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Abstract. A theory of stress and elastic deformation during interdiffusion is presented. We 

show its consistency with the general Darken analysis and linear irreversible 

thermodynamics. Special consideration is given to the local entropy production. We derive 

the expression for the rate of entropy production during interdiffusion and present the 

practical computations of the internal energy and entropy densities and the entropy 

production. It is shown, that the entropy produced by the diffusion of mass is positive, 

0s
A ≥ , and it does not depend on the frame of reference. The paper spans the gap between 

the Darken method, the linear irreversible thermodynamics and treatments by Larché, Cahn 

and Stephenson.  

 

Keywords. entropy, entropy production, linear irreversible thermodynamics; interdiffusion; 

mechano-chemistry, volume continuity equation. 

PACS. 05.70.-a, 05.70.Ln, 66.30.Ny, 82.60.-s, 46.25.-y, 46.35.+z 

 

1. Introduction. In 1902, Gibbs described a mechanism by which the entropy could increase toward 

its equilibrium value in mechanical systems obeying Newton’s equations [1]. The entropy production 

fascinates many physics researches, moreover in the past ten years there has been renewed interest in 

thermodynamics of heat engines; many papers address issues of maximum power, maximum 

efficiency and minimum entropy production both from practical and theoretical point of view [2,3,4,- 5,6]. 

Providing a microscopic expression for the entropy production has been one of the grand aims of 

statistical mechanics, going back to the seminal work of Boltzmann. However, both the range of 

validity of the second law and of its proposed derivations have, from the very beginning, generated 

discussion and controversy [7].  

 The deformation during diffusion was investigated by Stephensohn [8]. He noted that when 

the components have different partial molar volumes or diffusion coefficients their simultaneous 

diffusion produce the imbalance in the volume transport which generate the elastic strain and internal 

stress. His theoretical framework shows the evolution of the stress fields during diffusion despite the 
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implicit non-compressible conditions. Recently, the special consideration is given to the generation of 

internal stress and vacancy chemical potential [9]. The relaxation of such potential occurs via plastic 

deformation and vacancy formation and annihilation. Svoboda and Fischer distinguish between 

interstitial and substitutional components and vacancies, including the role of non-ideal vacancy 

source and sink activity. This concept considers the interaction of the diffusion process with the 

deformation process. The stress tensor and corresponding elastic strain energy represent the  

additional mechanical driving force for diffusion and generation/annihilation of vacancies. 

The purpose of this paper is to develop the method that takes into account the both effects of 

stress and the component chemical potential terms in the diffusion potentials as well as relaxation of 

these terms, the resulting convective mass transport and the entropy production. Following 

Stephenson we do not postulate the site conservation and consider multicomponent system. The 

method differs from the already published treatments [8], particularly in allowing the compressible 

elastic deformation and the effective use of the volume continuity equation [10, 13]. We show the 

general and exact mathematical description of the entropy production rate in the multicomponent, 

compressible solution which is valid for arbitrary initial conditions. The results are presented 

describing the entropy production in arbitrary binary diffusion couple. It is shown that the entropy 

production rate during diffusion is positive, does not depend on the frame of reference and depends 

on the initial conditions. Moreover, we show the deformation of the sample and the hydrostatic 

pressure field within the diffusion couple. 

 

2. Model. The Liouville transport theorem is a key mathematical tool used in this work to obtain the 

volume continuity equation and other conservation laws. It generalizes the Gauss-Ostrogradzki 

theorem and consequently can be applied for the vector fields (momentum, energy and entropy 

conservation in this work) [11]. 

 We consider a solid solution at constant temperature, T const= , and in a closed system,  

1,..., r
m m const= , where  mi  represent a constant mass of the components. 

 

2.1. Entropy – general description. By the second law of thermodynamics the entropy, s, of the 

mixture contained by Ω , 3

i

i

Ω = Ω ⊂ �U  denote the volume occupied by the mixture at time t, is 

affected by the local entropy sources, s
A , (due to the friction, diffusion, heat transport etc.) [1, 12]: 

 ( )d d
d d div d

d d i

s s

i i ii
s s A J

t t
ρ ρ

Ω Ω Ω
Ω = Ω = − Ω∑∫ ∫ ∫  (1), 

where s
J  is entropy flux,  and 

i
ρ ρ  denote the overall and components mass densities in the mixture 

and the entropy density is a sum of all components 
i ii

s sρ ρ= ∑ . 
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We assume, that 
3R

i
Ω ⊆  represents any domain of the three-dimensional space and 

i
υ  is the 

velocity field defining the set 
iΩ . From the Liouville theorem the following identity holds 

 ( )d
d div d .

d i i

i i

i i i i i i ii i i

s
s s

t tΩ Ω

∂ Ω = + Ω ∂ 
∑ ∑ ∑∫ ∫

ρ
ρ ρυ  (2) 

Combining Eqs. (1) and (2) and omitting the integrals the differential form of general equation for the  

entropy density follows: 

 ( )div div
s si i

i i ii i

s
s J A

t

ρ
ρυ

∂
+ + =

∂∑ ∑  (3) 

 

2.2. Entropy when diffusion is not negligible. The thermodynamics postulates the following 

relation defining the entropy per mass unit, s [1]: 

( )1 2, , , ,...,m m m m

r
s s u N N N= Ω , 

where , ,m m

i
u NΩ  denote the internal energy, the mixture specific volume per mass unit and the mass 

fraction ( m

i i
N ρ ρ= ), respectively. Multiplying the entropy by mixture density and splitting over the 

components results in partial Gibbs relation [13]: 

 
i i i i i i

T s uρ ρ ρ µ= − , (4) 

where T  is temperature and 
i

µ  denotes the diffusion potential, ch m

i i i
pµ µ= + Ω  [1, 13]. The 

differential of Eq. (4) is given by the relation: 

 i i i i i i
i i i i i i i i

s uT
Ts T s u

t t t t t t t

ρ ρ ρ µ
ρ ρ ρ µ ρ

∂ ∂ ∂ ∂ ∂ ∂∂
+ + = + − −

∂ ∂ ∂ ∂ ∂ ∂ ∂
. (5) 

Rearranging and combining with Gibbs equation, Eq. (4), we get: 

 i i i
i i i i i

s u T
T s

t t t t

µ
ρ ρ ρ ρ

∂ ∂ ∂ ∂
= − −

∂ ∂ ∂ ∂
, (6) 

summing Eqs. (6) over all of the components and multiply by 1ρ − , becomes: 

 m m mi i i
i i ii i i

s u T
T N N N s

t t t t

µ∂ ∂ ∂ ∂
= − −

∂ ∂ ∂ ∂∑ ∑ ∑ . (7) 

Using the Gibbs-Duhem relation, d d 0m

i ii
s T N+ =∑ µ , we get: 

 m mi i
i ii i

s u
T N N

t t

∂ ∂
=

∂ ∂∑ ∑  (8) 

which satisfies the second law of thermodynamics [1]. 
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2.3. Energy conservation law. According to the principle of the energy conservation, the overall 

energy of the mixture contained by Ω  is affected by the energy flow into the volume Ω  through its 

boundary ∂ Ω  [1]: 

 
d d

d d div d
d d i

e

i i ii
e e J

t tΩ Ω Ω
Ω = Ω = − Ω∑∫ ∫ ∫ρ ρ , (9) 

where e
J  is the total energy flux through the mixture boundary. From the Liouville theorem the 

following identity follows: 

 ( )d
d div d .

d i i

i i
i i i i i i ii i i

e
e e

t tΩ Ω

∂ Ω = + Ω ∂ 
∑ ∑ ∑∫ ∫

ρ
ρ ρ υ  (10) 

Introducing Eq. (10) into (9) and omitting the integrals the differential form of  energy conservation 

in the mixture follows: 

 ( )div div .ei i
i i ii i

e
e J

t

∂
+ = −

∂∑ ∑
ρ

ρ υ  (11) 

The component overall energy per mass unit, 
i

e , includes the kinetic, internal and potential 

contributions: 

 21
2

  = ext

i i i i i i i
e u Vρ ρ υ ρ ρ+ + , (12) 

where the internal energy, 
i

u , follows from the Gibbs relation, (4): 

       where     m

i i i i ii
u N u u Ts µ= = +∑ . (13) 

The total energy flux, eJ , includes the flux due to the mechanical work performed on a mixture, 

p υ⋅I ,  and a heat flow, q
J : 

 e q
J p Jυ= ⋅ +I , (14) 

where p  is hydrostatic pressure, I  represents the identity tensor and υ  denotes the overall volume 

velocity, m

i i ii
υ ρ υ= Ω∑ . 

Using Eqs. (11), (12) and (14) the balance equation for the overall energy becomes: 

 
( ) ( ) ( )

2

2

1
2 1

2
div div .I

ext

i i i i i
ext q

i i i i i i i ii i

u V
u V p J

t

∂ + +
+ + + = − ⋅ +

∂∑ ∑
ρ υ ρ ρ

ρ υ υ ρ υ ρ υ υ  (15) 

Assuming here the time independent external forcing ( 0)extV t∂ ∂ = , the internal energy conservation 

law becomes: 

 ( ) ( ) ( )
2

21 1
2 2

div div div
qi i i i

i i i i i ii i i i

u
u p J

t t

ρ ρ υ
ρ υ υ ρ υ υ

∂ ∂
+ = − ⋅ + − −

∂ ∂∑ ∑ ∑ ∑I  (16) 
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2.4. Equation of motion. By Newton’s law the rate of momentum change equals the overall force, 

ii
F F= ∑ , acting on the mass in Ω  [1]: 

 
d d

d d d
d d i i

m

i i i i ii i
F

t t
ρυ ρυ

Ω Ω Ω
Ω = Ω = Ω∑ ∑∫ ∫ ∫ . (17) 

The rate of momentum of the mixture contained by Ω  is affected by the force of elastic stress 

( )div m

i ii
pρΩ∑ I  and external force grad ext

ii
Vρ−∑  where ext

V  is external potential (i.e. 

gravitational field): 

 ( )div gradm ext

i i i ii i i
F F p Vρ ρ= = Ω −∑ ∑ ∑I , (18) 

where [ ) ( )3 3 3: 0, ,p  L= ∞ × →I σ � � �o  is the elastic stress tensor and ( )3 3,L � �  is the space of 

linear mappings from 3
�  to 3

� . In Eq. (18) we postulate that the ratio of the partial elastic stress 

tensor of the i-th component ( )
i
σ  to the overall elastic stress tensor ( )σ  equals the ratio of volume 

occupied by i-th component in one mole of the mixture to the overall volume of the mixture: 

1 m

i i i
ρ− = Ωσ σ I . Thus we have ( 1m m

i ii
ρ ρΩ = Ω =∑ ): 

 m

i i i
ρ= Ωσ σ  (19) 

and consequently: m

i i ii i
ρ= = Ω∑ ∑σ σ σ . 

The Liouville theorem when the momentum is considered implies the following identity: 

 ( )d
d div d .

d i i

i i

i i i i i i i
t tΩ Ω

∂ Ω = + Ω ∂ ∫ ∫
ρυ

ρυ ρυυ  (20) 

Combining Eqs. (17), (18) and (20) and omitting the integrals the differential form of partial equation 

of motion follows: 

 ( ) ( )div div gradm exti i
i i i i i ip V

t

ρυ
ρυυ ρ ρ

∂
+ = Ω −

∂
I  (21) 

By summing Eqs. (21) for all components we get overall equation of motion in all media in which 

diffusion is non-negligible: 

 ( )div div grad
exti i

i i ii i
p V

t

ρυ
ρυυ ρ

∂
+ = −

∂∑ ∑ I . (22) 

 

2.5. Pressure definition. We take into account the case when overall dilatation, t
e , is a result of 

stress, e
σ , and of the interdiffusion

1
 (Darken velocity): 

 t D
e e e

σ= + , (23) 

                                                 
1
 It can be visualized as a spatially non-uniform Darken drift velocity, e.g., in a case of the stress free 

interdiffusion when ( )1,..., rf N NΩ = . 
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where tracee ε=  and  ε denotes strain tensor. 

The overall strain tensor, tε , and the overall displacement vector u related by: 

 ( )1
grad grad

2

t Tε = +u u . (24) 

From Eq. (24) it follows that the overall dilatation is defined by: 

 divte = u . (25) 

The elastic dilatation, e
σ , equals [14]: 

 
( )3 1 2v

e p
E

σ −
= − . (26) 

The Darken strain tensor, Dε , and the Darken displacement vector u
D
  are related by: 

 ( )( )1
grad grad

2

T
D D Dε = +u u . (27) 

From Eq. (27) the Darken dilatation is defined by: 

 divD De = u . (28) 

From Eq. (23) it follows: 

 
t D

e e e

t t t

σ∂ ∂ ∂
= +

∂ ∂ ∂
. (29) 

Combining Eqs. (25), (26), (28) and (29): 

 
( )3 1 2

div div D
v p

E t
υ υ

− ∂
= −

∂
, (30) 

where tυ = ∂ ∂u  and D D tυ = ∂ ∂u . 

 

2.6. Volume Continuity Equation. The volume is not conserved, however the partial molar volumes 

obey the Euler relation: 

 1
m

m mi
imi

N ρ
Ω

= Ω =
Ω∑ . (31) 

The mixture volume, is the property transported by the velocity field of every mixture component  

contained by Ω : 

 
d d d

d d d
d d di

m m

i i iit t t
ρ ρ

Ω Ω Ω
Ω Ω = Ω Ω = Ω∑∫ ∫ ∫  (32) 

During an arbitrary transport process when volume is affected by the distribution of every mixture 

component and the stress field (the temperature is not considered here), from the Liouville theorem it 

follows:  

 ( )d
d div d

d

m
m m

t tΩ Ω

 ∂ Ω
Ω Ω = + Ω Ω ∂ 

∫ ∫
ρ

ρ ρ υ . (33) 
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Combining Eqs. (32) and (33) the Volume Continuity Equation (VCE) follows: 

 ( )d
div d .

d

m
m

t tΩ

Ω  ∂ Ω
= + Ω Ω ∂ 
∫

ρ
ρ υ  (34) 

We consider here a multicomponent solution in a closed system, 1,..., r
m m const= , where partial 

molar volumes and elastic properties do not depend on composition, ( )1,...,i rf N NΩ ≠ . Thus, the 

volume can be only affected by the external stress:  

 d d dt x
συ

∂ Ω
Ω = ∫ . (35) 

Thus, introducing Eq. (35) into (34) the differential form of VCE follow: 

 ( )div div
m

m

t

σρ
ρ υ υ

∂ Ω
+ Ω =

∂
. (36) 

Introducing Euler relation, Eq. (31) we can calculate the Darken velocity, Dυ , of the mixture: 

 m D m d

i i ii

σ σρ υ υ υ ρ υ υΩ = + + Ω =∑ , (37) 

where d

i
υ  is diffusion velocity defined by proper constitutive equation (section 2.8) and συ  is a 

velocity generated by external elastic deformation. 

 

2.7. Mass conservation law. The mass of the mixture component, mi(t), contained in iΩ  at the 

moment  t  equals: 

 ( ) d
i

i i i
m t ρ

Ω
= Ω∫  (38) 

The principle of conservation of mass states that the mass contained by iΩ  is conserved
2
. Thus, 

 
d

d 0
d i

i i
t

ρ
Ω

Ω =∫ . (39) 

By the Liouville theorem: 

 ( )d
d div d

d i i

i
i i i i i

t tΩ Ω

∂ 
Ω = + Ω ∂ ∫ ∫

ρ
ρ ρυ . (40) 

Combining Eqs. (39) and (40) and omitting the integrals results in local mass conservation laws for 

all components: 

 ( )div 0i
i i

t

ρ
ρυ

∂
+ =

∂
. (41) 

 

 

                                                 
2
To simplify the relations, in this work we do not consider the chemical and/or nuclear reactions in 

the mixture, i.e., we do neglect the local sources and sinks of mass. 

Page 8 of 21

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

2.8. The diffusion velocity in a case when no external forces are considered is given by the Nernst-

Planck equation [15, 16]: 

 ( )grad gradd ch m

i i i i i i
B B pυ µ µ= − = − +Ω , (42) 

where 
i

µ  is the diffusion potential and Bi denotes the mobility of the i-th component. 

 We consider mixture were the drift velocity is a result of the external elastic deformation ( )συ  

and  diffusion (the Darken drift, Dυ ). Thus, the component velocities are defined by: 

     where     ( , ) ( , ) ( , )d drift drift D

i i
t x t x t x

συ υ υ υ υ υ= + = + . (43) 

 

2.9. Entropy production and entropy flux. Entropy production and entropy flux can be calculated 

by comparing Eqs. (3) and (8). Introducing the mass conservation law, Eq. (41) into overall entropy 

formula, Eq. (3), we get: 

 grad div s si
i i i ii i

s
s J A

t
ρ ρυ

∂
+ + =

∂∑ ∑ . (44) 

On the other side, upon introducing the internal energy conservation law, Eq. (16) and equation of 

motion, Eq. (21) into Eq. (8) we get: 

 ( ) ( )11 1
grad div divq mi

i i i i i i ii i i iT

s
u p J p

t T T
ρ ρυ υ υ ρ

∂
= − − ⋅ + − Ω

∂∑ ∑ ∑ ∑I I . (45) 

Rearranging the final entropy balance equation can be written in terms of fluxes and forces as: 

 

div

1 1
.

q

i
i i i ii i

m
q d di i i

i i i i i ii i i

s J p
s

t T

p
J u

T T T T

 ∂ +
+ ∇ + = ∂  

 Ω
= ∇ + ∇ − ∇ + ∇ 

 

∑ ∑

∑ ∑ ∑

υ
ρ ρ

ρ µ
υ ρ ρ

υ

υ υ
 (46) 

Comparing Eqs. (44) and (46) the local entropy production rate and the entropy flux equal: 

 
1 1m

s q d di i i
i i i i i ii i i

p
A J u

T T T T

ρ µ
υ ρ ρυ υ

 Ω
= ∇ + ∇ − ∇ + ∇ 

 
∑ ∑ ∑ , (47) 

 
q

s J p
J

T

υ+
= . (48) 

Above relations allow to formulate the initial boundary-value problem of diffusion. 

 

3. Formulation of the free-boundary value problem of interdiffusion under the stress field. 

 Data: 

1) ( )0, , 1,...,iM i r∈ ∞ =  the molecular mass of the i-th component 
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2) ( )0,iΩ ∈ ∞  the molar volume of the i-th component, i=1,2,…,r 

3) 3Ω ⊂ �  the volume occupied by the mixture at time t 

4) [ ]
1

: 0,1 [0, )
r

i
k

D
=

→ ∞×  the diffusion coefficient of the i-th component,  
1

r

k=
×  denotes 

the Cartesian product 

5) ( )0,t ∈ ∞  duration of the process 

6) ( )0,T ∈ ∞  the constant process temperature 

7) ( )0,E ∈ ∞  the Young modulus 

8) ( )0,v∈ ∞  the Poisson number 

  

 The unknowns: 

1) { } [ )
*

*

0

: 0,
i

t t

t
≤ ≤

Ω → ∞×Uρ  density of the i-th component, where i = 1,…,r. 

2) { }
*

* 3

0

:drift

t t

tυ
≤ ≤

Ω →× �U  drift velocity of the mixture 

3) { }
*

*

0

:
t t

p t
≤ ≤

Ω →× �U  pressure of the mixture 

4) { }
*

*

0

:
t t

u t
≤ ≤

Ω →× �U  internal energy of the mixture 

5) { }
*

*

0

:
t t

s t
≤ ≤

Ω →× �U  entropy of the mixture 

6) { }
*

*

0

:s

t t

A t
≤ ≤

Ω →× �U  entropy production in the mixture 

 

 Physical laws: 

1) ( )div ,i d drift

i i i
t

∂
= −

∂
+

ρ
ρυ ρυ   the mass conservation law for the i-th component.  

2) 
d

div d div d
d

x x
t

συ υ
Ω Ω

Ω
= =∫ ∫ , The volume continuity equation (VCE) 

3) 
( )3 1 2

div div D
v p

E t
υ υ

− ∂
= −

∂
 evolution of pressure in the mixture 

4) grad : gradmi
i i i i i ii

u
u p

t
ρ ρ ρ υυ∂

+ = −Ω
∂

I   the internal energy conservation of the i-th component, 

where the overall internal energy of the mixture is 
i ii

u uρ ρ= ∑ .  
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5) 
i i i

Ts u µ= −  partial Gibbs-Duhem relation. The overall entropy of the mixture is calculated from: 

i ii
s sρ ρ= ∑ . 

6) grad grad
m

s di i i
i i ii i

p
A

T T

ρ µ
υ ρ υ

 Ω
= − 

 
∑ ∑ , the entropy production rate in case of isothermal 

process (i.e. the temperature gradient is negligible). 

 

 Initial conditions: 

1) [ )
0

: 0,iρ Ω → ∞  the initial density distribution of the i-th component 

2) 
0 0

i ii
c Mρ= ∑  the initial overall molar concentration of the mixture 

3) 
0

p∈�  the initial pressure field 

4) 
0

i
u ∈�  the initial internal energy 

 

 Boundary conditions: 

1) ( ) 0    on  d

i i t nρυ = ∂ Ω�  the diffusion flux of the i-th component at the mixture boundary, 

where n represents the unit vector normal to the boundary i.e., in the closed system analyzed here, the 

mass flow through the mixture boundaries does not occur. 

 2) grad 0    on  
p

p n
n

∂
= = ∂ Ω

∂
�  the pressure derivative at the boundaries equals zero, i.e., there is 

no external forcing. 

 

4. Results. In this section we present the internal energy evolution and the entropy generated when 

diffusion is not negligible. The data used to simulate the mechano-chemical diffusion process in the 

arbitrary binary alloy are shown in Table 1. We consider an ideal solid solution ( )i ia c=  in which the 

diffusivities of components differ.   

Temperature: 1273 [K] 

Young modulus: 100 [GPa] 

Poisson number: 0.3 

Simulation time: 100 [h] 

Sample length: 1 [cm] 

 

Stress effect on interdiffusion. In Fig. 1 the impact of the pressure field on diffusion is presented. 

The solid line shows the concentration profile when the stress (pressure) field is considered 
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( )lnch m m

i i i i i
p RT c p= + Ω = + Ωµ µ , the dash line present the calculations without the stress field 

( )lni iRT c=µ . It can be seen that stress field slows down the diffusion process.  

 Spatial distribution of the: a) drift velocity, b) pressure field, c) internal energy and d) entropy 

in the binary alloy is shown in Fig. 2. 

 The method allows calculating the entropy production during diffusion process, Fig. 3.  

The entropy produced by the mass diffusion is positive, 0s
A ≥ , and it does not depend on the frame 

of reference, Eq. (47). 

 The initial conditions markedly affect the entropy produced during diffusion process. Figure 4 

presents the evolutions of concentration for four different diffusion couples shown in Tables 1 and 2.  

 Figure 5 shows the comparison of  the drift velocity, pressure, internal energy and entropy in 

case of different initial composition. The different behavior of the evolution e.g. pressure profile can 

be observed.  

Finally in Fig. 6 we show that the entropy produced by the mass diffusion in the case of different 

initial conditions is positive, 0s
A ≥ . 

 

5. Summary. We have shown the consistency of the generalized Darken method (bi-velocity method) 

with the linear irreversible thermodynamics. We defined the material fixed frame of reference and 

effectively used the volume continuity equation. The resulting system of physical laws, initial and 

boundary conditions (i.e., the initial boundary value problem) allows using the bi-velocity method to 

model the complex mechano-chemical processes. We derived the expressions for the rate of entropy 

production during interdiffusion and presented the evolution of the internal energy, entropy and 

entropy production. It is shown, that the entropy produced by the diffusion of mass is positive, 

0s
A ≥ , and it does not depend on the frame of reference.  

The presented method spans the gap between the Darken method, linear irreversible thermodynamics 

and treatments by Larché, Cahn and  Stephenson. We have shown its effective use to predict 1) the 

time dependence of the mixture concentration, 2) the internal pressure field generated during 

diffusion, 3) the energy and entropy of the mixture and 4) the entropy production term.  

 In this work we considered the binary solid solution. It ternary and higher systems the 

multiple diffusion paths are possible and often observed. The minimization of the entropy production 

can allow to solve this long lasting problem, i.e., can in a unique way define the evolution of the 

diffusion paths. 
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Table 1. The data used to simulate the diffusion under the stress field in arbitrary binary alloy. 

Component Component diffusivity, 

Di  [cm
2
s

-1
] 

Molar mass, 

Mi  [g mol
-1

] 

Molar volume at  p = 10
5
 Pa  

Ωi [cm
3
mol

-1
] 

1 1.0 ·10
-9

 100 10 

2 1.0 ·10
-10

 200 20 

 

Page 14 of 21

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

Table 2. Initial concentrations in the diffusion couples shown in Figs. 4-6. 

 Component concentration, at. % 

Diffusion couple [ )0.5,0x∈ −  [cm] [ ]0,0.5x∈  [cm] 

1 0 100 

2 10 100 

3 50 100 

4 75 100 
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Figure 1. The influence of the internal stress field on diffusion in the binary alloy.  
289x202mm (150 x 150 DPI)  
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Figure 2. Spatial distribution of the: a) drift velocity, b) pressure field, c) internal energy and d) 
entropy in the binary alloy.  
330x238mm (72 x 72 DPI)  
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Figure 3. Spatial distribution of the entropy production during diffusion process in the binary alloy.  
289x202mm (150 x 150 DPI)  
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Figure 4. The concentration profiles during diffusion under the stress field for different initial 
conditions.  
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Figure 5. The evolution of  the a) drift velocity, b) pressure field, c) internal energy and d) entropy 
in the binary diffusion couple fir the different initial conditions shown in Table 2.  

323x237mm (72 x 72 DPI)  
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Figure 6. The entropy production generated by diffusion under the stress field for different initial 
conditions.  
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