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Abstract

Despite being one of the oldest known magnetic materials, and the classic mixed valence

compound, thought to be charge ordered, the structure of magnetite below the Verwey transition

is complex and the presence and role of charge order is still being debated. Here, we present

resonant x-ray diffraction data at the iron K-edge on forbidden (0, 0, 2n + 1)C and superlattice

(0, 0, 2n+1
2

)C reflections. Full linear polarization analysis of the incident and scattered light

was conducted in order to explore the origins of the reflections. Through simulation of the

resonant spectra we have confirmed that a degree of charge ordering takes place, while the

anisotropic tensor of susceptibility scattering is responsible for the superlattice reflections

below the Verwey transition. We also report the surprising result of the conversion of a

significant proportion of the scattered light from linear to nonlinear polarization.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Magnetite has long been a subject of interest, with curiosity

dating back to the discovery of lodestone and its magnetic

properties [1]. More recently, magnetite has been regarded

as a model compound in several respects; magnetite is the

first material in which a low temperature charge ordered (CO)

structure was proposed, as well as being a classic ferrimagnetic

system. At room temperature magnetite has an inverse

cubic spinel structure, with space group Fd 3̄m (no. 227)

and aC = 8.394 Å. The chemical formula is often written

as Fe3+[Fe2+Fe3+]O4 to highlight the mixed valence nature.

Here, the first term corresponds to Fe3+ ions in tetrahedrally

coordinated (A) sites and the second term to Fe2+ and Fe3+

ions in octahedrally coordinated (B) sites. The B sites are

occupied by divalent and trivalent Fe ions which possess no

long range charge order; however, in order to explain the

large, spontaneous increase in resistivity upon cooling below

≈120 K (TV), Verwey [2] proposed an ordering of the B-

sited iron atoms with Fe3+ and Fe2+ layers stacking along

the [0 0 1]C direction, separated by a quarter unit cell. This

original description agrees with Anderson’s criteria [3] for

charge ordering, whereby the Coulomb energy of the system

is reduced. However, it has become clear that this purely ionic

picture may be incorrect, and debate continues as to whether

the low temperature ground state can be described using a

simplistic Fe2+ and Fe3+ ionic model. Total ionic separation

has been demonstrated to be incorrect from the Kerr effect [4]

and diffraction [5] measurements, and further supported on
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Figure 1. The simplified low temperature structure of magnetite, in
the orthorhombic Pmca refined unit cell. Fe3+ ions sit at tetrahedral
A sites while charge ordering takes place over the four inequivalent
octahedral B sites. Oxygens sit at the corners of the polyhedra. In the
P2/c cell there are six inequivalent B sites. The inset shows the view
along the c axis, showing the high temperature cubic cell as a solid
black line and the orthorhombic cell as a dashed line.

entropic [6] and theoretical grounds [7]. A recent resonant x-

ray scattering (RXS) experiment has also suggested that the

phase transition may actually be continuous, with electronic

order appearing approximately 10 K above TV [8].

Below TV the symmetry of the crystal structure is

significantly lowered and is believed to adopt a Cc structure

(no. 9): recent RXS results have been used to provide the

first refinement in the Cc unit cell [9]. The low temperature

structure is remarkably complex even in the simpler P2/c

(no. 13) refinement [10, 11]. This structure, refined using

Pmca (no. 57) constraints, contains six inequivalent B sites,

making the determination of the charge ordered structure

rather complicated. The simpler, orthorhombic Pmca refined

structure, with lattice parameters aO = 5.944 Å, bO = 5.924 Å

and cO = 16.775 Å is shown in figure 1. Theoretical

studies [4] have suggested that charge ordering occurs along

the [0 0 1]C direction with a modulation wavevector of (0 0 1)C

and an additional minor modulation of (0 0 1
2
)C , where the C

denotes indexing using the high temperature cubic unit cell.

Theoretical studies have also proposed that orbital ordering

may occur on the electron-rich Fe2+ B sites [7, 12, 6, 13].

Resonant x-ray scattering is the ideal tool for attempting

to resolve questions of the presence and magnitude of long

range correlation effects in ordered materials. Recent RXS

studies [14–16] of the forbidden (0 0 2)C and (0 0 6)C

reflections have reported that they are present above the

Verwey transition and do not change upon passing through TV.

Figure 2. The heat capacity of magnetite, clearly showing the phase
transition at TV.

In these studies it was shown that the forbidden reflections

were not an effect of charge order and that local anisotropy

at the iron octahedral sites alone was enough to explain the

forbidden (0, 0, 4n + 2)C reflections. Further attempts to use

RXS to identify (0, 0, 2n+1
2

)C and strong (0, 0, 2n + 1)C

reflections at the iron K-edge have proven difficult and studies

using a variety of other reflections such as (h k 2n+1
2

)C and

(k̄ k l)C in order to determine the presence of charge order have

suggested that the charge disproportionation is either small or

non-existent [17, 5]. In order to address this issue, we have

performed an RXS experiment on a high quality, single crystal

of magnetite, subjecting the sample to full polarization analysis

of the diffracted signal.

2. Experiment

Specific heat measurements, figure 2, were performed on the

crystal to confirm the purity, which is difficult to grow with the

correct oxygen stoichiometry. A small specimen of magnetite

was obtained from the same growth boule as used for the

scattering experiment. The sample was a synthetically grown

crystal of Fe3O4, grown using the floating zone method in

an image furnace [18]. The measurements, performed on a

Quantum Design PPMS, revealed the Verwey transition to be

at 120.4 ± 0.3 K with the transition peak possessing a full

width at half-maximum of ≈ 3 K and an entropy of transition,

�SV, of 5.8 ± 0.3 J mol−1 K−1. This is a lower temperature

than the value reported by Kim-Ngan et al [19] of 123.5 K

for a stoichiometrically correct sample, which displayed a heat

capacity peak width of 0.2 K and �SV of 6.4 J mol−1 K−1.

However, despite the differences in transition temperatures

and �SV it is clear that the sample was well within the first-

order transition region [20, 21] (given by δ < 0.0012, where

Fe3(1−δ)O4) and with purity above δ � 0.0007.

The x-ray diffraction experiment was performed at the

iron K-edge on ID20 at the European Synchrotron Radiation

Facility, Grenoble, France. The experiment was carried

out using the four-circle diffractometer in vertical scattering

geometry, with a diamond phase plate placed in the x-ray beam

to allow the rotation of the incident linear polarization through
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Figure 3. Experimental layout highlighting the crystal orientation
and sense of the polarization rotation. The phase plate acts as a
half-wave plate, allowing the polarization of the x-rays to be rotated
away from the initial horizontal (σ ) polarization, to any arbitrary
linear polarization, by rotating the phase plate itself, χ . Here φ

represents the angle between the aC axis and the scattering plane,
with respect to the direction of the beam.

180◦ from the normally incident σ -polarized radiation. The

basic experimental layout showing the direction of rotation is

outlined in figure 3. The technique of rotating the incident

polarization has been demonstrated previously to allow the

determination of otherwise unresolvable mixed multipolar

contributions to the scattering [22], the relative contributions

of magnetic domains [23] and the determination of magnetic

moment directions [24]. The intensity of the outgoing linear

polarization was measured by subsequently scattering from

an MgO (2 2 2) analyser crystal. A small ∼ 0.3 T magnet,

approximately the same size as the sample, was attached to

the top of the copper sample mount using silver paint and the

magnetite crystal mounted on top of the magnet using another

layer of silver paint. The field was applied along one of the

〈0 0 1〉C axes to fix and uniquely define the monoclinic c axis

on cooling through TV [25].

3. Polarization dependence and anisotropic tensor of
susceptibility reflections

The procedure of rotating the polarization of incident linear

light is similar to the more familiar practice of performing

an azimuthal rotation of the sample; however, by rotating the

plane of incident polarization rather than the sample itself,

the sample may be kept stationary in the x-ray beam and

the problem of contamination from Renninger reflections [26]

(multiple scattering) is eliminated. This elimination is the

result of being able to selectively choose a single azimuthal

orientation such that Renninger reflections at the chosen energy

are excluded. Further, since the sample need not be rotated,

the technique is less sensitive to contributions from different

domain populations in the sample. To perform the polarization

analysis, an azimuthal position clear of multiple scattering

was selected and the polarization of the incident light rotated

through 180◦ from σ to π to σ , in the direction indicated

in figure 3. To extract the polarization information of the

diffracted signal the analyser crystal was rotated through 180◦

for each value of the incident polarization. The dependence

of the intensity on the angle of the analyser crystal allowed

the linear components of the familiar self-normalized Stokes

parameters [27] to be extracted:

P1 =
(Iσ ′ − Iπ ′)

I0

, (1)

P2 =
(I+45◦′ − I−45◦′)

I0

, (2)

where I0 represents the total scattered intensity. We are unable

to directly measure the circularly polarized components to find

P3:

P3 =
(Iright circular′ − Ileft circular′)

I0

. (3)

However, an upper limit for P3 can be deduced by subtraction:

P2
N−L = 1 − P2

1 − P2
2 . (4)

The importance of polarization becomes apparent close

to the absorption edge, where the scattering factor must be

expressed as a tensor series as part of the multipolar expansion.

For non-magnetic contributions the total scattered amplitude

may be expressed as

f (ǫ, ǫ ′) = ǫ · ǫ ′ f 0 +
∑

m,n

ǫmǫ ′
n Ŝ0

mn

+
∑

m,n,o

(ǫmǫ ′
nk ′

o − ǫ ′
mǫnko)T̂ 0

mno + · · · , (5)

where ǫ and ǫ ′ represent the incident and scattered polarization,

respectively, f 0 is the scalar scattering term and k is

the wavevector. Of the tensorial terms, only the lower

rank members are typically strong, and in continuing we

will restrict discussion to terms no higher than the electric

quadrupole (E1–E1) term. As such, only the terms f 0 and

Ŝ0 need be considered. For the case of scattering from

electric transitions, the tensors Ŝ0 and higher are symmetric.

When the scalar scattering factor term becomes zero due

to the systematic absences of compound (non-symmorphic)

symmetry operations, anisotropic tensorial terms can still be

allowed. Reflections observed at such positions are referred

to as Templeton–Templeton [28] or ATS (anisotropy of the

tensor of susceptibility) [29] type reflections. With regard to

the analysis that follows we point out that it is the first scalar

term in equation (5) which is responsible for Bragg and charge

order reflections, while it is the second term that is responsible

for anomalous charge and ATS scattering. Thus the appearance

of a reflection at TV is not necessarily an indication of charge

order, but may be the result of a structural transition changing

the local environment of the resonating atom.

To demonstrate the form of these tensors we use the Pmca

structure refined by Wright et al [10, 11]. The construction

of these tensors is a relatively simple matter when the crystal

structure with the correct space group is known, as the tensor at
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each atomic position is symmetric under its own site symmetry

and related to the equivalent Wyckoff positions through the

appropriate symmetry operations. The final tensor, Ŝ0, is then

produced by combining the individual tensors in a structure

factor calculation:

f 0 =
∑

r j

f j e
iq·r j ; Ŝ0 =

∑

r j

Ŝ j e
iq·r j , (6)

where f j and Ŝ j represent scalars and tensors, respectively, for

atoms at positions r j . Using the Pmca structure we find that

for the (0, 0, 1
2
)C and (0, 0, 9

2
)C reflections the only elements

of the tensor that may contribute are the Q yz components:

f (0, 0, 1
2
)C = 0; Ŝ

(0, 0, 1
2
)C

ATS =

⎛

⎝

0 0 0

0 0 Q yz

0 Q yz 0

⎞

⎠ , (7)

with allowed contributions from all iron sites except B2.

For the (0 0 1)C and (0 0 5)C reflections in the Pmca

structure we find that

f (0 0 1)C = f 0; Ŝ
(0 0 1)C

ATS =

⎛

⎝

Qxx 0 0

0 Q yy 0

0 0 Qzz

⎞

⎠ ,

(8)

with all iron sites contributing. We point out here that a signal

from pure charge order is now allowed from both the scalar and

tensor components.

We note here that, as the symmetry is reduced to the

P2/c unit cell, an additional Qxy term becomes allowed

for the (0, 0, 1
2
)C and (0, 0, 9

2
)C reflections. However,

this term is expected to be negligible, as it is related to the

small monoclinic distortion and so is effectively attenuated

by a factor of ∼| cos(β)| = 0.004 11. As pointed out by

others [30, 31], the diagonal terms in equations (7) go to zero

and so this reflection cannot represent a charge order signal.

Further, the presence of this reflection is also not necessarily

a direct consequence of orbital order, as has previously been

made clear [31, 32]. In magnetite alone ATS reflections

have previously been confirmed as being responsible for the

forbidden (0 0 2)C and (0 0 6)C reflections above [33, 14, 15]

and below [16] TV.

As mentioned above, the development of ATS reflections

in the close neighbourhood of an absorption edge is related

to the presence of compound symmetry elements (screw axis,

glide planes or both simultaneously) in the space group.

Reflections which are not forbidden by these non-symmorphic

or symmorphic symmetry operations result in any anisotropy

of the local environment being hardly visible from the point of

view of resonant x-ray diffraction, as the reflections contain

information on the isotropic part of the tensor that is often

much larger than the anisotropic part. An exception to this rule

is certainly the (0, 0, 4n + 2) reflections below TV, where the

isotropic part nearly cancels out, but not completely.

In magnetite the (0, 0, 4n + 2) reflections originate

from the small trigonal distortion that the octahedrally sited

irons experience as a result of the nearest-neighbour atomic

environment. From the electronic point of view each

octahedral site has a single occupancy of all the orbitals in

a high spin configuration, 3(t
↑
2g)2(e↑

g ), with an extra (half)

electron of opposite spin giving rise to the half metallic

properties. In a band theory picture, the former electrons are in

bands below the Fermi energy level (EF) whereas the latter are

in a band above EF. This trigonal distortion has the important

effect of lifting the degeneracy of the t2g orbitals (triplet) into

a singlet (a1g) and a doublet (eg). The former is the lowest

lying level and might be considered as the ground state. It is

interesting to remark that resonant x-ray experiments at the

iron K-edge reveal the symmetry of the local distortion at

the octahedral sites which in turn affects the symmetry of the

crystal field levels. This relationship between local distortions

and the breaking of the electronic symmetry means that it is

indeed possible to learn about the orbital ordering. In the

case of the cubic phase of magnetite, the direction of the

local anisotropy is the [1 1 1] yielding a complex geometrical

arrangement of the a1g and eg orbitals throughout the lattice.

In magnetite below TV one may think that there can

be no orbital ordering as the ground state is a singlet. No

further energy gain can be achieved in magnetite according

to this picture. However, as pointed out in the early studies

on magnetite, the gap between the singlet and the doublet,

of 150 meV, is much smaller than the bandwidth of the

corresponding band. Therefore one should consider the

complete basis a1g and eg with different possibilities for

occupation by the extra electron with opposite spin and an

incipient possibility for orbital ordering and energy gain due

to possible splitting of the eg orbitals. The phase diagram of

possible ground states below TV as a function of the inter-

site repulsion and the electron hopping has been recently

worked out by Uzu and Tanaka [34, 13]. Band structure

calculations have pointed out that orbital ordering occurs in the

low temperature phase of magnetite. This should be evident as

the extra electron, e↓, ought to choose between one of the three

t2g orbitals.

In general, the occurrence of ATS reflections as a result of

a phase transition, in addition to signalling the manifestation

of a non-symmorphic space group, implies that some local

symmetry has been broken. If this symmetry breaking raises

some orbital degeneracy in the ground state then we will have

a situation that we could classify as giving rise to orbital

ordering. However, the ATS is not a pure manifestation of

orbital ordering, and it may well be that the orbital ordering

component is not the strongest contribution to the local

anisotropy, although, in any case, the ATS reflections should, in

some manner, convey information about this orbital ordering.

4. Results and discussion

After cooling below the Verwey transition and tuning the

photon energy to the iron K-edge, scans along the L direction

in reciprocal space were conducted, figure 4, which clearly

identify a number of half and odd integer reflections. The

widths of the reflections, figure 5, measured in this study

are an order of magnitude smaller than in the previous

study by Lorenzo et al [8], particularly for the (0, 0, 9
2
)C

reflection. At 20 K we determine inverse correlation lengths
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(a)

(b)

Figure 4. Scans along (a) the L axis and (b) [1 0 L]C axis in
reciprocal space at 20 K, tuned to 7.120 keV in the σ–σ channel.
The detector saturated whilst moving through the (0 0 4)C reflection,
although supplementary scans indicate the corresponding intensity
was approximately 400 × 106 counts s−1. A weak (0 0 5

2
)C reflection

was also located on separate scans.

of 2.94 × 10−4 and 2.18 × 10−4 Å
−1

for the (0, 0, 9
2
)C

and (0 0 5)C , respectively. The (0 0 5)C peak was later

shown to be approximately one-third broader than the (0 0 4)C

Bragg reflection, indicating that the orders responsible for

the additional reflections below the Verwey transition were

indeed well correlated. The presence of the (0, 0, n
2
)C

reflections at the iron K-edge is in contrast to the previous

study by Subias et al [17] who also used RXS to attempt

to observe these peaks. The improved signal-to-noise ratio

in our study, of greater than three orders of magnitude over

the previous study, is most likely the reason we were able

to detect the half-integer reflections. Further, the initial scan

along the L axis conducted in the earlier study, corresponding

to figure 4(a), was performed over the region containing

the weaker superlattice reflections between ∼(0 0 2)C and

∼(0 0 4)C . In that study it was concluded that the lack of

resonant enhancement of the (0, 0, 2n + 1)C reflections,

along with the complete lack of (0, 0, 2n+1
2

)C reflections,

indicated that any charge segregation must be non-integer;

with a maximum disproportionation of 0.1e−. However, soft

Figure 5. Scans along the L axis of the (0, 0, 9

2
)C and (0 0 5)C

reflections, tuned to 7.12 keV at 20 K in the σ–σ channel. The peaks
have been artificially shifted to the origin for ease of comparison.
Both reflections show a similar width, although the (0, 0, 9

2
)C

reflection is significantly weaker in this channel.

Figure 6. The energy dependence of the (0 0 1)C reflection at 20 K
in the σ–σ channel, measured at fixed wavevector. The experimental
dependence has been corrected for multiple scattering and absorption
effects. The solid (dashed) line represents a simulation with
(without) charge order. The simulation axes have been scaled for the
optimum fit and the corrected intensity represents an order of
magnitude estimate based on figure 4(a).

resonant x-ray diffraction experiments have also previously

seen the (0, 0, 1
2
)C reflection at the oxygen K-edge and iron

L2-edge [35, 30, 31], as has another recent study at the iron

K-edge [8].

Reflections which can be indexed as (0, 0, 2n + 1)C

and (0, 0, 2n+1
2

)C were found to resonate; however, due

to the high quality of the crystal sample, and the large size

of the crystallographic unit cell below TV, the experiment

was particularly sensitive to the problem of Renninger

reflections. The resonances depicted in figures 6–9 were

thus identified by performing multiple energy scans at slightly

offset azimuthal positions, allowing the separation of the

superlattice and Renninger reflections through the production

of a composite scan. To obtain an accurate fit to the degree

of charge segregation, a much greater number of reflections
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Figure 7. The energy dependence of the (0 0 5)C reflection at 20 K
in the σ–σ channel, measured at fixed wavevector. The experimental
dependence has been corrected for multiple scattering and absorption
effects. The solid (dashed) line represents a simulation with
(without) charge order. The simulation axes have been scaled for the
optimum fit and the corrected intensity represents an
order-of-magnitude estimate based on figure 4(a).

is required, as used in Nazarenko et al, and so in this case

a simplified charge order model based on the most recent

refined structure is used. The models with and without charge

ordering in figures 6–9 were produced using the FDMNES

programme [36] using the Cc structure derived from the Pmca

structure of Wright et al [11], using a charge disproportionation

of 0.1e− between the B1 and B2 sites only [9]. The simulation

does not include the magnetic structure, which is expected to

have negligible effect. The simulations used the Hedin and

Lundqvist exchange correlation potential [37], a 7 Å cluster

radius, and were run using full multiple scattering theory rather

than the finite difference method.

It is clear from figures 6 and 7 that there is a much

stronger agreement with the data for the (0 0 1)C and (0 0 5)C

reflections when charge order is considered than without, with

the full spectra corresponding to E1–E1 processes from both

octahedral and tetrahedral sites, despite charge order itself

only present on the octahedral sites (B1 and B2). For the

(0, 0, 2n+1
2

)C type reflections in figures 8 and 9, it is difficult

to draw any conclusions regarding the presence (or lack of)

charge order, at first glance. Figure 8 appears to show a closer

agreement without charge order, whereas figure 9 arguably

shows a better agreement with charge order. One argument

against the charge order simulation of figure 9 is that there does

not appear to be any indication of the large pre-edge feature,

present in both channels: the combined effect is thus the feature

we would expect to be dominant. From studying the results

of the calculation we see that the pre-edge features, in the

simulations for both (0, 0, 2n+1
2

)C type reflections, primarily

originate from the tetrahedral sites, while the feature which

is higher in energy (corresponding to the measured signal)

originates almost entirely from the octahedral sites. We note

here that the spectra of the (0, 0, 2n+1
2

)C type reflections are

highly sensitive to the crystallographic structure, and so it is

not particularly surprising that the simulation does not fully

replicate the experimental data.

(a)

(b)

Figure 8. The energy dependence of the (0, 0, 1

2
)C reflection at

20 K in the σ–σ channel, measured at fixed wavevector. The
experimental dependence has been corrected for multiple scattering
and absorption effects. The solid and dashed lines represent
simulations with charge order (a) and without charge order (b).
Although the dependence was measured in the σ–σ channel, the
leakthrough from the σ–π channel was measured to be ∼0.92% and
show the σ–π simulation is shown with an attenuation of ∼99.08%
relative to the σ–σ simulation. The simulation axes have been
rescaled for the optimum fit and the corrected intensity represents an
order of magnitude estimate based on figure 4(a).

To perform further analysis on both (0, 0, 2n+1
2

)C and

(0, 0, 2n + 1)C type reflections, and confirm their origins,

we selected the (0, 0, 9
2
)C and (0 0 5)C peaks. These

reflections demonstrated Lorentzian lineshapes, figure 5, and

upon warming were found to remain relatively stable in

position and correlation length, up to TV, where the signal

promptly disappeared: typical behaviour of a first-order phase

transition. This behaviour of the (0, 0, 9
2
)C reflection is

in contrast to the (0, 0, 1
2
)C temperature dependence that

was recently measured using RXS [8], which displayed no

significant drop in intensity at TV. However, the validity of

these results has been questioned [32]. We are continuing to

investigate the origins of these differences, which we suspect

to be sample-dependent. The iron K-edge results presented

here are consistent with recent soft x-ray studies at the iron

L3 and oxygen K-edges [31] which used very high quality

single crystals from the same source and find a similar first-

order extinction of the (0, 0, 1
2
)C reflection at TV.
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(a)

(b)

Figure 9. The energy dependence of the (0, 0, 9

2
)C reflection at

20 K in the σ–σ channel, measured at fixed wavevector. The
experimental dependence has been corrected for multiple scattering
and absorption effects. The solid and dashed lines represent
simulations with charge order (a) and without charge order (b).
Although the dependence was measured in the σ–σ channel, the
leakthrough from the σ–π channel was measured to be ∼0.92% and
shows the σ–π simulation is shown with an attenuation of ∼99.08%
relative to the σ–σ simulation. The simulation axes have been
rescaled for the optimum fit, and the corrected intensity represents an
order of magnitude estimate based on figure 4(a).

Before beginning a detailed analysis of the polarization

results, we note from figures 10 and 11 that the (0, 0, 9
2
)C

and (0 0 5)C reflections have very different polarization

dependences, and therefore completely different origins. The

(0, 0, 9
2
)C analysis shows that the scattered light has been

significantly rotated, while the (0 0 5)C reflection displays

the opposite, i.e. little change from incident to scattered

polarization. It thus becomes immediately apparent that the

(0, 0, 9
2
)C reflection cannot be the result of charge order.

For the case of the (0, 0, 9
2
)C reflection we present both

a simplified model and an authentic model based on the charge

ordered Cc structure using FDMNES. The Pmca model

represents a highly simplified model, where the scattering

factors from each inequivalent site are taken as equal, rather

than being complex non-equal values. This is presented

as a comparison to the complete treatment produced using

FDMNES. The (0, 0, 9
2
)C data, shown in figure 10, gives

good agreement with the structural ATS scattering, with both

models showing similar dependences. However, it is also

interesting to examine the nonlinear, pseudo P3, component

(a)

(b)

Figure 10. The polarization dependence of the (0, 0, 9
2
)C reflection

at 20 K. The energy is tuned to 7.120 keV, and the crystal orientated
such that φ = 8.4◦. The dashed lines represent the simplified ATS
scattering model in the Pmca unit cell, while the solid line
represents ATS scattering produced using the full Cc structure, using
FDMNES.

of the scattered polarization, figure 12. Here, we see that

a significant proportion of the scattered light has become

nonlinearly polarized, and although the simulation has failed

to fully predict the observed phenomena, it has replicated the

general trend. For the simulation, this component is circularly

polarized, which we are unable to measure directly. This

component is too large to be from any nonlinear polarization

effects at the phase plate, or from any interference from

magnetic scattering at the iron K-edge, where the iron atoms

have a magnetization of ≈ 4.2 µB. The principle behind this

effect is that subtly different scattering factors of each iron

site introduce different complex coefficients into the structure

factor. This can be seen through the simplified model (dashed

line) which, by assuming each site (B1, B2, etc) has the

same anisotropic scattering factor, fails to predict the circular

component. We would thus expect to see this effect at other

ATS reflections in alternative materials which also contained

the same elements in different environments.

The result of the polarization analysis at the (0 0 5)C can

be seen in figure 11, where it is apparent that the dominant

factor is the isotropic Thomson charge scattering term f 0.
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(a)

(b)

Figure 11. The polarization dependence of the (0 0 5)C reflection at
20 K. The energy is tuned to 7.120 keV and the crystal oriented such
that φ = 8.4◦. The dashed line represents the isotropic Thomson
scattering, while the solid line represents scattering produced using
both Thomson and anomalous components. Both simulations were
produced using the full Cc structure in FDMNES.

Indeed, the addition of the isotropic and anisotropic anomalous

terms appears to have little effect on the simulation. However,

it is clear that, although the simulation again follows the trend

observed experimentally, the agreement is less compelling.

In figure 11(a) there is clearly a large difference between

the experimental and simulated data close to 90◦. By again

considering the nonlinear component we can see where the

difference arises, figure 13.

This pseudo P3 component is much larger than for the

(0 0 9
2
)C reflection. Although difficult to see in figure 13,

the simulation does indeed predict a significant circular

component, with approximately half of the scattered intensity

from the anomalous contribution in the right and left circularly

polarized channels. The predicted pseudo P3 values of

figure 13 are particularly small however, as the right and

left circular components have very similar values. The

circularly polarized components produced by the simulation

are generated through the anomalous terms, as for the (0 0 9
2
)C

reflection. However, it is interesting to note that the addition of

the Thomson isotropic terms to the simulation results in small

changes to the simulation.

Figure 12. The square of the nonlinear component of the polarization
dependence of the (0, 0, 9

2
)C reflection at 20 K. The energy is tuned

to 7.120 keV and the crystal oriented such that φ = 8.4◦. An upper
limit for the measure of the nonlinear polarization component can be
inferred by subtracting the intensities of the linear components of the
polarization; P2

1 and P2
2 . The dashed line represents the simplified

ATS scattering model in the Pmca unit cell which neglects the
different scattering factors between each site, while the solid line
represents ATS scattering produced using the full Cc structure, using
FDMNES. The large error bars result as this analysis contains all
nonlinear components, including unpolarized scatter.

Figure 13. The square of the nonlinear component of the
polarization dependence of the (0, 0, 5)C reflection at 20 K. The
energy is tuned to 7.120 keV and the crystal orientated such that
φ = 8.4◦. The dashed line represents the isotropic Thomson
scattering, while the solid line represents scattering produced using
both Thomson and anomalous components. Both simulations were
produced using the full Cc structure in FDMNES. The large error
bars result as this analysis contains all nonlinear components,
including unpolarized scatter.

To summarize our main points: on the basis of our energy

and polarization dependences we believe that the appearance

of the (0 0 1
2
)C type reflections can be explained as a result

of the structural phase transition at TV with no need to

invoke any charge or orbital order models. This is the same

conclusion reached in the recent soft x-ray study by Wilkins

et al [31]; however, the soft x-ray study by Schlappa et al

[30] uses the appearance of the reflection as evidence for

8



orbital ordering, which is not necessarily the case. However,

as the appearance of ATS reflections as a first-order phase

transition is a result of some local symmetry breaking, this

may raise orbital degeneracy and so be linked to orbital order.

Interference between the inequivalent iron sites results in a

significant contribution becoming nonlinearly polarized. The

(0, 0, 2n + 1)C type resonant reflections are due to charge

order (in agreement with hard [8] and soft [30] x-ray studies)

and contain significant components from the isotropic and

anomalous terms. The appearance of a large nonlinearly

polarized component is again due to the interference of the

anomalous terms at the inequivalent iron sites. However,

the interference of the isotropic component with this is also

important. We note here that, while the simulations produced

do not fully replicate the experimental data in every aspect,

they provide an acceptable approximation and indicate the

physical processes involved in producing the experimental

result. In this case it is an incomplete knowledge of the

structure of magnetite that leads to the disagreement between

the experimental and simulated data. Magnetite is a ferociously

complex material, and here we have shown that simply by

applying the previously reported electronic structure, reality

can be approximated to a high degree.

5. Conclusion

In conclusion we have observed the (0, 0, 1
2
)C and

(0 0 1)C reflections at the iron K-edge and attributed their

origins predominantly to ATS scattering and charge order,

respectively. We have demonstrated this using both the energy

spectra and the technique of full polarization analysis. We

also report the conversion of linear to nonlinearly polarized

light, and explain the origin through the complex structure

of magnetite alone. However, we are unable to replicate the

experimental data completely, demonstrating the difficulty in

obtaining the low temperature electronic structure of magnetite

by even the most discriminating techniques.
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