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ABSTRACT

The focus of this investigation is on the formulation 

and validation of a novel approach for the inclusion of 

uncertainty in the modeling of the boundary conditions 

of linear structures and of the coupling between linear 

substructures. First, a mean structural dynamic model 

that includes boundary condition/coupling flexibility is 

obtained using classical substructuring concepts. The 

application of the nonparametric stochastic modeling 

approach to this mean model is next described and 

thus permits the consideration of both model and 

parameter uncertainty. Finally, a dedicated 

identification procedure is proposed to estimate the 

two parameters of this stochastic model, i.e. the mean 

boundary condition/coupling flexibility and the overall 

level of uncertainty. 

INTRODUCTION

Significant efforts have been focused in the last decade 

or so on the modeling and consideration of uncertainty 

in the properties of structural dynamic systems. In fact, 

two types of uncertainty have been recognized. 

Parameter uncertainty refers to a lack of knowledge of 

the exact values of the parameters of the physical 

and/or computational model, e.g. of the Young’s 

modulus. Model uncertainty on the other hand relates 

to discrepancies between the physical structure and its 

model that arise in the modeling effort, e.g. in the 

representation of the connection between two parts by 

rivets, spotwelds, etc. The nonparametric stochastic 

modeling approach provides a convenient strategy for 

the consideration of both types of uncertainties by  
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operating at the level of the reduced order model of the 

structural dynamic system. 

Notorious sources of uncertainty in structures are the 

boundary conditions (especially the clamped ones) and 

the coupling between substructures. In fact, both lead to 

significant model and parameter uncertainties. Consider 

for example the clamped boundary condition although a 

similar discussion can be carried for other boundary 

conditions and for the coupling between substructures. 

A first modeling strategy of a physical clamped 

boundary condition is in terms of its mathematical 

counterpart, i.e. zero displacements and slopes. This 

approach however completely neglects the unavoidable 

flexibility of the support and clamp and thus leads to an 

overestimation of the natural frequencies. More refined 

models have also been proposed that do account for this 

flexibility through the introduction of stiffnesses at the 

interface between the structure and its support 

considered rigid. However, the determination of the 

corresponding boundary stiffness matrix is a 

particularly challenging task due to the large number of 

components that it would involve. This issue has in turn 

been resolved by selecting a particular form for the 

stiffness matrix, e.g. in terms of the stiffness matrix of 

the structure at its boundary, with one or several 

parameters that are identifiable from a few experiments. 

Nevertheless, this approach leads only to a model of the 

physical situation and does not include other factors 

such as possible contact nonlinearity, friction, etc. 

Accordingly, model uncertainty is fully expected in this 

ad hoc representation of the boundary condition. 
Parameter uncertainty must also be considered in the 

boundary condition modeling to simulate the variability 

in the dynamic response (e.g. natural frequencies, mode 

shapes, etc.) of a particular structure and support that 

originates most notoriously from the level of normal 

force applied at the clamp but also from the state of 

surface/wear of the structure at its boundary and of the 

clamp, etc. 

In this light, the focus of this paper is on the 



formulation and validation of a novel procedure for the 

explicit consideration of model and parameter 

uncertainty in both boundary conditions and coupling 

between substructures. Further, this treatment will be 

conducted within the framework of the nonparametric 

approach [1,2]. Accordingly, this approach is first 

briefly reviewed. 

NONPARAMETRIC STOCHASTIC MODELING 

OF UNCERTAINTY

The fundamental problem of the nonparametric 

approach is the simulation of random symmetric 

positive definite real matrices A  such as the mass, 

damping, and/or stiffness matrices of linear modal 

models. To achieve this effort, it is necessary to 

specify which (joint) statistical distribution of their 

elements  should be adopted. In this regard, it will 

first be assumed that the mean of the random matrix 

ijA

A  is known as A , i.e. ! " AAE #  where E[.] denotes 

the operation of mathematical expectation. If, as 

discussed above, the fixed modes used to represent the 

motion of the uncertain structures are those associated 

with the mean structural model (also referred to as the 

design conditions model) and are mass normalized, 

then the mean of the random mass and stiffness 

matrices are the identity matrix and the diagonal 

matrix of the squared natural frequencies, respectively. 

Further, if the mean model does not exhibit any rigid 

body mode (i.e. A  is strictly positive definite), then it 

is also expected that the random matrices A  will share 

the same property (note that the extension of the 

methodology to mean models exhibiting rigid body 

modes has been accomplished in [3]). This condition 

is equivalent to the existence of a flat zero at zero of 

the probability density function of the eigenvalues of 

A . Finally, it will be assumed that only a single 

measure of the variability of the matrices A  is 

available, e.g. the standard deviation of the lowest 

eigenvalue of A  (the extension of the methodology to 

account for multiple known measures of variability 

has been accomplished in [4]). 

Even with the above assumptions (known mean 

model, nonsingularity of A , and known measure of 

variability), there is a broad set of statistical 

distributions of the elements  that could be 

selected. Among those, it would be particularly 

desirable to select the one that places particular 

emphasis on “larger” deviations from the mean value, 

a desirable feature to assess, in a limited Monte Carlo 

study, the aeroelastic robustness of a design to 

uncertainty. As discussed in references [1-4], this 

property is achieved by the distribution of the elements 

 that achieves the maximum of the statistical entropy 

under the stated constraints of symmetry, positive 

definiteness, known mean model, nonsingularity of 

ijA

ijA

A , 

and known measure of variability. This maximum is 

satisfied (see [1-4]) when the matrices A  are generated 

as 

   
TT
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where L  is any decomposition, e.g. Cholesky, of A , 

i.e. satisfying 
T

LLA # . Further, H  denotes a lower 

triangular random matrix the elements of which are all 

statistically independent of each other. Moreover, the 

probability density functions of the diagonal ( ) and 

off-diagonal elements ( ) are 
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In these equations, n denotes the size of the matrices A

,

, 

i.e. the number of modes retained, and  denotes the 

Gamma function. In fact, it is readily seen that (see also 

Fig. 1): 

$ %.

 

 

 
Figure 1: Structure of the random H  matrices (figures 

for n=8, i=2, and *=1 and 10) 



In the above equations, the parameter * !> 0 is the free 

parameter of the statistical distribution of the random 

matrices H  and A  and can be evaluated to meet any 

given information about their variability. In the 

ensuing examples, the parameter * will be determined 

to yield a specified value of the overall measure of 

uncertainty . defined as 
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where I  denotes the identity matrix, 
F

 denotes the 

Frobenius norm of a matrix, and  designates the 

operation of mathematical expectation. This condition, 

coupled with Eqs (1)-(5), provides a complete scheme 

for the generation of random symmetric positive 

definite matrices 

! "E

A . 

UNCERTAIN CLAMPED BOUNDARY 

CONDITIONS

Modeling strategy

A perfect clamped boundary cannot exhibit any 

uncertainty as the displacements and slopes are exactly 

set to zero. The physical problem which is thus 

modeled is one in which there is flexibility at the 

boundary and it is that flexibility which is uncertain. 

The first step in the present effort is thus to replace the 

perfect clamped boundary condition by an 

“imperfect”/flexible one which is represented by a 

distribution of springs (both linear and torsional), see 

Fig. 2. This discussion will be carried out first in the 

absence of uncertainty in the boundary conditions 

which will then be introduced in the second step. 

Assuming that the modeling of the structure is 

accomplished with finite elements, the next step is to 

proceed with a partitioning of the degrees-of-freedom 

of the structure with flexible boundary conditions in 

terms of internal (I) and boundary (B) degrees-of-

freedom. Accordingly, the stiffness matrix of the 

structure may be expressed as 
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Figure 2. Transformation of the perfect clamped 

boundary condition into a flexible boundary condition 

and separation of the domains. 

 

Note in this decomposition that 
phys

K  is the stiffness 

matrix of the free-free structure. Assuming that the 

boundary is massless, one obtains similarly 
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with 
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A first reduced order model of the structure with 

flexible boundary conditions can be derived by 

proceeding with a Craig-Bampton approach, i.e. by 

expressing the internal (
I

X phys ) and boundary (
B
physX ) 

degrees-of-freedom as 

     YqX
I
phys 5+6#             (11) 

and 

          YX
B
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where 6  denotes the modal matrix of p selected modes 

of the clamped structure, i.e. /0
1

23
4 777#6

p
8

21
, where 
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Further, in Eq. (11), the symbol 5  denotes the matrix 

of constraint modes 
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Finally, the vector q  denotes the generalized 

coordinates of the modes of the clamped structure. 

The reduction of variables, from $ %B
phys

I
phys XX ,  to 

$ %Yq, , is accompanied by the matrix  
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and thus, the stiffness and mass matrices of the free-free 

structure associated with the variables $ %Yq,  are 
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and 
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Since the reduced order model is built on the modal 

matrix 6 , the matrices 
qq
CB

K  and 
qq

CB
M  are diagonal, 

and more specifically with nonzero elements equal to 

the natural frequencies and 1 if the modes 
j

7  have 

been normalized with respect to the mass matrix 
II

phys
M . 

The reduced order model of Eq. (11) and (12) is in fact 

“mixed” as it contains both modal coordinates (for the 

internal degrees-of-freedom) and physical coordinates 

(for the boundary degrees-of-freedom). A “fully” 

reduced order model can be developed by expressing 

the physical boundary degrees-of-freedom as 

         uY @#            (18) 
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r
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 and the vectors 
j

A  are an 

appropriate basis for the representation of the physical 

boundary degrees-of-freedom, for instance the 

eigenvectors corresponding to 
YY

CB
K  and 

YY

CB
M . That 

is, 

  
j

YY

CBjj

YY

CB
MK A*#A .          (19) 

This second reduction of degrees-of-freedom is 

accompanied by the matrix 
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and thus, the stiffness and mass matrices of the free-

free structure associated with the variables $ %uq,  are 
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 The above discussion focused solely on the free-free 

structure but the consideration of its flexible boundary 

counterpart is accomplished simply through the 

addition of the finite boundary stiffness matrix 
phys

K̂ , 

see Eq. (7) and (8). In practical situations, this matrix 

is generally not known which in fact is why a perfect 

clamped boundary condition is often introduced. The 

next level of complexity, which will be adopted here, 

is to relate 
phys

K̂  to the boundary-boundary partition 

of the stiffness matrix of the free-free structure. This 

relation is most conveniently achieved directly in the 

reduced order model variables, i.e. by specifying 
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is the stiffness matrix of the boundary conditions in the 

reduced order variables $ %uq, . The parameter k in Eq. 

(23) is a scalar that constitutes a parameter of the 

boundary condition modeling. 

Combining the preceding results, it is found that the 

overall ROM stiffness matrix is 
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The determination of the natural frequencies 9  and 

mode shapes 

jf ,

j
B  of the flexible boundary structure is 

achieved by solving the eigenvalue problem 
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The consideration of uncertainty on the free-free 

structure is easily performed from Eq. (25) through the 

nonparametric approach [1-4]. Specifically, if the free-

free structure is uncertain, a random reduced order 

stiffness matrix 
ROM

K
$

 can be obtained as 
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$
 where 

ROM
L  is the Cholesky decomposition of 

ROM
K , i.e. 

the lower triangular matrix satisfying the equation 
T

ROMROMROM
LLK # . Further, H  denotes the 

random matrix of Eqs (2)-(5), see also Fig. 1. 

Uncertainty in boundary conditions alone is introduced 

similarly by replacing the mean model matrix 
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H  is another 

random matrix also defined by Eqs (2)-(5), see also Fig. 

1. 
 

Examples of Application

To demonstrate the process discussed above and clarify 

the effects of the parameters k and ., an aluminum 

clamed plate of dimensions 0.3556mx0.254mx0.001m 



was considered. The material properties of aluminum 

were selected as E = 70,000MPa, C=0.30, 

D=2700kg/m3. A first set of computations was carried 

out without uncertainty to analyze the mean model and 

in particular the relation between natural frequencies 

and the value of k which is plotted in Fig. 3 for the 

first  seven  natural  frequencies.  The  values  in  the 
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Figure 3. Ratio of the first seven natural frequencies to 

their k=" counterparts as function of k. 
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Figure 4. Standard deviation of the 7 lowest natural 

frequencies divided by the asymptotic value, as a 

function of the number of boundary modes, k=0.75, 

.=0.1. Ratio of the first seven natural frequencies to 

their k=" counterparts as function of k. 

ordinate correspond to the natural frequencies for a 

finite value of k divided by their k=" counterpart. As 

expected, the natural frequencies converge 

monotonically to those of the perfectly clamped plate. 

It was next desired to assess the convergence of the 

model prediction with increasing number of boundary 

modes 
j

A . Both the natural frequencies and boundary 

energy were investigated and in both cases it was 

found that the mean value converged must faster than 

the standard deviation. Further, the standard deviations 

of  the  boundary  energy  and  the natural  frequencies 
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Mode 2

 

Mode 3

 

Mode 4

Figure 5. First four modes of the flexible boundary 

plate, k =0.75, 120 boundary modes, 10 clamped modes 

 



 

 

 

 

Figure 6. Standard deviation of modal values, first 4 

modes, k =0.75,120 boundary modes, 10 clamped 

modes, and .=0.1. 

 

exhibited a very similar behavior, see Fig. 4 for the 

natural frequencies. It is seen in particular that the 

convergence is rather slow but appears to be the same 

for all natural frequencies.

Mode 1 

The properties of the mode shapes were also 

investigated. Shown in Fig. 5 are the first 4 modes of 

the flexible boundary condition plate with k=0.75 and 

note the slight displacements and rotations at the 

boundary. The variation of the modal properties with 

uncertainty was also analyzed, e.g. see Fig. 6 for the 

standard deviation of the modal values for the first 4 

modes. Note the strong similarity between the modes 

and their standard deviations. 
Mode 2 The model of uncertain boundary conditions developed 

in the previous section is a 2 parameter model as it 

involves the coefficient k of Eq. (23) and the 

uncertainty measure . of Eq. (6), and it was accordingly 

desired to assess the joint effect of these 2 parameters. 

Shown in Fig. 7 are the coefficients of variations of the  
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Figure 7. Coefficients of variation of the first two 

natural frequency vs. k and .FE120 boundary modes, 10 

clamped modes.E
 



first two natural frequencies, as functions of k and .. 

These plots do exhibit expected behaviors. the 

coefficients of variations all grow as a function of the 

uncertainty measure for all values of k. Second, these 

coefficients of variations are also monotonically 

decreasing functions of k as might be expected since 

the limit  should recover the perfectly clamped 

plate for which the natural frequencies do not exhibit 

any variability. 

GHk

To complete the modeling process, it remains to 

formulate an identification strategy of the two 

parameters of the boundary conditions uncertainty 

model, i.e. k and .. It is proposed here to focus on 

metrics that relate to the motions at the boundary to 

avoid the interference of uncertainty on the rest of the 

structure. More specifically, consider the boundary 

condition “energy” term  defined as BCE

      $ % B
physBC

TB
physBC XAXE #           (27) 

where  is a specified positive definite matrix. It is 

then desired to assess the existence of strong 

correlation between some properties of  and the 

parameters k and .. Shown in Fig. 8 are the mean and 

coefficient of variation of  for the first random  

BCA

BCE

BCE

 

 

Figure 8. Mean and coefficient of variation of , 

first mode deformations, vs. k and .FE120 boundary 

modes, 10 clamped modes. 

BCE

mode with  arbitrarily chosen as a diagonal matrix 

with elements equal to 1 on translations and 10 on 

rotations. It is clearly seen from these figures that the 

mean of provides an unambiguous estimation of k 

while the variance of  has a clear dependence on 

.. Thus, the knowledge of the first two moments of the 

quantity  provides straightforward estimates of k 

and .. 

BCA

BCE

BCE

BCE

The analysis of the effects of uncertainty in the 

boundary conditions can extend further than the natural 

frequencies and mode shapes of the structure, e.g. to the 

flutter boundary. To exemplify this application, the 

Goland wing of Fig. 9 (see Table 1 for natural 

frequencies) was considered and its flutter boundary 

was determined for GM =0.7 using ZAERO and a 20 

mode model (see [5,6] for related investigations). An 

analysis of the fully clamped wing demonstrated that 

flutter occurs at 752.87 ft/s with a frequency of 

1.966Hz. 

 

 

Mean 

 

Figure 9. The Goland wing model. 

 .E
Mode # Nat. Freq. 

(Hz) 

Mode # Nat. Freq. 

(Hz) 

1 1.690 6 16.260 

2 3.051 7 22.845 

3 9.172 8 26.318 

4 10.834 9 29.183 

5 11.258   

k

Coefficient 

of Variation

Table 1. Natural frequencies of the mean Goland wing 

 

It was next desired to assess the variations of the flutter 

speed and flutter frequency that would result from 

uncertainty in the clamped boundary condition. To this 

end, the formulation of the previous section was applied 

with a value k = 20 with 12 cantilevered modes and 8 

boundary modes. These parameter selections led to first 

and second natural frequencies without uncertainty 

equal to 98.8% and 99.4% of their fully clamped 

counterparts. 

.E

k



Next, uncertainty was introduced using the 

nonparametric approach and the value .=0.6 was 

chosen; it leads to coefficients of variation of the first 

and second natural frequencies of 0.28% and 0.14%, 

respectively. Next, an ensemble of 300 uncertain 

wings were simulated and their flutter boundary was 

determined using ZAERO for =0.7 with a 20 

mode model based on the mean wing with flexible 

boundary conditions. Shown in Fig. 10 are the first 

and second natural frequencies of these wings (Fig. 

10(a)) and their corresponding matched point flutter 

boundaries (Fig. (10b)).  
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Figure 10. Shotgun plot of (a) first and second natural 

frequencies, (b) flutter frequency vs. flutter speed, 

random boundary conditions. The red triangle denotes 

the design conditions (fully clamped wing). 

 

It must be noted from Fig. 10 that the variations in 

flutter frequency and especially flutter speed are much 

larger than the corresponding variations of the natural 

frequencies. Note finally that the 300 flutter cases can 

be separated into two groups exhibiting  either high or 

low flutter speed and frequency (see Fig. 10(b)). The 

probability density functions of Fig. 11 highlight these 

two findings. 

These observations are consistent with the results of 

[6] which demonstrated the high sensitivity, both 

quantitatively and qualitatively, of the Goland wing 

flutter boundary to structural uncertainty. 
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(a) 

Figure 11. Probability density functions of (a) the 

flutter frequency and (b) the flutter speed, random 

boundary conditions. The red triangle denotes the 

design conditions (fully clamped wing).

UNCERTAIN COUPLING BETWEEN 

SUBSTRUCTURES(b)

The modeling procedure described above can be 

extended to the consideration of uncertainty in the 

coupling between substructures such as the wing of Fig. 

12 For simplicity, assume that there are only two 

substructures the dynamics of which will be represented 

by two sets of mode shapes, 
1

6  and 
2

6 , and two sets 

of constraints modes, 
1

5  and 
2

5 . In Fig. 12, the 

modes contained in 
1

6  would correspond to the 

inboard wing clamped at both its root and the interface 

with the outboard one. Similarly, the modes in 
2

6  

would correspond to the outboard wing clamped at its 

interface with the inboard. The constraints modes, 
1

5  

and 
2

5 , are associated solely with the interface. Next, 

denote by 
i

q  and iY , i = 1,2, the generalized 



coordinates associated with the modes and constraint 

modes of the two substructures. Paralleling the above 

developments, an expansion of the variables iY  will 

further be sought as 

  iii uY @#  i = 1,2          (28)

  

5.012.0

45.0

1.75

7.04.5

Figure 12. Wing example definition (dimensions in 

feet) 

 

where 
i

@  denote the eigenvector matrices of the 

boundary modes obtained as in Eq. (19). This process 

will then lead to the overall reduced order model of the 

structure with flexible coupling between its 

substructures. Specifically, for the reduced order 

model variables 
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it is found that the overall stiffness and mass matrices 

are 
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and 
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with notations consistent with those introduced in 

connection with the treatment of uncertain boundary 

conditions. It remains to specify the coupling stiffness 

matrix 
phys

K̂  joining the two sets of constraint modes 

displacements. In parallel with the discussion of the 

previous section, it is assumed here that 

coupling line 

       /0
1

23
4 +# 2211ˆ BB

phys

BB

physphys
KKkK               (32) 

where the notation BBiBiB is introduced here to specify the 

side of the common boundary (i.e. substructure i). 
Then, as in Eq. (23), one obtains 
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This approach has been demonstrated on the wing of 

Fig. 12. Given the small number of nodes at the 

interface and the observed slow convergence with the 

number of boundary modes, all such modes were kept 

here and 20 clamped modes were taken for each 

substructure. Shown in Fig. 13 is the convergence, as k 

increases, of the first natural frequency of the system to 

the corresponding value for the single cantilevered 

structure. The next 6 natural frequencies were found to 

converge faster than the first one. 
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Figure 13. Convergence of the first natural frequency of 

the assembled wing as k increases. 
 

The effects of varying the parameters k and . were 

again assessed on the coefficient of variation of the 

natural frequencies and on the boundary energy. The 

results, see Figs 14 and 15, are consistent with those 

obtained for the boundary condition uncertainty, see 

Figs 7 and 8. 
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Figure 14. Coefficients of variation of the first two 

natural frequency vs. k and .FEall boundary modes, 20 

clamped modes each substructure, wing example. 
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Figure 15. Mean and coefficient of variation of , 

first mode deformations, vs. k and .FEall boundary 

modes, 20 clamped modes each substructure, wing 

example. 

BCE

SUMMARY

The focus of this investigation was on the formulation 

and validation of a novel approach for the inclusion of 

uncertainty in the modeling of the boundary conditions 

of linear structures and of the coupling between linear 

substructures. The three steps of the approach are: (i) 

the determination of a mean structural dynamic model 

including boundary condition/coupling flexibility, (ii) 

the introduction of uncertainty in the mean model, and 

(iii) the estimation of the mean and uncertainty 

parameters of the model. 

.E
k

A Craig-Bampton substructuring approach was adopted 

for the formulation of the mean model with boundary 

condition/coupling flexibility. This flexibility was 

implemented through the finite stiffness matrix 

Mean 

BB

phys
K̂ , 

see Fig. 2 and Eq. (23). Note in this regard that the 

ensuing consideration of model uncertainty (in addition 

to parameter uncertainty) does render less critical the 

detailed representation of 
BB

phys
K̂  and thus validates the 

straightforward assumption of Eq. (23). 

The simulation of uncertainty was addressed using the 

nonparametric stochastic modeling approach first 

because it includes model and parameter uncertainties, 

both of which are expected to be present, but also 

because of its computational convenience. Indeed, 

random matrices 
uu

ROM
Kk
$

 are readily generated using 

the algorithm of Eqs (2)-(5) or Fig. 1. 

.E
k

Each of the above step, i.e. the mean model 

construction and the nonparametric approach, 



introduces one parameter in the problem, i.e. k for the 

mean model and . for the uncertainty characterization. 

The estimation of these parameters could be 

performed from global variables, e.g. from the mean 

and standard deviation of the first natural frequency, 

but they might then be affected by the presence of 

uncertainty on other aspects of the structure (other 

boundary/coupling, uncertain material/geometrical 

properties, etc.) Accordingly, it was proposed here to 

estimate k and . using measurements performed on the 

uncertain boundary. In fact, the value of k was readily 

shown to correlate very strongly with the mean energy 

on the boundary, see Eq. (27), while . exhibited a 

similar relationship with the standard deviation of this 

energy. 
The consideration of uncertainty in the coupling 

between substructures was formulated in a similar 

manner to that of the boundary conditions through a 

Craig-Bampton modeling approach of all connecting 

substructures. 

Finally, these developments permitted the flutter 

analysis of wings with uncertain boundary condition 

or uncertain coupling between substructures. It was 

observed in particular that the resulting level of 

uncertainty on the flutter boundary was significantly 

larger than on the natural frequencies and thus is of 

practical interest. 
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