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Abstract

In the literature, computational puzzle schemes have been consid-
ered as a useful tool for a number of applications, such as constructing
timed cryptography, fighting junk emails, and protecting critical in-
frastructure from denial-of-service (DoS) attacks. However, there is a
lack of a general security model for studying these schemes. In this
paper, we propose such a security model and formally define two
properties, namely the determinable difficulty property and the par-
allel computation resistance property. Furthermore, we prove that a
variant of the RSW scheme, proposed by Rivest, Shamir, and Wagner,
achieves both properties.

Keywords: computational puzzle, determinable difficulty, paral-
lelization

1 Introduction

A computational puzzle scheme [13, 19, 20, 30] enables a prover to prove
to a verifier that a certain amount of resources has been dedicated to solve
a puzzle. To motivate our discussions, consider the following two toy
examples.

1. Let H be a one-way hash function. The verifier selects a random
number x and set the puzzle to be H(x), while the prover searches for
a number x′, where H(x) = H(x′), as the puzzle solution. The verifier
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verifies a submitted puzzle solution x′ through checking the equality
H(x) = H(x′).

2. Let H be a one-way hash function. The verifier selects d random
numbers ri (1 ≤ i ≤ d) as the puzzle, while the prover computes
H(ri)(1 ≤ i ≤ d) as the puzzle solution. The verifier verifies a submitted
puzzle solution hi (1 ≤ i ≤ d) through checking the equalities H(ri) = hi
(1 ≤ i ≤ d).

In the first scheme, the verifier only needs to compute one hash in order
to verify the solution, regardless of the amount of computation that the
prover needs to perform. In contrast, in the second scheme, the verifier
needs to perform the same amount of computation as that of the prover in
order to verify the solution. Intuitively, the first scheme seems to be the
preferred one, but it still has some drawbacks.

• First, the amount of computation the prover needs to perform is prob-
abilistic. Suppose x is chosen from the domain [1,N]. In the best
case the prover only needs to compute one hash, while in the worst
case it needs to compute N hashes until find the right answer. As a
consequence, the verifier never knows what is the exact amount of
computation required to solve a puzzle, although the average is N

2
hashes.

• Second, if a prover has access to more than one computer, then it
can speed up the puzzle solving process by having all of them work
in parallel. For example, client A, which has access to x computers,
could be x − 1 times faster in finding a solution than client B, which
has access to one computer. In practice, it is very difficult for a ver-
ifier to determine the amount of computing resources a prover can
access, especially in the presence of malicious provers which control
a large number of Zombie computers. In some cases such as timed
cryptography [5, 17, 30], this will create an unfair situation for differ-
ent provers. Arguably, in many other cases such as fighting against
DoS attacks [20], the parallelism property of a computational puzzle
scheme may also be undesirable.

1.1 Contribution

Most of existing computational puzzle schemes, as surveyed in Section 2,
possess similar drawbacks. In fact, there is a lack of a general security
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model for formally studying relevant properties. In this paper, we propose
a security model for computational puzzle schemes in general. In partic-
ular, in correspondence to the above drawbacks, we formally define two
properties, namely determinable difficulty and parallel computation resistance.

• The determinable difficulty property implies that the verifier can pre-
cisely determine the required resource required from the prover in
solving a puzzle.

• The parallel computation resistance property implies that the prover
cannot accelerate the puzzle solving process by letting more than one
computer work in parallel.

These two properties describe the fundamental characteristics of computa-
tional puzzles. This is the first model of this kind, though there are security
models for some specific categories of computational puzzle schemes (e.g.
[9]). In addition, we also provide discussions on some other properties
such as computation disparity between the verifier and a prover, puzzle
hardness granularity, and puzzle statefulness.

We prove that a variant of the RSW computational puzzle scheme, pro-
posed by Rivest, Shamir, and Wagner, achieves the determinable difficulty
and parallel computation resistance properties. This not only shows that
the defined security properties are achievable but also solves the open issue
about analyzing the security of the well-known RSW scheme in a rigorously-
defined security model. To our knowledge, most existing computational
puzzles do not achieve the parallel computation resistance property.

1.2 Organization

The rest of the paper is organized as follows. In Section 2, we present a brief
literature review on computational puzzle schemes and present a formal
definition. In Section 3 we propose a general security model and define the
properties. In Section 4, we present a variant of the RSW computational
puzzle scheme and prove its security. In Section 5, we conclude the paper.

2 Preliminary of Computational Puzzles

In this section, we briefly review the literature of computational puzzle
schemes, and then present a general and formal definition of such schemes
to facilitate our following discussions.
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2.1 Literature Review

Merkle [27] was the first to introduce the notion of puzzle which led to
the invention of public key cryptography. In this context, the puzzle is
required to be unsolvable by any polynomial-time entity. Dwork and Naor
[13] proposed the concept of pricing function to combat junk emails. Rivest,
Shamir, and Wagner [30] proposed the concept of timed-lock puzzle, which
serves as a tool to realize the concept of timed-release crypto. Juels and
Brainard [20] proposed the concept client puzzle and suggested to use it
to prevent Denial of Service (DoS) attacks. Regardless of the different
notations, pricing function, timed-lock puzzle, proof of work, and client puzzle
share the same characteristic: they can be regarded as another type of puzzle
(different from that of Merkle [27]) which is moderately hard in the sense
that a polynomial-time entity can successfully find a solution by spending
a certain amount of resources. Without loss of generality, we use the term
computational puzzle to refer to the second type of puzzle.

Roughly speaking, there are two types of computational puzzle schemes.
One type is CPU-bound, where the computation is measured by the amount
of CPU cycles needed to solve a puzzle. Some examples are those in
[4, 9, 13, 19, 20, 30, 32, 36], which form the majority of the existing computa-
tional puzzle schemes. Abadi et al. [1] first noticed the fact that CPU power
varies a lot for different computers (such as PC, PDA, and Workstation),
and introduced memory-bound computational puzzle schemes, where the
computation is measured by the amount of memory look-ups needed to
solve a puzzle. The schemes in [11, 12] fall into this category. Regardless of
the nature of different forms of computations involved in solving puzzles,
the essence is the same, namely the prover needs to spend a certain amount
of resources (either CPU cycles or memory look-ups) in finding a solution.

Computational puzzle schemes have been explored to realize a number
of secure functionalities, such as timed encryption [30], timed bit commit-
ment [5], timed release of digital signatures [17], uncheatable benchmarks
[8], trustworthy website usage metering [15], and generating delays in lot-
tery applications [18]. The rationale is that the process of spending resources
in solving a puzzle automatically results in a time delay, which enables the
verifier to control when the prover is able to access the functionalities. In
other words, the functionalities are masked by puzzles, which need to be
solved first before the prover can access the functionalities. Besides realiz-
ing various security functionalities, researchers have also applied compu-
tational puzzle schemes to mitigate a wide range of DoS attacks, such as
fighting junk emails [13, 12], protecting authentication protocols [2, 23, 29],
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protecting IP networks [10, 14, 16, 20, 33, 34, 35], protecting wireless net-
works [24, 26], and preventing Sybil attacks [6]. With a computational
puzzle scheme implemented, the server (playing the role of verifier) can
mitigate an attack by asking every client (playing the role of prover) to
solve a puzzle before allocating any required resource. The rationale is
that, the number of “valid” requests from a malicious client will drop to
some extent because the client has only limited resource to find puzzle
solutions. In the literature, there has been some debate on whether com-
putational puzzle schemes are really helpful to defect DoS attacks. Based
on the collected results from ISPs in UK, Laurie and Clayton [21] claimed
that computational puzzle schemes are hardly effective in combating junk
emails in practice. While, Liu and Camp [25] argued that computational
puzzle schemes could be helpful if such schemes are used in combination
with reputation systems.

Chen et al. [9] proposed a security model for computational puzzle
schemes tailored for defeating DoS attacks. In particular, their definition
has focused on the unforgeability and difficulty of puzzles. However, their
definition of puzzle difficulty implies neither the determinable difficulty
property nor the parallel computation resistance property.

2.2 Definition of Computational Puzzle Schemes

In the design and analysis of computational puzzle schemes, we typically
do not directly talk about how many CPU cycles or memory lookups are
required for puzzle generation, puzzle solving, and puzzle solution verifi-
cation. Instead, we often use the number of some generic operations (such
as a hash or a multiplication in some group) as a puzzle complexity metric.
For the notation purpose, we assume the generic operation to be denoted
as Func.

A computational puzzle scheme consists of four (probabilistic) polynomial-
time algorithms (Setup,PuzzleGen,PuzzleSol,PuzzleVer).

• Setup(`,D): Run by the verifier, this algorithm takes a security param-
eter ` and an upper bound D on the puzzle hardness (see the definition
below) as input, and outputs the public system parameter params and
a private key mk. The public system parameter params should also
include a specification about the metric function Func. This system
parameter is implicitly part of the input to other algorithms, and we
omit it in the descriptions for simplicity reasons.
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• PuzzleGen(mk, d, req): Run by the verifier, this algorithm takes the pri-

vate key mk, a hardness parameter d, and some additional information
req as input, and outputs a puzzle puz and some relevant information
in f o. The hardness parameter d is an integer which indicates the total
number of Func operations required. The verifier sends puz to the
prover, and keeps in f o for verifying the solution.

• PuzzleSol(puz): Run by a prover, this algorithm takes a puzzle puz as
input and outputs a puzzle solution sol.

• PuzzleVer(mk, in f o, sol): Run by the verifier, this algorithm takes the
private key mk, the puzzle information in f o, and the solution sol as
input, and outputs 1 if sol is correct or 0 otherwise.

It is worth noting that a prover may not follow the PuzzleSol algorithm
to find a solution, and in fact it can use any means to find the solution. But
the properties determinable difficulty and parallel computation resistance, which
will be defined in next subsection, imply that a prover need to perform d
operations of Func in order to find a solution whether or not it follows the
PuzzleSol algorithm. In addition, in some schemes, a long-term private
key mk may be unnecessary or the additional information req may not be
required as part of the input. In some application scenarios such as timed
cryptography [5, 17, 30], a puzzle verification algorithm PuzzleVer is not
explicitly required. Nonetheless, the above definition is meant to be general
enough to cover most existing computational puzzle schemes.

3 Property Formulations for Computational Puzzles

Similar to other types of cryptographic schemes, soundness is a basic re-
quirement for a computational puzzle scheme. In our case, soundness is
defined to be that, given a puzzle with the hardness parameter d, the prover
can find a correct solution by performing a total number of d operations of
Func.

In the following, we formalize the properties determinable difficulty and
parallel computation resistance. It is worth noting that, as in the case of most
cryptographic formulations, we only consider a polynomial time adversary
in our formulation and define that a property is achieved if an adversary
has only a negligible advantage in the attack. The notion of negligibility is
defined as follows.
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Definition 1 The function P(k) : Z → R is said to be negligible with respect to
k if, for every polynomial f (k), there exists an integer N f such that P(k) < 1

f (k) for
all k ≥ N f .

3.1 The Determinable Difficulty Property

Informally, the determinable difficulty property implies that the verifier
can precisely determine the required resource from the prover in solving a
puzzle. Basically, this has two implications.

• One is that puzzles, generated by the verifier, are independent from
each other in the sense that solving one puzzle does not help solve
another puzzle. In other words, any puzzle generated by the verifier
will require the prover to perform d Func operations.

• The other is that puzzles, generated by the verifier, are unpredictable
in the sense that any puzzle generated by the verifier looks fresh so
that the prover is unable to pre-compute the solution.

An attack succeeds if, after receiving a puzzle of hardness d, the ad-
versary finds a solution by performing less than d Func operations. As a
standard practice, attacks against the determinable difficulty property is
simulated through the following three-phrase game between an adversary
and a challenger, as depicted in Fig. 1. In the attack game, the adversary
plays the role of a malicious prover and the challenger plays the role of the
verifier.

In practice, the only information to a prover is the puzzles generated
by the verifier and the public system parameter. It is straightforward to
check that the adversary has all the same privileges as a malicious prover
in practice. Formally, the determinable difficulty property is defined as
follows.

Definition 2 Suppose that the adversary has performed d† Func operations in the
Response phase of the attack game (defined in Fig. 1). A computational puzzle
scheme achieves the determinable difficulty property if the probability d† < d∗ is
negligible with respect to the security parameter `. The probability is computed
based on the (random) coin tosses of the challenger and the adversary.
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1. Setup phase: The challenger takes the security parameter and an up-

per bound D on the puzzle hardness as input, and runs the Setup
algorithm to generate the master key mk and the public system pa-
rameter params.

2. Challenge phase: The adversary issues queries to the PuzzleGen
oracle with its chosen d and req, and obtains the reply puz =
PuzzleGen(mk, d, req) from the challenger. At some point, the ad-
versary sends d∗ and req∗ to the challenger, which sends puz∗ =
PuzzleGen(mk, d∗, req∗) back as a challenge.

3. Response phase: The adversary can issue queries to the PuzzleGen
oracle as in the challenge phase. At some point, the adversary termi-
nates by outputting a correct solution sol∗ to the puzzle puz∗.

Figure 1: The Attack Game

3.2 The Parallel Computation Resistance Property

As illustrated by the example schemes in Section 1, if a prover has access to
a number of computers, it is able to solve a puzzle much faster than others
by dividing the workload and letting the computers work in parallel. In-
formally, the parallel computation resistance property implies that a prover
cannot accelerate the puzzle solving process by exploiting the parallelism.
More concretely, the parallel computation resistance property requires that,
after receiving a puzzle of hardness d from the verifier, a prover needs to
sequentially perform d Func operations to find a solution. It means that the
prover is unable to speed up the process by letting more than one computer
work in parallel. This also implies that the best strategy for the prover is to
use its fastest computer to solve the puzzle. We first introduce the notion
of sequential computing time as follows.

Definition 3 Suppose that a prover has access to a number of computers which
can work in parallel, and the Func function is implemented as a program in every
computer. Let the each evaluation of the Func function be denoted as an event,
marked by the starting time and ending time of the evaluation, and the set of events
be denoted by gt (1 ≤ t ≤ N) in a computation task. Consider all sequences of the
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events of the following form

Seqx = {q1, q2, · · · , qx},
where, 1 ≤ x ≤ N and for all 1 ≤ i ≤ x − 1, the qi+1-th Func evaluation is started
by a computer after the qi-th Func evaluation has ended (by any computer). The
sequential computing time of the computation task is the maximum value of the
sequence indexes, namely maxx.

Formally, the parallel computation resistance property is defined as
follows.

Definition 4 Suppose that the sequential computing time of the computation
task of finding a correct solution sol∗ is d† in the Response phase of the attack
game (defined in Fig. 1). A computational puzzle scheme achieves the parallel
computation resistance property if the probability d† < d∗ is negligible with respect
to the security parameter `. The probability is computed based on the (random)
coin tosses of the challenger and the adversary.

According to our definition, the parallel computation resistance prop-
erty implies the determinable difficulty property. However, the reverse is
clearly not true.

Parallel computation resistance is a very desirable property when we
want to limit the disparity of computing powers of potential provers of a
computational puzzle scheme. Moreover, in some cases, this property is
crucial to mitigate attacks from malicious provers which control a cluster
of Zombie computers. However, the determinable difficulty property is
of independent interest in evaluating the security of computational puzzle
schemes when the property parallel computation resistance is unnecessary.
There are straightforward ways to convert a scheme, which achieves the
parallel computation resistance property, into a scheme which achieves de-
terminable difficulty and yet supports parallelism. For example, to gener-
ate a puzzle of hardness d, the verifier generates x independent sub-puzzles
{puz1, · · · , puzx} such that each of the sub-puzzle has the hardness d

x . By
doing so, the total hardness is still d = d

x · x, but a prover can solve the
sub-puzzles in parallel.

3.3 Further Remarks

When designing computational puzzle schemes, a naturally desirable prop-
erty is the computation disparity between the verifier and a prover: it should
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take very little resource for the verifier to generate a puzzle and verify a
solution, while it should take the prover a certain amount of resources (de-
termined by the verifier) to find a solution. Formally, this property can
be evaluated by a ratio parameter v

d , where v is the total number of Func
operations required in generating a puzzle and verifying a solution, and d
is the puzzle hardness.

With respect to puzzle hardness d, it is desirable that a computational
puzzle scheme provides finer granularity support. Take the hash-based
client puzzle scheme as an example 1: a puzzle is in the form of (h, x2), where
h = H(x1||x2), H is a collision-resistant hash function, and x1 has bit-length
k; a solution is a k bit x′1 such that h = H(x′1||x2). Clearly, the puzzle hardness
can only be set exponentially with respect to k in this case. However, in
the RSW computational puzzle scheme [30] and the variant in Section 4,
the puzzle hardness can be set linearly in the number of multiplications.
Clearly, with the latter, the verifier can more flexibly set d according to the
requirements of the underlying applications.

According to the definition of a computational puzzle scheme given
in Section 2, the verifier may store some state information in f o for each
puzzle. In this case, the scheme is said to be stateful. In practice, a stateful
computational puzzle scheme may be considered to be inefficient because
the verifier needs to store a piece of information for every unverified puzzle.
Nevertheless, it is straightforward to turn a stateful scheme into a stateless
one by sending both puz and in f o to the client, which should send sol and
in f o back to the server for verification. In the case that in f o compromises
the determinable difficulty property or the parallel computation resistance
property, the verifier can protect in f o with a symmetric key encryption
algorithm and a message authentication code algorithm. It is worth noting
that a completely stateless computational puzzle scheme may be prone to
replay attacks, in which an adversary replays a puzzle and its solution to
the verifier. A more detailed discussion of this issue is beyond the scope of
this paper, and should be addressed in the deployment of a computational
puzzle scheme.

4 Analysis of a Variant of the RSW Scheme

In this section, we analyse a variant of the RSW computational puzzle
scheme and show that it achieves the parallel computation resistance prop-
erty. In the literature, Tritilanunt et al. [32] proposed a scheme towards

1This is a simplied version of the scheme in [20].
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achieving the parallel computation resistance property, but they did not
give a rigorous security proof. It is unclear whether their scheme can be
proven in our security model.

4.1 Description of the Scheme

The algorithms of the new scheme are defined as follows.

• Setup(`,D): This algorithm selects two random large primes p, q and
a cryptographic hash function H : {0, 1}∗ → Z∗pq. The public parameter
is (`,D, pq), and the master key is mk = (p, q). In addition, the metric
function Func is multiplication in Z∗pq. Given `, the prime numbers
p, q should be chosen in such a way that the required assumptions
hold, as stated in next subsection.

• PuzzleGen(mk, d, req): This algorithm chooses r ∈R Zpq and computes
g = H(r||req), and outputs the puzzle puz = (g, d). The related puzzle
information is in f o = (r, d, req).

• PuzzleSol(puz): This algorithm outputs sol = g2d mod pq.

• PuzzleVer(mk, in f o, sol): This algorithm returns 1 if sol ≡ (H(r||req))2d mod φ(pq)

(mod pq), and returns 0 otherwise.

In this scheme, g is computed as g = H(r||req), which can be regarded
as a randomly chosen element of Z∗pq if H is modeled as a random oracle
(as shown in our security proof). By doing so, if needed, this element can
be bound to situational information (such as the identity information of the
prover) contained in req. Furthermore, the modification also facilitates the
proof in our security model. Note that, in [30], g is directly assumed to be
a randomly chosen element ofZ∗pq. We further note that the hah function H
can be replaced with any function that maps r||req to a random element in
Z∗pq.

The puzzle hardness d can be set linearly in the number of multiplica-
tions in the groupZ∗pq. It is clear that the workload of the verifier is constant
regardless of the puzzle hardness. With respect to the verification complex-
ity of the verifier, we omit the computation 2d mod φ(pq) for two reasons.
One is that it could be pre-computed and stored by the verifier. The other
is that, in many cases, multiple puzzles might share the same hardness so
that the computation only needs to be done once. As a consequence, it is
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straightforward to calculate that the average verification complexity for the
verifier is approximately 3L

2 multiplications inZ∗pq, where L is the bit-length
of φ(pq). The computation disparity ratio parameter is 3L

2d .

4.2 Security Analysis

In [22], Leander and Rupp model Zpq as a generic ring structure in order
to prove the equivalence of RSA and factoring. In this paper, we assume
the same structure. For our purpose, we only describe a generic algorithm
according to the multiplication operation inZ∗pq in the following. It is worth
noting that there are different ways of giving the definition (e.g. [28, 31]),
and we follow that of Shoup [31].

Let g ∈R Z
∗
pq and σ be an encoding function ofG = {gi | i ∈N} on {0, 1}|pq|,

where N is the set of integers and |pq| means the bit-length of pq. Suppose
O is a multiplication oracle, which, for any r ∈ G, computes σ(r) as follows:
if r has been calculated before, then the same value of σ(r) is returned;
otherwise, it sets σ(r) to be a random value from {0, 1}|pq| \S, whereS is a set
initialized to be {σ(g)}. A generic algorithm A is a probabilistic algorithm,
which takes S and pq as input, and behaves as follows. At any time,A can
send a query with the input (x, y, b), where x, y ∈ S and b ∈ {1,−1}, to O,
and will receive σ(x · yb) as the reply. After every query, the result is added
to the set S.

Remark 1 The concept of generic algorithms, which traces back to Babai and
Szemeredi [3], has been extensively used to model algebraic objects, such as groups
and rings. It has made it possible to prove the security of many cryptographic
protocols. Note that this methodology does possess an inherent limitation, namely
a lot of attacks against cryptographic protocols have actually been subject to the
successful exploit of the structures of the underlying algebraic objects. Nevertheless,
a security proof can still provide a certain level of confidence in the security of the
studied protocols.

To complete our proof, we further need the following computational
assumption associated with the multiplication groupZ∗pq. This assumption
is similar to the representation assumption in groups of prime order made
by Brands [7].

Definition 5 Let p, q be two prime numbers. The extended discrete logarithm
assumption holds for Z∗pq if the following event only occurs with a negligible
probability with respect to a security parameter `: Given (pq, g, gi (1 ≤ i ≤ V)),
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where g, gi (1 ≤ i ≤ V) are chosen uniformly at random from Z∗pq and V is
any polynomial in the security parameter, a polynomial-time adversary finds x ,
0, xi (1 ≤ i ≤ V) ∈N such that

gx ≡
1≤i≤V∏

xi∈N
gxi

i (mod pq).

In the following theorem, we prove that the variant scheme achieves
the parallel computation resistance property (and certainly also the deter-
minable difficulty property).

Theorem 1 If the adversary is modeled as a generic algorithm as defined above,
then the variant scheme achieves the parallel computation resistance property based
on the extended discrete logarithm assumption (given in Definition 5) in the random
oracle model.

Proof sketch. In order to prove the theorem, we need to show that the
adversary’s advantage in the attack game (defined in Fig. 1) is negligible
according to Definition 4. Since the adversary is modeled as a generic
algorithm, there are two types of oracle queries it may issue. One is the
PuzzleGen query which can be issued to the challenger, and the other is
multiplication oracle query which can be issued to the generic group oracle
O.

We first consider a simple situation where the adversary does not issue
any PuzzleGen query in the game. In this situation, the best strategy for
the adversary to issue oracle queries to O in the Response phase is the
following.

1. At the beginning, the adversary issues two queries with the inputs
(σ(g∗), σ(g∗), 1) and (σ(g∗), σ(g∗),−1). Clearly, until it receives the replies,
namely σ((g∗)2) and σ(1), from the oracle O, it does not make sense for
the adversary to send any other query.

2. After obtaining the replies, the set S becomes {σ(1), σ(g∗), σ((g∗)2)}.
Then the adversary issues queries with the following inputs

(σ(g∗), σ((g∗)2), 1), (σ((g∗)2), σ((g∗)2), 1),

(σ(1), σ(g∗),−1), (σ(1), σ((g∗)2),−1).

Clearly, until it receives the replies, namely σ((g∗)3), σ((g∗)4), σ((g∗)−1),
and σ((g∗)−2) from the oracle O, it does not make sense for the adver-
sary to send any other query.
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3. After obtaining the replies, the set S becomes

{σ(1), σ(g∗), σ((g∗)2), σ((g∗)3), σ((g∗)4), σ((g∗)−1), σ((g∗)−2)}.
Then the adversary issues queries with (x, y, b), where x, y ∈ S, b ∈
{1,−1}, and σ(x · yb) < S. Clearly, until it receives the replies, it does
not make sense for the adversary to send any other query.

4. The adversary continues the above process until it sends the response
to the challenger.

Note that, we have enlarged the adversary’s ability here, by allowing
it to issue potentially an exponential number of queries to the oracle O. In
fact, a polynomial-time adversary can only issue a polynomial number of
queries. Nonetheless, if such an extensively empowered adversary cannot
win the game, then a polynomial-time adversary can neither.

Suppose, at the end of the game, the adversary performs d∗ − 1 steps as
above (which also means the sequential computing time is d∗ − 1), then the set
S is a subset of

{σ((g∗)−2d∗−1
), σ((g∗)−2d∗−1+1), · · · , σ(1), · · · , σ((g∗)2d∗−1−1), σ((g∗)2d∗−1

)}
In the game, the adversary could choose to submit a value σ((g∗)z) from S
or a value r from {0, 1}|pq| \ S as the response to the challenger.

• In the first case, if σ((g∗)z) = σ((g∗)2d∗ ), then the adversary has actually
found 2d∗ − z such that (g∗)2d∗−z ≡ 1 (mod pq). Based on the extended
discrete logarithm assumption, the probability is negligible.

• In the second case, if (g∗)2d∗ has not been queried to the oracle, the prob-
ability r = σ((g∗)2d∗ ) is Q

pq where Q is the total number of queries issued
to the oracle O. Clearly, this probability is negligible. Otherwise, if
(g∗)2d∗ has been queried to the oracle O, the probability r = σ((g∗)2d∗ ) is
0.

To summarize, in this simple situation, the adversary’s advantage is negli-
gible.

Next, we evaluate a more complex situation where the adversary is free
to issue PuzzleGen oracle queries. This reflects the practical situation that
a prover can ask the verifier for puzzles in a computational puzzle scheme.
Our analysis will show that such a privilege does not help the adversary
gain any benefit. Let σ(g1), σ(g2), · · · , σ(gV) be the elements resulted from
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the replies of PuzzleGen oracle queries, where g1, g2, · · · , gV are random
elements from Z∗pq. Certainly, V is a polynomial in the security parameter.
Suppose, at the end of the game, the adversary performs d∗ − 1 steps in the
Response phase, then the setS is a subset of S1

⋃S2
⋃S3. The setS1 is the

following.

S1 = {σ((g∗)−2d∗−1
), σ((g∗)−2d∗−1+1), · · · , σ(1), · · · , σ((g∗)2d∗−1−1), σ((g∗)2d∗−1

)}

The setS2 contains a polynomial number of encodings of the formσ(
∏1≤i≤V

xi∈N gxi
i ),

and the set S3 contains a polynomial number of encodings of the form
σ(A · B), where σ(A) ∈ S1 and σ(B) ∈ S2.

In the game, the adversary could choose to submit a value σ((g∗)z) from
S1, S2, S3, or a value r from {0, 1}|pq| \ S as the response to the challenger.

• In the first case, from the analysis in the simple situation, the adver-
sary’s advantage is negligible.

• In the second and the third cases, if σ((g∗)z ·∏1≤i≤V
xi∈N gxi

i ) = σ((g∗)2d∗ ), then

the adversary has actually found 2d∗ −z such that (g∗)2d∗−z ≡∏1≤i≤V
xi∈N gxi

i
(mod pq). Based on the extended discrete logarithm assumption, the
probability is negligible.

• In the forth case, from the analysis in the simple situation, the adver-
sary’s advantage is negligible.

As a result, in this situation, the adversary’s advantage is negligible. The
theorem follows. �

5 Conclusion

In this paper, we have revisited the concept of computational puzzle schemes,
proposed a security model and presented formal definitions for two impor-
tant properties, namely the determinable difficulty property and the parallel
computation resistance property. We have proven that a variant of the RSW
client puzzle scheme achieves both properties. To our knowledge, this is
the first scheme which has been proven possessing the parallel computa-
tion resistance property. Compared with many other schemes such as the
hash-based ones [4, 20], the RSW scheme is computationally more expen-
sive for the verifier, which needs to perform one exponentiation in verifying

15

Page 15 of 19

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
a puzzle solution. Therefore, an interesting direction is to investigate how
to improve the verifier’s efficiency in pracice. Another interesting direc-
tion is to analyse the memory-bound computational puzzle schemes in our
security model.
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