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Abstract. The agent-based modeling is now widely used to study complex 

systems. Its ability to represent several levels of interaction along a detailed 

(complex) environment representation favored such a development. However, 

in many models, these capabilities are not fully used. Indeed, only simple, 

usually discrete, environment representation and one level of interaction (rarely 

two or three) are considered in most of the agent-based models. The major 

reason behind this fact is the lack of simulation platforms assisting the work of 

modelers in these domains. To tackle this problem, we developed a new 

simulation platform, GAMA. This platform allows modelers to define spatially 

explicit and multi-level models. In particular, it integrates powerful tools 

coming from Geographic Information Systems (GIS) and Data Mining easing 

the modeling and analysis efforts. In this paper, we present how this platform 

addresses these issues and how such tools are available right out of the box to 

modelers.  

Keywords: Agent-based modeling, Geographic vector data, Multi-level 

models 

1   Introduction 

The agent-based modeling has brought a new way to study the complex systems. It 

allows to take into account different levels of interactions as well as the heterogeneity 

of the entities composing the system.  

Even if numerous simulation platforms exist, most of the complex models are still 

developed from scratch. Indeed, very few platforms allow to directly work with 

geographic vector data (series of coordinates defining geometries) and/or to define 

multi-level models. Moreover, these platforms are often complex to use and their 

understanding can require a time investment from the modeler that can be similar to 

the one needed to develop a model from scratch. 

In this paper, we present the last version of the GAMA multi-agent simulation 

platform [1][2] and in particular the new capabilities concerning the integration of 



GIS data and the development of multi-level models. GAMA provides a complete 

modeling and simulation development environment for building spatially explicit 

multi-agent simulations. Many models have already been implemented using this 

platform (e.g. [3][4][5][6]). Its main advantages come from its versatility (domain 

independent) and the simplicity to define a model with it. Indeed, GAMA provides a 

rich, yet accessible, modeling language based on XML, GAML, that allows to define 

complex models integrating at the same time entities of different scales and 

geographic vector data.  

The paper is organized as follow. In Section 2, we present the capabilities of 

GAMA concerning the integration of geographic vector data. Section 3 is dedicated to 

the presentation of its multi-scale modeling capabilities. Section 4 presents two actual 

models developed with GAMA. Section 5 discusses about the contributions of the 

paper. At last, Section 6 concludes. 

2   Integrating geographic vector data in simulation 

2.1   Use of geographic vector data in simulation 

These last years have seen the development on a large scale of geographic vector 

datasets. Today, most of the decision makers use this type of data when they have to 

face a problem integrating a spatial dimension. In the context of simulations, using 

this type of data allows to make the simulations closer to the field situation. Indeed, as 

shown in [7], passing from a grid representation of the environment to a vector one 

has deep impact on the result and the realism of the model. In addition, it allows to 

use tools, like spatial analysis, coming from Geographic Information Systems (GIS) 

to manage these data. 

If more and more models integrate geographic vector data, their use can take 

different forms from the simplest (reading/writing of geographic data) to the most 

complex (agentification of geographic data). 

The most basic functions concerning the use of geographic vector data are the 

reading and the writing of geographic data from files and from database. The goal is 

to integrate seamlessly the vector data as the simulation’s environment (input) and to 

store the resulting environment (output).  Once geographic vector data has been read, 

several uses can be made of them. The most straightforward one consists in 

translating them as a grid where agents are localized. 

A more complex use consists in using these data as a “background layer” 

constituted of geographic objects: the agents will be able to move according to this 

layer. For example, some agents will be able to move along a network of road, or 

inside a complex polygon (e.g. inside a forest represented by a polygon. This use 

requires the integration in the simulator of GIS specific primitives such as moving an 

agent inside a geometry, computing a shortest path between two points of this 

geometry (or on a network), etc. 

A richer ways of integrating geographic vector data in a model is to consider each 

geographic object as an agent. Thus, a road will be an agent, a building or a city, and 

each object contained in a geographic dataset will also be represented by an agent. 



Remark that this kind of geographic data agentification was already used for other 

application contexts such as cartographic generalization [8]. In the context of 

simulation, the advantage of this approach is to give the possibility to manage 

geographic objects exactly like other agents in the simulation: it will be possible to 

give them an internal state and a behavior. Reciprocally, it is possible to go further 

and to consider that every “spatialized” (localized and with a geometry) agents of the 

simulation has a geometry and can be viewed as a geographic object in a geographic 

dataset. In this way, the management of agents and geographic objects is equivalent 

and trouble-free. Indeed, no difference is made anymore between agents and 

geographic objects. 

2.2   Geographic vector data in existing simulation platforms 

Swarm [9] is a well-established simulation platform and inspiration for many others. 

Its original version does not allow to integrate geographic vector data. However, a 

library called Kenge [10] allows to load layers of geographic vector data.  Practically, 

this extension allows to create a cellular automata from a shapefile. In addition, an ad 

hoc access to geographic data has been developed for specific models (e.g. [11]). 

Unfortunately, they do not provide any spatial primitives neither the possibility to 

store the resulted environment. 

Netlogo [12] is also a well-established simulation platform. It is largely used for 

educational purpose and for research. The GIS support has been added recently 

through an extension [13]. It allows import and export of vector data and support the 

projection system (the method used to represent the geographic data on a plane). The 

attributes of the vector data are made accessible as well as their geometrical 

characteristics (centroid, list of vertex, etc.). Some basic geometrical operations are 

also available (bounding rectangles, union of polygons, etc.). However, many more 

advanced spatial analysis operation are not offered. 

CORMAS [14] is a platform dedicated to the modeling in ecology and especially 

the natural resources management where space representation and interaction is 

essential. It proposes two environment modes: vector and raster. They share the same 

organization of 3 classes «spatial entity», «agent», and «object». This organization, 

though being rigid, ease the development of model by abstracting the interaction with 

environment, thus allows to switch from a discrete environment to a continuous (or 

vector) one. Unfortunately, CORMAS provides only basic services for the discrete 

environment. Moreover, GIS support is limited to loading and storing shapefiles (a 

popular vector data format) and creating elementary areas. GIS primitives (union, 

intersection, shortest path, etc.) and access to polygon attributes have to be 

programmed. In 2008, Urbani proposed the SMAG (portmanteau word from SMA-

SIG or MAS-GIS in english) architecture linking a GIS and MABS simulator for 

decision support system. The author implemented it over CORMAS, calling it 

CORMGIS [15]. The integration is relatively basic as access to geo-referenced data is 

done through a data-connection to ArcGIS. In addition, no GIS primitive (union, 

intersection, etc) is available. 

Repast J [16] is a modeling toolkit inspired by Swarm. As a toolkit, it provides a 

structure with only basic services readily available. Different grids are implemented 



(hexagonal or rectangular, torus or not, etc.) but agents are not (only an interface is 

given). The GIS support is done through the OpenMap library. It provides the 

minimal services of a GIS: importing/exporting shapefiles and raster data, some 

geometrical operations, access to data attributes, etc. Nevertheless, as Repast J 

provides access to OpenMap, the modeler can implement more complex operations. 

Unfortunately, this programming is far from reach of the vast majority of modelers. 

Repast Symphony (Repast S) [17] is the up-to-date version of the Repast toolkit. It 

provides the same basic features as Repast J, but is based on a more advanced GIS 

library, Geotools, which provides additional GIS services. In particular, Repast S 

allows to directly model a network of lines as a graph and to compute the shortest 

paths from one point to another. It allows as well to visualize and manage 3D data.  

Nevertheless, the number of GIS operations available are still fairly limited and 

localized agents are still to be programmed. More advanced operations have to be 

programmed (using the Geotools librabry) which is again, evidently, far from reach 

for many modelers. 

2.3   Geographic vector data in GAMA 

In order to address these shortcomings we developed the GAMA platform, which 

goes much further by making available many more GIS services and operations and 

especially an advance management of geographic vector data.  

The first version of GAMA that was presented in [1] proposed the idea of using a 

continuous environment to serve as a reference for all other environments (e.g. grid 

environment). In this former version, all situated agents had a point for geometry. The 

use of geographic vector data was very limited: there were just to initialize the initial 

location of the agents and as a background layer.  

If the new version of GAMA (GAMA 1.3) kept the same idea of a reference 

environment, it goes further by providing a true geometry to all situated agents. This 

geometry, which is based on vector representation, can be simple (point, polyline or 

polygon) or complex (composed of several sub-geometries). The geometry of the 

agents can be defined by the modeler (a list of points) or directly loaded from a 

shapefile. Indeed, GAMA allows to use geographic vector data to create agents of a 

specific species (a prototype of agents that defines both the agent internal state and 

their behavior): each object of the geographic data will be automatically used to 

instantiate an agent, GAMA taking care of managing the spatial projection of the data 

and, if necessary, of reading the values of the attributes. Consequently GAMA 

considers localized agents and geographic objects in the exact same way. 

Example: the following GAML lines allow to create a set of building agents from the 

shapefile shape_file_building.shp and to set the value of the attribute nature of each created 

building agent according to the attribute NATURE of the shapefile: 

<create species="building" from="shape_file_building.shp"   

with="[nature:: read ‘NATURE’]"/> 

Figure 1 gives an example of the agentification of 4 buildings from a shapefile.  

In the same way, GAMA allows to save a set of agents in a shapefile. 



Example: the following GAML lines allow to save all the agents of the species 

building in the shapefile shape_file_building.shp and to set the value of the attribute 

NATURE of each geographic object according to the attribute nature of the agents: 

<save species="building" to="shape_file_building.shp"   

with="[nature:: ‘NATURE’]"/> 

 

Fig. 1. Example of geographic data agentification 

In order to ease the manipulation of the vector geometries, GAMA integrates 

different GIS features that are directly available through the GAML language. Thus, 

GAMA allows to: 

• Compute the area and the perimeter of a geometry. 

Example: The following GAML line allows to compute the area of the geometry of the 

agent ag: 

<let name="the_area" value="ag.area" /> 

• Test if two geometries intersect, touch, cross, overlap each other. 

Example: The following GAML lines allow to test if the geometry of the agent that is 

applying the action intersects the geometry geom: 

<do action="interection" return="is_true"> 

<arg name="geometry" value="geom" /> 

</do> 

• Compute the convex hull and the buffer geometry of a geometry. 

Example: The following GAML line allows to compute the convex hull of the geometry of 

the agent that is applying the action: 

<do action="convex_hull" return="result"/> 

• Apply translation, rotation and scaling operations on a geometry.   

Example: The following GAML lines allow to rotate the geometry of the agent that is 

applying the action with an angle of 90°: 

<do action="rotation "> 
<arg  name="angle" value="90" /> 

</do> 

• Compute the geometry resulting from the union, intersection or difference of two 

geometries. 

Example: The following GAML lines allow to compute the difference between the geometry 

geom1 and the geometry geom2: 

<do action="difference" return="result"> 
<arg name="geometry1" value="geom1" /> 

<arg name="geometry2" value="geom2" /> 

</do> 



• Compute the distance between two geometries (minimal distance). 

Example: The following GAML lines allow to compute the distance between the geometry 

of the agent that is applying the action and the geometry geom: 

<do action="distance_geometry" return="result"> 
<arg name="geometry" value="geom" /> 

</do> 

• Compute the neighborhood of an agent, i.e. all the agents that are localized at a 

distance lower than a given thresholds to the agent. 

Example: The following GAML lines allow to compute the neighborhood of the agent ag: 

<let name="neighborhood" value="ag.neighbours_geometry "/> 

• Compute a random point inside a geometry. 

Example: The following GAML lines allow to compute a random point inside the geometry 

geom: 

<do action="place_in" return="result"> 
<arg name="geometry" value="geom" /> 

</do> 

• Compute the point of a geometry that is the closest to the agent location. 

Example: The following GAML lines allow to compute the point of the geometry geom that 

is the closest to the agent that is applying the action: 

<do action="closest_point_in" return="result"> 
<arg name="geometry" value="geom" /> 

</do> 

• Apply a tessellation operation (square or triangle) on a geometry (Figure 2). 

Example: The following GAML lines allow to compute the Delaunay triangulation of the 

geometry (polygon) geom: 

<do action="triangulation" return="result"> 
<arg name="geometry" value="geom" /> 

</do> 

 

Fig. 2. Example of Tessellations (square and triangle). 

• Compute the skeleton of a geometry. 

Example: The following GAML lines allow to compute the skeleton of the geometry 

(polygon) geom: 

<do action="skeletonization" return="result"> 
<arg name="geometry" value="geom" /> 

</do> 



• Compute the shortest path (or the distance) inside a geometry (line network or 

polygon) between two points located in the geometry. For this computation, our 

approach consists in modeling the geometry as a graph, and in computing from it 

the shortest path linking the two points. In the context of a line network, the 

modeling as a graph is trivial. In the context of a polygon, this one is based on a 

Delaunay triangulation of the geometry: each triangle resulting from the 

triangulation is modeled as a node and an edge represents the fact that two triangles 

are adjacent. Figure 4 shows an example of graph computation. Two algorithms are 

implemented for the shortest path computation: Dijkstra [18] and Floyd Warshall 

[19]. 

Example: the following GAML lines allow to move the agent that is applying the action 

toward the point the_target, at a speed of 5 km/h, inside the geometry geom (which can be a 

graph or a polygon): 

<do action="goto"> 

<arg name="target" value="the_target" /> 

<arg name="speed" value="5 km/s" /> 

<arg name="geometry" value="geom" /> 

</do> 

 

Fig. 3. Example of graph computation 

3   Multi-scale Modeling 

3.1   Context  

Another advantage of the agent-based modeling approach is its representation 

versatility. Indeed, an “agent” can represent any individual or aggregation/structure of 

individuals of the reference system, at any spatial scale and across different time 

horizons. Thus the modeler is free in her/his choice of the entities of the reference 

system that will be represented by agents. This choice will depend on the level of 

abstraction of the reference system the modeler is working with. This, in turn, 

depends on the question he/she wants to answer with the model, on the data available 

at hand, on the scale at which this data is described, etc.   

In addition to the agent representing entities of the reference system, the modeler 

can need to explicitly represent emergent structures. Indeed, during the simulation 

stage (execution of the model), some structure can emerge: appearance of pheromone 

trail built by ant [20], evolution of social group within a population [21], formation of 



arches in granular environment [22], etc. These structures are often the result of non-

linear interactions between the agents defined in the model and can play a significant 

role in the model dynamics. They can be considered as a higher level of abstraction 

(upper scale) compare to the underlying agents composing them. It is important, if not 

crucial, to be able to detect and to generate them dynamically (i.e. might simplified 

the simulation run). 

Current agent-based modeling platforms lack support in term of agent-based 

modeling language to represent these structures as explicit entities in the model and 

tools to detect them. Thus, modelers face difficulties when they need to represent 

them and to follow their dynamics during the course of the simulation.  

3.2   Multi-scale modeling in GAMA 

In GAMA, in order to let modelers dynamically track the emergence of dynamic 

structures, we let them represent these structures as explicit entities in the model. We 

call these entities “emergent agents”. As regular agent, an emergent agent can have 

attributes and behaviors. Beside, its instantiation depends on the appearance of certain 

properties during the simulation and its life-cycle possesses some specific operations. 

3.2.1   Representing emergent structure 
The “creation” operation helps to specify when an emergent agent is instantiated. 

This operation allows the modeler to express in an explicit way the rules governing 

the instantiation of emergent agents during the simulation. For example, consider a 

simulation of city dynamics: a modeler can decide to instantiate an emergent agent of 

species building block when two or more building agents are close enough. Figure 5 

illustrates this example: an emergent agent (building block) representing the emergent 

structure is created with six micro-agents (building) as components. 
 

 

Fig. 4. Creation of an emergent agent (building block agent) 

The “update” operation describes how micro-agents are added to or removed 

from an emergent agent. Some micro-agents may no longer satisfy a condition to 

belong to an emergent agent, while others, still “free” may now fulfill it: this 

operation allows to specify how these agents are added or removed from the structure. 

The purpose of this operation is to keep the list of components up-to-date with respect 

to the meaning of the emergent agent.  

 



 

Fig. 5. Update of an emergent agent (building block agent) 

Figure 6 illustrates the “update” operation. It follows the example of city dynamic 

simulation presented Figure 5. We consider that a building block agent composes of 

three building agents. One building agent doesn’t satisfy the condition to belong to 

the building block agent anymore. A free building agent satisfies the condition to 

become a member of the building block agent. This operation helps the modeler to 

remove one building agent from the building block agent and add one building agent 

to the building block agent. 

The “merge” operation allows the modeler to specify how several emergent 

agents representing different structures can be merged into one unique emergent 

agent. The fusion of their respective components then becomes the components of the 

new unique emergent agent. 

Figure 7 illustrates the “merge” operation using the same example as Figure 5 and 

6. We consider a new building block agent (in yellow) has been created. This agent is 

close enough to the existing building block agent (in green) to merge with it.  The 

resulting agent will be composed of the 5 building agents composing the two building 

block agents. 

 

 

Fig. 6. Fusion of different emergent agents  

The purpose of the “disposal” operation is to express when an emerging 

structure should not consider to be an agent in the simulation anymore. The emergent 

agent representing the structure is cleared out of the simulation and its components 

become free. 

Figure 8 illustrates the “disposal” operation. Following the example presented 

Figure 7, we consider that three of the building agents composing the building block 

agent died. Now, the remaining building agents are too far from each other to 

compose a building block agent. Then, the building block agent is going to die. 

 



 

Fig. 7. Death of an emergent agent  

The top-down feedback control allows the modeler to describe which feedback 

constraint an emergent agent is exercising on its underlying micro-agents. As 

emergent agents usually emerge because of the interactions of certain micro-agents, 

these agents have an influence on its attributes and behavior. Reciprocally, an 

emergent agent may also provide a feedback on the behavior of its components, either 

implicitly or explicitly. In order to describe it, the modeler needs to have some way to 

alter the behavior of a micro-agent (by changing parameters, adding, or removing 

entire behaviors) before and after it enters an emergent agent. 

Typically, in our city dynamic simulation example, a building agent, once part of 

building block agent, has more chance to attract residents to live in, and thus to lead to 

construction of new buildings in the neighborhood (for example, shops).  

3.2.2   Representing emergent agents in GAMA 
An emergent agent is composed of constituent agents. Constituent agents can be 

considered as micro-agents compared to the emergent agent. Reciprocally, the 

emergent agent can be seen as a macro-agent compared to its constituent agents. In 

turn, several emergent agents can be merged to form another emergent agent at a 

higher level of abstraction. Thus, an agent in GAMA can play the role of macro-agent 

in one level of organization and micro-agent in a higher level of abstraction. This 

design aims at permitting the modeler to represent as many levels of abstraction as he 

needs in his model. Figure 9 shows an example of abstraction level hierarchy for the 

city dynamic simulation problem: a city agent is composed of a set of district agents 

that are each composed of a set of building block agents that are at their turn 

composed of a set of building agents. 

 

Fig. 8. Example of levels of abstraction hierarchy 



To manipulate the five specific operations in the lifecycle of an emergent agent 

(create, update, merge, disposal, top-down constraint control), six GAML commands 

are defined: creation, update, merge, disposal, enable and disable. 

• The creation command allows to specify when emergent agents are created in the 

simulation.  

Example: the following GAML lines create a building block agent which has for 

components the building agent contained in the list list_buildings: 

<creation> 

   <create with="[components::list_buildings]"        

species="building" />   

</creation> 

• The update command allows the modeler to define how the constituent micro-

agents are added and removed from an emergent agent. 

Example: the following GAML lines update the components of the building block agent that 

is applying this command by adding the building agents contained in added_buildings and 

removing the ones contained in removed_buildings: 

<update> 

  <set name="components" value ="components + added_buildings - 

removed_buildings"/> 

</update> 

• The merge command allows the modeler to define how several emergent agents are 

merged. 

Example: the following GAML lines allow to merge several building block agents (the ones 

contained in the nearby_bb list) with the building block agent applying this command. All 

the constituent building agents of the building block agents contained in the nearby_bb list 

are added to the component list of the one applying the command. Then, the other building 

block agents die (i.e. are removed from the simulation): 

<merge> 

  <loop over="nearby_bb" var="one_bb"> 

     <set name="components" value ="components + 

one_bb.components"/> 

     <ask target="one_bb"> 

        <do action="die"> 

     </ask> 

  </loop> 

</merge> 

• The disposal command allows the modeler to specify when an emergent agent is 

cleared out of the simulation. 

Example: the following GAML line specifies that a building block agent will be removed 

from the simulation if it contains less than two building agents: 

<disposal when="(length components) < 2"/> 

• The disable command allows the modeler to disable certain behavior units 

appropriately. While the enable command allows the modeler to enable the 

inactive behavior units. 

Example: the following GAML lines enable the behavior “expansion” and disable the 

behavior “destruction” of the building agent one_building_agent: 

<ask target="one_building_agent"> 

   <enable behavior="'expansion'"> 

   <enable behavior="'destruction'"> 

</ask> 



Note that GAMA provides several clustering algorithms (e.g. hierarchical 

clustering, X-Means [23], etc.) that can be used to dynamically detect if an emergent 

agent has to be instantiate. For example, these algorithms can be used to detect groups 

of close agents, or agents sharing some specific attributes.  

Example: the following GAML lines allows to regroup the building agents contained in the 

buildings list into a set of groups; each group being composed of building agents of which 

the distance to each other is lower or equal to 10m: 

<do action="simple_clustering_by_distance"  

    return="groups"> 

<arg name="agents" value="buildings" > 

<arg name="dist_max" value="10m" > 

</do> 

4. Use of GAMA for real projects 

The last version of GAMA is already used in many projects concerning different 

domains of applications: avian flu local propagation in North Vietnam [3], the rift 

valley fever in Senegal, the brown hopper invasion in South Vietnam [4] the 

emergency response in Hanoi [5], etc. In this section, we propose to present in details 

two of these projects. 

4.1 GAMAVI 

H5N1 is still a major threat for both economy and health, in particular in South 

East Asia and its eradication is far from being achieved. The goal of the GAMAVI 

model is to study the persistence of the H5N1 in the environment and the 

relationships between environments (as virus reservoirs) and the traditional or semi-

commercial poultry production systems. The model focuses on farms and poultry 

flocks in a village and several environments are represented: building, inner-village 

ground, road, rice-field (flooded or dry) and pond. Figure 10 shows a snapshot of the 

model implemented with the GAMA platform. 

In the model, the village itself and its rice-field and surroundings are agents created 

from shapefiles. Flock agents can wander inside the village or move to an objective 

(rice-fields, ponds and farms). These movements used the capacities of GAMA 

concerning the computation of a shortest path inside a polygon. The collecting and 

depletion of the virus in the environment is done thanks to a fine-grained grid called 

the viro-grid. Basic geometrical comparisons are conducted between this grid and the 

GIS data to define the natural environment type of the cells. Concerning the collection 

of the virus, the excreting flocks update an excretion variable of the cell; at the end of 

a time-step a behavior updates the current concentration according to this variable; 

finally a daily behavior is executed in order to compute the depletion of the virus 

level. More details about the model can be found in [3]. In the current version of the 

model, only one level of agents is considered: the flock. In its next version, each 

individual poultry will be considered as an agent and the flock will be considered as a 



macro-agent. This new modeling of the agents will allow to give more complex 

behaviors to the agents and thus to improve the realism of the model.     

 

Fig. 9. GAMAVI model 

4.2 AROUND/ISSUE 

The problem of emergency responses to disasters is a very serious and complex 

social issue. It involves a large number of heterogeneous actors that have to work 

together in a hostile environment. In particular the decision-making process of each 

stakeholder and the coordination between them are quite hard to model precisely. 

The aim of the ISSUE model is to simulate the relief effort and to learn human 

strategies from various disaster scenarios. The devastated infrastructures and human 

casualties are input GIS data for the rescue simulation. Rescue teams, such as 

ambulances, fire-fighters or policemen are modeled and as agents. These agents are 

moving along the road network and can communicate with each other to define a 

rescue strategy. In the same way, the roads and the buildings are modeled as agents. 

This agentification allows to give a dynamic behavior to the roads and buildings 

during the simulation: e.g. a building impacted by an earthquake can collapse during 

the simulation and block a road. Figure 5 shows a snapshot of the model implemented 

with the GAMA platform. More details about the model can be found in [5]. In the 

next version of the model, the multi-level modeling capabilities of GAMA will be 

used to create dynamic groups of rescuers able to organize themselves to improve 

their efficiency. 

 

Fig. 10. ISSUE model 



5   Discussion 

We see the contributions of this work as threefold: 

1- There is a difference between an idea and its implementation. What we 

incorporate into GAMA are implementations of ideas that may have been (or not) 

already proposed by other people but rarely found their way into operational 

instances. They are implemented into the platform and linked with the modeling 

language, so that they can be used by anyone building a model in GAMA. In our 

point of view, these implementations are contributions to the field, because they 

eliminate the ambiguities and the lack of formalism often found in ABM/MAS 

contributions and, most important, can be experimented. 

2- Integrating existing techniques in a framework and enabling the researchers to 

easily choose the most appropriate is a delicate exercise. In GAMA, we have ensured 

that all the proposed techniques are tightly coupled, and that they are usable even by 

novice users through GAML. This allows us to build, in the same platform, simple 

models (a la NetLogo) alongside more complex models. Actually, our efforts of 

integration tend to the point that there is no real difference between a "simple" and a 

"complex" model. So, while it is true that, for instance, we did not invent graph-

related techniques, we believe we contribute to the field by providing a way, for 

researchers, to use the most appropriate techniques, transparently, into their models. 

3- Following the previous point, we see GAMA as a contribution by itself, filling 

the gap between NetLogo, interesting for prototyping small models, but which does 

not scale well when it comes to real ones, and RePast, more a complete toolbox than a 

platform. The fact, for instance, that every agent in GAMA is provided with a 

geometry, and that any environment can be discretized, means that researchers can 

begin with a simple prototype (where agents are points on a grid, like in Netlogo) to 

test the logic of a model, and turn this model into a more realistic one, for example by 

loading data from a GIS base, without having to change anything to the logic. This 

radically transforms the experimental processes of ABM.  

6   Conclusion 

In this paper, we present the new advance features included in the last version of the 

GAMA platform (version 1.3) [2]. These features concern the use of geographic 

vector data and the definition of multi-level models. 

This version of GAMA is already used in several projects related to different 

application domains such as the avian flu local propagation in North Vietnam, the rift 

valley fever in Senegal, the brown hopper invasion in South Vietnam, the effect of 

emotions on waves of panic.  

The next version of GAMA, version 1.4, is going to include a new integrated 

development environment (IDE) with a new modeling language. The goal is to ease 

the work of the modelers by providing a less extensive and easier to learn language. 

This version will also include all the classic features provide by most of the modern 

IDE (auto-completion, automatic detection of errors, etc.).  
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