
HAL Id: hal-00691483
https://hal.science/hal-00691483

Submitted on 26 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Boundaries of instability zones for symplectic twist maps
Marie-Claude Arnaud

To cite this version:
Marie-Claude Arnaud. Boundaries of instability zones for symplectic twist maps. J. Inst. Math.
Jussieu, 2014, 13 (1), pp.19-41. �hal-00691483�

https://hal.science/hal-00691483
https://hal.archives-ouvertes.fr


Boundaries of instability zones for symplectic twist maps

M.-C. ARNAUD ∗†

April 26, 2012

Abstract

We construct a C2 symplectic twist map f of the annulus that has an essential
invariant curve Γ such that:

• Γ is not differentiable;

• the dynamics of f|Γ is conjugated to the one of a Denjoy counter-example;

• Γ is at the boundary of an instability zone for f .
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1 Introduction

The exact symplectic twist maps of the two-dimensional annulus1 were studied for a
long time because they represent (via a symplectic change of coordinates) the dynamics
of the generic symplectic diffeomorphisms of surfaces near their elliptic periodic points
(see [7]). One motivating example of such a map was introduced by Poincaré for the
study of the restricted 3-Body problem.

The study of such maps was initiated by G.D. Birkhoff in the 1920s (see [5]). Among
other beautiful results, he proved that any essential invariant curve by a symplectic
twist map of the annulus is the graph of a Lipschitz map (an essential curve is a simple
loop that is not homotopic to a point). He then introduced the notion of instability
zone.

Definition. An instability zone of a symplectic twist map f of the annulus is an open
subset U of the annulus A that is invariant by f and such that:

– U is homeomorphic to (open) the annulus A;

1all the definitions are given in subsection 1.2
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– the closure Ū of U in A contains no essential invariant curve that is not contained
in the boundary ∂U ;

– U is a maximal (for the inclusion ⊂) subset of A that satisfies all these properties.

There are three kinds of instability zones U :

1. the whole annulus A can be an instability zone; this happens for example for the
standard map with a large enough parameter (see [4, 17, 15]);

2. U is a connected component of the complement of an essential invariant curve;

3. U is bounded; in this case, there exists two Lipschitz functions ψ− < ψ+ whose
graphs are invariant and that satisfy: U = {(θ, r) ∈ A;ψ−(θ) < r < ψ+(θ)}.

A lot of things are known about the existence of those instability zones. G. D. Birkhoff
proved in [6] the existence of such instability zones. He even gave the first (and only)
explicit example of boundary for an instability zone. To visualize his example, imagine
the time one map T of the rigid pendulum. It is a symplectic twist map with one hy-
perbolic fixed point and two separatrices connecting this fixed point to itself. Perturb
T to create one transverse homoclinic intersection at a point of the upper separatrix
without changing the lower separatrix S. Then S becomes the boundary of an insta-
bility zone that is above S (‘above’ is ‘inside’ in the following picture).
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In Birkhoff’s example, the boundary of the instability zone in non-smooth. Mod-
ifying the potential in such a way that it has a degenerate minimum, then we obtain
an similar example for which the boundary of the instability zone is smooth:

In [11], M. Herman proved that in general, the boundaries of the instability zones
have an irrational rotation number. Hence Birkhoff’s example is not ‘general’.
Curiously, no other examples of explicit boundaries of instability zone are known. To
be complete, let us just mention that in [16], J. N. Mather proves that the billiard map
of a convex billiard whose curvature vanishes at at least one point has an instability
zone bounded by the boundary of the billiard phase space. Unfortunately, in this case
(vanishing curvature), the billiard map is not a twist map. . .

Though we don’t know how the ‘general’ boundaries of the instability zones are,
we know some facts about what cannot be such a boundary for a sufficiently regular
symplectic twist map, for example C∞:

1. it cannot be a curve on which the dynamics is C∞ conjugated to a Diophantine
rotation; indeed, KAM theorems (see [13, 3, 19, 22, 11] for example) implies that
such a curve is accumulated from below and above by other invariant curves;

4



2. it cannot be a curve on which the dynamics is C∞ conjugated to a rational
rotation; indeed, it is proved in the thesis of R. Douady that in this case you can
again apply KAM theory.

Hence a curve that is at the boundary of an instability zone either is not very regular
or has a rational or Liouville rotation number. We then raise the question:
Question. Can the boundary of an instability zone with an irrational rotation number
be non-differentiable? Can it be smooth?
We will give some answers to these questions in the case of low regularity (C1 or C2).
At first, we will prove:

Theorem 1. Let ω ∈ R\Q be an irrational number. In any neighborhood of (θ, r) →
(θ + r, r) in the C2 topology, there exists a symplectic C2 twist map f of the annulus
that has an essential invariant curve Γ such that:

• f|Γ is is C0-conjugated to a Denjoy counter-example and its rotation number is
ω;

• if γ : T → R is the map whose graph is Γ, then γ is C1 at every point except
along the projection of one wandering orbit (xn), along which γ has distinct right
and left derivatives;

• Γ is the upper boundary of an instability zone U of f ;

• there exists two families of C2 curves γsn, γ
u
n : R→ A such that γun(0) = γsn(0) = xn

and:

(a) f ◦ γun = γun+1 and f ◦ γsn = γsn+1;

(b) ∀y ∈ γs0(R), lim
n→+∞

d(fny, fnx0) = 0 and ∀y ∈ γu0 (R), lim
n→+∞

d(f−ny, f−nx0) = 0;

(c) γsn(]−∞, 0]) ∪ γun([0,+∞[) ⊂ Γ and γsn(]0,+∞[) ∪ γun(]−∞, 0[) ⊂ U .

xn

Γ

γu
n γs

n
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Remark. 1) With a slight change in the construction, we can ask that Γ is the lower
boundary of the instability zone U ;
2) if we use a Denjoy counter-example with two disjoint orbits of wandering intervals,
we can do the same construction along two orbits (xn) and (yn) and the obtain that
Γ is the common boundary of two instability zones, the one that is above Γ and the
other that is under Γ;
3) our counter-example is defined by: fϕ(θ, r) = (θ + r, r + ϕ(θ + r)) with

∫
T ϕ = 0.

Hence fϕ(θ, r+ 1) = fϕ(θ, r) + (0, 1). If a graph Γ is invariant by fϕ, all the translated
graphs Γ + (0, k) with k ∈ Z are invariant by fϕ. This implies that the instability
zones of fϕ are either the whole annulus A or bounded instability zones. Hence U is
a bounded instability zone, but the theorem gives us the description of just one con-
nected component of its boundary.
4) In [1], we gave an example of a C1 symplectic twist map that has a non differen-
tiable essential invariant curve with irrational rotation number; here, we improve the
construction in the following way:

• using the construction of M. Herman that is given in [11], we manage to improve
the regularity of our example and obtain a C2 counter-example;

• using a function ϕ : T → R whose restriction to a lot of intervals is linear, we
manage to create a non-trivial stable manifold for the invariant curve; this and
the fact that the rotation number of fϕ restricted to the curve is irrational imply
that the invariant curve is at the boundary of an instability zone (see subsection
1.3 for details).
Indeed, with the notations of this theorem, γsn(R) is a part of of the stable manifold
of Γ

W s(Γ) = {x ∈ A; lim
n→+∞

d(fnx,Γ) = 0}

and γun(R) is a part of of the unstable manifold of Γ

W u(Γ) = {x ∈ A; lim
n→+∞

d(f−nx,Γ) = 0}.

We now explain how the restricted dynamics to any invariant curve of a symplectic
twist map that has an irrational rotation number can become the dynamics at the
boundary of an instability zone:

Theorem 2. Let Γ be an essential invariant curve of a C1 symplectic twist map f :
A → A whose rotation number is irrational or whose rotation number is rational and
the dynamics restricted to Γ is:

– either C0 conjugated to a rational rotation;

– or has only hyperbolic periodic points.
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Then in any neighborhood U of f for the C1 topology, there exists a C1 symplectic twist
map g : A→ A such that:

1. Γ is at the boundary of an instability zone of g;

2. g|Γ = f|Γ.

We have seen before that such a result is not valid in C∞ topology because of the
KAM theorems. The tools used to prove theorem 2 are specific to the C1 topology: they
are the connecting lemma of Hayashi (see [10]) and more precisely some consequences
of this connecting lemma that are given in [2].

Contrary to Birkhoff’s counter-example or to theorem 1, we have no idea of how
the stable/unstable manifold of Γ is in theorem 2. Observe too that for our example
of theorem 1, we only know a part of the stable/unstable manifold. Hence we raise the
following question.

Question. Is it possible to describe (in general or for some specific examples) the
stable/unstable manifold of the boundary of an instability zone?
In [14], P. Le Calvez proves interesting facts concerning the topological structure of
those sets.
We observe in subsection 1.3 that the existence of a non-trivial stable manifold for an
essential invariant curve with an irrational rotation number implies that this curve is
at the boundary of an instability zone. Hence a related question is:

Question. Can an irrational essential invariant curve carry a non-uniformly hyper-
bolic invariant measure?
Indeed, if this happens, the union of the stable and unstable manifold of the invariant
measure cannot be contained in the curve and the curve is then at the boundary of an
instability zone.

Finally, concerning the first questions that we raised, we obtain an answer just in
the case of low regularity. Hence the following questions remain open.

Questions 1) Does there exist a smooth (C1, C2, . . . ) curve with an irrational rotation
number that is at the boundary of an instability zone for a Ck symplectic twist map
with k ≥ 2?
2) Does there exist a non C1 curve with an irrational rotation number that is at the
boundary of an instability zone for a Ck symplectic twist map with k ≥ 3?
3) How is a ‘typical’ boundary of instability zone (is it regular, how is its rotation
number. . . )?
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1.1 Structure of the article

In section 2, we will recall Michel Herman’s construction of a C2 symplectic twist map
that has an essential invariant curve on which the dynamics is Denjoy. In particular,
we will give some useful estimates in subsection 2.3.

In section 3 we will build the counter-example that is descibed in theorem 1. In
subsection 3.1, we will construct the homeomorphism that will represent the projected
dynamics along the invariant curve and we will be more precise about the choice of the
constants in subsection 3.2. In subsections 3.3 and 3.4, we will prove some estimates.
Then, in subsection 3.5, we will prove that our modified example is C2 and in section
3.6 we will determine part of the stable/unstable manifolds of the invariant curve.

Finally, we will prove theorem 2 in section 4.

1.2 Notations and definitions

Notations. • T = R/Z is the circle.
• A = T× R is the annulus and an element of A is denoted by (θ, r).
• A is endowed with its usual symplectic form, ω = dθ ∧ dr and its usual Riemannian
metric.
• π : T× R→ T is the first projection and π̃ : R2 → R its lift.

Definition. A C1 diffeomorphism f : A→ A of the annulus that is isotopic to identity
is a positive twist map (resp. negative twist map) if, for any given lift f̃ : R2 → R2

and for every θ̃ ∈ R, the maps r 7→ π̃ ◦ f̃(θ̃, r) is an increasing (resp decreasing)
diffeomorphisms. A twist map may be positive or negative.

Then the maps fϕ that we defined just after theorem 1 are positive symplectic twist
maps.

Definition. Let γ : T → R be a continuous map. We say that γ is C1 at θ ∈ T if
there exists a number γ′(θ) ∈ R such that, for every sequences (θ1

n) and (θ2
n) of points

of T that converge to θ such that θ1
n 6= θ2

n, then:

lim
n→∞

γ(θ1
n)− γ(θ2

n)

θ1
n − θ2

n

= γ′(θ)

where we denote by θ1
n−θ2

n the unique number that represents θ1
n−θ2

n and that belongs
to ]− 1

2 ,
1
2 ].

If we assume that γ is differentiable at every point of T, then this notion of C1

coincides with the usual one (the derivative is continuous at the considered point).
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1.3 Stable manifold of invariant curves

A consequence of a theorem of J. N. Mather is that if an essential curve Γ that is
invariant by a symplectic twist map is at the boundary of an instability zone, then
W s(Γ)\Γ 6= ∅ and this is equivalent too to W u(Γ)\Γ 6= ∅.
More precisely, in [5], G. D. Birkhoff proved that if U is an instability zone, if U1 is
a neighborhood of one of its ends (i.e, eventually after compactification, a connected
component of its boundary) and U2 is a neighborhood of the the other end, then there
exists an orbit traveling from U1 to U2. This theorem was improved in [18] by J. Mather
who proved that if C1, C2 are the ends of U , there exists an orbit whose α-limit set is
in C1 and ω-limit set is in C2. J. N. Mather used variational arguments and after that,
P. Le Calvez gave in [14] a purely topological proof of this result.

Conversely, let us assume that Γ is an essential invariant curve that is invariant by a
symplectic twist f : A→ A and that W s(Γ)\Γ 6= ∅. The example of the rigid pendulum
proves that it can happen that Γ is not at the boundary at an instability zone2. Let
us assume that f|Γ has an irrational rotation number or that f|Γ is C0 conjugated to a
rational rotation. Suppose that Γ is not at the boundary of an instability zone. Then
there exists two sequences of essential invariant curves (Γ−n ) and (Γ+

n ) that are different
from Γ such that:

1. ∀n,Γ+
n ≥ Γ and Γ−n ≤ Γ;

2. lim
n→∞

d(Γ−n ,Γ) = 0 and lim
n→∞

d(Γ+
n ,Γ) = 0.

Birkhoff’s theorem implies that the curves Γ−n , Γ+
n are equi-Lipschitz and then relatively

compact for the C0 norm (we speak of the C0 norm of the function whose graph is the
curve of interest). Let Γ∗ be any limit point of one of these two sequences. Then Γ∗

in an essential invariant curve such that Γ ∩ Γ∗ 6= ∅. Hence f|Γ∗ has the same rotation
number as f|Γ.
M. Herman proved in [11] that two curves with the same irrational rotation number
are equal. Moreover, if the restriction of a symplectic twist map f restricted to an
essential invariant curve Γ is C0 conjugated to a rational rotation, all the orbits are
action minimizing (see e.g. [9]) and a consequence of the results of G. Forni & J. Mather
contained in [8] (see theorem 13.3) is that when an essential invariant curve is filled by
periodic orbit, there exists no other minimizing orbit with the same rotation number
and then no other invariant curve with the same rotation number. Hence any other
invariant curve and Γ are disjoint.
Hence Γ∗ = Γ and the two sequences (Γ−n ) and (Γ+

n ) converge to Γ. If Γ±n is the graph
of γ±n , this implies that the sets {(θ, r); γ−n (θ) < r < γ+

n (θ)} are a base of neighborhood
of Γ. Because they are invariant by f , this implies that W s(γ) = Γ = W u(Γ). We now
summarize this result and Mather’s result:

2let us recall that we asked that an instability zone is homeomorphic to the open annulus
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Proposition. Let f : A → A be a symplectic twist map and let Γ be an essential
invariant curve. Then:

1. if Γ is at the boundary of an instability zone, then W s(Γ)\Γ 6= ∅ and W u(Γ)\Γ 6=
∅;

2. if W s(Γ)\Γ 6= ∅ or W u(Γ)\Γ 6= ∅ and if the rotation number of f|Γ is irrational
or if it is rational and if f|Γ is C0 conjugated to a rational rotation, then Γ is at
the boudary of an instability zone.

2 An example due to Michel Herman

In [11], M. Herman gives an example of a C2 symplectic twist map f : A→ A that has
a C1 invariant curve C such that F|C is C0-conjugated to a Denjoy counter-example.
Let us recall his construction. We fix ω ∈ R\Q.

2.1 Generalized standard map

The following family of symplectic twist maps was introduced by M. Herman in [11].
The maps are defined by :

fϕ : T× R→ T× R; (θ, r) 7→ (θ + r, r + ϕ(θ + r)).

where ϕ : T→ R is a C1 map such that
∫
T ϕ(θ)dθ = 0.

As noticed by M. Herman, the main advantage of this map is the following one. Using
the explicit formula of fϕ, it is easy to see that the graph of ψ : T→ R is invariant by
fϕ if and only if:

∀θ ∈ T, (θ + ψ(θ), ψ(θ) + ϕ(θ + ψ(θ))) = (θ + ψ(θ), ψ(θ + ψ(θ))).

If we rewrite this equality and we denote a lift of g : T → T by g̃ : R → R, we obtain
the following criterion for the invariance of the graph of ψ. The graph of ψ : T → R
is invariant by fϕ if and only if we have:

• g = IdT + ψ is an orientation preserving homeomorphism of T;

• IdR + 1
2ϕ = 1

2

(
g̃ + g̃−1

)
.

In this case, g is none other than the projected dynamics of the restricted to the graph
of ψ dynamics. In particular, the restricted dynamics is conjugated to g (via the first
projection).

Let us give the idea of the construction of M. Herman: he builds a particular Denjoy
counter-example g : T → T of rotation number ω. Because of Denjoy’s theorem,
such a g cannot be C2. By using very clever estimates, M. Herman proves that ϕ =
g̃ + g̃−1 − 2Id is C2. Hence fϕ is the wanted counter-example.
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2.2 Explicit construction of a circle diffeomorphism

We use the construction that is described in [11] p. 94, with only a slight change: we
define the function η in such a way that the Denjoy counter-example is linear on some
small segments.

Let us recall that we fixed ω ∈ R\Q. Let us fix δ > 0 and C >> 1.
We introduce for k ∈ Z:

`k =
aC

(|k|+ C)(log(|k|+ C))1+δ

where aC is chosen such that
∑
k∈Z

`k = 1.

We use a C∞ function η : R → R such that η ≥ 0, support(η) ⊂ [1
4 ,

3
4 ], η|[ 3

8
, 5
8

] = 1,

η(1 − t) = η(t) and
∫ 1

0 η(t)dt = 1. We define ηk by : ηk(t) = η
(
t
`k

)
. Then we have:∫ `k

0 ηk(t)dt = `k. Moreover, there exist two constants C1, C2, that depend only on η,
such that :

C1 ≤ |ηk| ≤ C2;
C1

`k
≤ |η′k| ≤

C2

`k
. (1)

We assume now that C >> 1 is large enough so that:

∀k ∈ Z,
∣∣∣∣`k+1

`k
− 1

∣∣∣∣C2 < 1.

Then the map hk : [0, `k] → [0, `k+1] defined by hk(x) =
∫ x

0

(
1 +

(
`k+1

`k
− 1
)
ηk(t)

)
dt

is a C∞ diffeomorphism such that hk(`k) = `k+1.
There exists a Cantor subset K ⊂ T that has zero Lebesgue measure and that is

such that the connected components of T\K, denoted by (Ik)k∈Z, are on T in the same
order as the sequence (kω) and such that length(Ik) = `k.
Let us recall what is the semi-conjugation j : T→ T of the Denjoy counter-example to
the rotation Rω. If x ∈ {kω; k ∈ Z}, then we define : j−1(x) =

∫ x
0 dµ(t) where µ is the

probability measure µ =
∑
k∈Z

`kδkω, δkω being the Dirac mass at kω. Then j : T → T

is a continuous map with degree 1 that preserves the order on T and that is such that
j(Ik) = kω.
Then there is a C1 diffeomorphism g : T → T that fixes K, is such that K is the
unique minimal subset for g, has for rotation number ρ(g) = ω, verifies j ◦ g = Rω ◦ j.
If k ∈ Z, we introduce the notation: g|Ik = gk; then we have: gk(Ik) = Ik+1. Fol-

lowing [11] again, we can assume that: g′k = g′|Ik =
(

1 +
(
`k+1

`k
− 1
)
ηk

)
◦ R−λk where

R−λk(Ik) = [0, `k] and that gk : Ik → Ik+1 is defined by : gk = Rλk+1
◦ hk ◦R−λk .
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2.3 Some useful inequalities

We recall without proof some inequalities that are given in [11] (sometimes we give some
slight improvement of these inequalities) and that are useful to prove that g̃ + g̃−1 is
C2. The constants Ci are independent of k and C >> 1 and the limits are uniform in
C >> 1. Introduce the notation: Kk =

`k+1

`k
− 1. Then for C >> 1 large enough:

if n ≥ 1,K±n = ± −1

n+ C
+
ε(±n,C)

(n+ C)2
± −(1 + δ)

(n+ C) log(n+ C)
(2)

where sup{|ε(±n, k)|;n,C ≥ 1} = c < +∞. If n = 0, the good formula is the formula
with a +.

C1

|k|+ C
≤ |Kk| ≤

C2

|k|+ C
(3)

C1K
2
k ≤ |Kk−1 −Kk| = Kk −Kk−1 ≤ C2K

2
k (4)

C2(logC)δ

(|k|+ C)(log(|k|+ C))1+δ
≥ `k ≥

C1

(|k|+ C)(log(|k|+ C))1+δ
(5)

lim
k→±∞

K2
k

`k
= 0. (6)

We don’t recall here how we can deduce the fact that g̃+ g̃−1 is C2 from these inequal-
ities, because we will give a very similar proof for the modified example in the next
section.

Let us just notice the following fact that is due to our modification of the function
η:

∀t ∈ [
3

8
`k,

5

8
`k], hk(t) =

`k+1

`k
t.

Let us now give some estimates that were not given in [11]. We introduce the

notation: mk := 1 +Kk + 1
1+Kk−1

=
`k+1

`k
+

`k+1

`k+2
. We have:

mk+1 − 2− (Kk+1 −Kk) =
K2
k

1 +Kk

hence we deduce from (4) that

|mk+1 − 2| ≤ C2K
2
k and |mk −mk+1| ≤ C2K

2
k . (7)

Because of (3) we deduce that:

|mk+1 − 2| ≤ C2

(|k|+ C)2
. (8)
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3 Modification of Michel Herman’s example

3.1 Explicit construction of a circle homeomorphism

We introduce two new functions γ−, γ+ : R→ R such that:

• support(γ±) ⊂ [0, 1];

• γ±|R\{ 1
2
} is C∞;

• γ−|[ 1
2
,1] = 0; γ+|[0, 1

2
] = 0;

• ∀t ∈ [3
8 ,

1
2 [, γ−(t) = 1 and ∀t ∈]1

2 ,
5
8 ], γ+(t) = 1;

•
∫ 1

0 γ±(t)dt = 0.

Hence these two functions are C∞ on R\{1
2} and discontinuous at the point 1

2 .
We define a sequence of functions (γk) by:

γk(x) = γ+(
x

`k
) if k ≥ 1 and γk(x) = γ−(

x

`k
) if k ≤ 0

Let us fix a sequence (αk) of real numbers such that 0 < |αk| ≤ A.|Kk| (where A
is a constant). Then we define ψk : R→ R by ψk(x) = Kkηk(x) + αkγk(x) and a new
function hk : [0, `k] → R by hk(x) =

∫ x
0 (1 + ψk(t))dt. If C is large enough (C was

the constant that is used to define (`k) and then (Kk)), then (Kk) and (αk) are small
enough (A is a fixed constant that doesn’t depend on C ) and 1+ψk is positive. Hence
hk is a homeomorphism onto [0, `k+1].
Let us notice that hk is differentiable everywhere except at `k

2 where it has distinct left
and right derivatives. More precisely:

1) if k ≥ 1, then: ∀x ∈ [3
8`k,

1
2`k], hk(t) =

`k+1

`k
t and ∀x ∈ [1

2`k,
5
8`k], hk(t) =

(
`k+1

`k
+ αk)t− αk`k

2 ;

2) if k ≤ 0, then: ∀x ∈ [3
8`k,

1
2`k], hk(t) = (

`k+1

`k
+αk)t−αk`k

2 and ∀x ∈ [1
2`k,

5
8`k], hk(t) =

`k+1

`k
t.

Then with this new functions hk we can construct gk and g exactly as this was done
in Herman’s example. The only difference is that there is a discontinuity of g′ at the
middle of every connected component of the wandering set, the map g being linear on
a right neighborhood and on a left neighborhood of each such singularity.
Moreover, h′k tends to 1 when k tends to ±∞. This implies (a precise proof was given
in [1]) that g and the curve Γ are C1 at all the points that are not at the middle of every
connected component of the wandering set. Observe that the set of discontinuities of
g corresponds to one orbit.
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3.2 Choice of a “good” sequence (αk).

Let us recall that we want that ϕ = g̃+ g̃−1− 2IdR is C2. We need to choose carefully
the sequence (αk) to obtain that. Let us now explain how we choose (αk), and after
that we will prove that ϕ is C2.

We begin by choosing two small α1 > 0 and α0 < 0 such that:

1

1 +K0 + α0
+ 1 +K1 =

1

1 +K0
+ 1 +K1 + α1.

We denote by m this quantity.
Then we extend this sequence by using the constants mk := 1 +Kk + 1

1+Kk−1
:

∀k ∈ Z\{0}, 1 +Kk+1 + αk+1 +
1

1 +Kk + αk
= mk+1. (9)

If we denote by Φk the map Φk :]0,+∞[→ R defined by Φk(t) = mk − 1
t , each Φk is

increasing and we have: Φk+1(1 + Kk) = 1 + Kk+1. Because α1 > 0, we deduce that
we can define (αn)n≥1 by using (9) and that: ∀n ≥ 1, αn > 0. In a similar way, each
Φ−1
k is increasing on ]−∞,mk[ and α0 < 0, hence we can define (α−n)n≥1 by (9) and

we have then: ∀n ≥ 0, α−n < 0. Similar remarks were done in [1].
For this particular choice of (αk), we can notice that for all k ∈ Z, hk + h−1

k−1 is linear

in the interval [3
8`k,

5
8`k]. More precisely (we use the fact that the hk are continuous

at `k
2 to determine some constants)):

• if k ≥ 2: if x ∈ [3
8`k,

1
2`k], hk(x) + h−1

k−1(x) = (1 +Kk)x+ 1
1+Kk−1

x = mkx and if

x ∈ [1
2`k,

5
8`k]:

hk(x) + h−1
k−1(x) = (1 +Kk + αk)x− αk`k

2 + 1
1+Kk−1+αk−1

(x+
αk−1`k−1

2 ) = mkx;

• if k = 1: if x ∈ [1
2`k,

5
8`k]:

h1(x) + h−1
0 (x) = (1 +K1 + α1)x− α1`1

2 + 1
1+K0

x = mx− α1`1
2 = m1x− α1`1

2 and

if x ∈ [3
8`1,

1
2`1]:

h1(x) +h−1
0 (x) = (1 +K1)x+ 1

1+K0+α0
(x+ α0`0

2 ) = m1x− α1`1
2 (let us notice that

we change the notation for m1 from this point);

• if k ≤ 0: if x ∈ [1
2`k,

5
8`k], hk(x) + h−1

k−1(x) = (1 +Kk)x+ 1
1+Kk−1

x = mkx and if

x ∈ [3
8`k,

1
2`k]:

hk(x) + h−1
k−1(x) = (1 +Kk + αk)x− αk`k

2 + 1
1+Kk−1+αk−1

(x+
αk−1`k−1

2 ) = mkx.

We deduce immediately that the function ϕ = g̃+ g̃−1−2IdR is linear on each segment
Jk ⊂ Ik that is at the middle of Ik and has length `k

4 . In particular, the restriction of
ϕ to the interior of any interval Ik is C∞.
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We denote by ϕk the C∞ function that is equal to ϕ on Ik and equal to 0 every-
where else. Then: ϕ =

∑
ϕk and to prove that ϕ is C2, we just have to prove that

lim
k→±∞

‖D2ϕk‖C0 = 0. If we want to prove that ϕk is close to 0 in C2 topology, we have

to prove that lim
C→+∞

sup{‖D2ϕk‖C0 ; k ∈ Z} = 0.

3.3 Estimation of (αn)n≥1

If we want to have a control on ‖D2ϕk‖C0 , we need to have a control of the sequence
(αk). We use the following notation: βk = Kk + αk.
We have built the sequences (`k), (Kk) and (mk) that depend on a certain constant
C >> 1, we have chosen α1 > 0 small and defined:

∀n ≥ 1, 1 + βn+1 +
1

1 + βn
= mn+1.

We have considered the functions Φk :]0,+∞[→ R defined by Φk(t) = mk − 1
t .

Then we have: 1 + βk+1 = Φk+1(1 + βk). This function is strictly increasing and
concave. When mk > 2, Φk has exactly two fixed points ak < 1 < bk and we have:

bk = 1
2(mk +

√
m2
k − 4) hence (see (8)):

0 < bk − 1 < C1

√
mk − 2 ≤ C2

n+ C
(10)

Let us now compare 1 + βn+1 = Φn+1(1 + βn) with 1 + βn. We fix a constant
B >> 2. There are three cases:

1. if mn+1 ≤ 2 and βn ≤ B
n+1+C ; then 1+βn+1 = Φn+1(1+βn) ≤ Φn+1(1+ B

n+1+C ) ≤
1 + B

n+1+C because Φn+1 ≤ Id;

2. if mn+1 > 2 and βn ≤ B
n+1+C ; then 1+βn+1 = Φn+1(1+βn) ≤ Φn+1(1+ B

n+1+C ) ≤
1 + B

n+1+C because Φn+1|[bn+1,+∞[ ≤ Id|[bn+1,+∞[ and 1 + B
n+1+C = 1 + C2

n+1+C +
B−C2
n+1+C ≥ bn+1 if B is large enough (see (10));

3. if 1 + βn > 1 + B
n+1+C . We introduce the notation δn = B

2(n+1+C) . The function

Φn+1 being concave such that DΦn+1(1 + δn+1) = 1
(1+δn)2

, we have:

1 + βn+1 − Φn+1(1 + δn) ≤ 1

(1 + δn)2
(1 + βn − (1 + δn)).

If mn+1 ≤ 2, we have Φn+1(1 + δn) ≤ 1 + δn because Φn+1 ≤ Id; if mn+1 > 2, as
1 + δn > bn+1 (see point 2), we have Φn+1(1 + δn) ≤ 1 + δn and then:

βn+1 ≤ (1− 1

(1 + δn)2
)δn +

1

(1 + δn)2
βn.
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As δn ≤ βn
2 , we deduce:

βn+1 ≤
(

1

2
+

1

2

1

(1 + δn)2

)
βn =

(
1

2
+

1

2

1

(1 + B
2(n+1+C))2

)
βn.

We deduce for C large enough:

βn+1 ≤ (1− B

3(n+ C + 1)
)βn.

We choose B ≥ 3. We have then:

βn+1 ≤ (1− 1

n+ C + 1
)βn =

n+ C

n+ C + 1
βn. (11)

Let us now prove some estimates for (βn) (and then (αn)). At first, let us recall
that βn > Kn (because we have noticed that αn > 0). Let us now choose α1 > 0 small
enough such that β1 = α1 +K1 ≤ B

1+C ; this is possible because K1 < 0 (see (2)). Now

we prove by recurrence that: ∀n ≥ 1, βn ≤ B
n+C .

The result is true for n = 1.
Let us assume that it is true for some n ≥ 1. There are two cases:

• either βn ≤ B
n+1+C ; then we have proved that: βn+1 ≤ B

n+1+C ;

• or βn >
B

n+1+C ; then by (11), we have: βn+1 ≤ n+C
n+1+Cβn ≤

n+C
n+1+C

B
n+C = B

n+1+C .

Finally, we have proved that:

∀n ≥ 1,Kn ≤ βn ≤
C2

n+ C
.

Using (3), we deduce similar estimates for αn = βn −Kn: ∀n ≥ 1, 0 < αn ≤ C2
n+C .

3.4 Estimation of (α−n)n≥0

This time we will use the smallest fixed point ak = 1
2(mk −

√
m2
k − 4) of Φk when

mk > 2. We have (because of (2), K−n is positive):

0 > ak − 1 > −C1

√
mk − 2 ≥ − C2

n+ C
(12)

We have noticed that: ∀n ≥ 0, β−n < K−n. Let us now compare 1 + β−n−1 =
Φ−1
−n(1 + β−n) with 1 + β−n. We fix a constant B >> 2. There are three cases:

1. if m−n ≤ 2 and βn ≥ − B
n+1+C ; then 1 + β−n−1 = Φ−1

−n(1 + β−n) ≥ Φ−1
−n(1 −

B
n+1+C )) ≥ 1− B

n+1+C because Φ−1
−n ≥ Id;
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2. if m−n > 2 and βn ≥ − B
n+1+C ; then 1 + β−n−1 = Φ−1

−n(1 + β−n) ≥ Φ−1
−n(1 −

B
n+1+C )) ≥ 1 − B

n+1+C because Φ−1
−n|]−∞,a−n] ≥ Id]−∞,a−n] and 1 − B

n+1+C =

1− C2
n+1+C −

B−C2
n+1+C ≤ a−n if B is large enough (see (12));

3. if β−n < − B
n+1+C ; we introduce the notation γ−n = − B

2(n+1+C) . The function

Φ−1
−n being convex such that D(Φ−1

−n)(1 + γ−n) = 1
(m−n−1−γ−n)2

, we have:

Φ−1
−n(1 + γ−n)− (1 + β−n−1) ≤ 1

(m−n − 1− γ−n)2
((1 + γ−n)− (1 + β−n))

If m−n ≤ 2, we have Φ−1
−n(1 + γ−n) ≥ 1 + γ−n because Φ−1

−n ≥ Id; if m−n > 2, as
1 + γ−n ≤ a−n (see point 2), we have Φ−1

−n(1 + γ−n) ≥ 1 + γ−n and then:

β−n−1 ≥ (1− 1

(m−n − 1− γ−n)2
)γ−n +

β−n
(m−n − 1− γ−n)2

Because of (8), we have:

|(m−n − 1− γ−n)− (1 +
B

2(n+ 1 + C)
)| ≤ C2

(n+ C)2
(13)

and then 1− 1
(m−n−1−γ−n)2

is positive if C is large enough. Because γ−n >
β−n

2 ,

we deduce:

β−n−1 ≥ (
1

2
+

1

2(m−n − 1− γ−n)2
)β−n

and then by (13):

β−n−1 ≥ (1− B

3(n+ 1 + C)
)β−n

If B ≥ 3, we obtain:

β−n−1 ≥ (1− 1

(n+ 1 + C)
)β−n ≥

n+ C

n+ 1 + C
β−n (14)

The end of the proof is then similar to the content of subsection 3.3 and we obtain:
− C2
n+C ≤ α−n < 0.

3.5 Regularity of the modified example

The arguments of the proof in this subsection are very similar to the ones of M. Herman.
Let us recall that we are interested in proving that lim

k→±∞
‖D2ϕk‖C0 = 0 and that
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lim
C→+∞

sup{‖D2ϕk‖C0 ; k ∈ Z} = 0 . Because of the definition g, we have: ‖D2ϕk‖C0 =

‖D2hk +D2h−1
k−1 − 2‖C0 . Let us introduce the notation:

hk(x) = x+ ∆k(x) =

∫ x

0
(1 + ψk(t))dt.

Then we want to estimate the norm C2 of:

ζk(x) = hk(x) + h−1
k−1(x)− 2x = ∆k(x)−∆k−1(h−1

k−1x).

We differentiate to obtain:

Dζk(x) = D∆k(x)−D∆k−1(h−1
k−1x)D(h−1

k−1)(x)

that is:
Dζk(x) = ψk(x)− ψk−1(h−1

k−1x)D(h−1
k−1)(x).

We define then fk : [0, `k] → [0, `k] by: fk(x) = hk−1(
`k−1

`k
x), then we have h−1

k−1(x) =
`k−1

`k
f−1
k (x). We have:

D(h−1
k−1)(x) =

`k−1

`k
(Df−1

k )(x).

Let us recall that:
ψk(x) = Kkη(

x

`k
) + αkγ±(

x

`k
).

Therefore

ψk−1(h−1
k−1x) = Kk−1η(

h−1
k−1x

`k−1
) + αk−1γ±(

h−1
k−1x

`k−1
) = Kk−1η(

f−1
k x

`k
) + αk−1γ±(

f−1
k x

`k
).

Observe that

D(h−1
k−1)(x) =

1

Dhk−1(h−1
k−1x)

=
1

1 + ψk−1(h−1
k−1x)

and then:

D(h−1
k−1)(x) =

1

1 +Kk−1η(
f−1
k x

`k
) + αk−1γ±(

f−1
k x

`k
)

Finally, we obtain:

ψk−1(h−1
k−1x)D(h−1

k−1)(x) =
Kk−1η(

f−1
k x

`k
) + αk−1γ±(

f−1
k x

`k
)

1 +Kk−1η(
f−1
k x

`k
) + αk−1γ±(

f−1
k x

`k
)
.
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Moreover, we have:

Dfk(x) =
`k−1

`k
Dhk−1(

`k−1

`k
x) =

`k−1

`k
(1 +Kk−1η(

x

`k
) + αk−1γ±(

x

`k
))

and

Df−1
k (x) =

`k
`k−1

Dh−1
k−1(x) =

`k
`k−1

1

1 +Kk−1η(
f−1
k x

`k
) + αk−1γ±(

f−1
k x

`k
)

Let us now compute for x ∈ T\{ `k2 } (even if ζk is two times differentiable at this point,

the terms in the sum are not differentiable at `k
2 ):

D2ζk(x) = Dψk(x)−Dψk−1(h−1
k−1x)

(
D(h−1

k−1)(x)
)2 − ψk−1(h−1

k−1x)D2(h−1
k−1)(x).

Following [11], we define:

IIk =
Kk

`k
Dη(

x

`k
)− Kk−1

`k
Dη(

x

`k
) +

αk
`k
Dγ±(

x

`k
)− αk−1

`k
Dγ±(

x

`k
)

IIIk = −

(
Kk−1

`k
Dη(

f−1
k x

`k
) +

αk−1

`k
Dγ±(

f−1
k x

`k
)

) Df−1
k (x)

1 +Kk−1η(
f−1
k x

`k
) + αk−1γ±(

f−1
k x

`k
)
− 1


IVk = −ψk−1(h−1

k−1x)D2(h−1
k−1)(x) =

ψk−1(h−1
k−1x)Dψk−1(h−1

k−1x)D(h−1
k−1)(x)

(1 + ψk−1(h−1
k−1x))2

i.e:

IVk =
`k−1

`k

ψk−1(h−1
k−1x)Dψk−1(h−1

k−1x)D(f−1
k )(x)

(1 + ψk−1(h−1
k−1x))2

and

Vk =
Kk−1

`k

(
Dη(

x

`k
)−Dη(

f−1
k x

`k
)

)
+
αk−1

`k

(
Dγ±(

x

`k
)−Dγ±(

f−1
k x

`k
)

)
.

Then
D2ζk(x) = IIk + IIIk + IVk + Vk.

Let us now estimate each term of this sum. We need some inequalities:

C1 ≤ ‖Dη‖C0 , ‖Dγ±‖C0 , ‖D2η‖C0 , ‖D2γ±‖C0 ≤ C2; (15)

We deduce from subsections 3.3 and 3.4 that:

|αk| ≤
C2

|k|+ C
(16)

19



and therefore, we have uniformly in C >> 1 (see (5)):

lim
k→±∞

α2
k

`k
= 0. (17)

From

1 +Kk + αk +
1

1 +Kk−1 + αk−1
= mk

we deduce:

|αk − αk−1 − (mk − 2) +Kk −Kk−1| ≤ C2(|Kk−1|+ |αk−1|)2

and by (3), (4), (8), (16):

|αk − αk−1| ≤
C2

(|k|+ C)2
(18)

Moreover, we have:

Dfk(x)− 1 =
`k−1

`k
− 1 +

`k−1

`k

(
Kk−1η(

x

`k
) + αk−1γ±(

x

`k
)

)
and

Df−1
k (x)− 1 =

`k
`k−1

1

1 +Kk−1η(
f−1
k x

`k
) + αk−1γ±(

f−1
k x

`k
)
− 1

and then we deduce from (3) and (16) that:

sup{‖Dfk − 1‖C0 , ‖Df−1
k − 1‖C0} ≤

C2

|k|+ C
. (19)

Let us estimate IIk = (Kk
`k
− Kk−1

`k
)Dη( x`k ) + (αk

`k
− αk−1

`k
)Dγ±( x`k ); because of (4), (15)

and (18), we have |IIk| ≤ C2
(|k|+C)2`k

and then, by (5), uniformly in C >> 1, we have:

lim
k→±∞

|IIk| = 0

From (3), (16) and (19), we deduce that |IIIk| ≤ C2
(|k|+C)2`k

and then uniformly in

C >> 1, we have:
lim

k→±∞
|IIIk| = 0

We have:

IVk =
`k−1

`k

ψk−1(h−1
k−1x)Dψk−1(h−1

k−1x)D(f−1
k )(x)

(1 + ψk−1(h−1
k−1x))2

.
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We deduce from (3), (15), (16) that |IVk| ≤ C2
`k(|k|+C)2

and then that uniformly in

C >> 1, we have:
lim

k→±∞
|IVk| = 0

We have for x ∈ [0, `k]:

|Dη(
x

`k
)−Dη(

f−1
k x

`k
)| ≤

∫ x

0

1

`k
‖D2η‖C0‖Df−1

k − 1‖C0 ≤ ‖D2η‖C0‖Df−1
k − 1‖C0

then by (15) and (19): |Dη( x`k )−Dη(
f−1
k x

`k
)| ≤ C2

|k|+C .

Because for every x ∈ [0, `k],
x
`k

and
f−1
k x

`k
are in the same half interval of [0, 1], γ± is

smooth between x
`k

and
f−1
k x

`k
and be can do for γ± the same estimate as for η. By (3)

and (16), we deduce:

|Vk| ≤
C2

`k(|k|+ C)2

then, by (5), uniformly in C >> 1, we have:

lim
k→±∞

|Vk| = 0.

Finally, we have proved that ϕ is C2 and even that ‖ϕ‖C2 is small.

3.6 Stable and unstable sets of the invariant curve

We denote by Γ the invariant curve, that is the graph of g − Id.
We recall that the segment with length `k

4 that has same center µk as Ik = [µk −
`k
2 , µk + `k

2 ] is denoted by Jk = [µk − `k
8 , µk + `k

8 ]. Moreover, because of the definition
of hk and gk (see subsection 3.1), have:

1. if k ≥ 1, then:

∀x ∈ [µk −
`k
8
, µk], g(x) = µk+1 +

`k+1

`k
(x− µk);

in this case,
`k+1

`k
< 1;

2. if k ≤ 0, then:

∀x ∈ [µk, µk +
`k
8

], g(x) = µk+1 +
`k+1

`k
(x− µk);

if k = 0 then
`k+1

`k
< 1 and if k ≤ −1 then

`k+1

`k
> 1.
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We deduce that:

1. ∀k ≥ 1, g([µk − `k
8 , µk]) = [µk+1− `k+1

8 , µk+1]; then g|[µk−
`k
8
,µk]

is a linear contrac-

tion;

2. ∀k ≤ 1, g−1([µk, µk + `k
8 ]) = [µk−1, µk−1 +

`k−1

8 ] and (g−1)|[µk,µk+
`k
8

]
is linear, a

contraction if k ≤ 0 and a dilatation if k = 1.

We introduce the family (Sk)k≥1 and (Uk)k≤0 of segments of T× R defined by:

Sk = {(x, g(x)− x);x ∈ [µk −
`k
8
, µk]} and Uk = {(x, g(x)− x);x ∈ [µk, µk +

`k
8

]}.

Because the curve Γ is the graph of g − Id, these segments are subsets of Γ. We have:

∀k ≥ 1, fϕ(Sk) = Sk+1 and ∀k ≤ 0, f−1
ϕ (Uk) = Uk−1;

in the first case, fϕ|Sk
is a linear contraction with rapport

`k+1

`k
and in the second case

f−1
ϕ|Uk

is a linear contraction with rapport
`k−1

`k
.

We have proved in subsection 3.2 some equalities for hk + h−1
k−1 that implies:

∀k ∈ Z,∀x ∈ Jk, ϕ(x) = (mk − 2)(x− µk) + µk+1 + µk−1 − 2µk.

Let us recall that:

fϕ(θ, r) = (θ + r, r + ϕ(θ + r)) and f−1
ϕ (θ, r) = (θ − r + ϕ(θ), r − ϕ(θ))

therefore the restriction of f−1
ϕ to any band Jk×R is linear. If we know the expression

of a linear map on a segment, we can deduce the expression of the map on the whole
line supporting the segment. In particular, if we define the families of segments (S̃k)k≥1

and (Ũk)k≤0 by :

S̃k = {(x, µk+1 − µk + (
`k+1

`k
− 1)(x− µk));x ∈ Jk} for k ≥ 1 (20)

and

Ũk = {(x, µk+1 − µk + (
`k+1

`k
− 1)(x− µk));x ∈ Jk} for k ≤ 0 (21)

then we have Uk ⊂ Ũk, Sk ⊂ S̃k and:

∀k ≥ 1, fϕ(S̃k) = S̃k+1 and ∀k ≤ 0, f−1
ϕ (Ũk) = Ũk−1.

Moreover, the restriction of fϕ to S̃k is a linear contraction with rapport
`k+1

`k
and the

restriction of f−1
ϕ to Ũk is a linear contraction with rapport

`k−1

`k
. We then deduce that

S̃k is in the stable set of the point (µk, µk+1−µk) and that Ũk is in the unstable set of
the point (µk, µk+1 − µk).

We then extend these two families of segments by:
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• if k ≤ 0, S̃k = fk−1
ϕ (S̃1);

• if k ≥ 0, Ũk = fkϕ(Ũ0).

Let us now choose a C∞ injective map γs1 : R → S̃1 such that γs1(0) = x1 =
(µ1, µ2 − µ1), γs1(R) is S̃1 without its ends and γs1(]−∞, 0[) is S1 without its ends.
Similarly, we choose a C∞ injective map γu0 : R→ Ũ0 such that γu0 (0) = x0 = (µ0, µ1−
µ0), γu0 (R) is Ũ0 without its ends and γu0 (]0,+∞[) is U0 without its ends.

We extend these curves to two families by: γsk = fk−1
ϕ ◦ γs1 and γuk = fkϕ ◦ γu0 . Then

we have:

1. fϕ ◦ γuk = γuk+1 and fϕ ◦ γsk = γsk+1;

2. ∀y ∈ γs0(R), lim
n→+∞

d(fnϕy, f
n
ϕx0) = 0 and ∀y ∈ γu0 (R), lim

n→+∞
d(f−nϕ y, f−nϕ x0) = 0;

3. γsk(]−∞, 0]) ∪ γuk ([0,+∞[) ⊂ fk−1
ϕ (S1) ∪ fkϕ(U0) ⊂ Γ.

Let us now prove that γs1(]0,+∞[)∪ γu0 (]−∞, 0[) ⊂ T×R\Γ. We will deduce that
γs1(]0,+∞[) is a part of the stable set of x1 and of Γ that doesn’t meet Γ, hence it is
in an instability zone U and Γ is in the boundary of U (see the proposition contained
in subsection 1.3); we will even see that U is under Γ. Similarly, we will prove that
γu0 (]−∞, 0[) is in U . We will of course deduce that:

∀k ∈ Z, γsk(]−∞, 0[) ∪ γuk (]0,+∞[) ⊂ U .

By (20), we have an explicit expression for:

γs1(]0,+∞[) = {(x, µ2 − µ1 + (
`2
`1
− 1)(x− µ1));x ∈]µ1, µ1 +

`1
8

[}

Moreover, because of the definition of Γ, we have (see subsection 3.1):

∀x ∈]µ1, µ1 +
`1
8

[, g(x)− x = (
`2
`1

+ α1 − 1)(x− µ1) + µ2 − µ1.

As α1 > 0 and Γ is the graph of g−Id, we deduce that γs1(]0,+∞[) doesn’t meet Γ, and
even that γs1(]0,+∞[) is under Γ. A similar argument gives the result for γu0 (]−∞, 0[).
Remark. 1) If we exchange γ− and γ+, we obtain an instability zone U that is above
Γ.
2) If we use a similar construction along two wandering intervals, we obtain a curve Γ
that is at the boundary of two instability zones.
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4 The case of the C1 topology: proof of theorem

2

If U is an open subset of A, the set Diff1
ω(U) of C1 symplectic diffeomorphisms of U is

endowed with the strong Whitney’s topology (see [12, 20]). Observe that the set T of
symplectic twist maps of A is open for the Whitney topology in Diff1

ω(A). Then if U
is any open subset of A, the set T (U) of the restrictions to U of symplectic twist maps
of A is open in Diff1

ω(U).
The following result is theorem 3 of [2].

Theorem. ([2]) Let (M,ω) be a non-compact closed manifold. There exists a dense
Gδ subset G of Diff1

ω(M) such that, for all f ∈ G, the set of points of M whose positive
orbit is relatively compact in M has no interior.

Let us now consider an essential invariant curve Γ of a symplectic twist map f of
A. The curve Γ is then the graph of a Lipschitz map γ : T → R. Denoting by U one
of the two connected components of A\Γ, we have: f(U) = U . In order to define a
neighborhood U of f|U for the C1 strong topology, we use the function ε : U → R∗+
defined by ε(θ, r) = (r − γ(θ))2.

U = {g ∈ T (U);∀(θ, r) ∈ U, sup {d(f(θ, r), g(θ, r)), ‖Df(θ, r)−Dg(θ, r)‖} ≤ ε(θ, r)}.

The previous theorem implies that there exists h ∈ U such that the set of points of U
whose positive orbit for h is relatively compact in U has no interior.

We now define g : A→ A such that g|A\U = f|A\U and g|U = h. It comes from the

definition of U and T (U) that g ∈ Diff1
ω(A).

Let us prove that U contains at most one essential invariant curve for g. If not, there
exists a bounded invariant open region R between two such invariant curves. Then all
the points of R have a positive orbit that is relatively compact in U , this is a contra-
diction with the choice of h.
Let us now assume that f|Γ has an irrational rotation number or that f|Γ is C0 conju-
gated to a rational rotation. We have noticed in subsection 1.3 that in this case, if Γ∗

is another essential invariant curve of f , than Γ ∩ Γ∗ = ∅. Hence the closure Ū of U
contains at most one essential invariant curve that is different from Γ, and this curve
is contained in U . There are two cases:

• either U contains one essential invariant curve Γ′ for g. The region R between Γ
and Γ′ is an instability zone for g and its boundary contains Γ;

• or U contains no essential invariant curve for g. The curve Γ is at the boundary
of the instability zone U of g.
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Remark. Using methods contained in the (non-published) thesis of my student Marie
Girard that allows us to destroy all the invariant curves by perturbation, we can choose
h such that U contains no essential invariant curve and thus is an instability zone.

The only case that we did not solve is the case of a rational rotation number for
f|Γ and a hyperbolic dynamics for f|Γ (i.e. we assume that all the periodic points of
f|Γ are hyperbolic).
C. Robinson proved the following result in [21]. Let us recall that a periodic point p
of f with period τ is non-degenerate if no root of 1 is an eigenvalue of Df τ (p).

Theorem. ([21]) Let (M,ω) be a closed manifold. There exists a dense Gδ subset G of
Diff1

ω(M) such that, for all f ∈ G, the periodic points are non degenerate and the stable
and unstable manifolds of each pair of hyperbolic periodic orbits of f are transverse at
all of their points of intersection.

We assume now that f ∈ T (A) a symplectic twist map that has an essential invari-
ant curve Γ such that:

• its rotation number is rational;

• the periodic points of f|Γ are all hyperbolic.

Then there is a finite number of such periodic points, that we denote by x1, . . . , xn,
and Γ is the union of {x1, . . . , xn} and some branches of the stable/unstable manifolds
of these periodic points. Let us notice that every g ∈ U can be extend in a unique
g̃ ∈ T (A) by: g̃|A\U = f|A\U and that in this case, Dg̃|Γ = Df|Γ. Hence g̃ has the same
periodic points as f on Γ, and this periodic points are hyperbolic.

We can directly adapt Robinson’s proof to build a dense Gδ G of U such that for
all g ∈ G, the stable and unstable branches of the stable and unstable manifolds of the
xi for g̃ that are contained in U are transverse at all of their points of intersection.

If now Γ∗ is an essential invariant curve for g̃ that is contained in Ū and that meets
Γ, then Γ∩Γ∗ is a closed invariant set that contains a point of the stable manifold of a
point xi. Hence it contains this xi. The rotation number of Γ∗ is then equal to the one
of Γ, and then Γ∗ is the union of {x1, . . . , xn} and some branches of the stable/unstable
manifolds of these periodic points. But if Γ 6= Γ∗, then Γ∗ contains a branch in U that
is a stable and an unstable branch, and this contradicts the transversality of such
branches. We deduce that either Γ = Γ∗ or Γ ∩ Γ∗ = ∅, and we can conclude exactly
in the same way as is the irrational case.
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