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Abstract. Multi-agent simulations are powerful tools to study complex 

systems. However, a major difficulty raised by these simulations concerns the 

design of the agent behavior. Indeed, when the agent behavior is lead by many 

conflicting criteria (needs and desires), its definition is very complex. In order 

to address this issue, we propose to use the belief theory to formalize the agent 

behavior. This formal theory allows to manage the criteria incompleteness, 

uncertainty and imprecision. The formalism proposed divides the decision 

making process in three steps: the first one consists in computing the basic 

belief masses of each criterion; the second one in merging these belief masses; 

and the last one in making a decision from the merged belief masses. An 

application of the approach is proposed in the context of a model dedicated to 

the study of the avian flu propagation. 

Keywords: multi-agent simulation, agent behavior formalization, belief 

theory, avian flu propagation. 

1   Introduction 

Agent-based simulations are now widely used to study complex systems.  

However, the problem of the agent design is still an open issue. Indeed, designing 

realistic agents is a complex task, in particular when their behavior is lead by many 

conflicting needs and desires. A reason of this complexity comes from the lack of 

practicable formalisms to define the agent decision-making process. In consequence, 

most of modern models still use ad hoc formalisms to represent the agent behaviors. 

In this paper, we propose a new approach to formalize the behavior of agents: this 

one is based on the belief theory. This theory allows to formalize the reasoning. It can 

be used to make a decision between several alternatives according to a set of criteria. 

An advantage of this theory is that it allows to make decision even with 



incompleteness, uncertainly and imprecision, which is particularly interesting in the 

simulation context. 

The paper is organized as follows. In Section 2, the general context of our work is 

introduced, in particular the problem of the agent behavior formalization. Section 3 is 

devoted to the presentation of the belief theory and its application for agent behavior 

design. Section 4 describes an application of our formalism to define the behavior of 

poultry flocks in the context of a study of the avian flu propagation. Finally, Section 5 

concludes and presents the perspectives of this work. 

2   Context 

2.1   Formalisms to represent the agent behavior 

In this paper, we are interested in the formalisms used to represent the agent 

behavior. If many formalisms were defined in the multi-agent community (final state 

machine, BDI [1], motivational [2], etc.), these ones are not of much use for agent-

based simulations. A reason is their inadequacy to the simulation context: a 

formalism, to be used in simulation, has to allow thousands of agents to make a 

decision from many criteria in a short amount of time. Thus, the formalisms, such as 

BDI, that are designed for cognitive agents, rather than reactive ones, are usually not 

usable for multi-agent simulation. Formalisms such as final state machine can be used 

for simple agents, but its representation capability is fairly limited.    

2.2   Agent behavior as a multi-criteria decision making problem 

We propose to formulate the behavior of the agents as a multi-criteria decision 

making problem: at each step of the simulation, the agent has to make a decision: 

which action to apply? The action choice will be guided by the needs and desires of 

the agent. We propose to formulate these needs and desires as a set of criteria. Thus, 

the agent behavior consists in choosing, according to a set of criteria, the most 

pertinent action.  

 

In the literature, several approaches were proposed to solve this type of multi-

criteria decision-making problems.  

A first family of approaches, called partial aggregation approaches, consists in 

comparing the different possible decisions per pair by the mean of outranking 

relations [3, 4].  

Another family of approaches, called complete aggregation approaches, consists in 

aggregating all criteria in a single criterion (utility function), which is then used to 

make the decision [5, 6].  

A last family of approaches, which is highly interactive, consists in devising a 

preliminary solution and comparing it with other possible solutions to determine the 

best one [7, 8].  



Partial aggregation approaches allow to address the problem of criterion 

incompatibility but lack of clarity compare to complete aggregation approaches [9]. 

  

The approach we are interested in belongs to the complete aggregation approaches. 

It inherits from the signal detection theory [10] and is built on the belief theory. In the 

next section, we describe this approach and its application for the agent behavior 

design. 

3   Use of the belief theory to design the agent behavior 

3.1   Multi-criteria decision making using the belief theory 

Generality 
The belief theory, also called Dempster-Shafer theory, was proposed by Shafer in 

1976 [11]. It is based on the Theory of Evidence introduced by Dempster [12], which 

concerns the lower and upper probability distributions. It allows to manage 

incompleteness, uncertainty and imprecision of data. It has been used with success for 

many applications (e.g. [13, 14, 15]). 

The belief theory first defines a frame of discernment, noted Θ. It is composed of a 

finite set of hypotheses corresponding to the potential solutions of the considered 

problem.  

Θ={H1, H2,…, HN} 

From this frame of discernment, let us define the set of all possible assumptions, 

noted 2
Θ
: 

2
Θ
 = {∅, {H1}, {H2}, ..., {H1, H2}, ...,Θ} 

Each set {Hi, ..., Hj} represents the proposition that the solution of the problem is 

one of the hypotheses of this set. 

The belief theory is based on the basic belief assignment, i.e. a function that 

assigns to a proposition P, with P∈2
Θ
, a value named the basic belief mass (bbm), 

noted mj(P). It represents how much a criterion j -called source of information- 

supports the proposition P. The bbm is ranged between 0 and 1 and is defined as 

follows: 

 

Decision making approach 
In our agent behavior context, each hypothesis represents the fact that an action of the 

set of actions A is the best one. For example: “{H1}: the best action of A is a1”, “{H2}:  

the best action of A is a2”, “{H1, H2}: the best action of A can be either a1 or a2”, etc. 

The decision making approach is composed of four steps. 

1Pm
2P

j =∑
∈ Θ

)(



Step 1 
This first step consists in initializing the basic belief masses. For this step, we 

propose to use the works of Appriou [16]. He proposed to “specialize” the criteria for 

one hypothesis of the discernment frame. Thus, the criteria give one’s opinion only in 

favor of a hypothesis, in disfavor of it or do not give their opinion. For each 

hypothesis Hi of Θ, a subset S
i
 of 2

Θ
 is defined: 

Si = {{Hi}, {¬Hi}, Θ} 

• {Hi}: this proposition means that the hypothesis Hi is true. 

• {¬Hi}
 
= Θ - {Hi}: this proposition means that the hypothesis Hi is false. 

• Θ: this proposition means the ignorance (i.e. every hypotheses can be 

true).  

 

Thus, the initialization of the basic belief masses consists in computing, for each 

criterion j and for each hypothesis Hi of Θ, the basic belief masses { }( )i

H

j Hm i , 

{ }( )i

H

j Hm i ¬  and ( )ΘiH

jm . 

To compute all the bbm, belief functions have to be defined. A belief function is a 

function that returns a float value between 0 and 1 according to the value of a 

considered criterion for a given hypothesis. Let bf be a belief functions, j a criterion 

and Hi a decision of Θ. We note iH

jV the value of the criterion j for the hypothesis Hi. 

[ ]1,0:)( →ℜiH

jVbf  

Examples of belief functions are given Sections 4.2. 

Step 2 
This step consists in combining criteria with each other. We propose to use the 

conjunctive operator introduced in [17] to provide a combined bbm synthesizing the 

knowledge from the different criteria. Let us consider two criteria C1 and C2. The 

conjunctive operator is defined as follows:  

{ } { }{ } )"()'()(,,,,
2121

"'

PmPmPmHHPH iii H

C

PPP

H

C

H

CCiii ×=Θ¬∈∀Θ∈∀ ∑
=∩  

The fusion of criteria can introduce a conflict, e.g. when one criterion assigns a 

bbm not null for the proposition {Hi} and another criterion assigns a bbm not null for 

the proposition {¬Hi} (i.e. when P’∩P”=φ). This conflict will be taken into account 

in the decision. 

For example, let {C1,C2} be a set of criteria, and H1 an hypothesis of Θ. Let the 

bbm be defined as follows: 
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The belief masses resulting after the fusion of C1 and C2 are equal to: 
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This conjunctive operator is commutative and associative. Thus, it is possible to 

combine the result of a previous fusion with the belief masses of another criterion.  

Let C be the criterion set. At the end of this step, for each decision Hi of Θ, we 

obtain the combined belief masses { }( )i

H

C Hm i , { }( )i

H

C Hm i ¬ , ( )ΘiH

Cm  and ( )φiH

Cm . 

Step 3 
This step consists in combining hypotheses with each other. This combination is 

interesting because it allows to take into account in the final ranking, the fact that 

some criteria reject some hypothesis (¬Hi). 

We propose to use the Dempster operator [12] to compute the belief masses 

resulting from the combination of two hypotheses Hi and Hj: 
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The coefficient 

( )φji HH

Cm
,

1

1

−

 is used to normalize the belief masses obtained. In 

the case of a total conflict ( ( ) 1
,

=φji HH

Cm ), no decision can be made.  

For example, let Θ be composed of two hypotheses, H1 and H2 (Θ = {H1, H2}, 

{¬H1}={H2}, {¬H2}={H1}). Let the belief masses be defined as follows: 
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The belief masses resulting from the fusion of C1 and C2 are equal to: 
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At the end of this step, a belief mass for each proposition { }( )1HmC

Θ , { }( )2HmC

Θ , ..., 

{ }( )21 , HHmC

Θ , ... , ( )ΘmC

Θ  is obtained. 

Step 4 
The last step consists in making the decision. We are only interested in the 

propositions that concern a unique hypothesis (one action) and not a set of 

hypotheses. Thus, to evaluate each proposition we propose to use the pignistic 

probability [18].  

The pignistic probability of a proposition A is computed by the following formulae: 

∑
⊆

=
BA B

A
BmAP )()(

 

More a proposition maximizes this probability, more the corresponding hypothesis 

is true. Thus, the decision making will be based on this probability. 

For example, let Θ be composed of two hypotheses, H1 and H2 and the belief 

masses of all the propositions be defined as follows: 

{ }( ) 93.01 =Θ HmC
, { }( ) 04.02 =Θ

HmC
, ( ) 03.0=ΘΘ

Cm  

The resulting pignistic probabilities are: 

{ }( ) { }( ) ( ) 945.0
2

1

1

1
11 =×Θ+×= ΘΘ

CC mHmHP     { }( ) { }( ) ( ) 055.0
2

1

1

1
22 =×Θ+×= ΘΘ

CC mHmHP  

Thus, H1 has more chance to be true than H2. 

 

3.2 Application of the belief theory to define the agent behavior 

As presented in the previous section, the belief theory allows to make a decision 

from a set of possible actions according to a set of criteria.  

 

In order to use the belief theory to formalize the behavior of an agent, the modeler 

has to define several elements: 

• A set of criteria that allow to evaluate the different possible actions.  

• For each criterion: a belief function for the hypotheses “this action is the best one”, 

“this action is not the best one”, “ignorance”. 

 

Remark that it is possible to decrease the complexity of the decision making 

computation by filtering the possible actions:  only actions that are pareto-optimal are 

kept . 

 

For some agents, it will also be possible (and mandatory) to divide the decision 

making process into several sub-processes. This division can be use to decrease the 

complexity of the decision process or to use different sets of criteria that will 

correspond to different steps of reasoning. Indeed, for example, it is possible to divide 

the decision making process into two steps: the first one consisting of choosing a 

general objective for the agent (e.g. eating, drinking) and a second consisting in 

choosing the best place to carry out this objective. Another example is given in 

Section 4.2.  



4   Application: model dedicated to the avian flu propagation 

In order to illustrate our agent behavior formalism, we present an application of it 

for a real model about the H5N1 endemic in North Vietnam. After a brief presentation 

of a context, we focus on the agent behavior design. A description of the complete 

model is available in [19]. 

4.1   Application context 

H5N1 is still a major threat for both economy and health. It has spread over Asia, 

Europe and some parts of Africa. Nowadays, the endemic appears to be circumscribed 

to South East Asia mainly. Nevertheless, the eradication of the virus is far from being 

achieved. In the North Vietnam context, epidemiologists need to study the 

mechanisms of its local spread and persistence in the context of semi-industrialized 

and traditional poultry sectors, in order to limit the impact of the virus. To do so 

agent-based modeling has been selected for its capabilities of detailed representation, 

especially concerning the environment, and its flexibility. 

Consequently, the purpose of the proposed models is to investigate and evaluate 

the importance of various factors, including poultry production, environments 

(especially aquatic ones), topography, etc, on the persistence and spread of H5N1 

within a village or a commune in the Red River delta. Specifically, the model is about 

investigating the relationships between environments (as virus reservoirs) and the 

traditional or semi-commercial poultry production systems. 

 

The real system modeled here is the H5N1 endemics in the traditional and semi-

industrial poultry production sector in the Red River Delta (North Vietnam). We limit 

the represented system to a village (several prototypes were determined using 

principle component analysis). Within this system, we focus on farms and poultry 

flocks. Here, poultry flocks can be duck or chicken. These flocks have various 

behaviors depending on the types of production. As implied by this description 

several natural environments are represented: building, inner-village ground, road, 

rice-field (flooded or dry) and pond. Figure 1 shows a snapshot of the model 

implemented with the GAMA platform [20, 21] 
 



 

Fig. 1. Model implemented with the GAMA platform [20, 21] 

In the next section, we focus on the design of the Flock agent behavior. In 

particular, we illustrate how the formalism presented in Section 3 is used to design 

this behavior. 

4.2   Flock behavior design 

In this model, we chose to divide the agent behavior in two steps: first, the agent 

analyses the best places to eat, to drink and to rest, second, the agent chooses an 

objective. This one can be to “eat”, to “drink”, to “go home”, “to rest” or “no 

objective”. If no objective is defined, the agent wanders. 

 

The division of the behavior in two steps allows to use different sets of criteria for 

each step. Moreover, it decreases the computational resources required to make the 

decision. Indeed, as we are in the context of multi-agent based simulation, the 

computation complexity of the process is an important factor. The choice to compute 

first the best places for each activity is mandatory as it impacts the choice of the 

objective. This allows us to represent the opportunist behavior of a flock, for example: 

a flock seeing a good place to eat (very close, with a lot of foods and no other flock in 

the neighborhood) can be tempted to eat at this place even if it is not hungry. 

4.2.1   Place selection 
 

We defined several criteria to assess the quality of each type of places (eating 

places, drinking places and resting places), each type of places has the same pool 

types of criterions. Here the list of criterion along its “belief functions”: 



• Distance to the place: this criterion allows to assess the distance between 

the flock and the candidate places. The belief functions of this criterion 

are illustrated in Figure 2. 

 

 

Fig. 2. Belief functions for the distance criterion 

• Quantity of resources: this criterion allows to assess the quantity of food 

contains in the candidate places. Remark that this criterion is not use in 

the context of the resting place selection. The belief functions of this 

criterion are presented in Figure 3. 

 

Fig. 3. Belief functions for the quantity of resources criterion 

• Quality of the place regarding an objective (i.e. for eating objective, the 

quality of the place will be the quality of food). This criterion depends on 

the nature of places: water (W), rice-field (RF), dry-culture (DC) or 

ground (G). For instance, a flock usually prefers to eat in a rice-field, but 

it can also eat in a dry-culture field, or at worse directly on the ground or 

in water. Figures 4, 5 and 6 respectively present the belief functions for 

the eating, drinking and resting objective.  

 



 

Fig. 4. Belief functions for the quality of the place for eating criterion 

 

Fig. 5. Belief functions for the quality of the place for drinking criterion 

 

Fig. 6. Belief functions for the quality of the place for resting criterion 

• “Agoraphobia”: usually, flocks try to avoid to go to place too near of 

other flocks. Thus, this criterion allows to assess this “agoraphobia”. The 

belief functions of this criterion are illustrated in Figure 7. These 

functions take as input the number flocks located at distance inferior to 

200m to the considered flock. 

 

 

Fig. 7. Belief functions for the agoraphobia criterion 



Once the value of each criterion has been computed, the agent filters the possible 

candidates in order to keep only the ones belonging to the Pareto-optimal front. Then, 

the decision making process presented in Section 3 is used to select the most relevant 

ones (one for each objective: eating, drinking and resting).  

4.2.2   Objective selection 
 

The second step consists in computing the best objective among the five defined: 

“eating”, “drinking”, “resting”, “go home” and “no objective”. The evaluation of 

these objectives is based on the internal state of the agents and the time of the day (the 

environment influence is taken into account during the places selection). The internal 

state variables related to the objective selection are hunger, thirst, tiredness and 

“homesickness” levels. They are continuously updated according to the agent’s 

action, for example: if a flock is resting, it will decrease its tiredness and slowly 

increase the hunger and thirsts levels. 

 

The objective choice is based on several criteria that are described hereafter: 

• Time of the day: this criterion allows to specify time intervals for each 

objective. Indeed, some activities are more likely to be done at specific 

hours (e.g. going back home at sunset). Figure 9 presents the belief 

functions of this criterion. These functions take as input the difference 

between the current time of the day and the time intervals defined for each 

objective.  

o Eating objective: [7am-9am] ∪ [2pm-4pm] 

o Drinking objective: [8am-9am] ∪ [2pm-5pm] 

o Resting objective: [9am-2pm]   

o Going home objective: [5pm-7pm]   

 

 

Fig. 8. Belief functions for the time criterion 

• Adequacy to the flock needs: this criterion assesses the adequacy between 

the agent need (internal state) and the different objectives. Figure 9 

presents the belief functions of this criterion. These functions take as input:  

o Eating objective: Hunger = max_food_level – current_ 

food_level 

o Drinking objective: Thirst =max_water_level – current_ 

water_level 

o Resting objective: Tiredness = time_since_last_rest 



o Going home: “Home-sickness” = time_since_last_going_home 

 

Fig. 9. Belief functions for the need criterion 

• Quality of the best selected place: this criterion assesses the quality of the 

best selected places (the ones selected in Section 4.2.1). The belief 

functions of this criterion are presented in Figure 10. These functions take 

as input the value computed at the end of the first step. Concerning the 

“going home” objective, the value is constant. Indeed, only one place can 

be chosen for this objective (the flock farm),  

 

 

Fig. 10. Belief functions for the place quality criterion 

Once the value of each criterion has been computed, the agent uses the decision 

making process presented in Section 3 to select the most relevant objective (among 

“eating”, “drinking”, “resting” and “going home”). If the pignistic probability 

computed for this objective is lower than a predefined threshold (defined by 

thematician through interaction with the simulation), no objective is selected and the 

agent wanders; otherwise, the agent carried out its selected objective.   

5   Conclusion 

In this paper, we proposed to use the belief theory to formalize the agent behavior. 

We present an application of this formalism for a model dedicated to study  H5N1 

propagation in North Vietnam. It allowed us to have a precise and realistic 

representation of flock’s behavior while being tunable by field specialist. 

In terms of perspective, we want to apply our approach to other models, in 

particular social model integrating numerous decision criteria. We think that it would 

be of even more interest to represent more elaborated behavior such has human ones. 

A key issue in the use of our formalism concerns the definition of the belief 



functions. In this context, we propose to develop methods to learn directly through a 

participatory approach. This approach could be based on the one that we proposed in 

[22, 23]. 
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