |(P it)nj | ≤ 1
2 (1 ≤ j ≤ k) is valid at

any given point of I. Then, since |P it| ≤ 1 with n0 = n1 · · ·nk we get |P it)n0 | ≤ 1
2 . Using

Euclidean division of n by n0, we get the required inequality. �

We are interested in the action of Pn on functions on S×R which are of the form u⊗f where
u ∈ C(S), f ∈ L1(R) and also in P -harmonic Radon measures which satisfy boundedness
conditions. In some proofs, since Hε(S) is dense in C(S) it will be convenient to assume
u ∈ Hε(S).

Definition A.3
We say that the Radon measure θ on S × R is translation-bounded if for any compact
subset K of S × R, any a ∈ R, there exists C(K) > 0 such that |θ(a+K)| ≤ C(K) where
a+K is the compact subset of S × R obtained from K using translation by a ∈ R.

We are led to consider a positive function ω on Rd which satisfies ω(x + y) ≤ ω(x)ω(y).
For example, if p ≥ 0, such a function ωp is defined by ωp(a) = (1 + |a|)p.
We denote L1

ω(R) = {f ∈ L1(R) ; ωf ∈ L1(R)} and we observe that f → ‖ωf‖1 = ‖f‖1,ω
is a norm under which L1

ω(R) is a Banach algebra. The dual space of L1
ω(R) is the space

L∞
ω (R) of measurable functions g such that gω−1 ∈ L∞(R) and the duality is given by

< g, f >=
∫
g(a)f(a)da. The Fourier transform f̂ of f ∈ L1

ω(R) is well defined by f̂(t) =∫
f(a)eitada. We denote by Jc the ideal of L1(R) which consists of functions f ∈ L1(R)

such that f̂ has a compact support not containing 0 and we write Jcω = L1
ω(R) ∩ Jc. Also

we denote by L1
0(R) the ideal of L1(R) defined by the condition f̂(0) = 0. It is well known
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that Jc is dense in L1
0(R), hence for ω = ωp J

c
ω2 is dense in L1

ω(R) (see [31] p 187).

Theorem A.4
With the above notations, assume that the family P it(t ∈ R) satisfies conditions D and let
ω = ωp with p < δ. Then for any f ∈ L1

ω(R) ∩ Jc, u ∈ C(S), we have the convergence :

lim
n→∞

sup
x∈S

‖Pn(u⊗ f)(x, .)‖1,ω = 0.

If θ is a P -harmonic Radon measure which is translation-bounded, then θ is proportional
to π ⊗ ℓ. In particular π ⊗ ℓ is a minimal P -harmonic Radon measure.

The proof follows from the above considerations and the following lemmas.

Lemma A.5
Assume πn is a sequence of bounded measures on R, ω is a positive Borel function on
R such that for any x, y ∈ R, ω(x + y) ≤ ω(x)ω(y) and assume that the total variation
measures |πn| of πn satisfy sup{|πn|(ω) ; n ∈ N} <∞. Let f ∈ L1

ω(R)∩L2(R) and assume
An, Bn are sequences of Borel subsets of R such that, with A′

n = R \An , B′
n = R \Bn :

a) lim
n→∞

|πn|(ω)‖f1B′

n
‖1,ω = 0

b) lim
n→∞

|πn|(ω1A′

n
) = 0

c) lim
n→∞

‖πn ∗ f‖2 ‖ω21An+Bn‖
1/2
1 = 0.

Then we have lim
n→∞

‖πn∗f‖1,ω = 0. Furthermore, if the measures πn depend of a parameter

λ and if the convergences in a), b), c) are uniform in λ, then the convergence of ‖πn ∗f‖1,ω
is also uniform in λ.

Proof
Let η, η′ be two bounded measures on R and let A,B be Borel subsets with complements
A′, B′ in R. Observe that, since 0 ≤ ω(x+ y) ≤ ω(x)ω(y) :

ω(x+ y) ≤ ω(x+ y)1A+B(x+ y) + (ω1A)(x)(ω1B′)(y) + (ω1A′)(x)ω(y).
It follows

|(η ∗ η′)|(ω) ≤ |η ∗ η′|(ω1A+B) + |η|(ω)| |η′|(ω1B′) + |η|(ω1A′)|η′|(ω).
Then we take η = πn, η

′ = f(a)da, A = An, B = Bn and we get :
‖πn ∗ f‖1,ω ≤

∫
|πn ∗ f |(a)|ω1An+Bn |(a)da + |πn|(ω1An)‖f1B′

n
‖1,ω + |πn|(ω1A′

n
)‖f‖1,ω.

Conditions a, b imply that the two last terms in the above inequality have limits zero.
Using condition c and Schwarz inequality we see that the first term has also limit zero.
If πn depends of a parameter λ, the uniformity of the convergence of ‖πn ∗ f‖1,ω follows
directly from the bound for ‖πn ∗ f‖1,ω given above. �

The following lemma is an easy consequence of condition 3 on the Markov kernel P and of
Hölder inequality
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Lemma A.6
For any p ∈ [1, δ], there exists Cp > 0 such that : sup

x

aEx((|Vn|)p) ≤ Cpn
p

In particular, for any L > 0 : sup
x,n

aPx{|Vn| > nL} ≤ Cp

Lp .

We leave to the reader the proof of the first inequality. The second one follows from Markov
inequality.
For a Radon measure θ on S×R and b ∈ R, we denote by θ ∗δb the Radon measure defined
by (θ ∗ δb)(ϕ) =

∫
ϕ(x, a + b)dθ(x, a) and for ϕ ∈ Cc(S × R), θ translation-bounded we

write |θ|ϕ = sup{|θ ∗ δb(ϕ)| ; b ∈ R}. For such measures and any bounded measure r on
R, θ ∗ r is well defined by (θ ∗ r)(ϕ) =

∫
(θ ∗ δb)(ϕ)dr(b) and we have |θ ∗ r|ϕ ≤ ‖r‖θϕ

where ‖r‖ is the total variation of r. In particular, f ∈ L1(R) can be identified with the
measure rf = f(a)da, we can define θ ∗ f = θ ∗ rf and if fn ∈ L1(R) converges in L1-norm
to f ∈ L1(R), then θ ∗ fn converges to θ ∗ f in the vague topology. On the other hand, if
r has compact support and θ is a Radon measure on R, θ ∗ r is well defined as a Radon
measure.

Lemma A.7
With the above notations, assume that θ is a translation-bounded non negative Radon
measure on S × R. Let r be a non negative continuous function on R with compact
support containing 0. Then for p > 1, there exists a non negative bounded measure θ on
S such that θ ∗ r ≤ (1S ⊗ ωp)(θ ⊗ ℓ).

Proof
For simplicity of notations, assume r > 0 on [0, 1]. We denote by θk ∗ δk the restriction
of θ to S × [k, k + 1[ (k ∈ Z) and we write θ = Σ

k∈Z
θk ∗ δk with supp θk ⊂ S × [0, 1]. We

observe that, since θ is translation-bounded, the mass of θk is bounded for k ∈ Z, hence
.
θ = Σ

k∈Z
(1 + |k|)−pθk is a bounded measure supported on S × [0, 1]. We have clearly

θk ≤ (1 + |k|)p
.
θ, θ ≤

.
θ ∗ Σ

k∈Z
(1 + |k|)pδk, θ ∗ r ≤

.
θ ∗(r ∗ Σ

k∈Z
(1 + |k|)pδk)

But, by definition of ωp and since supp(r) is compact, we have r ∗ Σ
k∈Z

(1+ |k|)pδk ≤ cωp for

some c > 0 and it follows, θ ∗ r ≤ c
.
θ ∗ωp. We desintegrate the bounded measure

.
θ as

.
θ =∫

δx⊗
.

θx dθ̃(x) where θ̃ is the projection of
.
θ on S and

.

θx is a probability measure. Hence

.
θ ∗ωp =

∫
δx⊗ (

.

θx ∗ωp)dθ̃(x). But, since
.

θx is supported on [0, 1] :
.

θx ∗ωp ≤ 2p
.

θx([0, 1])ωp.

Hence
.
θ ≤ 2p(1S ⊗ωp)(θ̃⊗ ℓ) and finally θ ∗ r ≤ 2pc(1S ⊗ωp)(θ̃⊗ ℓ) = (1S ⊗ωp)(θ⊗ ℓ) with

θ = 2pcθ̃. �

Proof of the theorem
We fix p ∈ [1, δ[, ω = ωp, u ∈ Hε(S), u ≥ 0 and for x ∈ S, we define the positive measure
πxn on R by πxn(ϕ) = Pn(u ⊗ ϕ)(x, 0) where ϕ is a non negative Borel function on R. We
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observe that πxn(1) ≤ |u|, and for f ∈ Cb(R) ∩ L1(R) :
Pn(u⊗ f)(x, a) = πxn(f ∗ δa) = (πxn ∗ f∗)(a)

where f∗(a) = f(−a). It follows ‖Pn(u ⊗ f)(x, .)‖1 ≤ |u| ‖f‖1 and also for f ∈ L1
ω(R),

‖Pn(u⊗ f)(x, .)‖1,ω ≤ ‖f‖1,ω sup{πxn(ω) ; x ∈ S}. From condition 3, since p < δ :
πxn(ω) ≤ |u| aEx(1 + |Vn|)p ≤ 2pCpn

p

where we have used Lemma A.6 in order to bound aEx(1 + |Vn|)p.
We fix δ > 1, we denote Bn = {a ∈ R ; |a| ≤ n1+δ}, An = {a ∈ R ; |a| ≤ nc+1} with
c > 0 to be defined later and we verify the conditions a, b, c of Lemma A.5 for πn = πxn,
uniformly in x ∈ S for f ∈ L1

ω2(R).

Since fω2 ∈ L1(R), Markov inequality gives ‖f1B′
n
‖1,ω ≤ ‖f‖1,ω2n−p(1+δ). Then, using the

bound of πxn(ω) given above :
πxn(ω)‖f1B′

n
‖1,ω ≤ 2pCpn

−pδ‖f‖1,ω2 .
Hence condition a) is satisfied.
We write πxn(ω1A′

n
) ≤ |u|aEx(ω(Vn)1A′

n
(Vn)) and use Hölder inequality for p′ > 1, 1

q′ = 1− 1
p′

and p′p < δ :
πxn(ω1A′

n
) ≤ C ′2pnpP{|Vn| ≥ nc+1})1/q′ ≤ C ′′ np−cp/q

′

where we have used the fact that sup
x

aEx(|U1|pp
′

) < ∞ for pp′ < δ and Lemma A.6. If

we take c > q′ = p′

p′−1 , we see that lim
n→∞

πxn (ω1A′
n
) = 0 uniformly, hence condition b) is

satisfied.
In order to verify condition c) we observe that π̂xn(t) = (P it)nu(x). For f ∈ Jc ⊂ L2(R) we
denote Y = suppf̂ ⊂ R \ {0} and we know from Lemma A.2, that there exists D > 0 and
σ ∈ [0, 1[ such that for any t ∈ Y , n ∈ N : |(P it)n| ≤ Dσn.
From Plancherel formula, we get,

‖πxn ∗ f‖2 = (
∫
|π̂xn(t)|2|f̂(t)|2dt)1/2 ≤ ‖f‖2|u| sup

t∈Y
|(P it)n| ≤ D|u|σn‖f‖2.

On the other hand, ‖ω21An+Bn‖1 is bounded by a polynomial in n. Since σ < 1, condition
c) is satisfied. Hence, Lemma A.5 gives : lim

n→∞
‖πxn ∗ f‖1,ω = 0 uniformly. By density the

same relation is valid for all f ∈ L1
ω(R)

Now, let us choose p ∈]1, δ[ and ω = ωp. Since θ is translation-bounded we can assume
θ to be non negative and translation-bounded. Then Lemma A.7 gives for any r as in
the lemma : θ ∗ r ≤ (1S ⊗ ω)(θ ⊗ ℓ). Taking r = rn as an approximate identity we have
θ = lim

n→∞
θ ∗ rn in the weak sense. Hence we can assume θ ≤ (1S ⊗ ω)(θ ⊗ ℓ) where θ is a

bounded measure on S. Let f ∈ L1
ω(R) ∩ Jc(R), u ∈ Hε(S) be as above, hence f, u satisfy

for every n ∈ N :
θ(u⊗ f) = (Pnθ)(u⊗ f) = θ(Pn(u⊗ f)) =

∫
Pn(u⊗ f)(x, a)dθ(x, a),

|θ(u⊗ f)| ≤
∫
dθ(x)

∫
|Pn(u⊗ f)(x, a)|ω(a)da ≤ ‖θ‖ sup

x
‖Pn(u⊗ f)(x, .)‖1,ω .

From the first part of the proof we get θ(u ⊗ f) = 0 for any u ∈ Hε(S), f ∈ Jcω =
L1
ω(R) ∩ Jc. This relation remains valid for f in the ideal Icω of L1

ω(R) generated by Jcω.
Using regularisation on Fourier transforms we see that the closure in L1(R) of Jcω contains
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Jc, hence the unique Fourier exponential which vanish on Icω is 1. Then using classical
Fourier Analysis (see [31] p.187) we get that Icω is dense in L1

0(R). As observed above, since
θ is translation-bounded, this implies θ(u⊗f) = 0 for any f ∈ L1

0(R). Since Hε(S) is dense
in C(S), we get that θ is invariant by R-translation. Then we have θ = θ ⊗ ℓ where θ is
a positive measure on S which satisfies P θ = θ. Using conditions D.1, D.2, this implies
that θ is proportional to π, hence θ is proportional to π ⊗ ℓ.
For the final assertion we observe that, if θ is a P -harmonic positive Radon measure with
θ ≤ C π ⊗ ℓ, for some C > 0, then θ is translation bounded. Hence as above, θ is
proportional to π ⊗ ℓ. �

Remark
The above result extends naturally to the multidimensional situation. This improves the
corresponding result of [30] mentioned above.
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