N

N

Split Spetses for primitive reflection groups
Michel Broué, Gunter Malle, Jean Michel

» To cite this version:

Michel Broué, Gunter Malle, Jean Michel. Split Spetses for primitive reflection groups. 2012. hal-
00691314

HAL Id: hal-00691314
https://hal.science/hal-00691314

Preprint submitted on 25 Apr 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00691314
https://hal.archives-ouvertes.fr

SPLIT SPETSES FOR PRIMITIVE REFLECTION
GROUPS

MICHEL BROUE, GUNTER MALLE, JEAN MICHEL

ABSTRACT. Let (V,W) be an exceptional spetsial irreducible re-
flection group W on a complex vector space V', i.e., a group G,
for n € {4,6,8,14,23,24,25,26,27,28,29, 30, 32, 33, 34, 35, 36, 37}
in the Shephard-Todd notation. We describe how to determine
some data associated to the corresponding (split) “spets”, given
complete knowledge the same data for all proper subspetses (the
method is thus inductive).

The data determined here is the set Uch(G) of “unipotent char-
acters” of G and the associated set of Frobenius eigenvalues, and its
repartition into families. The determination of the Fourier matri-
ces linking unipotent characters and “unipotent character sheaves”
will be given in another paper.

The approach works for all split reflection cosets for primitive
irreducible reflection groups. The result is that all the above data
exist and are unique (note that the cuspidal unipotent degrees are
only determined up to sign).

We keep track of the complete list of axioms used. In order
to do that, we expose in detail some general axioms of “spetses”,
generalizing (and sometimes correcting) [Spetsl] along the way.

Note that to make the induction work, we must consider a class
of reflection cosets slightly more general than the split irreducibles
ones: the reflection cosets with split semi-simple part, i.e., cosets
(V.We) such that V = V4 & Vo with W C GL(V1) and ¢|y;, =
Id. We need also to consider some non-exceptional cosets, those
associated to imprimitive complex reflection groups which appear
as parabolic subgroups of the exceptional ones.
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1. FroM WEYL GROUPS TO COMPLEX REFLECTION GROUPS

Let G be a connected reductive algebraic group over an algebraic
closure of a finite field F, and F' : G — G an isogeny such that F°
(where 0 is a natural integer) defines an Fs-rational structure on G.
The group of fixed points G := G¥ is a finite group of Lie type, also
called finite reductive group. Lusztig has given a classification of the
irreducible complex characters of such groups. In particular he has
constructed the important subset Un(G) of unipotent characters of G.
In a certain sense, which is made precise by Lusztig’s Jordan decompo-
sition of characters, the unipotent characters of G and of various Levi
subgroups of GG determine all irreducible characters of G.

The unipotent characters are constructed as constituents of repre-
sentations of G on certain ¢-adic cohomology groups, on which F° also
acts. Lusztig shows that for a given unipotent character v € Un(G),
there exists a root of unity or a root of unity times the square root
of ¢°, that we denote Fr(y), such that the eigenvalue of F on any ~-
isotypic part of such ¢-adic cohomology groups is given by Fr(~) times
an integral power of ¢°.

The unipotent characters are naturally partitioned into so-called
Harish-Chandra series, as follows. If L is an F-stable Levi subgroup
of some F-stable parabolic subgroup P of G, then Harish-Chandra
induction

RY :=1nd$ o Infll : ZIrr(L) — ZIrr(G)

where L := L and P := P¥ defines a homomorphism of character
groups independent of the choice of P. A unipotent character of G
is called cuspidal if it does not occur in RY(\) for any proper Levi
subgroup L < G and any A € Un(L). The set of constituents

Un(G, (L, \)) == {y € Un(G) | (v, RE(\)) # 0}

where A € Un(L) is cuspidal, is called the Harish-Chandra series above
(L, A). It can be shown that the Harish-Chandra series form a partition
of Un(G), if (L, \) runs over a system of representatives of the G-
conjugacy classes of such pairs. Thus, given v € Un(G) there is a
unique pair (L, \) up to conjugation such that L is a Levi subgroup
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of G, A € Un(L) is cuspidal and v occurs as a constituent in RY ().
Furthermore, if v € Un(G, (L, A)) then Fr(v) = Fr(\).

Now let W (L, \) := Ng(L, \)/L, the relative Weyl group of (L, \).
This is always a finite Coxeter group. Then Endcg(R%(N)) is an
Iwahori-Hecke algebra H(We (L, A)) for W (L, M) for a suitable choice
of parameters. This gives a natural parametrization of Un(G, (L, \)) by
characters of H(Wg(L, A)), and thus, after a choice of a suitable special-
ization for the corresponding generic Hecke algebra, a parametrization

Ir(Wg(L,A)) — Un(G, (L, \)), X+ 7Yy,

of the Harish-Chandra series above (L, ) by Irr(Wg(L, \)). In partic-
ular, the characters in the principal series Un(G, (T, 1)), where T" de-
notes a maximally split torus, are indexed by Irr(WF), the irreducible
characters of the F-fixed points of the Weyl group W'.

More generally, if d > 1 is an integer and if T is an F-stable subtorus
of G such that

e T splits completely over F
e but no subtorus of T splits over any smaller field,

then its centralizer L := Cg(T) is an F-stable d-split Levi subgroup
(not necessarily lying in an F-stable parabolic subgroup). We assume
here and in the rest of the introduction that F' is a Frobenius endo-
morphism to simplify the exposition; for the “very twisted” Ree and
Suzuki groups one has to replace d by a cyclotomic polynomial over an
extension of the rationals as is done in 2.48.

Here, again using ¢-adic cohomology of suitable varieties Lusztig in-
duction defines a linear map

RS . ZIrr(L) — ZIrr(G),

where again L := L. As before we say that v € Un(G) is d-cuspidal if
it does not occur in R¥(\) for any proper d-split Levi subgroup L < G
and any A € Un(L), and we write Un(G, (L, \)) for the set of con-
stituents of R¥(\), when A\ € Un(L) is d-cuspidal. By [BrMaMi, 3.2(1)]
these d-Harish-Chandra series, for any fixed d, again form a partition
of Un(G). The relative Weyl groups W (L, A) := Ng(L, \)/L are now
in general complex reflection groups. It is shown (see [BrMaMi, 3.2(2)])
that again there exists a parametrization of Un(G, (L, X)) by the irre-
ducible characters of some cyclotomic Hecke algebra H(Wg(L, A)) of
Wea(L, \) and hence, after a choice of a suitable specialization for the
corresponding generic Hecke algebra, a parametrization

Ir(Wg(L,A)) — Un(G, (L, \)), X+ 7Yy,

of the d-Harish-Chandra series above (L, \) by Irr(Wg(L, A)). Further-
more, there exist signs €, such that the degrees of characters belonging
to Un(G, (L, \)) are given by

Tx(1) = € A(1)/Sy,
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where S, denotes the Schur element of x with respect to the canonical
trace form on H(We (L, \)) (see [Mad, §7] for references).

Attached to (G, F') is the set Ucsh(G) of characteristic functions of
F-stable unipotent character sheaves of G. Lusztig showed that these
are linearly independent and span the same subspace of Clrr(G) as
Un(G). The base change matrix S from Un(G) to Ucsh(G) is called
the Fourier matrix of G. Define an equivalence relation on Un(G) as
the transitive closure of the following relation:

v~ <= there exists A € Ucsh(G) with (v, A) # 0 # (7, A) .

The equivalence classes of this relation partition Un(G) (and also Ucsh(G))
into so-called families. Lusztig shows that the intersection of any fam-
ily with the principal series Un(G, (T, 1)), is a two-sided cell in Irr(WF)
(after identification of Irr(W!) with the principal series Un(G, (T 1))

as above).

All of the above data are gemeric in the following sense. Let G
denote the complete root datum of (G, F'), that is, the root datum of
G together with the action of ¢~ F on it. Then there is a set Uch(G),
together with maps

Deg : Uch(G) — QJz], v — Deg(v),
A : Uch(G) — C*[z?], v = Fr(y),

such that for all groups (G', F’) with the same complete root datum G
(where F " defines a IF s-rational structure) there are bijections g :

Uch(G) —s Un(G'*") satisfying
Ve (7)(1) = Deg(y)(¢') and  Fr(ve (7)) = Fr(7)(¢°).

Furthermore, by results of Lusztig and Shoji, Lusztig induction RY
of unipotent characters is generic, that is, for any complete Levi root
subdatum IL of G with corresponding Levi subgroup L of G there is a
linear map
RE : ZUch(L) — ZUch(G)
satisfying
R{ otpp =g o R

(see [BrMaMi, 1.33]).

The following has been observed on the data: for W irreducible and
any scalar £ € Z(W) there is a permutation with signs E, of Uch(G)
such that

Deg(E¢(y))(x) = Deg(7)(§'x).

We call this the Ennola-transform, by analogy with what Ennola first
observed on the relation between characters of general linear and uni-
tary groups. In the case considered here, Z(WW) has order at most 2.
Such a permutation E¢ turns out to be of order the square of the order
of £ if W is of type E; or Eg, and of the same order as £ otherwise.
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Thus, to any pair consisting of a finite Weyl group W and the auto-
morphism induced by F' on its reflection representation, is associated
a complete root datum G, and to this is associated a set Uch(G) with
maps Deg, Fr, B¢ (£ € Z(W)) and linear maps R for any Levi subda-
tum L satisfying a long list of properties.

Our aim is to try and treat a complex reflection group as a Weyl
group of some yet unknown object. Given W a finite subgroup gen-
erated by (pseudo)-reflections of a finite dimensional complex vector
space V', and a finite order automorphism ¢ of V' which normalizes
W, we first define the corresponding reflection coset by G := (V, W).
Then we try to build “unipotent characters” of G, or at least to build
their degrees (polynomials in x), Frobenius eigenvalues (roots of unity
times a power (modulo 1) of x); in a coming paper we shall build their
Fourier matrices.

Lusztig (see [Lu3] and [Lu4]) knew already a solution for Coxeter
groups which are not Weyl groups, except the Fourier matrix for Hy
which was determined by Malle in 1994 (see [Ma0]).

Malle gave a solution for imprimitive spetsial complex reflection
groups in 1995 (see [Mal]) and proposed (unpublished) data for many
primitive spetsial groups.

Stating now a long series of precise axioms — many of a technical
nature — we can now show that there is a unique solution for all
primitive spetsial complex reflection groups, i.e., groups G, for n €
{4,6,8,14, 23,24, 25,26, 27, 28,29, 30,32, 33, 34, 35, 36, 37} in the Shep-
hard—Todd notation, and the symmetric groups.

Let us introduce our basic objects and some notation.

e A complex vector space V of dimension r, a finite reflection
subgroup W of GL(V'), a finite order element ¢ € Narv)(W).

o A(W) := the reflecting hyperplanes arrangement of W, and for
He AW),

— Wy = the fixator of H in W, a cyclic group of order ey,
— jg := an eigenvector for reflections fixing H.
o NP := | A(W)| the number of reflecting hyperplanes.
The action of Ngr,)(W) on the monomial of degree NP
IT juesv
HeA(W)

defines a linear character of Ngp,)(W), which coincides with dety on
restriction to W, hence (by quotient with dety ) defines a character

0 - NGL(V)(W) — NGL(V)(W)/W — C*.

We set
G = (V,Wyp)
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and we define the “polynomial order” of G by the formula

1
1 1
W) Luew dety (1 — wepx)*
(where z* denotes the complex conjugate of the complex number z).
Notice that when W is a true Weyl group and ¢ is a graph automor-

phism, then the polynomial |G| is the order polynomial discovered by
Steinberg for the corresponding family of finite reductive groups.

G| == (=1)76(p) ™" € C[a]

A particular case.

Let us quickly state our results for the cyclic group of order 3, the
smallest complex reflection group which is not a Coxeter group.

For the purposes of that short exposition, we give some ad hoc defi-
nitions of the main notions (Hecke algebras, Schur elements, unipotent
characters, ¢-series, etc.) which will be given in a more general and
more systematic context in the paper below.

Let ¢ := exp(%*%). We have
Vi=C, W:=(),p:=1,G:=(C,W), N =1,
G| = 2(2® —1).

Generic Hecke algebra H(W, (a,b,c))
For indeterminates a,b, ¢, we define an algebra over Z[a™! b*!, ¢*!]
by
HW, (a,b,¢)) == (s | (s—a)(s=Db)(s—c)=0).
The algebra H(W, (a, b, ¢)) has three linear characters ., x», X defined
by x:(s) =t for t € {a,b,c}.

Canonical trace

The algebra H(W, (a, b, c)) is endowed with the symmetrizing form
defined by
Z a®tPc? forn >0,
a,B,y>0
T(Sn) — atpB+y=n
Z a“b’’ forn <0.

a,B8,7<0
at+B+y=n

Schur elements of H(W, (a, b, c))

We define three elements of Z[a*!, b*!, ¢*1] which we call Schur ele-
ments by

Sa_(b—a)(c—a) | Sb:(c—b)(a—b) s (a—c)(b—c)

be ca ab

Y
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so that

Spetsial Hecke algebra for the principal series
This is the specialization of the generic Hecke algebra defined by
HW, (2,¢,¢%) = (s | (s—a)(1+s+s") =0).
Note that the specialization to the group algebra factorizes through
this.
Unipotent characters

There are 4 unipotent characters of G, denoted po, p¢, p¢, p. Their
degrees and Frobenius eigenvalues, are given by the following table:

v Deg(7) Fr(v)
Po . 1 1
128 1_7C2$(9€ - 1
Pel 7 i C:L“(x -0 | 1
b | a1 | ¢

We set Uch(G) := {po, p¢, 0, p} -

Families

Uch(G) splits into two families: {po}, {p¢, 0¢, P} -
Principal &-series for € taking values 1, (, ¢?

(1) We define the principal £-series by
Uch(G, €) := {7 | Deg(v)(€) # 0},

and we say that a character v is {-cuspidal if
|Gl(x) )
————— | la=¢ #0.
(Seetr) =
(2) Uch(G) = Uch(G, &) U {ve} where ¢ is {-cuspidal.

(3) Let H(W, &) := H(W, (£, (,¢?)) be the specialization of the
generic Hecke algebra at a = ¢ 2,0 = (,c = (2. There is a
natural bijection

Irr (H(W,€)) — Uch(G, &) , xp+—;: fort=a,b,c
such that:
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(a) We have
-1 1
D =+
ewt0) =+ (T ) 57
where S;(z) denotes the corresponding specialized Schur
element.

(b) The intersections of the families with the set Uch(G,¢)
correspond to the Rouquier blocks of H(W,§).
Fourier matrix
The Fourier matrix for the 3-element family is
IS e R
S
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2. REFLECTION GROUPS, BRAID GROUPS, HECKE ALGEBRAS

The following notation will be in force throughout the paper.

We denote by N the set of nonnegative integers.

We denote by p the group of all roots of unity in C*. For n > 1,
we denote by p,, the subgroup of n-th roots of unity, and we set ¢, :=
exp(2mi/n) € w,,.

If K is a number field, a subfield of C, we denote by Zy the ring
of algebraic integers of K. We denote by p(K) the group of roots of
unity in K, and we set mg := |u(K)|. We denote by K the algebraic
closure of K in C.

We denote by z — 2* the complex conjugation on C. For a Laurent
polynomial P(z) € Clz,z7!], we set P(x)Y := P(1/z)*.

2.1. Complex reflection groups and reflection cosets.

2.1.1. Some notation.

Let V' be a finite dimensional complex vector space, and let W be
a finite subgroup of GL(V') generated by reflections (a finite complex
reflection group).

We denote by A(W) (or simply by .4 when there is no ambiguity)
the set of reflecting hyperplanes of reflections in W. If H € A(W), we
denote by ey the order of the fixator Wy of H in W, a cyclic group
consisting of 1 and all reflections around H. Finally, we call distin-
guished reflection around H the reflection with reflecting hyperplane
H and non trivial eigenvalue exp(2mi/ep).

An element of V' is called regular if it belongs to none of the reflecting
hyperplanes. We denote by VV**& the set of regular elements, that is

ve=v— | H.
HeA(W)
We set
NIt o= |[{w € W | wis a reflection}| and N* := | A(W)|
so that Nig' = 3=y (e — 1) and NP = > eawy L- We set

(2.1) ew = Z en = NIt + N{YP | so that ey = ey, .
HeA(W)
The parabolic subgroups of W are by definition the fixators of sub-
spaces of V: for I C V', we denote by W; the fixator of I in W. Then

the map
I — W;

is an order reversing bijection from the set of intersections of elements
of A(W) to the set of parabolic subgroups of W.
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2.1.2. Some linear characters.

Let W be a reflection group on V. Let SV be the symmetric algebra
of V, and let SV"W be the subalgebra of elements fixed by W.

For H € A(W), let us denote by jg € V an eigenvector for the group
Wy which does not lie in H, and let us set

Jw = H Jju € SV,
HeA(W)

an element of the symmetric algebra of V' well defined up to multipli-
cation by a nonzero scalar, homogeneous of degree N&;p.

For w € W, we have (see e.g. [Bro2, 4.3.2]) w.Jy = dety (w)Jy and
more generally, there is a linear character on Ngpv) (W) extending

~ (W

dety |y and denoted by deti/ ), defined as follows:

— (W)
v.Jw =dety (v)Jw forall v € Ngpw)(W).

Remark 2.2. The character deti,w) is in general different from dety, as

can easily be seen by considering its values on the center of GL(V).

But by what we said above it coincides with dety on restriction to W.
It induces a linear character

detQ, : NGL(V)<W)/W — C*

defined as follows: for @ € Napv)(W)/W with preimage ¢ € Nerv)(W),
we set

o~ .
dety, () := dety, (¢)dety (p)*.

Similarly, the element (of degree Ni&l) of SV defined by

By= 11 5™
HeA(W)

—~ (W)V
defines a linear character deti/ : on Ngrv)(W), which coincides with
dety," on restriction to W, hence a character

det},” - Neroy(W)/W — C* |, § (gi/ww(%@)detv(@ -

The discriminant, element of degree N{iP + Nief of SVW defined by
Discyy := Jw Jyy, = H i
HeA(W)
defines a character

Ay = det det}, : Napay(W)/W — C* .
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Let ¢ € Nar)(W) be an element of finite order. Let ¢ be a root
of unity. We recall (see [Sp] or [BrMi]) that an element wy € W
is called (-regular if there exists an eigenvector for we in V™8 with
eigenvalue (.

Lemma 2.3. Assume that wy is (-reqular. Then
T (W) Nhyp T (W)\/ Nref
(1) dety, (wp) =W and dety,  (wyp) =W .
(2) dety (p) = C’ngpdetv(wcp)_1 and det},” () = (MW dety (we) .

(3) Aw(p) = ¢
Proof.

Let V* be the dual of V. We denote by (-,-) the natural pairing
V* x V. — K, which extends naturally to a pairing V* x SV — K
“evaluation of functions on V*”.

We denote by V*'*® the set of elements of V* fixed by none of the
reflections of W (acting on the right by transposition): this is the set
of regular elements of V* for the complex reflection group W acting
through the contragredient representation.

Let o € V*™ be such that awy = (a. Since « is regular, we have
<Oz, Jw> 7é 0. But

(awp, Ju) = ¢ (o, )
(o wp)) = ety (we) e, J)

—~ (W .
which shows that detg/ )(wcp) = CNWP. A similar proof using Jy;, shows

—~ W re
that deti/ )V(wgo) — (MW, Assertions (2) and (3) are then immediate.
U

Remark 2.4. As a consequence of the preceding lemma, we see that if
w € W is a (-regular element, then

dety (w) = CNWP ) detv(w)fl = CNWC and thus (W =1.

2.1.3. Field of definition.

The following theorem has been proved through a case by case anal-
ysis [Ben] (see also [Besl]).

Theorem 2.5.
Let W be a finite reflection group on V. Then the field

Qw = Q(try(w) | we W)
is a splitting field for all complex representations of W.

The ring of integers of Qy, will be denoted by Zy,. If L is any number
field, we set

LW = L((trv<U}))wew) s
the composite of L with Qyy .
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2.1.4. Reflection cosets.
Following [Spetsl], we set the following definition.

Definition 2.6. A reflection coset on a characteristic zero field K is
a pair G = (V, W) where

o V is a finite dimensional K-vector space,

o W is a finite subgroup of GL(V') generated by reflections,

e ¢ is an element of finite order of Naroy(W).

We then denote by

e © the image of ¢ in Ngp,v)(W)/W, so that the reflection coset
may also be written G = (V, W, ), and we denote by dg the
order of p,

e Ad(y) the automorphism of W defined by ¢ ; it is the image of
¢ in Narw)(W)/Carpy (W),

e Out(p) (or Out(®)) the image of ¢ in the outer automorphism
group of W, i.e., the image of ¢ in Ngpw)(W)/W Cqroy(W)
(note that Out(y) is an image of both @ and Ad(yp)).

The reflection coset G = (V, W, ) is said to be split if =1 (i.e.,
if o = 1).

Definition 2.7.

(1) If K = Q (so that W is a Weyl group), we say that G is ratio-
nal.

A “generic finite reductive group” (X, R, Y, RY, W) as de-
fined in [BrMaMi| defines a rational reflection coset G = (Q®y
Y, Wy). We then say that (X, R, Y, RY, W) is associated with
G.

(2) There are also very twisted rational reflection cosets G defined
over K = Q(v/2) (resp. K = Q(+/3)) by very twisted generic fi-
nite reductive groups associated with systems *By and *Fy (resp.
%Gy ). Again, such very twisted generic finite reductive groups
are said to be associated with G. Note that, despite of the nota-
tion, very twisted rational reflection cosets are not defined over
Q : W s rational on Q but not W.

(3) If K C R (so that W is a Coxeter group), we say that G is real.

For details about what follows, the reader may refer to [BrMal| and
[BrMaMi].

e In the case where G is rational, given a prime power ¢, any
choice of an associated generic finite reductive group determines
a connected reductive algebraic group G defined over F, and
endowed with a Frobenius endomorphism F' defined by ¢ (i.e.,
F acts as qp on X(T) where T is an F-stable maximal torus

of G). Such groups are called the reductive groups associated
with G.
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e In the case where K = Q(v/2) (resp. K = Q(v/3)), given
G very twisted rational and ¢ an odd power of v/2 (resp. an
odd power of 4/3), any choice of an associated very twisted
generic finite reductive group determines a connected reductive
algebraic group G defined over F,2 and endowed with an isogeny
acting as qp on X (T). Again, this group is called a reductive
group associated with G.

Theorem 2.5 has been generalized in [Ma5, Thm 2.16] to the following
result.

Theorem 2.8.
Let G = (V, W) be a reflection coset. Let

Qg := Q(try (wep) | w e W)

be the character field of the subgroup (W) of GL(V) generated by
W. Then every p-stable complex irreducible character of W has an
extension to (W) afforded by a representation defined over Qg.

2.1.5. Generalized invariant degrees.

In what follows, K denotes a number field which is stable under
complex conjugation, and G = (V, W) is a reflection coset over K.

Let r denote the dimension of V.

One defines the family ((di, (1), (ds, (2),- .., (d, () of generalized
invariant degrees of G (see for example [Bro2, 4.2.2]): there exists
a family (fi, f2,..., fr) of r homogeneous algebraically independent
elements of SVW and a family (i, (s, ..., () of elements of p such
that

hd SVW:K[flﬂan"'afT]a
o for i =1,2,...,r, we have deg(f;) = d; and p.f; = (; f;.

Remark 2.9. Let Discyy = Y amf™ be the expression of Discy as
a polynomial in the fundamental invariants fi,..., f., where the sum
runs over the monomials f™ = f{"* ... f . Then for every m with
am 7 0 we have Ay (@) = ™ -+ - .

In the particular case where w € W is (-regular and the order of ¢
is one of the invariant degrees d;, we recover 2.3(2) by using the result
of Bessis [Bes3, 1.6] that in that case fieW/ % is one of the monomials
occurring in Discyy.

The character det, : Napw)(W)/W — K* (see 2.1.2 above) defines
the root of unity

detg = det}, (®) .
Similarly, the character det},” attached to Jyj, (see 2.1.2) defines a root
of unity dety := det}, ' (@) attached to G.
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The character Ay, defined by the discriminant of W defines in turn
a root of unity by

Ag = detg.dets = Aw (7).

The following lemma collects a number of conditions under which Ag =
1.

Lemma 2.10.

We have Ag = 1 if (at least) one of the following conditions is

satisfied.
(1) If the reflection coset G is split. Moreover in that case we have
detg = det = 1.
(2) If Wy contains a 1-reqular element.
(3) If G is real (i.e., if K CR).
Proof.

(1) is trivial.

(2) We have Ag = Aw (@) = 1°” =1 by Lemma 2.3(2).

(3) Consider the element Jy = []c sy Jm introduced above. Since
¢ € Naray (W), ¢ acts on A(W), hence Jy is an eigenvector of ¢. If
¢ has finite order, the corresponding eigenvalue is an element of p(K),
hence is 1 if K is real.

Moreover, all reflections in W are “true reflections”, that is ey = 2
for all H € A(W). It follows that Discy, = J3, and so that Discy is
fixed by ¢. U

2.2. Uniform class functions on a reflection coset.

The next paragraph is extracted from [Spetsl]. It is reproduced for
the convenience of the reader since it fixes conventions and notation.

2.2.1. Generalities, induction and restriction.

Let G = (V, W) be a reflection coset over K.

We denote by CF(G) the Zg-module of all W-invariant functions
on the coset W (for the natural action of W on Wy by conjuga-
tion) with values in Zg, called uniform class functions on G. For
a € CF4(G), we denote by o* its complex conjugate.

For a, o € CF(G), we set (o, )¢ = i Y wew alwe)d (we)* .

Notation

e If Zx; — O is a ring morphism, we denote by CF(G, Q) the O-
module of W-invariant functions on Wy with values in O, which we
call the module of uniform class functions on G with values in 0. We
have CF(G, O) = O ®z,. CF«(G).

e For wp € Wy, we denote by chgw (or simply ch,,,) the character-
istic function of the orbit of wy under W. The family (chgw) (where
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we runs over a complete set of representatives of the orbits of W on
W) is a basis of CFy(G).
e For wy € W, we set

Ry, = |Cw(we)|ch,,
(or simply Ry.,).

Remark 2.11.

In the case of reductive groups, we may choose K = Q. For (G, F') asso-
ciated to G, let Uch(G!") be the set of unipotent characters of G': then the
map which associates to RS@ the Deligne-Lusztig character RT(F;wF (Id) de-
fines an isometric embedding (for the scalar products (o, o) and (o, &) g r)
from CF (G) onto the Z-submodule of QUch(G*") consisting of the Q-linear
combinations of Deligne-Lusztig characters (i.e., “unipotent uniform func-
tions”) having integral scalar product with all Deligne-Lusztig characters.

e Let (W) be the subgroup of GL(V') generated by W. We recall
that we denote by @ the image of ¢ in (Wy)/W — thus (W) /W is
cyclic and generated by .

For ¢ € Irr((We)), we denote by Rf (or simply Ry) the restriction

1
of 1 to the coset W¢. We have R} = Il > wew V(we)RE . and we

we?
call such a function an almost character of G.
Let Irr(WW)? denote the set of p-stable irreducible characters of W.
For 6 € Irr(W)?, we denote by Eg(f) (or simply E(6)) the set of
restrictions to W of the extensions of 6 to characters of (W¢).

The next result is well-known (see e.g. [DiMil, §I1.2.c]), and easy to
prove.
Proposition 2.12.

(1) Each element o of Eg(0) has norm 1 (i.e., (o, a)g = 1),

(2) the sets Eg(0) for 6 € Irr(W)? are mutually orthogonal,

(3) CF¢(G,K) = @elelrr(vv)a KEg(0), where we set KEg(0) =
KRy, for some (any) 1 € Eg(6).

Induction and restriction

Let L = (V,Wpwep) be a subcoset of maximal rank of G [Spetsl,
§3.A], and let @ € CF(G) and § € CF(L). We denote

e by Resf’oz the restriction of a to the coset Wypwep,

e by Ind?$ the uniform class function on G defined by

1 .
(2.13) Ind®B(uy) := A vezwﬁ(vugovl) for up € Wep,
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where f(zp) = Blzg) if © € Wiw, and f(zp) = 0if z ¢ Wyw. In
other words, we have

(2.14) IdfBlug) = D B((up)).

VEW/ Wi, (up) Wi we

We denote by 1€ the constant function on W with value 1. For
w € W, let us denote by T,, the maximal torus of G defined by
Ty = (V,wep). It follows from the definitions that

(2.15) R, =Indg 1",

For a € CF4(G), B € CF (L) we have the Frobenius reciprocity:
(216) <a7 Ind%ﬁ)({} = <R€SEO(, B)L :

Remark 2.17.

In the case of reductive groups, assume that LL is a Levi subcoset of G at-
tached to the Levi subgroup L. Then Indg corresponds to Lusztig induction
from L to G (this results from definition 2.13 applied to a Deligne-Lusztig
character which, using the transitivity of Lusztig induction, agrees with
Lusztig induction). Similarly, the Lusztig restriction of a uniform function
is uniform by [DeLu, Thm.7], so by (2.16) Res® corresponds to Lusztig
restriction.

For further details, like a Mackey formula for induction and restric-
tion, the reader may refer to [Spetsl].

We shall now introduce notions which extend or sometimes differ
from those introduced in [Spetsl]: here we introduce two polynomial
orders |G| and |G¢| which both differ slightly (for certain twisted re-
flection cosets) from the definition of polynomial order given in [Spetsl].

2.2.2. Order and Poincaré polynomial.
Poincaré polynomial

We recall that we denote by SV the symmetric algebra of V' and by
SVW the subalgebra of fixed points under W.

The group Ngro)(W)/W acts on the graded vector space SV =
D, SV,W. For any § € Naro)(W)/W, define its graded character
by

grchar(g; SVV) = Ztr(@; SV)a™ € Zk|[x]] .

n=0

Let G = (V,W,®) with dimV = r.
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Let us denote by ((dyi, (1), ..., (d-,(.)) the family of generalized in-
variant degrees (see 2.1.5 above). We have (see e.g. [BrMaMi, 3.5])

1 1 1
rchar(3; SVV) = = —
& (% ) |W| u;/ dety (1 — wepx) [15(1 = Gad)

The Poincaré polynomial Pg(x) € Zg[x] of G is defined by
1 1

~ archar(p V) LG !
|W| =W dety (1 — we)

()

(2.18)

i=1
The Poincaré polynomial is semi-palindromic (see [Spetsl, §6.B]), that
is,

(219)  Pa(1/a) = (—1)° GG+ G OF ) Py )

Graded regular representation

Let us denote by SV the maximal graded ideal of SV" (generated
by fi, fo, ..., fr). We call the finite dimensional graded vector space

KW# .= SV/SvVSv

the graded regular representation.
This has the following properties (cf. e.g. [Bou, chap. V, §5, th. 2]).

Proposition 2.20.

(1) KW*# has a natural Negrovy(W)-action, and we have an iso-
morphism of graded K Ngr,vy(W)-modules

SV ~ KW& @ SVW.

(2) As a KW -module, forgetting the graduation, KW#" is isomor-
phic to the reqular representation of W.
(3) Denoting by KW the subspace of KW generated by the el-
ements of degree n, we have
(a) KWo = @M KW,
(b) the dety -isotypic component of KW is the one-dimensio-
nal subspace of KWW generated by Jy,
(c) KWW is the one-dimensional subspace generated by Jy,
and is the dety, -isotypic component of KWer.

Fake degrees of uniform functions

e We denote by trgwe € CFy (G, Zg[z]) the uniform class function
on G (with values in the polynomial ring Z[z]) defined by the charac-
ter of the graded regular representation KW#". Thus the value of the
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function trywe on wey is
Nief
tr e (W) == Z tr(we; KW ™M)z,
n=0
We call trgwe the graded regular character.

e We define the fake degree, a linear function Feg; : CF(G) —
K|[z], as follows: for a € CF(G), we set

(2.21)
Niet 1
n=0 weW

We shall often omit the subscript G (writing then Feg(a)) when the
context allows it. Notice that

(2.22) Feg(RSjcp) = trgwe (wp)*,
and so in particular that
(2.23) Feg(Ry,) € Z|z].
Lemma 2.24.

We have |

tI'ngr = — Z FegG(R(S@)*Rg@ .
|W| weWw

Proof of 2.24.

It is an immediate consequence of the definition of RSSD and of (2.22).

0

Fake degrees of almost characters

Let E be a K(Wg)-module. Its character 0 is a class function on
(We). Its restriction Ry to W is a uniform class function on G. Then
the fake degree of Ry is :

(2.25) Fegi(Rp) = tr(y; Homgw (KWE, E)).
Notice that
(2.26) Fegs(Ry) € Zlexp 2in/dg)[z]

(we recall that g is the order of the twist @ of G).
The polynomial Fegg(Ry) is called fake degree of 6.

Let 0 € Irr(W)?. Whenever ¢ € Irr((Wy)) is an extension of 6
to (W), then Regj := Fegg(Ry)* - Ry depends only on # and is the
orthogonal projection of trgyy e onto K |[x] Eg(6), so that in other words,
we have

(2.27) trwe = Regy.

ocIrr(W)®
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Polynomial order and fake degrees

From the isomorphism SV = KW @k (SV)V of (W¢)-modules
(see 2.20) we deduce for w € W that

tr(wep; SV) = tr(wp; KW )tr(we; SV,

hence
1

— zvp)

1
t - SV) = tr(we: KW
r(wep; SV) = tr(wey; )|W| ;V dety (1

Computing the scalar product with a class function o on W gives

(2.28)

1 (wyp) 1 1
= Fegg(a )
W wezw dety (1 — zwep)* gl )\W\ U)EZW dety (1 — zwyp)*

or, in other words

(2.29) (a,trsy) g = (@, triewe)g (1%, trsy )
Let us set

(2.30) Sg(a) == (a, trgy)g -

Then (2.29) becomes

(2.31) Sg(a) = Fegg(a)Sg(1%).

By definition of the Poincaré polynomial we have Sg(1¢) = 1/Pg(x)*,
hence

(2.32) Sg(a) == F;f%;)‘? .

For a subcoset L. = (V, Wpwe) of maximal rank of G, by the Frobe-
nius reciprocity (2.16) we have

(2.33)
Nief
Fegg (Indf1%) = (1% ResPtrpppe ), = Z tr(we; (KW M)Weyxgn
n=0

where (KW ®)Wi are the Wi -invariants in KW (™.
Let us recall that every element wy € W defines a maximal torus
(a minimal Levi subcoset) T, := (V,wy) of G.
Lemma 2.34.
(1) We have

&

(z)" GqL
= Feg (Ind; 17),

(2) Po(x) divides Pg(x) (in Zk|x]),




SPLIT SPETSES FOR PRIMITIVE REFLECTION GROUPS 21
(3) for wp € W, we have
Ps(x)
Pr,, ()

= trgwe (wWp) = FegG(REj@)* .

Proof of 2.34.

(1) By (2.32), we have Feg(Indf'1%) = Sg(Indf1%) Pg(z)* . By Frobe-
nius reciprocity, for any class function o on I we have

Sg(Indfa) = (Indfa, trey)e = (o, Resftrsy)y, = Sp(a),

1
Pu(z)
(2) is an immediate consequence of (1).
(3) follows from (1) and from formulae (2.15) and (2.22). O

and so Sg(IndP1k) = Sy (1) =

Let us now consider a Levi subcoset L = (V, Wpwe). By 2.34, for
vwe € Wipwp, we have
Pe(r) Pu(r) _ Ps(x)
= tr r(vwe) ,
Bula) Pro, (0] L) E )

tr e (Vwe) =

and by 2.34, (1)

(2.35) ResPtrgye = Feg(IndE’l“‘)*trKWfr .
Lemma 2.36.
For B € CFy (L) we have
Pe(x)”
Feg (Ind®j3) = eg; (B) .
gG( L/B) P]L(.’,U)* g]L( )

Indeed, by Frobenius reciprocity, (2.35), and Lemma 2.34,
FegG(IndEB) = (Indfﬁ,trKWgr)G = (3, Res‘ftrm/vgr)}L
= Fegg (Indg 1) (B, tricper), = Fege(Indg 1%)Fegy (8)

Pg(x)*
= Pf(:p)*FegL(ﬁ)'

Remark 2.37.

In the case of reductive groups, it follows from (2.22) and (2.34 (3)) that
Feg(Ruwy)(q) is the degree of the Deligne-Lusztig character R%W. Since the
regular representation of G is uniform, it follows that trxyyres corresponds
to a (graded by x) version of the unipotent part of the regular representation
of G| and that Feg corresponds indeed to the (generic) degree for unipotent
uniform functions on G¥'.

Changing = to 1/x

As a particular uniform class function on G, we can consider the
function dety restricted to W, which we still denote by dety. Notice
that this restriction might also be denoted by Rg’etv, since it is the
almost character associated to the character of (W) defined by dety .



22 MICHEL BROUE, GUNTER MALLE, JEAN MICHEL

Lemma 2.38.
Let o be a uniform class function on G. We have

Se(adety ) (x) = (—=1)"27"Sg(a™)(1/x)*.

Proof.
: a(we)
Since Sg(a) = i Y wew detv(l p—— we see that
(wp)*dety (wep)
Se(adet]
(adety) |W| Z dety (1 —:Ewcp)

Corollary 2.39.
We have

Fegg(det}) = (/¢ -+ o™

Proof of 2.39.
Applying Lemma 2.38 for o = 1© gives

Se(detyy)(z) = (=1)"27" S (1%)(1/)" = (=1)"a™"

hence by (2.19)

1
Pe(1/z)

Sg(dety)(z) = (¢ - G Nrefm )

and the desired formula follows from (2.32).

Fake degree of dety and some computations

Proposition 2.40.
We have

{FegG<detv><x> det, ()2
Fegg(det;)(z) = dety,” () ™

Corollary 2.41.
We have

{detv (@) = GGG
detv( ) = Aw (@) ¢ - ¢
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Proof of 2.40 and 2.41.
By Propositions 2.12 and 2.20(3), we see that

Fegg(dety)(z) = Z dety (wep)tr(we; KW ") )* W
|W| weW
d t hyp
_ AWlO) N et ()
tr(p; KWMW)
A similar proof holds for Fegg(dety ) (x).
The corollary follows then from 2.39 and from det@det@v =Ay. O

Corollary 2.42.
Assume that wy is a C-reqular element of W. Then
{Feg‘c’(detv)(l“) = dety (wi) (¢ o)W
Fegg (det},)(x) = det}, (wp) (¢ ™')™
In particular, we have
Fegg (dety )(¢) = dety (wy)
{ Fegg (dety,)(¢) = dety (we) .

Note that the last assertion of the above lemma will be generalized
in 2.53.

Proof. s
By Proposition 2.40, and since dety, (@) = dety (wp)dety (wp)*, we
have

Fegg(dety)(z) = det} (p)* 2N — detv(ww) dety (we)a™

Now by Lemma 2.3, we know that det(we) = (¥, which implies

that Fegg(dety)(x) = dety (wi) (¢~ 'a) MW"
The proof of the second equality goes the same. O

Lemma 2.43.
(1) For allw € W we have

Fetgo(Fue) (1/2) = dety () ([ €)™ Fesgo () )"

(2) If we is a (-regular element, we have

Fegg (Rup)(x)" = (¢'2) W Fegg (Rup) () -
Proof.

(1) By (2.34, (3)), we have FegG(R‘gw) - %

have Pg(z) = H;Z(l — (™) . Moreover, Pr,_(x) = dety (1 —wepz). It

. By (2.18), we
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follows that

(1= Gat)
F G\ — Hl—l( i )
*86(Flup) dety (1 — wepx)*

The stated formula follows from the equality ZZT( —1) = Ni&,
which is well known (see e.g. [Bro2, Thm. 4.1.(2)(b )])

(2) By Corollary 2.41, we know that [[.=} ¢; = det}, (%)*, hence
(by Lemma 2.3(2))

i=r

[1¢ = ¢ dety (wp)”

i=1

It follows from (1) that

Fegg(Ru,)(1/2)" = (¢'a) ™M Fegg (Rup) () .

2.2.3. The polynomial orders of a reflection coset.

We define two “order polynomials” of GG, which are both elements of
Zk|z], and which coincide when G is real. This differs from [Spetsl].

Definition 2.44.

(nc) The noncompact order polynomial of G is the element of Z|x]
defined by

|Gl - = (=1)"Fegg(dety,) (x) P (x)"

i=r

= (—=1)"det},” (p)* N”H

= (GiG - ”“fH f—G).

(¢) The compact order polynomial of G is the element of Zy|x]
defined by

Gl : = (-DrFegG(detv)(ﬂf)PG(fE)*

= (—1)"dety, (7 *N“’H 1= G

hyp
- awr ¥ Tt ).
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Remark 2.45.
1. In the particular case of a maximal torus Ty, := (V,wy) of G, it
is readily seen that

|Tw<p|nc = (_l)rdetv(w@)*det(l — wQOl‘)*
{ ITyeplc = (—1)"dety (wp)det(l — wez)* = dety (z — wy) .

2. In general the order polynomials are not monic. Nevertheless, if
G is real they are equal and monic (see Lemma 2.10 for the case of
|G|c). If G is real, we set |G| := |G|, = |G]..

Remark 2.46. If G is rational or very twisted rational, and if G (to-
gether with the endomorphism F') is any of the associated reductive
groups attached to the choice of a suitable prime power ¢, then (see
e.g. [St, 11.16])

Gla=g = IG"].
Proposition 2.47.
(1) We have

G c - % hyp

o = ety (wp) e PRy )(0)
welc
G nc T~V * ref

e = oty ()"0 g R ) o)
we |nc

(2) If moreover wy is a (-reqular element of W, we have

G c _ hyp
G| = (¢("'2)™W Fegg(Ruy)(2),

| Tuwepe
Gl 1 et
|Tw<p|nc - (C l‘) w FegG(Rw<P)(x) :

Proof.
(1{By Definition 2.44 and the above remark, 1, and by Lemma 2.34,
we have
Gl
| T le

= det, (@) dety (wp)* 2w

— dety (wp) e™" Fegg(Ruy) (7)

proving (1) in the compact type. The proof for the noncompact type
is similar.
(2) follows from Lemma 2.3. O

2.3. ®-Sylow theory and P-split Levi subcosets.



26 MICHEL BROUE, GUNTER MALLE, JEAN MICHEL

2.3.1. The Sylow theorems.
Here we correct a proof given in [Spetsl], viz. in Th. 2.50 (4) below.

Definition 2.48.

e We call K-cyclotomic polynomial (or cyclotomic polynomial
in K[x]) a monic irreducible polynomial of degree at least 1 in
K[x] which divides x™ — 1 for some integer n > 1.

o Let ® € K[x] be a cyclotomic polynomial. A ®-reflection coset
1s a torus whose polynomaial order is a power of P.

Remark 2.49.

If GG is an associated finite reductive group, then a ®;-reflection coset
is the reflection datum of a torus which splits over F,a but no subtorus
splits over any proper subfield.

Theorem 2.50.
Let G be a reflection coset over K and let ® be a K-cyclotomic
polynomial.
(1) If ® divides Pg(x), there exist nontrivial ®-subcosets of G.
(2) Let S be a mazximal ®-subcoset of G. Then
(a) there is w € W such that S = (ker ®(we), (W) |ker d(wy))
(b) |S| = @), the full contribution of ® to Pg(x).
(3) Any two mazimal ®-subcosets of G are conjugate under W.
(4) Let S be a mazimal ®-subcoset of G. We set L := Cg(S) and
We (L) := Nw(L)/Wy. Then
Gloe 16l _
Wo@lThe ~ We@NL, — - ™%
(5) With the above notation, we have
L = (V,Wpwy) with Wi, = Cy (ker ®(wy)) .

We set V(L,®) = ker ®(wy) viewed as a vector space over
the field K[x]/(®(z)) through its natural structure of K[wd]-
module. Then the pair (V (L, ®), W (L)) is a reflection group.

The maximal ®-subcosets of G are called the Sylow ®-subcosets.

Proof of 2.50.

As we shall see, assertions (1) to (3) are consequences of the main
results of Springer in [Sp] (see also Theorem 3.4 in [BrMal]).

Assertion (5) is nothing but a reformulation of a result of Lehrer and
Springer (see for example [Bro2, Thm.5.6])

For each K-cyclotomic polynomial & and w € W, we denote by
V(wep, @) the kernel of the endomorphism ®(wy) of V' (i.e., V(L, )
viewed as a K-vector space). Thus

S(we, @) := (V(we, ), (we)|vwe.e)

is a torus of G.
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Let us denote by K’ a Galois extension of K which splits ®, and
set V' := K' ®k V. For every root ( of ® in K’ we set V'(wep,() :=
V'(wep, (x — ¢)). It is clear that V'(wyp, @) = P, V'(we, () where ¢
runs over the set of roots of ®, and thus

dimV’ (we, ®) = deg(®) - dimV’ (wyp, () .
It follows from [Sp], 3.4 and 6.2, that for all such ¢

(1) max(ew)dimV'(wep, () = a(®),

(S2) for all w € W, there exists w’ € W such that dimV'(w'p, () =

a(®) and V'(we, () C V'(w'p, (),

(S3) if wy,wy € W are such that dimV’(wy¢, () = dimV'(wqp, () =

a(®P), there exists w € W such that w-V'(wyp, () = V'(wagp, ().

Now, (S1) shows that there exists w € W such that the rank of
S(wep, ®) is a(P) deg(P), which implies the first assertion of Theorem
2.50.

IEV'(we, ¢) € V'(w'p, () then we have V' (we, 0(¢)) € V'(w'p, 0(())
for all 0 € Gal(K'/K), hence

o V(wyp, @) C Vi(w'p, ),

* w,LPIV(ump,d)) = w(p‘V(w(p,d))'
So (S2) implies that for all w € W, there exists w’ € W such that
the rank of S(w'p,®) is a(P)deg(P) and S(we, P) is contained in
S(w'e, @), which proves assertion (2) of Theorem 2.50.

For the same reason, (S3) shows that if w;, and wq are two elements
of W such that both S(w;p, ®) and S(wyp, @) have rank a(P) deg(P),
there exists w € W such that S(ww;pw™, ®) = S(wyyp, ®), which
proves assertion (3) of Theorem 2.50.

The proof of the fourth assertion requires several steps.

Lemma 2.51.
For S a Sylow ®-subcoset of G let L := Cg(S). Then for any class
function o on G, we have

Fegg(a)(z) = |WG1( D ;Lg;*FegL(ResL )(z) mod ®(x).
Proof of 2.51.
We have
Pg(x)"Sg (o) = Fegg (o |W| Z ﬁ

and it follows from the ﬁrst two assertlons of Theorem 2.50 that

Fi ) = d o

egG(a) |W| Z det 1 . :Ewcp) mo (:E)7

where w runs over those elements of W such that V(wep, ®) is of max-
imal dimension. These subspaces are permuted transitively by W (cf.
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(S3) above). Let V(wop, @) be one of them, and let S be the Sylow
®-subcosets defined by

S = (V(’wotp, (I))’ (w090)|v(w0¢,4,))-

Let us recall that we set L = Cg(S) = (V, WpLwop). The group Ny (S)
consists of all w € W such that

w'V<w0907 (I)> = V<w0907 (I)> and (wwoww_1)|v (wg e, ®) (wow)\v(w0¢ @) *

Since in this case every w € W such that w.V(wop, ®) = V(wep, P)
belongs to Ny, (S), we have

Feg(a)(z) = |[W : Ny (S

do
|W| Z det 1 — :L’w<p) mod &(z),

where “w ~ wy” means that V(we, ®) =V (wop, P).
Following (S3) above, the elements w ~ wy are those such that ww;

acts trivially on V(wpp, ®), i.e., are the elements of the coset Wywy.
Thus

a(wwop) G
Wi R .
Z det(l - xwgp Z det(1 — zwwyp)* = [We|St (Resg (@)

w~wo

We know that Ny (S) C Ny (L). Let us check the reverse inclusion.
The group Ny (IL)/Wy acts on VWV and centralizes (woe) Hence

o
it stabilizes the characteristic subspaces of (w0g0)|VWIL, among them
V(wop, ®). This shows that Ny (L) = Ny (S). In particular | Ny (S)| =

O

[WL[[We (L)

Applying Lemma 2.51 to the case where av = 1© gives
Proposition 2.52.
Let'S be a Sylow ®-subcoset of G, and set L = Cg(S).
(1) 1 PG(.T)*
[W(IL)| Pr(x)*

(2) Whenever « is a class function on G, we have

Fegs(a)(z) = Fegy (Resf (@) (z) mod ®(x).

Now applying Lemma 2.51 and Proposition 2.52 to the cases where
a is dety and det], gives the desired congruences in Theorem 2.50(4)
(thanks to Definition 2.44)

|Glne/ (IWe(L)|[Llae) = [Gle/(We(L)[[L]) =1 mod &(z).

=1 mod d(x).

Fake degrees and regular elements
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Let o be a class function on G. Let wy be ®-regular, so that the
maximal torus T, of G is a Sylow ®-subcoset. We get from Proposi-
tion 2.52(2) that

Fegg(a)(z) = a(wp) mod &(x),
which can be reformulated into the following proposition.
Proposition 2.53.

Let wy be C-reqular for some root of unity .

(1) For any a € CF(G) we have Fegg(a)(¢) = a(wyp).
(2) In particular, we have Fegg(Ryy)(C) = |Cw(wep)].

2.4. The associated braid group.

2.4.1. Definition.

Here we let V' be a complex vector space of finite dimension 7, and
W C GL(V) be a complex reflection group on V.

We recall some notions and results from [BrMaRo].

Choosing a base point g € V™ =V — UHeA(W) H, we denote
by By = w1 (V'8 /W, z4) the corresponding braid group, and we set
PW = Wl(vreg, .To)

Since the covering V' — V'8 /IV is Galois by Steinberg’s theorem
(see e.g. [Bro2, 4.2.3]), we have the corresponding short exact sequence

1Py —-By W —>1.

A braid reflection s in By is a generator of the monodromy around
the image in V/W of a reflecting hyperplane H € A(W). We then say
that s is a braid reflection around H (or around the orbit of H under

2.4.2. Lengths.
For each H € A(W), there is a linear character
Iy - BW — 7

such that, whenever s is a braid reflection in By,

l 1 if s is a braid reflection around the orbit of H,
n(s) = {O if not .

We have [ = Iy if and only if H and H' are in the same W-orbit. We
set
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2.4.3. The element myy.
We denote by my (or simply by 7 if there is no ambiguity) the
element of Py, defined by the loop
mw o [0,1] = V% |t exp(2mit)zo .

We have ry, € ZBy , and if W acts irreducibly on V', we know by
[DiMaMi, Thm. 1.2] (see also [Bes4, 12.4] and [BrMaRo, 2.24]) that
mw s a generator of ZPy, called the positive generator of ZPyy.

We have

lg (7w ) = |orbit of H under W ey

and in particular (by formula 2.1)

() = NI+ NP

2.4.4. Lifting regular automorphisms.

For this section one may refer to [Bro2, §18] (see also [DiMi2, §3]).
A. Lifting a (-regular element w
e We fix a root of unity ¢ and a (-regular element wy in W, and
we let 0 denote the order of wy modulo W. Notice that since
(wep)? is a (’-regular element of W, then (by 2.4) (%" = 1.
Let us also choose a,d € N such that ¢ = (§ (a/d is well

defined in Q/Z). By what precedes we know that d | eyad, or,
in other words, ey da/d € Z.

e Let us denote by z; a (-eigenvector of wy, and let us choose a
path v from xg to x; in V7',

e We denote by 7, 4/4 the path in V' from x; to (x; defined by
Teia/d -t exp(2miat/d).x; .

Note that 7., ./ does depend on the choice of a/d € Q and
not only on (.

Following [Bro2, 5.3.2.], we have

e a path [wyl,q/a (sometimes abbreviated [we]) in V™8 from x
to (wy)(xo), defined as follows:

Tzq,a/d

y TN (we) ()

[Wely.a/d : Lo ~ >~ > 21 Cryp ~~ s > (we) (o)
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e an automorphism a(we),,q./q (sometimes abbreviated a(w)) of
By, defined as follows: for g € W and g a path in V™ from
Tp to gxo, the path a(wy), ./q(g) from o to Ad(wy)(g)wo is

(2.54)

with the following properties.

Lemma 2.55.

(1) The automorphism a(wy)yq/a has finite order, equal to the or-
der of Ad(wyp) acting on W.

(2) The path

Prasa = [Welyasa - a(we) ([Welyaa) - - alwe)’ (Wil aza)
(often abbreviated p) defines an element of By, which satisfies

d _ __da
Pyaja =T -

Remark 2.56.

(1) Notice that a/d € Q is unique up to addition of an integer, so
that p is defined by w¢ up to multiplication by a power of 7°.
(2) Let us consider another path 4 from xy to x}, another eigen-
vector of wp with eigenvalue (. Then
(a) the element p, , 4 is conjugate to p. .4 by an element of
Py, and
(b) the element a(we). q/q is conjugate to a(wey),,q/a by an
element of Pyy.

B. When ¢ is 1-regular

Now assume moreover that ¢ is 1-regular, and choose for base point
xo an element fixed by ¢. Let us write 1 = exp(2min) for some n € Z
(which plays here the role played by a/d above).

Lemma 2.57.

(1) The corresponding loop [¢] defines w™.

(2) The path [wel,, defines a lift w.,, (abbreviated to w) of w in
By .

(3) We have a(wy).,, = Ad(w, ) - a(y) .

Proof.
(1) is obvious. (2) results from the fact that the path [we], q/q starts
at xg and ends at wpry = wxy.
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Since ¢(xg) = o, Definition 2.54 becomes simply a(¢)(g) = ¢(g), a
lift of Ad(¢)(g) to By. To prove (3), we notice that by (2) we have

a(wp)ya/a(g) =
w (we)(g) Ad(we)(g)(w )
T Y —wzy = (weg) (o) S Ad(we)(g) (xo).
Since
Ad(w)(g) =
w Ad(w)(g)(w™)
Lo ~~ > Wxg = wgry - - Y Ad(w)(g)(xo)
we see that
Ad(w)(e(g)) =
ze Y s wad " wgay SO R d(w) (g) (20),
thus showing that Ad(w)(p(g)) = a(we)(g) - O

In that case, we can consider the semidirect product By, x (a(p)),
in which we set ¢ := a(p). Then assertion (2) of Lemma 2.55 becomes

p=(wp) and (we)?=x".

C. Centralizer in W and centralizer in By,

Now we return to the general situation (we are no more assuming
that ¢ is 1-regular).

By (5) in Theorem 2.50, we know that the centralizer of we in W,
denoted by W (wey), is a complex reflection group on the (-eigenspace
V(wep) of we.

Assume from now on that the base point z is chosen in V' (w¢)™e.
Let us denote by By (we) the braid group (at zq) of W (we) on V(we),
and by Py (wep) its pure braid group.

Since the reflecting hyperplanes of W (w¢y) are the intersections with
V (we) of the reflecting hyperplanes of W (see for example [Bro2, 18.6]),
the inclusion of V(we) in V' induces an inclusion

V(wep)'® — Ve
which in turn induces a natural morphism (see again [Bro2, 18.6])
B (wg) = Cpy (a(wp))

The next statement has been proved in all cases if = 1 [Bes4,

12.5,(3)].

Theorem—Conjecture 2.58.

The following assertion is true if = 1, and it is a conjecture in the
general case:

The natural morphism

By (wp) = Cp,y (a(wp))



SPLIT SPETSES FOR PRIMITIVE REFLECTION GROUPS 33

s an isomorphism.

Remark 2.59. Tt results from the above Theorem—Conjecture that the
positive generator my (we) of the center ZPy, (wep) of Py (wy) is iden-
tified with the positive generator 7 of Py .

2.5. The generic Hecke algebra.

2.5.1. Definition.

The generic Hecke algebra H(W) of W is defined as follows. Let us
choose a W-equivariant set of indeterminates

u = (UH,i)(HeA(W))(@':o ..... en—1) -

The algebra H(W) is the quotient of the group algebra of By, over
the ring of Laurent polynomials Z[u,u™!] := Z[(ulifz)Hl] by the ideal
eg—1

generated by the elements [ [*" (s—up ;) for H € A(W) and s running
over the set of braid reflections around H.

The linear characters of the generic Hecke algebra H (W) are de-
scribed as follows.

Let x : H(W) — Z[u,u"!] be an algebra morphism. Then there is a
W-equivariant family of integers (j}) meaw), jiy € {0, ..., en—1}, such
that, whenever s is a braid reflection around H, we have x(s) = u HY -

2.5.2. Parabolic subalgebras.

Let I be an intersection of reflecting hyperplanes of W, and let By,
be the braid group of the parabolic subgroup W; of W.

.....

is a Wi-equivariant family of indeterminates.

We denote by H(W;, W) the quotient of the group algebra of By,
over Z[uz, u; '] by the ideal generated by the elements [ " (s — uz,)
for H € A(W;) and s a braid reflection of By, around H.

The algebra H (W, W) is a specialization of the generic Hecke al-
gebra of Wy, called the parabolic subalgebra of H(W') associated with
1.

The natural embeddings of By, into By, (see e.g. [BrMaRo, §4]) are
permuted transitively by Py,. The choice of such an embedding defines

a morphism of H(W;, W) onto a subalgebra of H (W) ([BrMaRo, §4]).

2.5.3. The main Theorem—Conjecture.
Notation.

e An element P(u) € Z[u,u™'] is called multi-homogeneous if, for
each H € A(W), it is homogeneous as a Laurent polynomial in
the indeterminates {up,; | i =0,...,ey — 1}.
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e The group Gy := HHeA(W)/W S, acts naturally on the set of
indeterminates u.

e We denote by & — £Y the involutive automorphism of Z[u, u™?]
which sends wg; to “I_{,lz‘ (for all H and 1).

The following assertion is conjectured to be true for all finite re-
flection groups. It has been proved for almost all irreducible complex
reflection groups (see [Spetsl] and [MaMi| for more details).

Theorem—Conjecture 2.60.
(1) The algebra H(W) is free of rank |W| over Z[u,u™'|, and by
extension of scalars to the field Q(u) it becomes semisimple.
(2) There exists a unique symmetrizing form

w : H(W) = Z[u,u™!]

(usually denoted simply T) with the following properties.
(a) Through the specialization uy j — exp (2imj/ey) , the form
T becomes the canonical symmetrizing form on the group

algebra of W.
(b) For all b € B, we have T7(b~')¥ = , where ™ 1= Ty

(see 2.4.3).

(3) If I is an intersection of reflecting hyperplanes of W, the re-
striction of Tw to a naturally embedded parabolic subalgebra
H(W;, W) is the corresponding specialization of the form Ty,.

(4) The form T satisfies the following conditions.

(a) Forbe B, 7(b) is invariant under the action of Gy .

(b) As an element of Z[u,u™t], 7(b) is multi-homogeneous of
degree i (b) in the indeterminates {up,; | i =0,...,eg —
1} for all H € A(W). In particular, we have

(1)=1 and 7(mw)= (—I)N‘r"?f H Ui -

HeA(W)
0<i<e; —1

2.5.4. Splitting field.

An irreducible complex reflection group in GL(V) is said to be well-
generated if it can be generated by dim(V') reflections (see e.g. [Bro2,
§4.4.2] for more details).

The following theorem has been proved in [Ma3].
Theorem 2.61.

Assume assertion (1) of Theorem—Conjecture 2.60 holds.
Let W be an irreducible complex reflection group, and let

{ |ZW| if W is well-generated,
lw(Qw)| else.

mwy ‘=
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Let us choose a W -equivariant set of indeterminates v := (vy ;) subject
to the conditions
U?;";V = Q;;UHJ .
Then the field Qw (V) is a splitting field for H(W).
We denote by Irr(H(W)) the set of irreducible characters of
Qw (V)H(W) = Qw (V) ®zpuu-1 HW),

which is also the set of irreducible characters of

QWH(W) == Qv) Szpuu-1) H(W).

Following [Ma4, §2D], we see that the action of the group Sy on
Zlu,u™'| by permutations of the indeterminates uy,; extends to an
action on Q[v,v~!]. Indeed, we let Gy act trivially on Q and for all
o € Gy we set

o(vp,;) =exp 2mi(o(j) — j)/eamw) vuj -
That action of Gy induces an action on H (W), and then an action on
Irr(H(W)) by
(2.62)
o(x)(h) :=o(x(c7'(h))) for 0 € Gy, heHW), x € Ir(H(W)).

2.5.5. Schur elements.

The next statement follows from Theorem 2.61 by a general argu-
ment which goes back to Geck [Gel].

Proposition 2.63.
Assume Theorem—Conjecture 2.60 holds.
For each x € Irr(H(W)) there is a non-zero Sy, € Zw[v,v™'] such

that .
T= Z S—X.

XErr(H(W)) X

The Laurent polynomials S, are called the generic Schur elements
of H(W) (or of W).
Let us denote by S +— SV the involution of Qy (V) consisting in
® vy = vﬁ}j forall He A(W),j=0,...,e—1,
e complex conjugating the scalar coefficients.
Note that this extends the previous operation A — AV on Z[u,u™?]
defined above in 2.5.3.
The following property of the Schur elements (see [Spetsl, 2.8]) is

an immediate consequence of the characteristic property (see Theorem
2.60(2)(b)) of the canonical trace 7.
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Lemma 2.64.
Assume Theorem—Conjecture 2.60 holds.
Whenever x € Trr(H(W)), we have

Sx(")v )

where w, denotes the central character corresponding to x.

2.5.6. About Theorem—Conjecture 2.60.

We make some remarks about assertions (4) and (3) of 2.60.

Note that the equality 7(1) = 1 results from the formula 7(b=!)" =
7(bm)/7(7) (condition (2)(b)) applied with b = 1. The same formula
applied with b = w1 shows that 7(7r) is an invertible element of the
Laurent polynomial ring, thus a monomial. Multi-homogeneity and
invariance by Gy, will then imply the claimed equality in (4)(b) up to
a constant; that constant can be checked by specialization.

Thus in order to prove (4)(b) (assuming (2)), we just have to prove
multi-homogeneity. It is stated in [Spetsl, p.179] that (a) and (b) are
implied by [Spetsl, Ass. 4] (which is the same as conjecture 2.6 of
[MaMi]), assumption that we repeat below (Assumption 2.65).

In [BreMa] and [GIM], it is shown that 2.65 holds for all imprimitive
irreducible complex reflection groups.

Assumption 2.65.
There is a section
W — By, w—w

with image W, such that 1 € W, and for w € W — {1} we have
T(w) =0.

Let us spell out a proof of that implication.

Lemma 2.66.
Under Assumption 2.65, properties (4)(a) and (4)(b) of Theorem
2.60 hold.

Proof.

By the homogeneity property of the character values (see e.g. [Spetsl,
Prop. 7.1, (2)]), applied to the grading given by each function Iy, we
see that for x € Irr(H(W)) and b € By, the value x(b) is multi-
homogeneous of degree {5 (b).

From the definition of the Schur elements S, it follows that 7(b) is
multi-homogeneous of degree [(b) if and only if the Schur elements S,
are multi-homogeneous of degree 0.

Let M be the matrix {x (W) }yecm(mw)),wec Where C is a subset of W
which consists of the lift of one representative of each conjugacy class
of W. Then the equation for the Schur elements reads S = X - M1
where S is the vector (1/Sy)yenrw)) and X is the vector (1,0,...,0)
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(assuming that C starts with 1). From this equation, it results that
the inverses of the Schur elements are the cofactors of the first column
of M divided by the determinant of M, which are multi-homogeneous
of degree 0. From the same equation, since X is invariant by Gy,
it results that for 0 € Gy, we have (see 2.62) o(Sy) = Sy(y), which
implies that 7 is invariant by Gyy. O

Note that, for the above proof, we just need the existence of C and
not of W.

We now turn to assertion (3) of Theorem—Conjecture 2.60. The proof
of unicity of 7 given in [Spetsl] using part (2) of Theorem-Assumption
1.56 applies to any parabolic subalgebra of the generic algebra. Hence
assertion (3) would follow from the next assumption.

Assumption 2.67.

Let By be a parabolic subgroup of By, corresponding to the intersec-
tion of hyperplanes I, and let 7wy be the corresponding element of the
center of By. Then for any b € By, we have 7(b~')Y = 7(bm;)/7(7)).

From now on we shall assume that Theorem—Conjecture 2.60 holds.

2.5.7. The cyclic case.

For what follows we refer to [BrMa2, §2].

Assume that W = (s) C GL;(C) is cyclic of order e. Denote by s
the corresponding braid reflection in By, Let u = (u;)i—.. -1 be a
set of indeterminates.

Then clearly there exists a unique symmetrizing form 7 on the generic

7(1)=1 and 7(s’) =0 fori=1,...,e — 1.

This is the form from 2.60.
For 0 <i <e—1, let us denote by x; : H(W) — Q(u) the character
defined by x;(s) = u;. We set S;(u) := Sy, (u).

Lemma 2.68.
The Schur elements S;(u) of W = (s) have the form

Uj — Uy 1 d
Sz(“) = H 0 = P(O, 11) (tap(tv 11)) ‘t:Uz’7

j#i J
where P(t,u) :== (t —ug) -+ (t — Ue_1) -
Proof.

The first formula is in [BrMa2, Bem. 2.4]. For the second, notice
that we have

2 P(t.w) = P(0,u) Z ” ]1;[ Si(u).

ui—uj
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The following Lemma will be used later. Its proof is a straightforward
computation (see Lemma 2.64).

Lemma 2.69.
With the above notation, we have

50" = (-1~ ([ ) $:0w) =~ PO, WS, (u).

2.6. P-cyclotomic Hecke algebras, Rouquier blocks.

We now consider specialized cyclotomic Hecke algebras involving
only a single indeterminate, x.

Let K be a number field, stable by complex conjugation A — \*.
Let W be a finite reflection group on a K-vector space V of dimension
T.

Let ®(x) be a K-cyclotomic polynomial — see Definition 2.48. We
assume that the roots of ®(x) have order d, and we denote by ¢ one of
these roots.

2.6.1. ®-cyclotomic Hecke algebras.

We recall that we set my = |pu(K)|. We choose an indeterminate v
such that v™& = (~lx.

Definition 2.70.
(1) A cyclotomic specialization is a morphism o : Z[(ulifz)Hl] —
K[v*Y defined as follows:
There are
o a W-equivariant family (Ca i) (e AW))(i=0,....e—1) Of TOOLS Of
unity i K,
o and a W-equivariant family (mmp;)meaw))i=o,...en—1) Of
rational numbers,
such that
(a) mgmp,; € Z for all H and 1,
(b) the specialization o is of the type o : upg; — (g ™K Hi
(2) A ®-cyclotomic Hecke algebra of W is the algebra

Hy = Ko™ @, H(W)
defined by applying a cyclotomic specialization o : Z[(u#z)f“] —
K[v*l] to the base ring of the generic Hecke algebra of W, which

satisfies the following conditions:
For each H € A(W), the polynomial

Py(u)(t) = ﬂ (t — up,) € Z[u,u '[t]

=0
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specializes under o to a polynomial Py (t,x) such that
(CAl) Py(t,x) € K[t,x],
(CA2) Py(t,x) =t —1 (mod ®(x)).

Remark 2.71.

(1) It follows from Theorem 2.61 that the field K (v) is a splitting

field for H,.

(2) Property (2),(CA2) of the preceding definition shows that

(a) a d-cyclotomic Hecke algebra H, as above specializes to
the group algebra KW through the assignment v +— 1
(which implies = — ();

(b) the specialization of K[u, u™!| ®zp,u-1; H(W) to the group
algebra KW (given by upg, +— ¢! for 0 < i < ey —1)
factorizes through its specialization to any ®-cyclotomic
algebra.

2.6.2. The Rouquier ring Ry (v).

Definition 2.72.

(1) We call Rouquier ring of K and denote by Ry (v) the Zg-
subalgebra of K(v)

Ri(v) = Zgv, vt (v — 1)&1] )

(2) Let o : up,; — Cu 0™ be a cyclotomic specialization defining
a ®-cyclotomic Hecke algebra H,. The Rouquier blocks of H,,
are the blocks of the algebra Ry (v)H, .

Remark 2.73.

It has been shown by Rouquier (cf. [Rou, Th.1]), that if W is a
Weyl group and H, is its ordinary Iwahori-Hecke algebra, then the
Rouquier blocks of H, coincide with the families of characters defined
by Lusztig. In this sense, the Rouquier blocks generalize the notion
of “families of characters” to the ®-cyclotomic Hecke algebras of all
complex reflection groups.

Observe that the Rouquier ring Ry (v) is a Dedekind domain (see
[BrKi, §2.B]).

2.6.3. The Schur elements of a cyclotomic Hecke algebra.

In this section we assume that Conjecture 2.60 holds.
Let us recall the form of the Schur elements of the cyclotomic Hecke
algebra H, [BrKi, Prop. 2.5] (see also [Chll, Prop.4.3.5]).

Proposition 2.74.
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If x is an irreducible character of K(v)H,, then its Schur element
Sy s of the form

Sy = My v H U (v)™ov
v

where m, € Zg, a, € Z, ¥ runs over the K-cyclotomic polynomials
and (ny,w) s a family of almost all zero elements of N.

The bad prime ideals of a cyclotomic Hecke algebra have been defined
in [BrKi, Def. 2.6] (see also [MaRo], and [Chll, Def. 4.4.3]).

Definition 2.75.

A prime ideal p of Zx lying over a prime number p is o-bad for W,
if there exists x € Irr(K (v)H,) with m, € p. In this case, p is called a
o-bad prime number for W.

Remark 2.76.

In the case of the principal series of a split finite reductive group,
that is, if W is a Weyl group and H, is the usual Hecke algebra of W
— the algebra which will be called below (see 4.44) the “I-cyclotomic
special algebra of compact type” —, it is well kown (this goes back, at
least implicitly, to [Lul] and [Lu2]) that the corresponding bad prime
ideals are the ideals generated by the bad prime numbers (in the usual
sense) for W.

2.6.4. Rouquier blocks, central morphisms, and the functions a and A.

The next two assertions have been proved in [BrKi, Prop. 2.8 & 2.9]
(see also [Chll, §4.4.1]).

Proposition 2.77.
Let x,¢ € Irr(K(v)H,). The characters x and v are in the same
Rouquier block of H, if and only if there exist

e a finite sequence Xo, X1, - - -, Xn € Irt(K(v)H,) ,
e and a finite sequence Py, ...,p, of o-bad prime ideals for W

such that

(1) xo = x and xn =,
(2) forallj (1 <j<n), wy, , =wy, mod p;Rg(v).

Following the notations of [Spetsl, §6B], for every element P(v) €
C(v), we call

e valuation of P(v) at v and denote by val,(P) the order of P(v)
at 0,

e degree of P(v) at v and denote by deg,(P) the negative of the
valuation of P(1/v).
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Moreover, as x = (v | we set

val,(P(v)) := Tzlz[((];‘) and deg,(P(v)) := C\lzg{)[((;) :
For x € Irr(K (v)H,), we define
(2.78) ay = Valm(gi—ivvi) and A, = degx(gigi).
Remark 2.79.

For W a Weyl group, the integers a, and A, are just those for the
generic character corresponding to y (see Notation 5.11 below).

The following result is proven in [BrKi, Prop. 2.9].

Proposition 2.80.
Let x,v € Irr(K(v)H,). If the characters x and ) are in the same
Rouquier block of H,, then

aX+AX:a¢+A¢.

For all Coxeter groups, Lusztig has proved that if xy and ) belong to
the same family, hence (by Remark 2.73) to the same Rouquier block
of the Hecke algebra, then a, = a, and A, = A,. This assertion has
also been generalized by a case by case analysis (see [BrKi, Prop.4.5],

[MaRo, Th.5.1], [Chl2, Th.6.1], and [Chll, §4.4] for detailed references)

to the general case.

Theorem 2.81.
Let W be a complex reflection group, and let H, be a cyclotomic
Hecke algebra associated with W'.
Whenever x, ¢ € Irr(K(v)H,) belong to the same Rouquier block of
H,, we have
a, =ay and A, =Ay,.
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3. COMPLEMENTS ON FINITE REDUCTIVE GROUPS

3.1. Notation and hypothesis for finite reductive groups.

Before proceeding our development for complex reflection groups,
we collect some facts from the theory of finite reductive groups associ-
ated to Weyl groups. More precisely, we state a number of results and
conjectures about Deligne-Lusztig varieties associated with regular ele-
ments, Frobenius eigenvalues of unipotent characters attached to such
varieties, actions of some braid groups on these varieties, in connection
with the so-called abelian defect group conjectures and their specific
formulation in the case of finite reductive groups (see [Bro0, §6], and
also [BrMi]).

These results and conjectures will justify and guide most of the defi-
nitions and properties given in the following paragraphs about the more
general situation where finite reductive groups are replaced by spetsial
reflection cosets.

Let G be a quasi-simple connected reductive group over the algebraic
closure of a prime field IF,,, endowed with an isogeny [ such that G :=
Gt is finite.

Our notation is standard:

e § is the smallest power such that F° is a split Frobenius (this
exists since G is quasi-simple). We denote by = +— x.F the
action of F' on elements or subsets of G.

e The real number ¢ (/p raised to an integral power) is defined
by the following condition: F? defines a rational structure on
F,s.

° qu is a maximal torus of G which is stable under F' and con-
tained in an F-stable Borel subgroup of G, W is its Weyl group.
The action on V := C ®z X(T,) induced by F' is of the form
qp, where ¢ is an element of finite order of Ngp,v) (W) which is
I-regular. Thus § is the order of the element of Ngpq(W)/W
defined by ¢. For w € W we shall also sometimes note p(w) :=

owe !t = %w.

We also use notation and results from previous work about the braid
group of W and the Deligne-Lusztig varieties associated to G (see
[BrMi], [DiMi3]).

We use freely definitions and notation introduced in §2.4 above. Re-
call that for a,d € N, ( := exp(2mia/d), and let we be a (j-regular
element for W.

It is possible to choose a base point z( fixed by ¢ in one of the
fundamental chambers of W, which we do. Indeed, ¢ stabilizes the
positive roots corresponding to the F-stable Borel subgroup containing
T, and consequently fixes their sum.
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Since G is quasi-simple, W acts irreducibly on V', and so ([Dell] or
[BrSal) the center of the pure braid group Pyy is cyclic. We denote by
T its positive generator.

Following [DiMi2, §3], we choose all our paths satisfying the con-
ditions of [DiMi2, Prop. 3.5]. This allows us to define ([DiMi2, Def.
3.7]) the lift W C By of W, and the monoid By, generated by W. We
denote w — w (resp. w — w) this lift (resp. the projection W — W).

In particular, we choose a regular eigenvector x; of wy associated
with the eigenvalue (J, and a path v in V™ from z( to x; satisfying
those conditions.

Then, following §2.4.4 above:

e Asin Lemma 2.55 and Lemma 2.57, we lift wy to a path w., /4
(abbreviated w) in V' from the base point xy to (we)(xy) =
wxg, we denote by ¢ the automorphism of By, defined by ¢,
and we have a(wg), /¢ = Ad(w) - a(p) .

o If

we have p € By and p? = .

e Both w and p belong to By},

We will work in the semi-direct product By, x (¢) where we have
(wp)? = p and (wp)? = w%p? We denote by By (weg) (resp.
Bi/(w¢)) the centralizer of we in By (resp. Byj,).

We denote by B the variety of Borel subgroups of G and by 7T the
variety of maximal tori. The orbits of G on B x B are in canonical
bijection with W, and we denote B-3B’ the fact that the pair (B, B’)
belongs to the orbit parametrized by w € W.

The Deligne-Lusztig variety Xy, is defined as in [BrMi, Déf. 1.6
and §6] (following [Del3]). It is irreducible; indeed, since we is a root
of 7, the decomposition of w contains at least one reflection of each
orbit of ¢, and the irreducibility follows from [DiMi2, 8.4], (it is also
the principal result of [BoRo]).

Note that if w € W then the Deligne-Lusztig variety Xy, associated
to the “braid element” w¢ is nothing but the classical Deligne-Lusztig
variety

Xu, = {B € B| B5B.F}

associated to the “finite group element” we. When « is prime to § and
2a < d, by choosing for we the a-th power of the lift of a Springer
element (see [BrMi, 3.10 and 6.5]) we may ensure that w = w, 44 € W.

3.2. Deligne—Lusztig varieties attached to regular elements.
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We generalize to regular elements a formula of Lusztig giving the
product of Frobenius eigenvalues on the cohomology of a Coxeter vari-
ety.

In what follows we consider the usual Deligne-Lusztig variety X,
(attached to wy € GL(V)).

Proposition 3.1.
Let we be a Cq-regular element of W. If Ty, is an F-stable mazimal
torus of G of type wp, we have
GF
XE| = ||TF ‘| .
wep

In order to proceed, we reformulate that proposition in terms which
can be generalized to complex reflection groups; the proof of that re-
formulation is then immediate by Proposition 2.47(1).

Corollary 3.2.
Let wy be a (q-reqular element of Wy. We have

d - _ h, F
\Xfw| = dety (wyp) quVngeng,ip .

Proof of 5.1.

The proposition generalizes [Lu, 3.3(ii)] and our proof is inspired by
the argument given there.

We shall establish a bijection

X5 = {B €B| B4B.F, B.F! = B}

(3.3) N
{(T,B)eTxB | T.F:T,TcB,BiB.F} ,

and the result will follow from counting the above set of pairs.

Let us check first that last implication. Notice that any maximal
F-stable torus T which is contained in a Borel subgroup B such that
B-5B.F is a torus of type wyp (see [DeLu, §1]). Since all these tori of
type wy are G¥-conjugate to T, their number is

G"] 1 |G"]

[Ner(T)| (W (we)| |TF]

To find the number of pairs (T, B) as above, we must multiply the
above number by the number of Borel subgroups B’ such that T C B’
and B'5B’.F. Given B such that T € B and B5B.F, any other B’
containing T is B’ = “'B for some w’ € W = Ng(T)/T, and BSB.F

if and only if w’ € W (w¢p). Thus the number of pairs (T, B) as above
|G|

IThel”

Now we establish the bijection (3.3).

18
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1. We first show that, whenever B € Xf;:;, there exists a unique

F-stable maximal torus T such that, for all i > 0, T C B.F".
Let B € X, so that B = B.F). The sequence

wps
(B,B.F,...,B.F%)

defines an element of the variety X, .« (associated with the “braid
element wp?”, and relative to F'¢) (see [BrMi, §1]). Let B be the
unique Borel subgroup such that

B B, X% B.F¢

where w is the longest element of W, and such that (B, B, B.F%)
defines the same element of X, 4 as that sequence. Since B and B,
are opposed, T := B N B; is a maximal torus.

Let us prove that, for all ¢ > 0, T C B.F".

e Assume first that ¢ < |d/2].
If v := wF(w)...F~'(w), then the Borel subgroup B.F* is
the unique Borel subgroup B’ such that

BB "B,
Since such a Borel subgroup can be found among those contain-
ing T, i.e., a Borel subgroup “'B for some w’ € W = Ng(T)/T,
we have B.F* O T.
e Now assume i > [d/2]. Since B = B.F? if we set now
v = FY(w)F* Y (w) ... F4~1(w), we get similarly that the Borel
subgroup B.F" is the unique Borel subgroup B’ such that

B, LB 4B
and by the same reasoning we get that B.F* O T.

Since T =), B.F", it is clear that T is F-stable.

2. Conversely, if (T,B) is a pair such that T is an F-stable max-
imal torus of type w¢ and B D T, then B 2 B.F and B € Xﬁ:i.
Indeed, let as above (B, By, B.F'?) define the same element of X4 as
(B,B.F,...,B.F%). Then each B.F" contains T and by a reasoning
similar as above, as either B; = B.F%?2 if d is even, or B is defined by
its relative position to its neighbours, in each case B; contains T. As
both B and B.F¢ are the unique Borel subgroup which intersect B; in
T, they coincide. O

3.3. On eigenvalues of Frobenius.
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3.3.1. The Poincaré duality.

Let us briefly recall a useful consequence of Poincaré duality (see for
example [Del2]) in our context.

Here q is a power of a prime number p, and ¢ is a prime number
different from p.

Let X be a smooth separated irreducible variety of dimension d,
defined over the field F, with ¢ elements, with corresponding Frobe-
nius endomorphism F. Its étale cohomology groups H'(X,Q,) and
Hi(X, Q) are naturally endowed with an action of F.

The Poincaré duality has the following consequence.

Theorem 3.4.
For 0 < i < 2d, there is a natural non degenerate pairing of (F')-
modules

HY(X,Qp) x H*™(X, Q) — H*(X,Qy).

For n € Z we denote by Q(n) the Q-vector space of dimension 1
where we let F' act by multiplication by ¢~".
Since, as a Q(F)-module, we have H?¢(X,Q,) = Q,(—d), the Poin-
caré duality may be reformulated as follows:
For 0 < ¢ < 2d, there is a natural non degenerate pairing of (F)-
modules
HY(X,Qp) x H*™(X,Qp) — Qu(—d).

3.3.2. Unipotent characters in position wep.

In this subsection and the following until 3.9, w will be any element
of By, such that the variety X, is irreducible.

We will denote by Un(GY') the set of unipotent characters of G¥
and by Un(G”', w¢) those appearing in any of the (compact support)
cohomology spaces H™(Xye, Q).

We will denote by Id the trivial character of G, and by ~* the
complex conjugate of a character ~.

Since the dimension of X, is equal to I(w¢), the Poincaré duality
as stated above (3.4) has the following consequences.

Proposition 3.5.

(1) The set of unipotent characters appearing in some (noncompact
support) cohomology spaces H"(Xywe, Qr) is Un(GF, wep)*, the
set of all complex conjugates of elements of Un(GF, wep) .

(2) For v € Un(GF,we), to any eigenvalue \ of F° on the ~-
isotypic component of H:(Xwep, Q) is associated the eigenvalue
') /X on the v*-isotypic component of H*WP)=H (X Q).

Remark 3.6.
Note that 1 is the unique eigenvalue of minimal module of F% on
H*(Xwe, Qy), corresponding to the case where 7 is the trivial character

n HO(XWQ(M Qf)
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Indeed, by Poincaré duality it suffices to check that there is a unique
eigenvalue of maximal module, equal to ¢!¥), in the compact support
cohomology H?(Xwe, Q). This follows from the fact that only the
identity occurs in H; Hwe) (Xwe, Q) since Xy, is irreducible, and that
the modules of the eigenvalues in H"(Xy,, Q) are less or equal to g™/
(see for example [DiMiRo, 3.3.10(i)]).

The next properties are consequences of results of Lusztig and of
Digne-Michel (for the next one, see e.g. [DiMiRo, 3.3.4]).

Proposition 3.7.
Lety € Un(GF,we). Let X be the eigenvalue of F° on the y-isotypic
component of H(Xwe, Q). Then X = ¢\, , where
e )\, is a root of unity independent of i and of we
o f =12 for somen €N, and the image of f in Q/Z is indepen-
dent of 1 and of wep.

3.4. Computing numbers of rational points.

We denote by H(W,z) the ordinary Iwahori-Hecke algebra of W
defined over C[z,z~!]: using our previous notation, H(W,z) is the
(x—1)-cyclotomic Hecke algebra such that, for all reflecting hyperplanes
H of W, we have Py (t,z) = (t—x)(t+1) . Notice that H (W, z) is indeed
an (z — 1)-cyclotomic Hecke algebra for W at the regular element 1.

We choose once for all a square root y/z of the indeterminate x.
Since the algebra H (W, z) is split over C(y/x), the specialisations

Vi1 and z e (¢7%H)™°

define bijections between (absolutely) irreducible characters:
Irr(H(W,x)) «— Irr(W) and Trr(H(W, z)) +— Ier(H(W, q™))
for all m multiple of 0. As a consequence, we get well-defined bijections
Br(W) «— Tr(H(W, q™))
(o

The automorphism ¢ of By, defined by ¢ induces an automorphism
¢, of the generic Hecke algebra, and the field C(y/x) splits the semidi-
rect product algebra H(W,z) x (p,) (see [Ma3]). Hence the above
bijections extend to bijections

@Z)’_)@Z)qm

between

— extensions to W x () of ¢-stable characters of W
— and extensions to H(W, ¢™) x (p,m) of ¢ m-stable characters of
H(W.q™).
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Each character x of the Hecke algebra H (W, z) defines, by composi-
tion with the natural morphism By — H(W, z)*, a character of By .
If x is a character of H(W,z) x (p,), it also defines a character of
By % () ; in particular this gives a meaning to the expression y(w¢)
for w € Byy.

For y a ¢-stable character of W we choose an extension to W x (p)
denoted x. We define

Ry = W[ ) X(vp)Ruy
veW
where, for g € G and v € W,
Rup(9) ==Y (—1)'Trace(g | Hi(Xup, Qo))
Notice then that, for v € Un(G!, we) the expression

(7: Ry)arXgn (Wep)
depends only on x and on 7, which gives sense to the next result

([DiMiRo, 3.3.7)).

Proposition 3.8.
For any m multiple of 6 and g € G, we have

X9 T= D N9 D (1 RyarXen(we) .

~eUn(GF ,wep) XElrr(W)¥®

Let us draw some consequences of the last proposition when w sat-
isfies the assumptions of Section 3.1 (so that w = w., 4/4).
Since by assumption we have (wg)? = w%p?, it follows that

(3.9) wiem(@d) _ alem(dd)/d

By [Spetsl, 6.7], we know that
— gmU(m)—(ax+Ay)) _ ml(m)(1—(ax+Ax)/U(7))
(3.10) X (7) = ¢ q

where, as usual, a, and A, are the valuation and the degree of the
generic degree of x (see Section 2.6.4). It follows that

(3.11) R (W) = K(wg)g O ox A7)
(the power of ¢ is given by the above equation and the constant in front
by specialization).

For all x such that (v, Ry)gr # 0 since the functions a and A are
constant on families, we have a, = a, and A, = A,. So
(3.12)

XS = ST (4, Rugar Ny (g)gmi e 0ot A0 /i),
~eUn(GF wep)
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3.5. Some consequences of abelian defect group conjectures.

The next conjectures are special cases of abelian defect group con-
jectures for finite reductive groups (see for example [Brol]).

Conjecture 3.13.
(1) Hgdd = @iodd HZ<XW¢7QZ) and Hceven = @ieven H(i(XW@?@Z)

are disjoint as G¥-modules. B
(2) F° is semi-simple on H(Xwe, Q¢) for alli>0.

Let us then set

He(Xwy) := Endgr (EB Hg’(Xw,@g)> .
Comparing the Lefschetz formula

X | = Z( 1)"Trace(gF™ | Hy (X, Qr))

with (3.12), we see that the preceding Conjecture 3.13 implies
(1) there is a single eigenvalue Fr¢ := X, ¢/ (W) (I=(artA4)/Im) of F0
on the v-isotypic part of @, HZ(chp, Q)
(2) F? is central in Ho(Xwe) -

Since |X9F "| € Q, the conjecture implies also:

_ o(Un(GF, w = Un(G,w
Vo € Gal(@/Q) . (c ( f)) ( ®)
To() = o (Fr3).
By Poincaré duality, there is similarly a single eigenvalue Fr, of
F? attached to v on H*(Xwe, Q) and since by Proposition 3.5(2)
Fr, Frl. @O'We) we get

(3.14) Fr, = )Wq5l(wso)(aw+z4w)/l(7r)_
We get similarly that

F° is central in H(Xy,) := Endgr <@ Hi(wa,@g)> :

The next conjecture may be found in [BrMa2] (see also [BrMil,
[Brol]).

As in §2.4 above, we denote by wy a (j-regular element for W, which
we lift as in §3 1 above to an element w such that w and p := (wep)°
belong to B, and p? = w%. We denote by ® the d-th cyclotomic
polynomial (thus ¢ € Z[z)).

Conjecture 3.15.

The algebra H.(Xwy) is the specialization at x = q of a ©-cyclotomic
Hecke algebra Hy (wep).(x) for W (wep) over Q, with the following prop-
erties:
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(1) Let us denote by 7, the corresponding specialization of the canon-
ical trace of Hw(wp).(z) to the algebra H.(Xwy,). Then for
v € By (wyp), we have

Z(—l)itr(va H'(Xup, Qo)) = Deg(R;,)74(v) -

a.lem(d,d)/d lem(d,6) /6

(2) The central element m /% corresponds to the

action of F'e™(d9)

=p

Let us draw some consequences of Conjecture 3.15.

3.5.1. Consequence of 3.15: Computation of 7,(7).

The following proposition makes Conjecture 3.15 more precise, and
justifies Conjecture 3.21 below.
Proposition 3.16.

(1) Assume that 3.15 holds. Assume moreover that a = 1 and that
d is a multiple of 6. Then

7y(7) = dety (wip) 'MW = (¢'g)™W

(2) Assume that, for I € Aw(wy), the minimal polynomial of sy
on He(Xyy) s Pr(t). Then

Nhyp

H PI ‘}/lgf)uw)df_é/tv(w(p) 1qN‘}/]I}/p = ( 1) ‘}/l‘;ﬁwcp) (C q) hyp
Ie Aw (wy)
Proof.

(1) By 3.15(2), the element 7 acts as F* on the algebra H.(Xu,).
Hence by the Lefschetz formula, we have

Xl = D (=) te(m, H (X, Q1))

i

and hence by 3.15 we find
d
Xyl = Deg(Ry,) () -
Now by 3.1, we have
[X7o| = dety (w) '¢"+ Deg(RS,)

which implies the formula.
(2) By [Spetsl, 2.1(2)(b)], we know that

() = (<)% T Pi(0),

IeAw (wy)

which implies the result. O
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3.5.2. Consequence of 3.15: Computation of Frobenius eigenvalues.

Recall that there is an extension L(v) of Q(x) which splits the algebra
Hw (we).(z), where L is an abelian extension of Q and v* = (~lx for
some integer k.

Choose a complex number ((~'q)"/*.

Assume Conjecture 3.15 holds. Then all unipotent characters in
Un(G*,we) are defined over L[((~'¢)"/*], and the specializations

v 1 and v ((Tlg)M*

define bijections

Irr (W (we)) — Irr(H (X, Q) +— Un(GF, we)
(3.17)
X = Xg 7 Vx
Remark 3.18.
It is known from the work of Lusztig (see e.g. [Ge2] and the refer-

ences therein) that the unipotent characters of G are defined over an
extension of the form L(¢'/?) where L is an abelian extension of Q.

Recall that Fr, denotes the eigenvalue of F' % on the 7,-isotypic com-
ponent of H*(Xy,, Q). By 3.15(2), we have

Fr}yc;n(d,é)/é = w,, <p)lcm(d,5)/5 )

Since the algebra Hy (we).(x) specializes

e for z = (, to the group algebra of W (wy),
e and for x = ¢, to the algebra H.(Xw),

we also have
Wy (P) = wi () (¢ )™

for some ¢, € N/2.
Comparing with formula 3.14 we find

ey = 0l(wep)(1 — (avx + Avx)/l(ﬂ')) = (ew — (avx + AWX))(Sa/d,
which proves:

Proposition 3.19.
Whenever wy is (§-reqular and x € Irr(W(wyp)), if v, denotes the
corresponding element in Un(GT, wep) we have

)\}Y(:;n(d,é)/é = wy (p)lcm(d,é)/éC—(eW—(a—yX +A~,)lem(d,d)a/d )

3.6. Actions of some braids.

Now we turn to the equivalences of étale sites defined in [BrMi] and
studied also in [DiMi3]. For the definition of the operators D, we refer
the reader to [BrMil.
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Theorem 3.20.
There is a morphism

B (we) = Endgr (Xwy)
v D,

such that:
(1) The operators Dy are equivalences of étale sites on Xy..

The next assertion has only been proved for the cases where
W is of type A, B or D, [DiMi2]. It is conjectural in the general
case.

(2) The map v — Dy induces representations
pe : QB (wep) — He(Xwy) and p: QBw (wep) — H(Xwy) -
(3) Dy = F°.

3.6.1. More precise conjectures.

The next conjecture is also part of abelian defect group conjectures
for finite reductive groups (see for example [Brol]). It makes conjecture
3.15 much more precise.

Results similar to (CS) are proved in [DiMiRo] and [DiMi2] for sev-
eral cases.

Conjecture 3.21.
COMPACT SUPPORT CONJECTURE (CS)
(1) The morphism p. : QBw (W) — H.(Xwy) is surjective.
(2) It induces an isomorphism between H.(Xw,) and the special-
ization at x = q of a ®-cyclotomic Hecke algebra Hy (we).(x)
over Q at wy for W(wyp).

NONCOMPACT SUPPORT CONJECTURE (NCS)
(1) The morphism p : QuByw (W) — H(Xwe) is surjective.
(2) It turns H(Xw,,) into the specialization at x = q of a ®-cycloto-
mic Hecke algebra Hy (we)(x) over Q at we for W(wy).

3.6.2. Consequence of 3.21: moncompact support and characters in
Un(GF, we).

We refer the reader to notation introduced in 3.5.2, in particular to
bijections 3.17.

We can establish some evidence towards identifying H (X, ) with a
cyclotomic Hecke algebra of noncompact type. For example, we have
the following lemma. We denote by A(wg) the set of reflecting hyper-
planes of W(wy) in its action on V(wyp).
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Lemma 3.22.

Assume that H(Xw,) is the specialization at x = q of a cyclotomic
Hecke algebra for the group W (we).

Then whenever I € A(wyp), the corresponding polynomial Pr(t, )
has only one root of degree 0 in x, namely 1. If s; is the correspond-
ing braid reflection in By (we), this oot is the eigenvalue of Ds, on
e (XW<P7 QZ)

Proof.

Let x € Irr(W(we)) be a linear character, thus corresponding via
3.17 to a linear character x, of H(Xw,). Let I € A(wyp), and let s;
be the corresponding braid reflection in By (we). Let us set uy;, :=
Xq(sr) so that uy;, = &;;,¢" "1 where £ j, is a root of unity and my j,
is a rational number.

The element p = (we)?® is central in By (we). Since W(wy) is
irreducible (see for example [Bro2, Th. 5.6, 6]) it follows that there
exists some a € QQ such that

Xa(p) = x(p) [T i -

1

Now x,(p) is the eigenvalue of F° on the v,-isotypic component of
H*(Xywe, Qr), and we know (see Remark 3.6 above) that there is a
unique such eigenvalue of minimum module, which is 1, corresponding
to the case where 7 is the trivial character in H%(Xye, Q).

It follows that there is a unique linear character x of W (wy) such
that x,(s) has minimal module for each braid reflection s. Since Dj
acts trivially on H%(Xy, Q¢) we have x,(s) = 1, so the unique minimal

my, 1s 0. U

3.7. Is there a stronger Poincaré duality 7

We will see now how (CS) and (NCS) are connected, under some
conjectural extension of Poincaré duality.

Conjecture 3.23.

For anyv € By (we) and any n large enough multiple of §, Poincaré
duality holds for Dy(weyn, i.e., we have a perfect pairing of Dy(weyn-
modules:

Hé(thpa @6) X HZl(wgo)—i(sto’ @E) — Hfl(wso) (Xwgm @é) .

Remarks 3.24.

1. First note that for n large enough v(wep)™ € By}, (W), so there is
a well-defined endomorphism Dy (wyy». Indeed, since (wg)™ is a power
of 7 for n divisible enough, the element v(we)" is positive for n large
enough.

2. The Lefschetz formula which would be implied by 3.23 at least
holds. Indeed, Fujiwara’s theorem (see [DiMiRo, 2.2.7]) states that
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when D is a finite morphism and F' a Frobenius, then for n sufficiently
large DF™ satisfies Lefschetz’s trace formula ; this implies that, for
n large enough and multiple of §, the endomorphism Dy (w,y» satisfies
Lefschetz’s trace formula, since Dy = F' 9 is a Frobenius.

3. Conjecture 3.23 implies that D, acts trivially on H%(Xy, Q).

The following theorem is a consequence of what precedes. It refers
to the definitions introduced below (see Def. 4.7), and the reader is
invited to read them before reading this theorem.

Theorem 3.25.
Assuming conjectures 3.13, 3.21, 3.23,

(1) the algebra H.(Xwy) is a spetsial ®-cyclotomic algebra of W
at we of compact type, and the algebra H(Xw,) is a spetsial
d-cyclotomic algebra of W at we of noncompact type,

(2) He(Xwy) is the compactification of H(Xwy), and H(Xwy) is
the noncompactification of He(Xwe).

We can give a small precision about Conjectures 3.21 (which will
be reflected in Definition 4.7 below) using now the strong Poincaré
Conjecture 3.23.

Lemma 3.26.

Assume 3.23 and 3.13, and assume that H.(Xyw,) is the specializa-
tion at x — q of a (-cyclotomic Hecke algebra of W (we).

Let I be a reflecting hyperplane for W (we), and if s; denotes the cor-
responding braid reflection in By (we), let us denote by vy the eigen-
value of Dy on H2ve) (Xwes Qr). Assume that vr = A\;q™ where \j is
a complex number of module 1 and m; € Q is independent of q.

Then A\f = 1.

Proof.

From 3.23 and 3.22 we get that vy is the unique eigenvalue of maximal
module of Ds, on H?(Xy,); the eigenvalue of F° on Hf““’)(XW, Q)
is also the unique eigenvalue of maximal module (equal to ¢®)).

As remarked in 3.24 2., for sufficiently large n multiple of § the
endomorphism Ds, (we)» satisfies the Lefschetz fixed point formula. Its

eigenvalue on Hf““’)(XW, Q) is A\7¢™ @) and this is the dominant
term in the Lefschetz formula. Since the formula sums to an integer,
this term must be a real number, thus A\; = 1. O

Remark 3.27.

Note that the assumption of the previous lemma on the shape of v;
is reasonable since we believe that it suffices to prove it in the case
where W (wy) is cyclic, and in the latter case Dy is a root of F'.

Incidently, assume that W (wep) is cyclic of order ¢, and let s be the
positive generator of By (we). Since (we)? is a power of s, we get
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(comparing lengths):
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4. SPETSIAL ¢-CYCLOTOMIC HECKE ALGEBRAS

Leaning on properties and conjectures stated in the previous para-
graph, we define in this section the special type of cyclotomic Hecke
algebras which should occur as building blocks of the spetses: these
algebras (called “spetsial cyclotomic Hecke algebras”) satisfy proper-
ties which generalize properties of algebras occurring as commuting
algebras of cohomology of Deligne-Lusztig varieties attached to regular
elements (see §3 above).

Let K be a number field which is stable under complex conjugation,
denoted by A +— \*. Let Zg be the ring of integers of K.

Let V' be an r-dimensional vector space over K.

Let W be a finite reflection subgroup of GL(V') and ¢ € Napw)(W)
be an element of finite order. We set G := (V, Wy).

4.1. Prerequisites and notation.

Throughout, we € W denotes a regular element. If wy is (-regular
for a root of unity ¢ with irreducible polynomial ® over K, we say that
wep is P-regular.

We set the following notation:

- V(wgp) := ker ®(wyp) as a K[x]/(P)-vector space,

- W(wep) = Cw(wyp), a reflection group on V(wyp) (see above
Theorem 2.50(5)),

- A(wy) is the set of reflecting hyperplanes of W (we) in its action
on V(wg),

- eW(w(p) = CW (we) -

Note that K[z]/(P) contains Q (wy)-
The next theorem follows from Springer—Lehrer’s theory of regular
elements (cf. e.g. [Bro2, Th. 5.6]).

Theorem 4.1.
Assume that W is irreducible. If we is regular, then W(wyp) acts
irreducibly on V(we).

4.2. Reduction to the cyclic case.

We relate data for W(wyp) with local data for Wi(wep), I € A(wyp).
Solet I € A(wy). We denote by W the fixator of I in W, a parabolic
subgroup of W. The element w¢ normalises the group W (since it acts
by scalar multiplication on I), and it is also a ®-regular element for
W;. Moreover, the group Wi(we), the fixator of the hyperplane [ in
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W(we), is cyclic.

Thus we have a reflection coset

G[ = (‘/, W[U}QO) .

Note that
AW ={He AW)| HNV(wp)=1}.

The “reduction to the cyclic case” is expressed first in a couple of
simple formulee relating “global data” for W to the collection of “local
data” for the family (W7)rca(wy), such as:

AW) = I_l A(W7r), from which follow

(4 2) Ie A(wyp)
’ re re h h;
Nif= > Npb o NgP= Y NPoew= > ew,.
Te A(wyp) Te A(wyp) Ie A(weyp)
Jw = H Jw, , from which follows
IE.A(w )

(4.3) ’

detv H detV w<p

Te A(wyp)

Notice the following consequence of (4.2), where we set the following
piece of notation:

ew; (U)QO) = CWr(we)

which we often abbreviate e;.

Lemma 4.4.
(1) Whenever I € A(wy), ew,(wy) divides ey, .
(2) Assume that there is a single orbit of reflecting hyperplanes for
W(wep). Then ey (wyp) divides ey .

Proof.
(1) Consider the discriminant for the contragredient representation
of W on the symmetric algebra S(V*) of the dual of V' (see 2.1.2 above),



58 MICHEL BROUE, GUNTER MALLE, JEAN MICHEL

which we denote by Discy,. With obvious notation, we have

Discyy, = Ji i’ = ] G
HeA(W)

By restriction to the subspace V(wyp), we get

Disciylviwy =[] GH™
Ie A(wyp)

Since Discyy, is fixed under W, Discyy |y (wy) is fixed under W (we). Since
Discjy, is a monomial in the j3’s, it follows from [Bro2, Prop.3.11,2] that
Discyy v (wy) must be a power of the discriminant of Wj(we), which
shows that ey, (wy) divides ey,.

(2) If all reflecting hyperplanes of W (w¢) are in the same orbit as I,
the relation ew = 3¢ 4, ew; may be written in W and in W(we)
as

h h
ew = Nypupew, and ew(we) = Nyt ew, (we),
from which it follows that
ew ew;

() ew(wg) <

Remark 4.5.

The conclusion in (2) of Lemma 4.4 need not be true in general.
For example, consider the case where W = G5 (in Shephard—Todd
notation), and let w be a 2-regular element of W. Then W (w) = Gs.
It follows that ey, = 36 and ey (w) = 24, so ey (w) does not divide ey .
Note that G5 has two orbits of reflecting hyperplanes.

Remark 4.6.

As a special case, assume that we started with a split coset i.e.,
@ € W, and assume that W acts irreducibly on V. Let us denote by d
the order of the regular element w of W.

Then by Theorem 4.1 W(w) acts irreducibly on V(w), hence its
center ZW (w) is cyclic. Let us choose a generator s of that center.
Then we have

(1) s is regular (since s acts as scalar multiplication on V(w))

(2) W(s) = W(w).

4.3. Spetsial d-cyclotomic Hecke algebras at wp.
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4.3.1. A long definition.

We still denote by ® the K-cyclotomic polynomial such that ®({) =
0, where w¢ is (-regular and ¢ has order d.
Notice that, by definition

e wy acts on V(wy) as a scalar whose minimal polynomial over
K is P,
o K[z]/(®) = Kw(wy)

Definition 4.7.

A spetsial ®-cyclotomic Hecke algebra for W at we is a K|z, 27-
algebra denoted Hy (we), specialization of the generic Hecke algebra of
W (wep) through a morphism o and subject to supplementary conditions
listed below:

There are

.....

.....

1
ative elements of —|ZW|Z ,
such that o : uy j — C[,jv|ZW|m”i where v is an indeterminate such that
VWl = ¢, with the following properties.

For each I € A(wy), the polynomial H;;Bl(t — uy,;) specialises to a
polynomial Py(t,x) satisfying the conditions:
(cal) Pi(t,x) € Kw (wy) [t, x],
(cA2) Pi(t,x) =t — 1 (mod &(x)),

and the following supplementary conditions.
GLOBAL CONDITIONS

(RA) The algebra Hyw (we) splits over Ky (uwp)(v).

(scl) All Schur elements of irreducible characters of Hw (wep) belong
to Zrclx,z71].

(sc2) There is a unique irreducible character xo of Hw(wp) with
the following property: Whenever x is an irreducible character
of Hw (wep) with Schur element Sy, we have Sy,/S, € Klx].
Moreover, xo is linear.

(sc3) Whenever x is an irreducible character of Hw (we) its Schur
element Sy divides Fegg(RS,) in K[z, z7'].

For x an irreducible character of Hy (wy), we call generic
degree of x the element of K|x| defined by

Fegs(R,,,)
Deg(x) := % :
X

LOCAL CONDITIONS
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Whenever I € A(wy), let us denote by Hy, (wy) the parabolic sub-
algebra of Hw (wep) corresponding to the minimal parabolic subgroup
Wi(we) of W(wg). We set Gy = (V,Wrwy). The following con-
ditions concern the collection of parabolic subalgebras Hy,(wp) (I €
Awp)).

The algebras Hy, (wp) have to satisfy all previous conditions (CA1),

(CA2), as well as conditions (RA), (SCl), (sC2), (SC3) that we state
again now, plus

e for the noncompact support type, conditions (NCS1), (NCS2),
(NCS3) stated below,

e for the compact support type, conditions (¢sl), (¢s2), (cs3)
stated below.

COMMON LOCAL CONDITIONS

Notice that the following conditions impose some properties of ra-
tionality to the local algebra Hy,(wyp) coming from the global datum
G=(V,Wop).

(RA;) The algebra Hy, (wep) splits over Ky (v), (where v is an
indeterminate such that vV = (~1z).

(scly) All Schur elements of irreducible characters of Hw,(wp) belong
to Zrclx,z71].

(sc2r) There is a unique irreducible character xb of Hw, (wp) with the
following property: Whenever x is an irreducible character of
Hw, (wep) with Schur element Sy, we have S,1 /Sy € K[z]. Note
that since Wi(we) is cyclic, xb is linear.

(sc3;) Whenever x is an irreducible character of Hw,(wey) its Schur
element divides Fegg(RyL).

We set e :=e; = ew, (wep).
Let us define ai(x), ..., a.(z) € Kwwy)lz] (the aj(x) depend on I)
by
Pr(t,z) =t° —ap ()t + -+ (=1)%a.(z).
NONCOMPACT SUPPORT TYPE (NCS)
We say that the algebra is of noncompact support type if

(Neso) Pr(t,z) € Kt, z],

(Nes1) 1 ds a root of Pr(t,z) (as a polynomial in t) and it is the only
root which has degree 0 in x. In particular a;(0) = 1.

(ncs2) The unique character xb defined by condition (SC27) above is
the restriction of xo to Hw,(wy), and is defined by

Xé(S[) =1.

In other words, xo defines the trivial character on By (we).
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(nes2)y We have
Sio(@) = (') ™MW Feg(RS,)(w) |
_ nyref
S (@) = (¢a) WiFeg(RIL)(x)

X0

and in particular

Deg(xo)(z) = (("'a)™W .

Nref

(~Ness) Pr(0,z) = (—1)%ac(z) = — (¢ 1a) W .

COMPACT SUPPORT TYPE (CS)

We say that the algebra is of compact support type if

(cso) Forj=1,...,e, we have ("™ a;(x) € K[z].

(cs1) There is only one root (as a polynomial in t, and in some field
extension of K(x)) of Pr(t,z) of highest degree in x, namely

‘W

(¢la)

(cs2) The unique character x} defined by condition (SC2;) above is
the restriction of xo to Hw,(wy), and is defined by

I 1\
Xo(sr) = (¢ @) 1.
(cs2)y We have
SXO = Feg(R(ng) )
Syy = Feg(Ry)
and in particular

Deg(xo)(z) = 1.
(©s3) Pi(0,2) = (—1)au(z) = —(¢2)7 |

4.3.2. From compact type to noncompact type and vice versa.

Let us first state some elementary facts about polynomials.

Let P(t,z) = t° — ai(x)t“ ' + -+ + (=1)%c(x) € K]|t, 2] such that
P(t,x) = H;;(l] (t—A;), where the \; are nonzero elements in a suitable
extension of K (z).

Assume that P is “(-cyclotomic”, i.e., that P(t,() =1t —1.

Choose an integer m and consider the polynomial

e

t
Pt z) = Plz™t ' ).
Then
e—1
Pt 2y =TTt —a™A),
j=0
and

P, ¢) = ¢me((¢Tm ) = 1)
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Define
te
pme(t, x) .= ¢mePIM(¢M, @) = P((¢ra)™t ).
(t.3) 1= P 2) = o P )
We have
e—1
Pt x) = [J(t = (¢7la)™A7)
§=0
and

Pl Oy =1 —1.
Note that P(t,z) + P (¢, z) is an involution. Write P™< (¢, z) =
t¢ — by (z)tt + - 4 (—1)%e(x) .
Remarks 4.8.

(1) If the highest degree term of a;(x) is ((~'z)™, then b (0) =
1, and if a1(0) = 1 then the highest degree term of b;(z) is
(¢ la)™.

(2) If Py(0,2) = —(¢'2)™¥1 | then IV (0, 2) = —(¢ 1) ™7
and wvice versa.

Let us prove (2). By definition of P™<(¢, z), we have P"™<(0, ) =
(¢ tz)*™P(0,z), whence

P[GWI/GI’C}(O, r) = (Clz)"i P(0, 7).
Now ey, = Nyt +N§}’Ip, soif P(0,x) = —(C*Ix)N‘r/‘e}i (resp. if P(0,z) =

hyp hyp
—(¢2)™71), we see that Plewi/erd(0,2) = —(¢'2)™1 (respectively
P[GWI/EI,C}(O’:E) — _(C*lx)N{/ﬁi)'

The following lemma is then easy to prove. It is also a definition.

Lemma 4.9. Assume given a W (wy)-equivariant family of polynomi-
als (Pr(t, ) reawy) in Kt, x].

For I € A(wyp), set my := Wi Then:
€r

(1) If the family (P(t, z))rcawy) defines a “spetsial ®-cyclotomic
Hecke algebra Hw (we) of W at we of compact support type”
then the family (Pl[m”d (t,2)) 1cA@y) defines a “spetsial ®-cyclo-
tomic Hecke algebra Hys (we)of W at we of noncompact support
type”, called the “noncompactification of Hy (wep)”.

(2) If the family (Pr(t,z))rcawy) defines a “spetsial ®-cyclotomic
Hecke algebra Hy (wye) of W at we of moncompact support
type” then the family (PI[mI’C}(t,x))IeA(w¢) defines a “spetsial
O-cyclotomic Hecke algebra H$, (we) of W at we of compact
support type”, called the “compactification of Hy (wyp)”.



SPLIT SPETSES FOR PRIMITIVE REFLECTION GROUPS 63

4.3.3. A normalization.

Let Hw (w¢) be a spetsial ®-cyclotomic Hecke algebra of W at we of
noncompact type, defined by a family of polynomials (Pr(t, %)) re Aquwe)-
We denote by HS, (wy) its compactification, defined by the family
(Pl[mhd <t7 x))IEA(wgo)-

In the case where W is a Weyl group, the spetsial ®-cyclotomic al-
gebras Hw (we) and H§, (wy) should have the following interpretation
for every choice of a prime power ¢ (see §3 above).

There is an appropriate Deligne-Lusztig variety Xy, endowed with
an action of the braid group By (wy) as automorphisms of étale sites,
such that

e (Noncompact type) the element s; € By (wy) has minimal
polynomial P;(t,q) when acting on H*(Xy,, Qr),

e (Compact type) the element (~™’s; has minimal polynomial
Pl[m“d(t, q) when acting on H? (X, Q).

Remark 4.10. It results from (CA2) in definition 4.7 that the set {(;;};
is equal to p,,, but we have not yet chosen a specific bijection, which is
how the data may appear in practice — see the second step of algorithm
6.4. We now make the specific choice that (;; = Cgl; such a choice

determines the indexation of the characters of Hy (w¢) by those of
W(wg).

With the above choice, we have Py (t,z) = (t—1) [[72," (t — 1 (¢ ta)med)

j=1
(where my; >0 forall j =1,...,e; — 1, see (NCS1)), and we see that
the minimal polynomial of s; on H?(Xy,,, Q) is then

er—1

Pr(t,) = (t—a™) [ (¢ = ¢™¢ (¢ aymmea)

j=1

The polynomial P;(t,z) is cyclotomic (i.e., reduces to ¢ — 1 when
r + () if and only if (" € p,,. That last condition is equivalent to

¢"r =1 e, Ay, (wp)=1.

Let us denote by ﬁf,v(wgo) the specialisation of the generic Hecke

algebra of W (wy) defined by the above polynomials P;(t, z).
The following property results from Lemma 2.10.

Lemma 4.11. _
If G = (V, W) is real, then the algebra H$, (we) is ®-cyclotomic.

4.3.4. Rationality questions.

A spetsial ®-cyclotomic Hecke algebra for W(wy) over K is split
over K(¢)(v) where v is an indeterminate such that v/"l = (=12, by
Def. 4.7 (RA).
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Since p 7y € K, the extensions K(¢,v)/K(x) and K(v)/K((™'x)
are Galois.
For I € A(wyp), let us set

er—1 er—1
Pr(t, o) = [ (= ¢ (¢hay™) = [T (0= ¢,
J=0 j=0
with
mrj E) where nr; € Z.

~1zw]
Since Py(t,z) € K(x)[t], its roots are permuted by the Galois group
Gal(K(¢,v)/K(¢,z)). Let us denote by g € Gal(K(¢,v)/K((,x)) the
element defined by g(v) = (jzw|v. Since g permutes the roots of P,
there is a permutation o of {0,...,e; — 1} such that

91, ") = Qi = e,
and so

(4.12) o) = nr; and IV = 2z -

Remark 4.13. By Equation 4.12, we see that if j is such that m;; #
myj for all j' # j, then o(j) = j, which implies that ¢, = gICfZI{/{/‘,
hence that n;; is a multiple of |[ZW|, and so m;; € Z.

By (SC1), the Schur elements of Hy, (wyp) (see 2.68)

1 d
R —P i onrs
S] P(O, l‘) (tdt <t7 x)) ‘t:CeIU Lj

belong to K[z], hence are fixed by Gal(K((,v)/K((,x)), i.e., we have
So(j) = S, or, in other words

d d
(4.14) (tﬁP(t,x)) it it = (tﬁP(t,x)) ot o -

4.3.5. Ennola twist.

Let us choose an element in WNZGL(V'), the scalar multiplication by
e € u(K). Then the element ewy is (¢~ x)-regular, and we obviously
have W (swp) = W(wy).

Assume given a W (wyp)-equivariant family (Pr(, 2))rea@wy) of poly-
nomials in K[t, z]. For I € A(wyp), set

(e.P;)(t,x) == Pi(t,e 'a).

Note that the map P +— ¢.P is an operation of order the order of €.
The following lemma is also a definition. Its proof is straightforward.

Lemma 4.15.
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(cs) Assume that the family (Pi(t,x))rcawe) defines a spetsial -
cyclotomic Hecke algebra Hy (wp) of W at we of compact sup-
port type.

The family ((e.Pr)(t, ) reawy) defines a spetsial (e~ z)-cy-
clotomic Hecke algebra of W at ewyp of compact support type,
denoted e Hy (wp) and called the Ennola e-twist of Hw (we).

(ncs) Assume that the family (Pi(t,x))rcawe) defines a spetsial ®-
cyclotomic Hecke algebra Hy (we) of W at we of noncompact
support type .

The family ((e.Pr)(t,2))reawy) defines a spetsial ®(e~ x)-
cyclotomic Hecke algebra of W at ewy of noncompact support
type, denoted by € Hw(wy) and called the Ennola e-twist of

Hw (we).
Remark 4.16.
Assume that Hy (we) is split over K(()(v) for some k such that
klmg and v* = (“'z. Then we see that e Hw (wy) is split over

K(g¢)(v.) if vf = 711
Thus the field K (e/*,v) splits both Hyy (we) and . Hy (we).

4.4. More on spetsial ¢-cyclotomic Hecke algebras.

Let Hw (wep) be a spetsial d-cyclotomic Hecke algebra attached to
the (-regular element wep.

Note that, unless specified, Hy (wp) may be of noncompact type or
of compact type.

4.4.1. Computation of wy(m) and applications.

Choose a positive integer h and an indeterminate v such that v =
¢~'a and such that Hyy (wep) splits over K (v).

Whenever y is an (absolutely) irreducible character of Hy (we) over
K (v), we denote by Y,—; the irreducible character of W (w¢y) defined
by the specialization v — 1.

We denote by o, the sum of the valuation and the degree of the
Schur element (a Laurent polynomial) S, ().

Since S, (z) is semi-palindromic (see [Spetsl, §6.B]), we have

Sy (z)" = (Constant).z~7xS, (x) .
We have (see Lemma 2.64, assuming 2.60)
7(7)

wr () Sx(z).

From what precedes and by comparing with the specialization v +— 1
we get

(4.17) wy () = " (m) = (o) ().

e Now in the NCS case we have 7(7) = (C*Ix)Nae/f — N

Sy(@)" =
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e while in the CS case we have 7(7) = (Q*Ix)N&yp — ph NP

from which we deduce

Proposition 4.18.
(1) In the NCS case, wy(m) = (¢ a)Mi'+ox = ph(Nif'+ox)
(2) In the CS case, wy(mw) = (¢~La) MW +ox = phMwP+ox),

Assume that the algebra Hy (we) is defined over K (x) by the family
of polynomials

er—1
(Pl(tax) = H (t— gzvhml’j)>
IeAw (wp)

=0
of K (wg)|t, z] and that it splits over K (v). We set

N Nyt if Hy(we) is of noncompact type,
w =
N‘},B'p if Hy (we) is of compact type.

Any specialization of the type v — A where \ is an h-th root of unity
defines a bijection

Irr (Hw (wep)) — Irr (W (wy)) ,
{ X > Xv=nx
whose inverse is denoted
Irr (W (wy)) — Irr (Hw (we))
{ 0 — 07"

Lemma 4.19.
Let x € Ir(Hw (wy)).
(1) Let p € ZBw(wyp) such that p* = w® for some a,n € N. Then
h(Nw + oy)a/n € Z.
If moreover x is rational over K(z), we have
(Nw +oy)a/n€Z.
(2) Whenever X is an h-th root of unity, then
wy(p) = Wy, (p) (A~ Hw)Nwea/n

In particular,

Wx(p) = wxv=1<p)vh(NW+UX)a/n .

(3) We have

va:A (p) = )\h(NW+UX)a/anv:1 (p) °
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Proof of 4.19.
By Proposition 4.18,

wy () = " EwFe)

Since p" = 7, it follows that, whenever \ € K, we have
(*) wy(p) = k(A To)MMwteda/n for some k € K .
Since the character x is rational over K(v), w,(p) € K(v), which
implies h(Nw + oy )a/n € Z.
If x is rational over K(z) we have w,(p) € K(x), which implies
(Nw + oy)a/n € Z. This proves (1).
As M =1, by specializing v + X in (¥) we find kK = w,,_, (p) .
Assertion (3) follows from the equality

w(p) = Wiy (p) (AT W H A = g, (p)owrendal,

4.4.2. Compactification and conventions.

Assume now that Hy (we) is a spetsial ®-cyclotomic Hecke algebra
attached to the (-regular element wy, of noncompact type, defined by
the family of polynomials (Pr(t, %)) re Ay (we) With

er—1
Pr(t,x) = [t = ¢ (¢ ra)ma)
§=0
Some notation.

For I € Aw(wy), we denote by s; the braid reflection around I in
By (wy), and by 17 the image of s; in Hy (we). Thus we have

er—1
[T = ¢y = 0.
=0
The map s; — T} extends to a group morphism
By (wp) = Hw (wp)*, b= T
We denote by xo the unique linear character of Hy (wy) such that
(see 4.3.1) Sy, (x) = (o) MW Feg(RE,)(z).
Let us denote by #H§, (we) the compactification of Hy (we). By
definition, Hfy (we) is generated by a family of elements (17)c.ayy (wy)

satisfying
j=er—1

I @5 - ¢ taymmy =o,

=0
where m; := ey, /e;. The map s; — T} extends to a group morphism

By (wg) — Hiyp(wp), b Ty .
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We denote by xo. the unique linear character of Hf, (wy) such that
(see 4.3.1) Sy, = Feg(Ryy) -

For the definition of the opposite algebra Hf}, (we)°P, the reader may
refer to [Spetsl, 1.30].

Finally, we recall (see introduction of Section 2) that for P(x) €
Kz, v, we set P(z)Y := P(x~1)*.

Proposition 4.20 (Relation between Hy (wy) and Hp, (wep)).
(1) The algebra morphism

Hw (wip) = Hiy (wp)™

defined by
Ty ()™ (T7) ™

s an isomorphism of algebras.
(2) There is a bijection

Irr Hiy (wp) — It Hy (wep) ,  x = X™,
defined by
X" (1) = xo0.e(Ty)x(Ty-1) whenever b € By (wy) .

We have (x0.)" = Xo -

(3) By specialisation v — 1, x and x"° become dual characters of
the group W (wep):

ch|v=1 = (X‘v=1>*-

(4) Assuming 2.60, we have
(2) Syne(w) = Sx(2)" = ((T1a) ™Sy (w)
(b) OXnC + CTX — 0

Proof.

(1) and (2) are immediate consequences of the definition of H}, (wy).
(3) follows immediately from the definition of the correspondence, since
Xo,c specialises to the trivial character.

By Theorem—Conjecture 2.60, the generic Schur elements are mul-
tihomogeneous of degree 0 (we recall that this is proven, for example,
for all imprimitive irreducible complex reflection groups — see 2.65
and 2.66 above), so by construction of the compactification we have
Syne(z) = Sy(x)Y . The assertion (4)(a) follows from 4.17 and the as-
sertion (b) is obvious. O
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Let us recall (see 4.3.1) that

Feg(R,,
Deg(y) = LAt

X

Feg(R,,
Deg(x“)=7g5( 2

ch

We denote by 4, (resp. dync) the sum of the valuation and of the
degree of Deg(x)(z) (resp. of Deg(x"®)(x)).

Lemma 4.21.
(1) We have
Oy =Nii —oy  and Deg(x)(x)" = (¢"'x) " Deg(x)(2),
Syne = NI — ayne and  Deg(x™)(x)Y = (¢~ o) " Deg(x")(z) .
(2) We have
Deg(x™)(x) = (¢~ "2) W ~*Deg(x)(x) = (¢~"2)™Deg(x)(x) .
Proof.
(1) is immediate. To prove (2), notice that
iy FeE(R @)Y () Feg(Ry) (x)
Peelle) = g oy S
= (¢"'2) ¥ Deg(x™) ()
and (2) results from (1). O

The case W (we) cyclic

We assume now that W(we) is cyclic of order e. Let s be its dis-
tinguished generator, and let s be the corresponding braid reflection in
By (we).

Let Hw (wp) be a spetsial ®-cyclotomic Hecke algebra of compact
type associated with wy, defined by the polynomial

e—1

[T¢ - am),

=0
where m; are nonnegative rational numbers such that em; € N. We
have mg = ey /e > m; for all j.

Let us denote by v an indeterminate such that v¢ = ¢!z, so that
the algebra Hy (we) splits over K (v).

For each j, we denote by 6, the character of W(wyp) defined by
0;(s) = ¢

The specialization v — 1 defines a bijection

Irr (W (wep)) — Irr (Hw (wep)),
6; 6,
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by the condition 9](”) (s) := (Jv™mi. We set 0 := Ty -

Let H}y (wep) be the noncompactification of Hy (we), defined by the

polynomial
e—1

[Te—-¢/ ¢ aymm.
=0
We denote by 9]@)’“ the character of H1(wy) which specializes to

6_; for v=1. So 9§v)’nc(s) = (v mTm) - We set o = Ty

Lemma 4.22.
{O'j :emj —Néﬁf’

nc __ hyp ref
ol =e(m—m;) — Ny* = Ny —em,;.

j
Proof.
Let S; be the Schur element of Hy (wy) corresponding to 0](”). By
definition, the integer o; is defined by an equation
Si(2)" = Ao~ 8y(x)

for some complex number \.
On the other hand, it results from 2.69 and from Definition 4.3.1,
(Ncs3) and (¢s3), that

—em; ref
{ Sj(x)" = vt Sy ()
—e(m—m; hYP ne
Si(x)" = v (=) +Now Si(z)

proving that o; = em; — Njg' and o} = e(m — m;) — NP, Since
em = Ng}'p + Ny, we deduce that o3¢ = Nyt — em;; . O

A generalization of the cyclic case

We shall present now a generalization of Lemma 4.22 to the general
case, where wy is a (-regular element for W, and W (w¢) not neces-
sarily cyclic.

Let Hw(wy) we a spetsial ®-cyclotomic Hecke algebra (either of
compact type or of noncompact type) attached to wep, defined by a
family of polynomials

er—1
<P1<t, n)= ][~ z’,@—lx)’””))
Jj=0 Ie Aw (wp)

Any linear character x of Hy (wy) is defined by a family (j;,) where
I € Ay (wyp) and 0 < jr, < ey — 1 such that, if s; denotes the braid
reflection attached to I, we have

X(s1) = ¢l (¢ )™
Whenever I € Ay (wyp), we denote by v the cardinality of the orbit
of I under W (we).
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Note that the second assertion of the following Lemma reduces to
Lemma 4.22 in the case where W (we) is cyclic.

Lemma 4.23.

(1) Whenever x is a linear character of Hy (wep), we have

xm= JI «ta)mo= [ (o)

ITeAw (we) IeAw (we) /W (we)
(2) We have
NW + Oy = Z 6[7”[7]'17)( = Z V[@[ijI’X .
IeAw (we) TeAw (wp) /W (we)

Proof.
The assertion (2) follows from (1) and from 4.18. Let us prove (1).
From [BrMaRo, 2.26], we know that in the abelianized braid group
By /[Bw, Bw], we have 7 = [;c 4., (wy) S7' » which implies (1). O

4.4.3. Ennola action.

If G¥ is a finite reductive group, with Weyl group W of type B,, C,,,
Doy, Er, Eg, Fy, Go, then “changing x into —x” in the generic degrees
formulee corresponds to a permutation on the set of unipotent charac-
ters, which we call Ennola transform. The Ennola transform permutes
the generalized d-Harish-Chandra series (see [BrMaMil), sending the d-
series (corresponding to the cyclotomic polynomial ®4(x)) to the series
corresponding to the cyclotomic polynomial ®4(—z). We shall now in-
troduce appropriate tools to generalize the notion of Ennola transform
to the setting of “spetses”.

Throughout this paragraph, we assume that the reflection group W
acts irreducibly on V. Its center ZW is cyclic and acts by scalar mul-
tiplications on V. By abuse of notation, for z € ZW we still denote by
z the scalar by which z acts on V. We set ¢ := |ZW].

We define an operation of ZBy, on the disjoint union

|_| Irr (Hw (zwy)) .

zeZW

Let zy be the positive generator of ZBy,. For z € ZBy,, we denote
by z its image in ZW. There is a unique n (0 < n < ¢ — 1) such that
z= ("

The element w'p := zwe is then ' := z(-regular. We have K(() =
K (¢') and the algebra Hyy (zwe) is split over K (¢)(v’) where v’ := (, "v.
We have v = ¢’ 'z, and thus K (v) = K (v').

Consider the character ¢ defined on ZBy, by the condition

€20 Che = exp (2mi/he)
so that £(z) = (7. Note that £(z") = 2.
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The group ZBy acts on K (v) as a Galois group, as follows:
ZBw — Gal (K (v)/K (")) ,
z+— (v &(z) ) .

Notice that if Hy (wep) is a spetsial ®(z)-cyclotomic Hecke algebra
attached to a regular element wy € W, then the algebra z. Hy (wy)
(see Lemma 4.15) is a spetsial ®(z~'x)-cyclotomic Hecke algebra at-
tached to the regular element zwp € W.

Definition 4.24.

Fory € It (Hw(wy)), z € ZByw and so z = £(z"), we denote by z.x
(the Ennola image of x under z) the irreducible character of Hy (zwy)
over K (v) defined by the following condition:

(Z'X)vzf(z) = Xov=1"-

In other words, the following diagram is commutative:

Irr(Hw (we)) - Irr(Hw (2wp))
v—1 ‘KE(Z)
Irr (W)

In particular, the element 7 = z{ defines the following permutation

Irr (Hw (we)) — Irr (Hw (wy))
X +— m.x where (7.X)p=¢c, = Xv=1,
so it acts on Irr(Hy (we)) as a generator of Gal(K (v)/K(x)).

Lemma 4.25.

Let p be an element of ZBy (wy) (hence of ZByw (zwy)) such that
p" =" for some a,n € N. Then forz € ZBy and x € Irr (Hy (wy))
we have

(1) Waxms (p) = @)W, (o),
(2) wan(p) = wi(p)E(m) M Ho/n

Proof.
By Definition 4.24, we know that

va:l = wZ'Xv:{(z) :
Thus by Lemma 4.19(2), we get

)h(NgngX)a/n

Wp=1 <p> = wz'Xv:g(z) <p> = f(Z Wz xy=1 (p)

from which (1) follows.
Now (2) follows from (1) and from Lemma 4.19(1). O

Proposition 4.26.
Let x € Irr (Hw (wy)).
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(1) The character x takes its values in K (z) if and only if -y = X .
(2) Assume x is such that w-x = x. Then for all p € ZBw (wy)
such that p" = w?, we have

(NP +0X)% cZ.

Remark 4.27.

Consider for example the case of the Weyl group of type E7, and
choose K = Q, ( =1, wp = 1. The algebra Hy (1) is then the “usual”
Hecke algebra over Z[z, z71], and we have h = 2. We set z = v

All the irreducible characters of Hy (1) are Q(z)-rational, except for
the two characters of dimension 512 denoted ¢s1211 and ¢si12,12, which
take their value in Q[v]. The Galois action of 7 is given by v — —uv,
and we have - O512,11 = ¢512,12-

Proof of 4.26. L
(1) follows as 7 acts as a generator of Gal(K (v)/K(x)).
(2) Applying Lemma 4.25 above to the case z = 7 gives

—h(NXP4o Ya/n —h(NYPLs Ya/n
Wﬂ--x(p) :Wx(p) h (N xJal . hence Ch (N " Fox)a/ =1,

from which the claim follows. O

Remark 4.28.
By Lemma 4.21(1), we know that o, = Nj&f —4,, , which implies that
a

h a
(N + Ux)g = (ew — 5x)g .
Since eWg is the length of p, it lies in Z, and so, as elements of Q/Z,
n

we have a a
h
(V'™ + Ux)g = _5x5 :
In other words, the knowledge of the element (]\f‘},l[ﬁ'lD + crx)g as an
n

element of Q/Z is the same as the knowledge of the root of unity
—0ya
Cn

4.4.4. Frobenius eigenvalues.

Here we develop tools necessary to generalize to reflection cosets
Proposition 3.19, where we compute the Frobenius eigenvalues for uni-
potent characters in a principal wp-series.

We resume the notation from §2.4.4:

e wyp is a (-regular element, ® is the minimal polynomial of ¢
over K, and we have ( = exp(2mia/d),

e we have an element p, ./, of the center of the braid group

By (wy) which satisfies pﬁ‘ia/d = 7P,
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We still denote by Hw (wy) a spetsial ®-cyclotomic Hecke algebra
associated with we, either of compact or of noncompact type.

Notation 4.29.

Whenever x is an (absolutely) irreducible character of Hy (wy) over

K (v), we define a monomial Frg:Z a/a) (x) in v by the following formulae:

Fr21e) () ("Prardw (p, 4/4) Tor Hy (we) of compact type,
o . Wy (Pry.a/a) for Hy (we) of noncompact type.

When there is no ambiguity about the ambient algebra, we shall note
Fr(Pv.e/d)(y) instead of Frq(fg’“/d)(x).

Since pz ojd = 7% the following lemma is an immediate corollary
of Lemma 4.19. Recall that we denote by h the integer such that
(o =oh

Lemma 4.30.
Whenever X is an h-th root of unity we have

Fr(p'y,a/d) (X) — {

and in particular

¢V E wy, L (p) A )P WTHOIE (compact type),

Wyoer (P) NI NFHTIT (moncompact type),

¢ E g, ()" WS (compact type),

Fr(pw,a/d) (X) — {

Wyyey (p)vh(NWf+”X)67a (noncompact type).

The above lemma shows that the value of Fr(Pve/4)(y) does not de-
pend on the choice of .

If we change a/d (in other words, if we replace p. /4 by p%a/dﬂ'”‘;),
we get (in the compact case):

(4.31) Fr(Prea/a™ ) (x) = (W I (el (y)

If we force p, /4 to be as short as possible (i.e., if we assume 0 <

a < d), the monomial Fr(Pve/4)(y) depends only on . In that case we
denote it by Fr,,(x).

Notice that if y is K (z)-rational, or equivalently if 7 - y = x (see
4.26), we have wy(p, ,/q) € K(z), and Fr(Pv.e/4) () is a monomial in z.
Definition 4.32.

Assume x is K(x)-rational. Then the Frobenius eigenvalue of x is
the root of unity defined by

fr(x) = Frup(x)o=1-

Proposition 4.33.
Let x be an irreducible character of the algebra HS, (wy) of compact
type. Assume that x is K(x)-rational.
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(1) We have

fr(x) = CENW = (p) = CFwy, ().

(2) For the corresponding character x"° of the associated algebra of
noncompact type, we have

nc —da ref gy nc _fa *
fr(x™) = (e VW) ne (p) = (T xwyme (p) = fr(x)" .

Proof.
It is direct from Lemma 4.30. ]

A definition for general characters

Comment 4.34.

In the case of a character y which is not K (x)-rational, we can only attach
a set of roots of unity to the orbit of xy under Gal(K (v)/K (z)).

Consider for example the case of the Weyl group of type E7, and choose
wy := wy, the longest element. Then the algebra Hyy (wp) has two irrational
characters, say x; and y2, which correspond to two unipotent cuspidal char-
acters of the associated finite reductive groups (these characters belong to
the same Lusztig family as the principal series unipotent characters py;,,

and IOX512,12)'
These two unipotent cuspidal characters can be distinguished by their

Frobenius eigenvalues, which are 7 and —i.
Here we shall only attach to the Galois orbit {x1, x2} the set of two roots
of unity {i, —i}.

From now on, in order to make the exposition simpler, we assume
that Hy (we) is of compact type.

Let x € Irr(Hw(wep)). Let k denote the length of the orbit of x
under 7. It follows from 4.25 that

hyp -
Wi (p) = wy(p)(Nw o)

hence d divides k(N;2P+0,)d. Thus (Ny*+0,)da/d defines an element
of Q/Z of order k' dividing k.

We shall attach to the orbit of y under 7 an orbit of roots of unity
under the action of the group u,., as follows.

Choose a k-th root (y of ¢, and set g := (pv/* so that v"/* = (5 0.
Then we have

h(N“yp+oX Yoa/d __ = (¢ x) WPy oy )da/d

where k(N2® + 0,)0a/d € Z.
By Lemma 4.30, we see that Fr,,(x) is a monomial in .
We recall (see Remark 4.28 above) that, as an element of Q/Z, we

ha;fe(s (NP 4 0y)2% = —§,% and that it is defined by the root of unity
(O,
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Definition 4.35.
If x has an orbit of length k under m, we attach to that orbit the set
of roots of unity defined as

hyp |~ yéa
fr(X) = {Frup(0)|eomt AW (N € )} = Frup(X) o=t sy »
with k" the order of the element of Q/Z defined by

da da
h

(Nw" + O-X)F = _5XF )
(in other words, k' is the order of (%),

Remark 4.36.
The set fr(x) is just the set of all k’-th roots of (Fruye(x)|ze=1)" -

A computation similar to the computation made above for the ra-
tional case gives

Proposition 4.37.

Let x be an irreducible character of the algebra Hy, (wy) of compact
type. Assume that x has an orbit of length k under 7, and that (Nafp+
0y)% has order k' in Q/Z.

The set of Frobenius eigenvalues attached to that orbit is the set of
all K'-th roots of

1da /
¢ (wy, i ()
Definition 4.38.
For x an irreducible character of the compact type algebra Hsy, (wep),

the set of Frobenius eigenvalues attached to the orbit of the correspond-
ing character x™° of the associated noncompact type algebra is

fr(x"™) = fr(x)",

the set of complex conjugates of elements of fr(y).

4.4.5. Ennola action and Frobenius eigenvalues.

Let us now compute the effect of the Ennola action on Frobenius
eigenvalues. Recall that we assume Hy (we) to be of compact type.

We start by studying the special case of the action of the permutation
defined by 7 on Trr (Hy (we)).

Lemma 4.39.
For p=p, .4 as above, whenever x € Irr (Hw (wyp)), we have

Frp"é(x) = Frp(w.x)x‘s(N&pr“’X) .

Proof of 4.39.
On the one hand, by Definitions 4.24 and 4.29 we have

Fre™ (x) = (0w (pr’) = Oy (p)uoy ()
= (¢"Pwy(p)) (Cl(”é)wx(ﬂ‘s)) .
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Proposition 4.18 gives that
wX<7T5) _ vh(N&}’pqLoX)J.

Morever, ¢! = (¢9)™) =1 since (wy)? is a (*-regular element of W
(see the second remark following 2.3). It follows that

™ () = (¢ (p)) oM 40
On the other hand, by definition
Fr? (.x) = ("Pwr (p) .
By Lemma 4.25, and since &(m) = £(z§) = exp(27i/h) , this yields
Wrn(p) = wy(p) exp(=2mi( NP + 0, )da/d) = wX(p)C’(Na;p”X)‘S ,
hence
Fr?(m.x) = (¢"Pwy(p)) Q(Ne"yp+a")5.

The lemma follows. ]

Now we know by (4.31) that
Fre™ (x) = ¢ ()

which implies by Lemma 4.39
FrP(mw.x) = g(NWerUxﬁFrp(X)x—S(N‘lEPJmX) _

The following proposition is now immediate. Note that its statement
contains a slight abuse of notation, since for x a K (x)-rational charac-
ter, fr(y) is not a set — it has then to be considered as a singleton.

Proposition 4.40.
fr(m - x) = {CWTHRION L (A € fr(y)) }

Let us now consider the general case of Ennola action by an element
z € ZBy,. By Lemma 4.25, we have

2% 20
Frzufp(z ' X) = (Zg)l( p)wz.X(Z(Sp)
= (20)1" Py, (2 p)& () MW"+ p) /1)

— (20)9) (2¢) =MW+, (7 p)

hence
9
Fr2? (z - x) 5 hyp
_rwer ™ A (z’) l(p) —(NyP+oy)d s
e I COR

Since Friif;(zx) = Fr,,(2- X) up to an integral power of (zg)(Né'vprf"x)‘S

(see (4.31)), what precedes proves the following proposition.
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Proposition 4.41.
h
Up to an integral power of (2¢)Nw"+9J0 we have

Frif,f;(z ' X) 1(z%) l(p) 5\, h(NIYP 4o )1(2%) /1(7)
Frglp(x) = (’ZC> z va:l (’Z )U w °

4.5. Spetsial data at a regular element, spetsial groups.

4.5.1. Spetsial data at a regular element.

Definition 4.42. Let G = (V,W,®) be a reflection coset and let wep
be a ®-reqular element of Wp.

We say that G = (V,W, %) is spetsial at ® (or spetsial at wy) if
there exists a spetsial ®-cyclotomic Hecke algebra of W at wep.

We are not able at the moment to classify the irreducible reflection
cosets which are spetsial at an arbitrary cyclotomic polynomial ®. But:

e One can classify the irreducible split reflection cosets which are
spetsial at x—1 : they are precisely the spetsial reflection groups
(see Proposition 4.44 below).

o If G = (V, W) is a split spetsial reflection coset on K, and if w is
a ®-regular element of W, then (V(w), W(w)) is spetsial at ® :
for W primitive, this will be a consequence of the construction
of the spets data associated with G (see §5 below).

4.5.2. The 1-spetsial algebra Hyy .
Let us now consider the special case where wp = Idy .

Definition 4.43.
Let W be a reflection group. We denote by Hw (resp. Hyy) the
algebra defined by the collection of polynomials Py (t, ) geawy where

Py(t,x) = (t—2)t" 4+t +1)
(resp. Pg(t,z) = (t — 1)t 4o 4 a2 4 g1y )
Proposition 4.44.

Let G = (V,W) be a split reflection coset.

(1) There is at most one 1-cyclotomic spetsial Hecke algebra Hy (1dy)
of compact type (resp. of noncompact type), namely the algebra
Hw (resp Hyg).

(2) (V,W) is spetsial at 1 if and only if it is spetsial according to
[Ma2, §3.9].

Proof.

We only consider the compact type case.

(1) Since we = 1, we have W(p) = W, A(wp) = A, and for each
H € A we have ey, /ey = 1.
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Hence by Definition 4.7, (CAl), we have Py(t,z) € K|t, =], and by

Definition 4.7, (cs1), we see that Pg(¢,x) is divisible by (¢ — z) and
Py(t,z) = (t — 2)Qu(?)
for some Qg (t) € K[t].

By Definition 4.7, (CA2), we see that Qp(t) = (t# =t + ...+t +1).

(2) If the algebra Hy is a l-cyclotomic spetsial Hecke algebra, it
follows from Definition 4.3.1, Global conditions, (sc1), that its Schur
elements belong to K (x). This shows that (V, W) is spetsial according
to [Ma2, §3.9] by condition (ii) of [Ma2, Prop. 3.10].

Reciprocally, assume that (V, W) is spetsial according to [Ma2, §3.9].
Then we know that all parabolic subgroups of W are still spetsial ac-
cording to [Ma2, §3.9] (see e.g. [Ma4, Prop. 7.2]). The only properties
which are not straightforward to check among the list of assertions
in Definition 4.3.1 are the properties concerning the splitting fields of
algebras. Since the spetsial groups according to [Ma2, §3.9] are all
well-generated, these properties hold by [Ma3, Cor. 4.2]. O

4.5.3. Spetsial reflection groups.

Let (V, W) be a reflection group on C. Assume that the correspond-
ing reflection representation is defined over a number field K (so that
Qw C K).

The algebra Hy, has been defined above (4.43).

Let v be such that v/*)| = . Whenever y is an absolutely irre-
ducible character of the spetsial algebra Hyy,

e we denote by S, the corresponding Schur element (so S5, €
K[v,v™),

e We denote by 1 the unique character of Hy, whose Schur el-
ement is the Poincaré polynomial of W (see Definition 4.7,
(cs2’)). The degree of a character x of Hy is (see Definition
4.7, (sc3))

G
Deg(x) = LgS(Rl)
X

and in particular Deg(1) = 1.

The following theorem (see [Mad, Prop. 8.1]) has been proved by a
case-by-case analysis.

Theorem 4.45.
Assume Theorem—Conjecture 2.60 holds.

(1) The following assertions are equivalent.
(1) For all x € Irr(Hw), we have Deg(x)(v) € K(x).
(ii) W is a product of some of the following reflection groups:
- G(d,1,r) (d,r > 1), G(e,e,r) (e, > 2),
— one of the well-generated exceptional groups G; with
4 <1 < 37 generated by true reflections,
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- G47 GG; G87 G147 G25; GQG; G32'

(2) If the preceding properties hold, then the specialization Sy(x) of
the generic Poincaré polynomial equals the “ordinary” Poincaré
polynomaal of W :

Sie) = [0 +z+--- 4257,
j=1

where r = dimV and dy, . .., d, are the degrees of W (see 2.1.5).

Remark 4.46.

e A spetsial group of rank r is well-generated, but not all well-
generated reflection groups of rank r are spetsial.

e From the classification of spetsial groups, it follows that all
parabolic subgroups of a spetsial group are spetsial.

4.5.4. Rouquier blocks of the spetsial algebra: special characters.

Let G = (V, W) be a spetsial split reflection coset on K.

For 0 € Irr(W), we recall (see 2.25) that the fake degree Fegg(Ry)
of the class function Ry on W (which in the split case coincides with
0) is the graded multiplicity of # in the graded regular representation
Kwe,

Let Hy be the 1-cyclotomic spetsial Hecke algebra (see Proposition
4.44). Let us choose an indeterminate v such that v/#"l = 2. We
denote by

Irr(W) — Trr(Hw) , 0= Xo,
the bijection defined by the specialization v — 1.

Notation 4.47.
For 6§ € Irr(W) we define the following:

(1) ag and Ay :

e we denote by ay the valuation of Deg(xy) (i.e., the largest
integer such that =% Deg(yy) is a polynomial),

e and by Ay the degree of Deg(xy),

(2) by and By :
e we denote by by the valuation of Fegg(Ry),
e and by By the degree of Fegg(Rp).

Definition 4.48.
We say that 0 € Trr(W) is special if ag = by.

Let us recall (see Theorem 2.81) that ap and Ay are constant if y,
runs over the set of characters in a given Rouquier block of Irr(Hw ).
Then if B is a Rouquier block, we denote by as and Az the common
value for ag and Ay for x4 € B.

The following result is proved in [MaRo, §5] (under certain assump-
tions for some of the exceptional spetsial groups), using essential tools
from [Ma4, §8].
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Theorem 4.49.
Assume that W is spetsial. Let B be a Rouquier block (“family”) of
the 1-spetsial algebra Hyy.

(1) B contains a unique special character xa, .
(2) For all 8 such that xg € B, we have

(lBSbg and BQSAB.
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5. AXIOMS FOR SPETSES

Our goal is to attach to G = (V, W) (where W is a spetsial reflection
group) an abstract set of unipotent characters of G, to each element of
which we associate a degree and an eigenvalue of Frobenius. In the case
where G is rational, these are the set of unipotent characters with their
generic degrees and corresponding eigenvalues of Frobenius attached to
the associated reductive groups.

These data have to satisfy certain axioms that we proceed to give
below.

We hope to give a general construction satisfying these axioms in a
subsequent paper. For the time being, we only know how to attach
that data to the particular case where G has a split semi simple part
(see below §6); the construction in that case is the object of §6.

5.1. Axioms used in §6.

5.1.1. Compact and non compact types: Unipotent characters, degrees
and eigenvalues.

Given G as above, we shall construct two finite sets:

e the set Uch®(G) of unipotent characters of compact type,
e the set Uch(G,.) of unipotent characters of noncompact type,

each of them (denoted Uch(G) below), endowed with two maps
e the map called degree

Deg : Uch(G) — Klz] , p+— Deg(p),

e the map called Frobenius eigenvalue and denoted Fr, which as-
sociates to each element p € Uch(G) a monomial of the shape
Fr(p) = \,z"» where

— A, is a root of unity,
— v, is an element of Q/Z,

with a bijection
Uch®(G) = Uch(Gy.) , pr p",
such that
(1) Deg(p™) = 2™ Deg(p)" .
(2) Fr(p)Fr(p™) =1,
and subject to many further axioms to be given below.
In what follows, we shall construct the “compact type case” Uch®(G)

(which will be denoted simply Uch(G)). The noncompact type case can
be obtained using the above properties of the bijection p — p"°.
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5.1.2. Basic axioms.

Axioms 5.1.
(1) If G = Gy x Gy (with split semi-simple parts) then we have
Uch(G) ~ Uch(Gy) x Uch(Gy). If we write p = p1 @ py this
product decomposition, then Fr(p) = Fr(p1)Fr(p2) and Deg(p) =

Deg(p1)Deg(p2)-
(2) A torus has a unique unipotent character 1d, with Deg(ld) =

Fr(Id) = 1.

Axiom 5.2.
For all p € Uch®(G), Deg(p) divides |G]L.
For all p € Uch(Gy.), Deg(p) divides |G|pe

Axiom 5.3.
There is an action of Narowy(We)/W on Uch(G) in a way which
preserves Deg and Fr.

The action mentioned above will be determined more precisely below
by some further axioms (see 5.16(2)(a)).

Remark 5.4.

We recall that parabolic subgroups of spetsial groups are spetsial
(see 4.46 above). For a Levi L of G, we set Wg(IL) := Ny (L)/Wy . We
have by 5.3 a well-defined action of Wg (L) on Uch(L), which allows us
to define for A € Uch(L) its stabilizer Wg (L, \).

5.1.3. Axioms for the principal C-series.

Definition 5.5.
Let ¢ € p and let ® its minimal polynomial on K (a K-cyclotomic
polynomial).

(1) The (-principal series is the set of unipotent characters of G
defined by

Uch(G, ¢) := {p € Uch(G) | Deg(p)(¢) #0} .

(2) An element p € Uch(G) is said to be (-cuspidal or ®-cuspidal
if

_ |Gle

 1ZGls

Deg(p)a

Let us recall that, given a spetsial (-cyclotomic Hecke algebra (either
of compact or of noncompact type) Hy (wy) associated with a regular
element we, each irreducible character x of Hy (wp) comes equipped
with a degree Deg(x) and a Frobenius eigenvalue Fr(y) (see §4 above).
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Axiom 5.6.
Let wp € W be C-regular. There is a spetsial (-cyclotomic Hecke
algebra of compact type Hy (wep) associated with we, a bijection

Irr(Hw (wp)) — Uch®(G,¢) , x = py

and a collection of signs (€ )yer(Hw (we)) Such that

(1) that bijection is invariant under the action of NaroH(We)/W ,

(2) Deg(py) = exDeg(x) ,
(3) Fr(py) = Fr(x) mod 27.

Remark 5.7.
By 4.7(sc3), we see that condition (2) above is equivalent to

Feg(R,
Deg(py) = €XT¢) :
X

5.1.4. On Frobenius eigenvalues.

For what follows, we use freely §4, and in particular §4.4.4.

We denote by v an indeterminate such that Hy (we) splits over C(v)
and such that v = (~'z for some integer h. Then the specialization
v +— 1 induces a bijection

Irr(W (wep)) — TIrr(Hw (wp)) , 0+ X

Assume ¢ = exp(2mia/d) and let p € ZBy (wy) be such that p? =
7% Then we have the following equality modulo integral powers of z :

Fr(py,) = Fr*(xo) = Py, (p)
(58) — gl(P)we(p)(gflx)l(p)f(apxe+APX9)%

= wp(p)(¢ ) e T 1,

The last formula should be interpreted as follows: for the power of z,

one should take —(a,,, JrApXe)M modulo 1, and if y, has an orbit un-

1)
o)
der 7 of length k, then ¢ @y +4x9)1t7) should be interpreted as attribut-

(p)
ing to the elements of the orbit of yy the k-th roots of Ck(a”xf) +A”X9)Z<Z>,
a well-defined expression since the exponent is integral.

5.1.5. Some consequences of the axioms.
1. Let us recall (see 5.7 above) that

Feg(R,,
Deg(xo) = 71(, 2
Xo
Since CHw (wy) specializes to CW (wy) for v — 1, we have
(W (we)|
S (Q) = =5

o(1)
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We also have Feg(R,,)(¢) = |W (wy)| (see Proposition 2.53, (2)). Thus
we get

(5.9) Deg(py,)(¢) = ey, 0(1).

2. Let us denote by 7 (w¢) the canonical trace form of the algebra
Hw (we).

By definition of spetsial cyclotomic Hecke algebras (see Definition
4.7, (sc3)), we have the following equality between linear forms on

Cla)Hw (wep):
Feg(Rug)tw (wp) = > Deg(x)x,
XEIrr(Hw (wy))
and taking the value at 1 we get

Feg(Rue) = > x(1)Deg(x)

X€Elrr(Hw (we))

= ) ex(1)Deg(py) .

x€lr(Hw (we))

Using the bijection
Irr (W (we)) — Trr(Hw (we)) 0= X,
and setting ey := ¢,, for 6 € Irr(W(wyp)), we get

(5.10) Feg(Rup) = Y eof(1)Deg(py,) .
Oelrr (W (wep))

Finally, we note yet another numerical consequence of Axiom 5.6.

Notation 5.11.

For p € Uch(G), let us denote (see above 2.78) by a, and A, respec-
tively the valuation and the degree of Deg(p) as a polynomial in z. We
set 0, :=a, + A,.

Corollary 5.12.
Let (1. Go € . If p € Uch(G, &) N Uch(G, &), then () = (3’ .

Proof.
By Lemma 4.21, (1), we see that whenever p € Uch(G, (), we have
Deg(p)¥ = (¢ 'z)~%Deg(p) , which implies the corollary. O
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5.1.6. Ennola transform.

Axiom 5.13.

For z € Z(Byw) with image z € Z(W), the algebra Hy (zwep) is the
image of Hw(wy) by the Ennola transform explained in 2.23. If £C
and ¢ are the corresponding regqular eigenvalues, this defines a corre-
spondence FE, (a well-defined bijection except for irrational characters)

between Uch(G, ¢) and Uch(G,1d), such that

Deg(E,(p))(x) = £Deg(p) (2" 'z)
and Fr(E,(p))/Fr(p) is given by 4.41 taken modulo z~.

5.1.7. Harish-Chandra series.

Here we define a particular case of what will be called “®-Harish-
Chandra series” in the next section.

Definition 5.14.
We call cuspidal pair for G a pair (L, \) where
o L is Levi subcoset of G of type L = (V, Wrp) (WL is a parabolic
subgroup of W), and
e )\ € Uch(LL) is I-cuspidal.

Remark 5.15.

e By remark 4.46 a parabolic subgroup of a spetsial group is spet-
sial thus it makes sense to consider Uch(L).

e A Levi subcoset L has type (V,WLy) if and only if it is the
centralizer of the 1-Sylow subcoset of its center ZL.

e It can be checked case by case that whenever (IL, \) is a cuspidal
pair for G, then Wg(ILL, A) is a reflection group on the orthogo-
nal of the intersection of the hyperplanes of Wy, which gives a
meaning to (2) below.

Axioms 5.16 (Harish-Chandra theory).
(1) There is a partition
Uch(G) = | | Uchg(L, ))
(L,A)

where (L, \) runs over a complete set of representatives of the
orbits of W on cuspidal pairs for G.

(2) For each cuspidal pair (L, \), there is a 1-cyclotomic Hecke al-
gebra He (L, A) associated to Wi (1L, X), an associated bijection

Irr(Hg (L, \)) — Uchg(LL, A) , x = py

with the following properties.
(a) Those bijections are invariant under NaraH(We)/W.
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(b) If we denote by S, the Schur element of the character x of
He (L, \), we have

Deg(py) = Deg(}‘)%GmLDx' '

(¢) If G is assumed to have a split semisimple part (see be-
low §6), for T, := (V, ) the corresponding maximal torus,
the algebra Hg(T,,1d) is the 1-cyclotomic spetsial Hecke
algebra Hy and Uchg(T,,1d) = Uch(G, 1). The bijection
X Fr py 18 the same as that in 5.6, in particular the signs
€y tn 5.0 are 1 when ¢ = 1.

(d) For all x € Irr(He(L, N)), we have Fr(p,) = Fr(\).

(3) What precedes is compatible with a product decomposition as in

5.1(1).

Remark 5.17.
Since the canonical trace form 7 of Hg(L, \) satisfies the formula

1
T = Z S_XX )
X
it follows from formula (2)(b) above that

|G|x’

(5.18) Deg(\) - = > Deg(py)x(1).

5.1.8. Reduction to the cyclic case.

Assume that L = (V, W), and let H be a reflecting hyperplane
for Wi (L, A). We denote by Gg the “parabolic reflection subcoset”
of G defined by Gy := (V, Wyp) where Wy is the fixator (pointwise
stabilizer) of H. Then Wg,, (L, ) is cyclic and contains a unique dis-
tinguished reflection (see 2.1.1) of W (L, A).

Axiom 5.19.
In the above situation the parameters of Hg,, (L, \) are the same as
the parameters corresponding to H in Hg(LL, \).

This allows us to reduce the determination of the parameters of
Hg (L, \) to the case where Wi (L, ) is cyclic.

5.1.9. Families of unipotent characters.

Axioms 5.20.
There is a partition
Uh(G)= || F
FeFam(G)

with the following properties.
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(1) Let F € Fam(G). Whenever p,p’ € F, we have
a,=ay and A,=Ay.

(2) Assume that G has a split semisimple part. For F € Fam(G),
let us denote by Br the Rouquier block of the 1-cyclotomic spet-
sial Hecke algebra Hy defined by F N Uch(G,1). Then

> Deg(p)(x)Deg(p)(y) = > Fegg(Rp)(w)Fegg(Ro)(y) .

pEF 0crr(W) | xoEBF

(3) The partition of Uch(G) is globally stable by Ennola transforms.

Remark 5.21.
Evaluating 5.20(2) at the eigenvalue ¢ of a regular element wy, we
get using 5.5 (1) and 5.9

(5.22) Y. [Fegg(Ro)(Q))* = > 0(1)*.

0clrr(W)|xo€BF {0€ler(W (we)) | pxo€F}

Remark 5.23 (When W (w¢p) has only one class of hyperplanes).

If W(wep) has only one class of hyperplanes, the algebra Hy (we) is
defined by a family of parameters (;o"™i, which are in bijection with
the linear characters of W(wy). If 6 is a linear character of W (we),
let my be the corresponding m;. We have from Lemma 4.23, (2) that

Néﬁf + Ni};gp — Qpy, APX@ = CW(wp) Mo -
If F is the family of p,, this can be written

mg = (NG + Ny = 07) /ew(uy) -

Thus formula 5.22, since we know its left-hand side, gives a majoration
(a precise value when W (wep) is cyclic) of the number of my with a
given value (equal to the number of § such that p,, € F with a given

5r).

5.2. Supplementary axioms for spetses.

In this section, we state some supplementary axioms which should be
true for the data (unipotent characters, degrees and Frobenius eigen-
values, families, Ennola transforms) that we hope to construct for any
reflection coset G = (V, W) where W is spetsial.

On the data presented in §6 and appendix below we have checked
5.24.
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5.2.1. General axioms.

Axiom 5.24.
The Frobenius eigenvalues are globally invariant under the Galois

group Gal(Q/K).

Axiom 5.25.
Let wp € Wy be (-reqular. There is a bijection
Lrr(Hyp (we)) — Uch(Gue, €) , x — p3°

and a collection of signs (e;C)XGIrr(HW(W)) such that

(1) that bijection is invariant under the action of Narw)y(We)/W.

hyp

(2) Deg(py) = exe¢™ Deg(x™),

(3) Fr(pt) = Fr(x*) (mod 7).
Remark 5.26 (The real case).

By 2.10, if G is defined over R, then CNevyp = +1, hence we have
Deg(p}©)(x) = £Deg(x™)(x) .

5.2.2. Alvis—-Curtis duality.

Axiom 5.27.
(1) The map

Uch(G.) = Uch(Gye) , p s p,

is stable under the action of Navo)y(We)/W.

(2) In the case where G = (V,W) is split and W is generated by
true reflections, we have (by formulae 2.44) |Glne = |Gle. In
that case

Uch(Gye) = Uch(G.),
a set which we denote Uch(G), and the map

b {Uch(G) ' Uch(G)

p =P,

18 an involutive permutation such that
ref

(a) Deg(Dg(p))(x) = 2™ Deg(p)(x)",

(b) Fr(p)Fr(Dg(p)) =1,

called the Alvis—Curtis duality.

By definition of the (-series, given the property connecting the degree
of p"® with the degree of p, it is clear that the map p — p" induces a
bijection

Uch(G,, ¢) — Uch(Gye, () .
In particular, if G = (V,W) is split and W is generated by true re-
flections, the Alvis—Curtis duality (see 5.27, (2)) induces an involutive
permutation of Uch(G, ().
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This is expressed by a property of the corresponding spetsial (-
cyclotomic Hecke algebra.

Axiom 5.28.

Assume G = (V, W) is split and W is generated by true reflections.
Let w € W be a (-regular element, let Hy (w) be the associated spetsial
(-cyclotomic Hecke algebra.

(1) There is an involutive permutation
Dy (w) : Trr(Hw (w)) — Trr(Hw (w))
with the following properties, for all x € Irr(Hw (w)):
ref
(a) Deg(Dw(w)(x)) = 2™ Deg(x),
(b) Fr(Dw (w)(x)Fr(x) = 1.
(2) This is a consequence of the following properties of the param-

eters of Hw (w). Assume that Hy (w) is defined by the family
of polynomials

Jj=er—1
<Pf<t,x> T o- gl(g_lx)m,,j)) .
TIeAw (w)

=0
Then for all I € Aw (w), there is a unique jo (0 < jo <ey—1)
such that mr j, = 0, and for all j with 0 < 5 < ey —1, we have

myp; + My jo—j = My -

5.2.3. ®-Harish-Chandra series.
Let ® be a K-cyclotomic polynomial.

Definition 5.29.
We call ®-cuspidal pair for G a pair (L, \) where
o [L is the centralizer of the ®-Sylow subdatum of its center ZL,
o \ a O-cuspidal unipotent character of L, i.e., (see 5.5)

_ e
| ZLls

Deg()\)q>

Axiom 5.30.

Whenever (L, ) is a ®-cuspidal pair for G, then Wg (L, \) is a re-
flection group on the orthogonal of the intersection of the hyperplanes
Of W]L .

Axioms 5.31 (®-Harish-Chandra theory).
(1) There is a partition
Uch(G) = | | Uchg(L, ))
(LX)
where (L, \) runs over a complete set of representatives of the
orbits of W on ®-cuspidal pairs of G.
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(2) For each ®-cuspidal pair (L, X), there is a ®-cyclotomic Hecke
algebra He (L, N), an associated bijection

Irr(He(L, \)) = Uchg(L, A) , x = py

and a collection (y)yenr(nsw,n)) of signs, with the following

properties.

(a) Those bijections are invariant under Ngroy(We)/W.

(b) If we denote by S, the Schur element of the character x of
He (L, N), we have

Deg(M)(IG|/[L)a
Sy '

(c) Assume that a root ¢ of P is regular for W, and let wep be
¢-reqular. For T, = (V,wy) the corresponding mazimal
torus, the algebra He(Tyy,1d) is a (-cyclotomic spetsial
Hecke algebra Hy (we).

(d) Forallx € Irt(Hg (L, N)), Fr(py) only depends on He (L, A)
and Fr(\).

(3) What precedes is compatible with a product decomposition as in

5.1(1).

Deg(py) = &y

5.2.4. Reduction to the cyclic case.

Assume that L = (V, Wpwy) is a ®-cuspidal pair, and let H be a

reflecting hyperplane for Wg(IL, \). We denote by Gy the “parabolic
reflection subdatum” of G defined by Gy := (V, Wywyp) where Wy is

the fixator (pointwise stabilizer) of H. Then Wg,, (L, \) is cyclic and
contains a unique distinguished reflection (see 2.1.1) of Wg (L, A).

Axiom 5.32.

In the above situation the parameters of Hg,, (L, \) are the same as
the parameters corresponding to H in Hg(IL, \).

5.2.5. Families, ®-Harish-Chandra series, Rouquier blocks.

Her we refer the reader to 5.20 above.

Axiom 5.33.

For each ®-cuspidal pair (L, \) of G, the partition
Uchg(L,\) = | | (FNUchg(L,)))

FeFam(G)

composed with the bijection

Uchg(IL, \) = Irr (He(L, \))
is the partition of Irr (Hg (L, X)) into Rouquier blocks.
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5.2.6. Ennola transform.
For z € pu(K), we define

G, = (V,Wzp).
Axiom 5.34.
Let £ € p such that z := %Wl € u(K). There is a bijection
E¢ : Uch(G) — Uch(G,)
with the following properties.

(1) E¢ is stable under the action of NaraH(We)/W.
(2) For all p € Uch(G), we have

Deg(E¢(p))(x) = £Deg(p)(z ™ 'x).

Axiom 5.35.
(1) Let ¢ € p(K), a root of the K-cyclotomic polynomial ®(x). Let
(L, \) be a ®-cuspidal pair.
(a) (L., E¢(N)) is a ®(2~x)-cuspidal pair of G.,.
(b) E¢ induces a bijection
Uchg(IL, \) — Uchg, (L., E.()\)).
(c) The parameters of the ®(z~ x)-cyclotomic Hecke algebra
He. (L., E.(N)) are obtained from those of Hw (L, \) by
changing x into z 1x.
(2) The bijection E¢ induces a bijection Fam(G) — Fam(G,).
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6. DETERMINATION OF Uch(G): THE ALGORITHM

In this section, we consider reflection cosets G = (V, W) which have
a split semi-simple part, i.e., V has a W-stable decomposition

V=V&V, with W[y, =1 and ¢y, = 1.

In addition, we assume that W is a spetsial group (see 4.44 above).

We show with the help of computations done with the CHEVIE pack-
age of GAP3, that for all primitive special reflection groups there is a
unique solution which satisfies the axioms given in §5. Actually, a sub-
set of the axioms is sufficient to ensure unicity. More specifically, we
finish the determination of unipotent degrees and Frobenius eigenval-
ues except for a few cases in G and G32 in 6.5, and at this stage we
only use 5.16 for the pair (T, Id). Also we only use 5.20(3) to determine
the families of characters.

The tables in the appendix describe this solution.

6.1. Determination of Uch(G).

The construction of Uch(G) proceeds as follows:

(1) First stage.
e We start by constructing the principal series Uch(G, 1) us-
ing 5.16(2)(c) for the pair (T, Id).
e We extend it by Ennola transform using 5.13 to construct
the union of the series Uch(G, ¢) for £ central in W.
Let us denote by U; the subset of the set of unipotent
characters that we have constructed at this stage.

(2) Second stage.

e Let w; € W be a regular element of largest order in W,
with regular eigenvalue ¢;. We have an algorithm allowing
us to determine the parameters of the (;-spetsial cyclo-
tomic Hecke algebra Hy (wip), which in turn determines
UCh(G, Cl)

e We again use Ennola transform to determine Uch(G, ;&)
for ¢ central in W. Thus we know the series Uch(G, £(y),
which can be added to our set Uj.

Let us denote by U, the subset of the set of unipotent
characters that we have constructed at this stage.

(3) Third stage.
We iterate the previous steps (proceeding in decreasing orders of
w, finding each time at least one reachable () until no Uch(G, ()
can be determined for any new (. At each iteration we can use
5.20(2) (whose right-hand side we know in advance) to check if
we have finished the determination of Uch(G).
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This will succeed for every spetsial irreducible exceptional group,
except for Gag, G3o, where we will find a posteriori that 1 (resp. 14)
unipotent characters are missing at this point.

For these remaining cases we have to consider some series corre-
sponding to 1-cuspidal pairs (I, \).

Since we also want to label unipotent characters according to the
1-Harish-Chandra series in which they lie, we shall actually determine
(using a variation of the previous algorithm) the parameters of all these
algebras Hg(L, A). We detail the steps (1)—(3) outlined above in sec-

tions 5.7 to 5.11.

6.2. The principal series Uch(G, 1).

By 5.16(2)(c), the principal series Uch(G, 1) is given by the 1-spetsial
algebra Hyy .

For x € Irr(Hw) we have Fr(x) = 1 by 5.16(2)(d) and 5.1(2), and

Deg(py) = Deg(x) by 5.6(2).
6.2.1. Example: the cyclic Spets.

Let G, := (C, i,) be the untwisted spets associated with the cyclic
group W = p, acting on C by multiplication.

We set Z. := Z[p,] and ¢ := exp(2mi/e).

The spetsial Hecke algebra Hyy attached to G, is by 4.44 the Z.[z*!]-
algebra H,. defined by

He = Z[T)/(T —2)(T = ¢) - (T = ¢71).

We denote by X0, X1, - - -, Xe—1 : He — Ze[x, 27| the irreducible char-
acters of H., defined by

Xo : T +— Z,
xi:T— (¢ forl<i<e—1.
We denote by Sy, Si,...,S.-1 the corresponding family of Schur ele-

ments, and by po, ..., pe—1 the corresponding (by 5.6(2) or 5.16(2)(c))
unipotent characters in Uch(G,, 1). We have py = Id.

S
By 5.16(2)(b) we have Deg(p;) = go since by 2.68 we have

(3
¢ —1

= T|)y = .
5= (1GI/IT)w = =
So for i # 0 using 2.68 for the value of S; we get

1 ;
Deg(p) = o [[ (o~ ¢,

€ el
J#0,1

We will see below that we need to add =22 qther 1-cuspidal

unipotent characters to the principal series before formula 5.20(2) is
satisfied.
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6.3. The series Uch(G,¢) for £ € ZW.

From the principal series, we use (5.13) to determine the series
Uch(G,¢) for all £ € ZWV.

Note that for p € Uch(G, ¢), this gives Deg(p) only up to sign.

In practice, we assign a sign arbitrarily and go on. However, for
any character which is not 1-cuspidal the sign will be determined by
the sign chosen for the 1-cuspidal character when we will determine
1-Harish-Chandra series (see below).

We illustrate the process for the cyclic reflection coset, which in this
case allows us to finish the determination of Uch(G,).

We go on with the example 6.2.1 of W = pu, = (¢) where { =
exp(2ir/e).

We have Z(W) =W ={¢* | k=0,1,...,e —1}.

We determine Uch(G., ¢¥) by Ennola transform. Let z be the lift of ¢
to Z(Byw). The Ennola transform of Hy by z* (for k =0,1,...,e—1)
is

Hp(CY) = ZL[TI)(T = CFa)(T = Q) (T — ¢,
and the corresponding family of generic degrees is
Deg(po)(¢~"x), Deg(p1)(¢™*2), . .., Deg(pe—1)(¢ ")
It is easy to check that, for allt=1,2,...,e — 1,
= —De T ifi+k=0 mod e,
Deg(pi)(C_kx) { g(pk)( ) o +
¢ {£Deg(p) | p € Uch(G,, 1)} ifi+k#0 mod e.

Let us denote, for 0 < k < i < e — 1, by p; the element of
Uch(G,, ¢*) corresponding to the (i — k)-th character of Hy (¢*). Thus

gk_cix ¢ — 1
(x = ¢F)(z = ¢

Deg(pix) () := Deg(pi—i) (¢ Fx) =

and by 5.13,

e

Fr(pix) = ¢,

With this notation, our original characters p; become p; o, except for
po = Id which is a special case. We see that if we extend the notation
pir to be —p; when i < k the above formulae for the degree and
eigenvalue remain consistent. It can be checked that with this notation
E,i(pik) = pitjk+j, where the indices are taken (mod e); thus we have
taken in account all characters obtained by Ennola from the principal
series. We claim we have obtained all the unipotent characters.

Theorem 6.1.
Uch(G,) consists of the 1+ (5) elements {Id} U{pix fo<k<i<e—1 with
degrees and eigenvalues as given above.

Proof.
Using that Fegg_(x;) = ', the reader can check (a non-trivial exer-
cise) that formula 5.20(2) is satisfied. O
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6.4. An algorithm to determine some Uch(G, () for { regular.

Assume that U is one of the sets Uy, Us, ... of unipotents characters
of G mentioned in the introduction of section 6.1. In particular, for all
p € U, we know Fr(p) and £Deg(p).

We outline in this section an algorithm which allows us to determine
the parameters of Hy (wy) for some well-chosen (-regular elements
we (we call such well-chosen elements reachable from U). Knowing the
(-spetsial algebra Hy (wy), we then construct the series Uch(G, ().

First step: determine the complete list of degrees of parameters my ;
for the algebra Hy (wy).

o If W(wyp) is cyclic this is easy since in this case (as explained
in remark 5.23) formula 5.22 determines the list of parameters
mr;.

o If W (wyp) has only one conjugacy class of hyperplanes, for each
Py, € U such that Deg(py,)(¢) = £1 we get (as explained in
Remark 5.23) the number m,, .

For the other m,, we can restrict the possibilities by using
5.22: they are equal to some (N + N™P — §z) /ey () Where
B runs over the set of Rouquier blocks of Hyy.

Finally 4.7(cs3) is a good test to weed out possibilities.

e When W (we) has more than one class of hyperplanes, one can
do the same with the equations of 4.23 to restrict the possibil-
ities; we are helped by the fact that, in this case, the e;’s are
rather small.

By the above, in all cases we are able to start with at most
a few dozens of possibilities for the list of m; ;, and we proceed
with the following steps with each one of this lists.

Second step: for a given I, assign a specific j to each element of our
collection of mr ;.

It turns out that when U has a “large enough” intersection with
Uch(G, (), there is only one assignment such that m;y; is the largest of
the m; ; and the resulting Uch(G, ) contains U as a subset.

However, trying all possible assignments for the above test is not
feasible in general, since W (w¢p) can be for example the cyclic group
of order 42 (and 42! is too big). It happens that the product of the
es! is small enough when there is more than one of them; so we can
concentrate on the case where there is only one ey, that we will denote
e; the linear characters of W (wy) are the det’ fori=0,...,e—1, and
we will denote u; for us,, and p; for p,, when 6 = det’.

If p; € U we can reduce some of the arbitrariness for the assignment
of m to j since 5.8 implies that the root of unity part of Fr(p;) is given
by (@it Ae)a/d  which gives i mod d.
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We can then reduce somewhat the remaining permutations by using
the “rationality type property” P;(t,z) € K(x)[t].

We say that ( is reachable from U when we can determine a unique
algebra Hy (wy) in a reasonable time. Given U, we then define U’ as
the union of U with all the Uch(G, (£) where ( is reachable from U,
and £ € ZW (see section 6.1).

6.5. An example of computational problems.

The worst computation encountered during the process described
above occurs in Ga7, at the first step, i.e., when starting from the
initial Uy = ez Uch(G, §) , we try to determine Hy (wep) for w of
maximal order. In that case, W (w¢) is a cyclic group of order h := 30.
We know 18 out of 30 parameters as corresponding to elements of U.
For the 12 remaining, we know the list of m; ;, which is

[1,1,1,1,3/2,3/2,3/2,3/2,2,2,2,2]

and there are 34650 arrangements of that list in the remaining 12 slots;
in a few minutes of CPU we find that 420 of them provide P;(t,x) €
K(x)[t] and after a few more minutes that just one of them gives a
Uch(G, ¢,) containing the U N Uch(G, ¢j,) we started with.

As mentioned in section 6.4, at the end of this process, we discover by
5.20(2) that we have found all unipotent degrees, except in the cases of
Gog and G3g, where we will find a posteriori that 1 (resp. 14) unipotent
characters are missing.

6.6. Determination of 1-Harish-Chandra series.

We next finish determining Uch(G) for Gog and G, by considering
some series corresponding to 1-cuspidal pairs (L, A). We will find that
in G5 the missing character occurs in the series Uch(Gg, pa1) (where
P21, as seen in 6.1, is the only 1-cuspidal character for Gs, and where
W (L, \) is G(6,1,2)), while in G55 the missing characters occur in
Uch(Gs, p2,1) and in Uch(G3 x G, pa.1 ® pa1) where Wi (L, \) is respec-
tively Gog and G(6,1,2). In these cases, Wg(ILL, A) is not cyclic, so by
the reduction to the cyclic case 5.19, the computation of the parame-
ters of Hg(L, A) is reduced to the case of sub-Spets where all unipotent
characters are known.

Following the practice of Lusztig and Carter for reductive groups,
we will name unipotent characters by their 1-Harish-Chandra data,
that is each character will be indexed by a 1-cuspidal pair (L, \) and
a character of Hg (L, \); thus to do this indexing we want anyway to
determine all the 1-series.

Let us examine now the computations involved (in a Spets where all
unipotent characters are known).
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Step1: determine cuspidal pairs (IL, \).

First we must find the W-orbits of cuspidal pairs (L, ) and the
corresponding groups W (L, A), and for that we must know the action
of an automorphism of I given by an element of Wg(IL)) on A € Uch(L).

Cases when this is determined by our axioms 5.3 and 5.16(2)(a) are

e when +Deg()) is unique,

e when the pair (£Deg()), Fr()\)) is unique,

e when A\ is in the principal 1-series; the automorphism then acts
on A as on Irr(Wp).

In the first two cases Wg (L, ) = Wg(L).

The above conditions are sufficient in the cases we need for Gog and
(G32. They are not sufficient in some other cases.

Now, for 1-series where W (IL, \) is not cyclic, we know (by induction
using 5.19) the parameters of Hg(IL, \). Since in the cases we need for
Gos and Gy, the group Wi (L, A) is not cyclic, we may assume from
now on that we know all of Uch(G).

Step 2: find the elements of Uchg (L, \).
A candidate element p € Uchg(L, A) must satisfy the following prop-
erties.
e Deg(p) must be divisible by Deg(A) by 5.16(2)(b).
e By specializing 5.16(2)(b) to x = 1, we get, if p = p,,

Well N (e ) (0 =X,

Then x(1) must be the degree of a character of |Wg (L, \)|.

e Formula 5.16(2)(b) yields a Schur element S, , which must be a
Laurent polynomial (indeed, we assume that the relative Hecke
algebras are 1-cyclotomic in the sense of [Spetsl, 6E], thus their
Schur elements have these rationality properties).

If there are exactly |Irr(Hg(L, A))| candidates left at this stage, we
are done. If there are too many candidates left, a useful test is to filter
candidate |Irr(Hg (L, \))|-tuples by the condition 5.18. In practice this
always yields only one acceptable tuple’.

Step 3: Parametrize elements of Uchg (L, \) by characters of Hg(L, \).

This problem is equivalent to determining the Schur elements of
Hg (L, A), which in turn is equivalent to determining the parameters of
this algebra (up to a common scalar). Thanks to 5.19, it is sufficient to
consider the case when Wg (L, A) is cyclic. Then one can use techniques
analogous to that of section 6.1.

IThis is not always the case if one tries to determine (-Harish-Chandra series by
similar techniques for ¢ # 1.
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For example, let us consider the case where G is the split reflection
coset associated with the exceptional reflection group Gag. Let us recall
that G, denotes the reflection coset associated with the cyclic group
w. (see 6.2.1).

We have Wi (Gs, p21) = G(6,2,2). To determine the parameters, for
each hyperplane I of that group, we have to look at the same series
Uch(Gs, p2.1) in the group W; which is respectively G(3,1,2), G4 and
s X Mo; in each case the relative group is G., where e; is respectively
3,2,2.

Remark 6.2. In each case we can determine the parameters up to a
constant, which must be a power of x times a root of unity for the
algebra to be 1-cyclotomic; we have chosen them so that the lowest
power of x is 0, in which case they are determined up to a cyclic
permutation. We have chosen this permutation so that the polynomial
Py(t,x) is as rational as possible, and amongst the remaining ones
we chose the list m;o,...,mr.,—1 to be the lexicographically biggest
possible.

In our case we get that the relative Hecke algebra Hg (L, \) is
Hawon (1 G’ GGa%sa?, —Liz, —1).

Here we put the group Wi (LL, \) as an index and each list separated by a
semicolon is the list of parameters for one of the 3 orbits of hyperplanes.
We list the parameters in each list uzy, ..., ur,—; in an order such that
ur,; specializes to (7 .

Similarly, in Gsg, for Uch(Gsg, p21) we get the Hecke algebra

HG%(:U?), C37 C{?v z, _1>
and for Uch(G3 x G3, p21 ® p2,1) We get

HG(G,LZ) <x3’ - §$3, C3$'2, _17 C§7 —Cg.'EQ; SU3, _1) .

6.7. Determination of families.

The families can be completely determined from their intersection
with the principal series, which are the Rouquier blocks which were
determined in [MaRo], and 5.20(3).

Indeed, the only cases in the tables of Malle and Rouquier where two
blocks share the same pair (a, A), and none of them is a one-element
block, are the pairs of blocks (12,13), (14,15), (21,27) in G34 (the
numbers refer to the order in which the families appear in the CHEVIE
data; see the tables in the appendix to this paper).

For each of these pairs, we have a list L of unipotent characters
that we must split into two families F; and F3. To do this, we can
use the axiom of stability of families by Ennola, since in each case all
degrees in L are Ennola-transforms of those in the intersection of L
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with the principal series, and there are no degrees in common between
the intersections of F; and JF, with the principal series.

6.8. The main theorem.

We can now summarize the main result of this paper as follows:

Theorem 6.3.

Given a primitive irreducible spetsial reflection group W, and the
associated split coset G, there is a unique set Uch(G), with a unique
function Fr and a unique (up to an arbitrary choice of signs for 1-
cuspidal characters) function Deg which satisfy the azioms 5.1, 5.3,
5.6, 5.13, 5.16, 5.19 and 5.20.
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APPENDIX A. TABLES

In this appendix, we give tables of unipotent degrees for split Spet-
ses of primitive finite complex reflexion groups, as well as for the im-
primitive groups Z/3, Z/4, G(3,1,2), G(3,3,3) and G(4,4,3) which
are involved in their construction or in the labeling of their unipotent
characters.

The characters are named by the pair of the 1-cuspidal unipotent
above which they lie and the corresponding character of the relative
Weyl group. As pointed out in 6.2, this last character is for the mo-
ment somewhat arbitrary since it depends on an ordering (defined up
to a cyclic permutation) of the parameters of the relative Hecke alge-
bra, thus may have to be changed in the future if the theory comes
to prescribe a different ordering than the one we have chosen. Also,
as pointed out in 6.3, the sign of the degree of 1-cuspidal characters
(and consequently of the corresponding 1-Harish-Chandra series) is ar-
bitrary, though we fixed it such that the leading term is positive when it
is real. For the imprimitive groups we give the correspondence between
our labels and symbols as in [Mal].

For primitive groups, the labeling of characters of W is as in [Ma4].

The unipotent characters are listed family by family. In a Rouquier
family, there is a unique character 6 such that ag = by, the special
character (see 4.49), and a unique character such that Ay = By, called
the cospecial character, which may or may not coincide with the special
character. The special character in a family is indicated by a * sign
in the first column. If it is different from the special character, the
cospecial character is indicated by a # sign in the first column.

In the third column we give Fr, as a root of unity times a power of
x in Q/Z (this power is most of the time equal to 0).

We denote the cuspidal unipotent characters by the name of the
group if there is only one, otherwise the name of the group followed by
the Fr, with an additional exponent if needed to resolve ambiguities.
For instance Gg[¢Z] is the cuspidal unipotent character of Gg with Fr =
(3, while G2[—1] is the second one with Fr = —1.

For each group we list the Hecke algebras used in the construction:
we give the parameters of the spetsial (-cyclotomic Hecke algebras of
compact type for representatives of the regular ¢ under the action of
the centre; we omit the central ¢ for which the parameters are always
given by 4.43 and its Ennola transforms.

We also list the parameters of the 1-cyclotomic Hecke algebras at-
tached to cuspidal pairs, chosen as in 6.2.

For each of these Hecke algebras, the parameters are displayed as
explained in remark 6.2.
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A.1. Irreducible K-cyclotomic polynomials.

Q() cyclotomic polynomials. @) = x—1i, | = v+1i, Py = 2* —i, Df =
22 +1, ), = 2? —m 1, ), = 2* +iz— 1 ol = 2t +i2? x2—m+1
QL = 2t —ixd — 2? —|—z:c+1

Q(¢)-cyclotomic polynomials. ¥4 =z — (3, 4 =2 — (3, O =z + (3,
(I)g:'r_'_C?n (I)é :x3_<37 (I)g:xg_<§7 (I)lllé :SUQ—'—C??, (I)lllg :.T2—|—<3’
Oy = ot + G’ + Ga® +w + (G, O = ot + ¥ + (¥ o+ G,
Py = 2+ (G, Py = 274G, Py = 2+ Ga’ + Gl 2 + G’ + Gt
b5, = x6+C§x5+§3x4+x3+<’§x2+¢3x+1, Doy = 27 4G5, By = '+,
Py = x4—C3x3+C§ 2 —2+Gs, Py = 2 — 335 +C3x2—$+§§a Py = a0~
20+ Gt =3+ G -G+, By = 20— G+ Gt — 3+ Gt —CGa+1

Q(v/3)-cyclotomic polynomials. <I>§2 = 22 —/3x+1, q)@ = 22 4+/3z+1
Q(V/5)-cyclotomic polynomials. ® = x +1*‘f:p+1 oY = x2+1+\/5x+
1, @ = a2+ 5B 41, &) = 22+ 1+‘[a:+1 Ply =t 4= ﬁx3+

1+\[ 2+712\f"p+1 @’1/5: +*1+\[ 3+1 \f 2+71+\[l’+1 @30_
x—i—l*f?’ 1f2+1 \/_a:—l—l q)//o_x+1+2f3 1+\/_ 2+1+f +1

Q(\/—Q)-cyclotomic polynommls <I>( =% — /=22 — 1, (IJgG) = z% 4+
\/—21‘—1,(1); =g+ /=223 — 2?2 — /22 +1, (134—36 — /=223 —
22+ /22 +1

Q(v/=7)-cyclotomic polynomials. @, = 2® + 1=Y=Tq2 4 1V"Tp
(1317/:1,3+1+\/_2+ 1+\/—_7x 1, ¥, — 234 1+\/_2+1\/_ZL‘+1
Y, =+ 1F2+ er—i—l

)

Q(v/6)-cyclotomic polynomials. (1354 = o' — V62% + 32% — V61 + 1,
<I>(4) =2t + V623 4+ 322+ V6 + 1

Q(¢12)-cyclotomic polynomials. <I>§2) =1z +(y, q>§§) =x+(}s, <I>§92 =

T + G, ‘1)(10) =2+ (h
Q(v/5, ¢3)-cyclotomic polynomials. @15 = 2? —|— (1+f)<3:c+c <I> =

x2+(1 \zf)chJng’@% :x+(1+\/_<3x+<’3, — Jr(1 f)<3x+§3’
(=1+V5)¢s 1+f f

SL’+C2

Q(v-2, Qg)-cyclotomlilc polynomials. <1>§4 = 2 4;2\/—2§§x — (3, (IDSIO) =
12— V/=2G3r = G, WY = 22 V=2r— B, LY = 2% — V=2 —

.T"_Cg, O—x _'_(
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A.2. Unipotent characters for Z;.

7|  Deg(y) Fr(y) Symbol
¥ 1 1 1 (1,,)
Zy | Yq®, ¢z (,01,01)
#G | H2q®y 1 (01,0,1)
¥ (g | 22y 1 (01,1,0)

To simplify, we used an obvious notation for the characters of the prin-
cipal series, that is (3 denotes the reflection character, and denoted by
Zs3 the unique cuspidal unipotent character. The corresponding sym-
bols are given in the last column.

A.3. Unipotent characters for Z,.

y Deg(y) Fr(y) Symbol
x 1 1 1 1,,,)

—1|  1q%s 1 (01,0,1,0)
x 0| gD 1 (01,1,0,0)
7,22 | ¢ @, -1 (0,,01,01)
79212 éq@l% —i (,01,0,01)
#—i| HlqD,®) 1 (01,0,0,1)
720 | ==L¢® @] -1 (0,01,01,)

We used an obvious notation for the characters of the principal series,
and the shape of the symbols for the cuspidal characters.
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A.4. Unipotent characters for Gjy.
Some principal (-series
Gt Hyg, (1234, ix, —1i)
C32 : HZ(;( ??:LQ’ _C??v (3, _Célxv C327 _CBQx)
C3 0 Mz (G2?, =G, G, —CGr, (5, —(3)

Non-principal 1-Harish-Chandra series

HG4(Z3) = HAI (1’3, _1)

v Deg(y) Fr(v)
* (bLO 1 1
£ oy | Y00l D, Y 1
# os | B0l D, P 1
Zg 12 ‘/__3:10(1)1(1)2(1)4 C??

3

* ¢372 ZL‘2(I>3(I>6 1
* Pra | LT PYD, DY 1
(b275 %SLA(I)%(I)G 1
G4 §{L‘4(I>%(I>3 -1

Zy 1 11 Exﬂ‘@l@z(h 2
# ¢1,8 73{['4(1)%(134@% ]_

6
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A.5. Unipotent characters for G.

Some principal (-series
C3 HZIQ (Cgl’ ’l.ﬁU _C.?)'r C12.'E1/2, T, Cl?xu _17 i.T, Cg.T, C12.T1/2, _C§7 <’172x)
C?, 7-[Z12(C3:L‘ C12ZL' _Cga C12IL'1/2, C??xv -z, _]-7 C1121l‘, z, Cithxl/Qv _C??xv Zl‘)

Non-principal 1-Harish-Chandra series

HG6<Z3> = HZ4 ('T?’? i.T37 _17 _Z'rg)

v Deg(vy)  Fr(v)
* ®1,0 1 1
o o | PO 0200 2060, Bl 1
¢3,2 LlliE(I)3q)4(I)12 1
¢/273 (3+\/§2)£—2+1) (PQq)/ (PZZq)G(b/ (1)(10) 1
¢174 _qu)”@sz”cbu 1
G2[—i] f ¢2¢>2q>3¢>6¢(5> —i
GI[—1) | B8, <I>2q> <I>’2<I>”<I>’1’2c1>(8) 1
Geli] —irBIDIDD6P), i
Go[—¢3] T 0,0, 0,00, G
Z3 i1 qu)l@Qq)Z@lz 32
G§[—¢3) _fl(;+1)56‘1>2‘1>2‘1>3‘1>4‘1’§(‘1"12 -G
# ¢/2/73 (3— \f)( i+1) (I)Zq)/lq)/qu)G(I) Q(I)gg) 1
G2[i] ZLr020303P6dY, i
G%[_l] (=3— \/_)(H‘l)x(Iﬂq) (I)//2(I)/ q)/ q)( ) -1
$1.8 \/12_90@3‘1)31‘1”6‘1)12 1
¢’2 5 (3+\/§)(i+1) @2@//@/2(1)6@// @(7) 1
Zy i f<2+1>xq>1¢>2q>4q>4¢>6¢12 2
Go[— (15 7\[55‘1)2(1)2@3(1)4{)6 (Do
Ge|—1] Mﬂ{# 2P @//24)//@32@,(10) 1
¢1,6 4$(I)4‘1)6(I)12 1
Ge[—] BB DS —i
T+ —i Y3 1) $20, B D) 2
Gil-1] —(*”f ) 20 P00 <1>'1'2c1>(7> —1
* ¢3,4 A T (1)3(1)6(1)12 1
Gs[¢3] L PiPIDs D (Fx!/?
* (b/2/75 ' %$5(I)iq)12 1
Ge[—C3] %w‘:"bﬁ‘l)%@z% Izt
¢2,7 515(1)421@12 1
¥ 9110 37\6/7_39010‘1%‘1)%‘1),1/5/ 1
L 3+Jj3x10(1)/ P! 1

’ 6 3¥6*12
Z3 -1 @xm@l@g@l 32
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A.6. Unipotent characters for Gs.

C3 : HZIZ (C3$2, €127
<32 : ,}—[212«13237274.1523j

MICHEL BROUE, GUNTER MALLE, JEAN MICHEL

Some principal (-series

CS : HZS (ng37 <87 Cva <§’7 <§x7 <§J7 ng7 <g>

C.?)a Cle

,€3,€12$,
<37 CH 1/2 <32.§L’, <f27 -1

_17 C’1727 Cgl’, €125L‘1/2
9 <1121x7 C??v C152.T1/2

Non-principal 1-Harish-Chandra series

HG8<Zi220) H 4( 727 -1, - 2)
HG8<ZA(1)212) H 4( 7 7_3:2 _Z)
HG8<Zi022) H 4( _1 _Z)
v Deg(y) Fr(y)
®1,0 1 1
* (b271 71:13:(1)2(1)21(1)6(1)8(1),1/2 1
¢274 —$(I)4(I)8(I)12 1
# P ZH"E‘P (I)”‘IDGCI)SCI)H 1
Z120 Dy dY, -1
22212 01 %.T(I)lq)Q(I)3(I)6(I)8 —1
ZiOQQ o1 %H.Tq)lq)‘gq)gq)gq),lQ -1
* ¢372 _Z:1$2(I)3(I)4(I)6(I>gq)12 1
P34 - %562(1)3(1)6@8@12 1
# ®3,6 L2 Dy Py PPy D1y 1
ZiOQQ . Z %,’1}2@1@2@3@6(1)/8,@12 —1
22212 =1 ‘ %$2®1®2®3®4®6®12 —1
ZiQQO =1 %Hl'QSI)l(I)Q(I)g(I)G(I),S(I)lQ -1
GG sIDTDE Dy DDy ('
*x ¢473 %x?’@i@g@lg 1
Gs[-¢) PRy (Lot
Pa5 L3 PP Py, 1
* ¢1,6 6(133(1)” @6@8@’{2 1
N 6<1>3<1>'2<1>6<1>8<1>32 1
®1,12 ‘ 1250, P P3Py 1
,2/77 ;xGCI)z(I)4(I)”(I)6(I)”(I)12 1
¢2713 —ZL' @2@4@4@6(1) (I)lg 1
¢2 10 % G(ID (I)3(I)8(I)12 1
| 150D, By D, 1
21220 1 ;.T6(I) (1)3(1)4@ D (I)12 -1
21022 -1 —.’,13'6(1) (1)3(1)4@ Ok (I)12 -1
Zi220 ) —IEG(I) @2@3@6(1)8(1)/1/2 -1
ZiOQQ i —.CUGCI) (I)Qq)gq)(;q)gq)lz —1

) _C?ilv §172x)
) _<37

12)



SPLIT SPETSES FOR PRIMITIVE REFLECTION GROUPS

v Deg(y) Fr(y)

ZP7 0| 150, 030,00 0D,
79212 i | 160, 00,0 Dedd,,  —i
Gg[]_] %x(i(b%(%@g@m 1

Gg [l] %1‘6(1)%@2(1)3@&@6@,8/@/{2 1
Gs[C) %376@%(1)%@421@8 G
k) Loaipiate, G

107
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A.7. Unipotent characters for Gy,.

<4 HZQ4(

/3 C24$ C:ﬂ —$1/2 C37C24x 215?% C3$2/3a Wl/zagsx

Some principal (-series

2455 Cgl’ z'/? C 2/37C T, T, (o, C37Z'r

Cs Zz C245U

QZx)

(g 7'1224( ir?, (law, Cia, Grew'/?, C12372/3 oz, (a2, — 3w, Gy, i, C127
(3, _2552/37@2% C21i$a C?le/zac z C12$ C16$1/2,C§$7 C12$2/3>—W 24$ C3 )

<8 HZM(M ng C T, =i, C12552/3 —Cgsb’ C16561/2 12:5
SER =G, Clay i, G5, 3, Clle RN C12$2/3 Cln 1/2 12>C12$)

Non-principal 1-Harish-Chandra series

HG'14(Z3) = HZ(&(xgv - 321‘4, C31‘4, _17 C??lAv - §11‘4)
v Deg(y) Fr(y)
* ®1,0 1 1
Zs: —(3 & 1D DIPL D, D DDy oy 3
G1,¢3] & :cq>2q>2q>"2q>4q>' DDy Doy 2
Z3 . C?? gIL'(I) @2(13//(1)4@2(1)8(1)12@24 ??
G%4[_C§] 3117?2‘1)25)2‘12)4@2@8@12@ — 32
G2.4 - 3$(I) QL DL PP Poy 1
b1.16 x(I)’ 2<1>4<1>2c1>8c1>3';<1>24 1
Gra[1] xqﬂqy?q)"Zq)Sq)u@M 1
¢374 ZL‘(I)2(I)4(I)” (138@3/5(1324 1
GalGs] @3 rPP30I0, DFD1 DY, G
Ga[¢d] VS 1 2 DIDID, D2D,, Y, 3
¢2,7 (_2;?4/6){31,(1)2(1)/2(1)4(1)2(1)(6)(1)12(1) (I)( 0) 1
£ oy | CEYOG 102020, 0200 Dy, dY @geg 1
G2[-1]| 0% ,52020,0.200 3,,0y,05) 1

24

Gu[—1] | &% 192020,87°00 01,00, —1
G2, ] VO 1 30293020 Oy by, DY) i
Gil[_l] f(sx(b2(1>2(1>2(1>2(1>(5)q)/// (I)// (I)( 0) —q
G2,[—1] vo <3xq>2q>2q>2q>2q>(6>@g;@g@gi) —i
Gi[l] \/_Ca @2@2@2@2@(5)(1)/// (I)” (I)(lo) i
Zy: —Ch S b, DD, <I>4<I>"2<I>8<I>;';q>24 2
G14[¢3) g 5 D3 Y D, DY Dy P Doy 2
Zs: (s 43 1P, DD, D, DD D, DY, 2
Ga[—C3) <3x<1>2<1>2<1>2<1>4q>"<1>8<1>12<1> —(2
¢1,8 <3 SL’(I)”2q)4(I)2(I)8q)””(I)24 1
s 123 o SR A S TP TR

55 C163j

1/2

C24.'L',
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v Deg(v) Fr(v)

03 5 TR DD D
G2,[1] DD D DDy Doy 1
G141Gs] \@CZ 1P DFDID, D D1, DY, Gs
GQ 3 \/6C3 @2@2@2@4@2@12(1)/ 3
14158 3 6 24 8
o | 04 RO, 5200 D b ) 1
# ¢275 (— 2+\[) (=2+V6)¢5 (I)QCI)//Q(I)4(I)2(I)(6)(I>12(I) @(22) 1
G [-1] <2+f 02020, 8, %00 b, @, 007 1
G3,[-1] %xqﬁ@g@@g%g g dy, el 1
Gi] O D2 020202 Dby, Y i
. V6(2 12 .
G4, [—i] 25233@%@3@3@2@(’@3'5@;4@( b
Ghra[ ] 0 2203020200 dYy L) —i
Gl LR OO0 Dy, Bh

24

?1.12 %l’q)sq)%q)sq)uq)m 1
56 5570@%‘1)6‘1)8‘1)12@24 1
Ga3 §SU(I)2(I)3(I)4(I) D19Doy 1
G?4[—]_] —IL'(I)2(I> (I)4(I>6(I>12(I)24 —1
G14[¢5] 1—123:@2@2@4@'2@8@3';@24 (3
G14[Cs] Lad2020, 00> Dg 0 Dy s
G141G] 711’(1)2(1)2(1)”2(1)4(1)8(1)/1%@24 3
G3,1¢5] 01020, D, Dyl Doy s
Ghalcl)] % 1 D2PID2D, DD D, 1
G4[Ca4) L rdiDD5;D,PFDg D1y A
GS,[¢5) 201 D22, DDy D, DY) (s
G341¢s] f 61 D2P2D, D2 DD 1o DY, G
EARE 2;{ <I>2q)2<1>2q>4<1>8q>12q><> ¢
G145 %xqﬁ@%qﬂ(h@s@lz@() — ;ﬁ,l
enen L 023020, 320 DY) (1

7
G%4[_C172] gﬂc‘ﬁ@%@%%@%@s@éﬁ Ci2
Gra[—(Ty)] gfcq)%q)%q)gq)zlq)éq)é%q)gi) Ci2

7
G3,[¢],) Vo033, 3200  (,
* (b475 %%5(1)%@4@,6/@8@12@24 1
# o Qur VI S Pl D, D DDy Doy 1
Zg 01 \/7 5(13 (I)2(1>4(I>8(I>12(I)24 ??
X g,ﬁ 6(132(132(1312(1)24 1
G%ﬁl [C95] Cg 6(1)2 (I)2 ' 2(1)4(1)//2 (I)8(I)/1/§(I)/2/4 <5 2/3
G14 [CQQ] CS 6(1)2(1)2(1)//2(1)4(1)/ 2(1)8(1)/1,5(1),24 <92 1/3
# P38 6@2‘19 5§ P12Poy 1
G%4[C98] Cs 6(1)2(1)2(1)/24)4(1)"2@8@%@/2/4 CS 2/3
G14[] 6‘1)2@2‘1)"2@4@'2@8@'1'3@'24 ¢Sxt/®
®3.10 3 LaS@2020 ,dyy 1
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v Deg(vy)  Fr(y)
GLIC) | SatD2 03020, 0 D50, 0, (30?°
Gra[¢3] | Sa5DIDIPL P D D ®f P, (Sut/?
®2,15 %xgq)%q)gq)gq)m 1
* ®2.9 127 DD D Doy 1
®2,12 S0, Dy D1y Poy 1
GS4[—1] %xgcbfq)gq)gq)m —1
GTa[—1] 177 PI PP Py -1
G14[CT] 20902 PIDID, B2 D1y (ol
enien 20902 P3D2D, B2 D1y (fpat/?
G1a[—CT] 2090303030, B2Dyy  (f3a/?
Gha[—Cls) 229033030, B2Dyy  (f3a/?
*  P120 &%\3/7_%20@%@%@/{5@54 1
#  Pros “ffj?’a:mcl)gq)gq)g’gq@ 1
g —1 V30208, §,0, g 2




SPLIT SPETSES FOR PRIMITIVE REFLECTION GROUPS

A.8. Unipotent characters for G .

—1: HZG(IQ

Some principal (-series

) C??xv C?n T, <§7 Cgl’)

Non-principal 1-Harish-Chandra series

HG’3,1,2(Z3) = HZa(lv C3x27 C??xz)
v Deg(v) Fr(v) Symbol
11.. 1q®3Ps 1 (12,0,0)
Zy: 2|8 q(I) Dy (2 (,01,02)
Zy: G| $Lq® <1>2<1>"<1>’ ¢z (,02,01)
.2 —5 gy 20 1 (01,0,2)
G5, —<3 GO D, Pl (s (0,012,)
# 1.1 3q<1>2<1>"2<1>' 1 (02,0, 1)
2. =g Dy 1 (01,2,0)
x 1.1. 3q<I)2<I)’2<I)” 1 (02,1,0)
Gl | —Sg2,0, G (0,,012)
« 1.1 DD 1 (01,1,1)
% 2. 1 1 2,))
Zs: 1 PP, (2 (1,012,012)
# .11 3+VL PPy 1 (012,01,12)
x 11, 2= g_ 5<I>'<I>" 1 (012,12,01)

111

We used partition tuples for the principal series, the shape of the
symbol for cuspidals and notation coming the relative group Z3 for the
characters Harish-Chandra induced from Zj.
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A.9. Unipotent characters for Goy.
Some principal (-series
C?% : HZ6<C35L’77—C31’7/2 Gaa?, — 37 C3$7/2 —Cs)

C3 HZG( _C,?,a Cz 7/27 - C2 7/2)

C? HZ14(C 1037 3/2 _C 'T C737 C737 2 2 - ?SL’Q,J?, _Cg 3/27

Cr, CwC?fc _C737 )

C7 HZ14(C C77 ,—C?.T, C;lx?)/Z’ _C’?x27<’?'r7 —C'?.TQ,C?I', —C?LUQ,C?.T,
~Ghe G, ~ i)

Non-principal 1-Harish-Chandra series

HG24 (B2> = HAI (ljv _1)

v Deg(v)  Fr(y)
* P10 1 1
¥ g | Y aDyD,DeDLdY, 1
# ¢373 _F$©3©4(I>6(I>”(I),14 ]_
¢6,2 ﬂI’ (I)3(I)6(I)14 1
By : 2 —ch>2<I>3<I>6<I>7 1
Glaal(7] @@?@%@3@4@6 2
Glaa|CZ] VT 033D, B, P 2
Gas[Cr] @@‘Z"D%@s%% Cr
* ¢773 $3(I)7<I)14 1
*  (Pga %37%)%@4@6@14 1
i ¢8,5 §$4¢%q’4q’6q’14 1
G24 [l] _71l‘4q):15(1>3(1>4(1>7 il‘1/2
G24[—’i] %1374(1)?@3(1)4(1)7 —’il’l/Q
* Qe 200, Dyy 1
# b310 | YL 503D, P04, 1
*  dys *\/_ 13Dy D D DUD!, 1
®6,9 —378@ 5P3P D1y 1
BQ :11 8(132(133(1)6(1)7 —1
Ga4[G7 8@3@3%@4@6 3
| Frsisineg G
Coul¢f) | 7000, 6
* Q1o z?!
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A.10. Unipotent characters for Gos.

Some principal (-series
<9 HZQ(C 4 SSL’Q,CQQ,CQQSL’,CQQSL’Q,CS,CSSL’,CSSL’Q,CS)
G o (=02, Cro, (o, 4, (o, (y, —i, Ci22®, (o, —1, Gio, (12%)
<4 : HZIQ (ix37 <172$L’2, <1121x7 iv Cleu C1121372, i.T, C1727 szl’, _i7 <17237, C1121>
—1: HG5($27C37C32;_$7 C-?ng??)

Non-principal 1-Harish-Chandra series
HG25<Z3> = HG3,1,2 (3:, C?n C??a 'Tgu _1)
HG’25(Z3®Z3) :HZG('IB?_ §$3,C31‘ —1 Csa_ 3 2)
Heos (G4) = HZa(la C?:"LA, C??ZLA)

v Deg(v) Fr(v)

* ®1,0 1 1
* B30 N T
# 95 3*@%@'6@9% 1
Zg D 2. = .’L'(I) (I)Q(I)4(I)g C.??

®83 —552(1)2@4(1)9@12 1

* ¢6,2 —1*2(1)3(1), q)4q)G(I> (I)lg 1
4 O ix%bgcb"ciucbﬁcb oy 1
¢2,9 2@4@ (I)gq)lg 1

Zy® Zy: (3| & 2<I>2<I>2<I>’ D PDyD1, G
Zs .2 <3 2 <1>2<1>'2<1>4<1>"<1>'<1>12 2

¢2,3 CS 372(1) (I)” (I)Q(I)IZ 1

Zy .2 *431;2@ q>2<1>"2<1>4<1>'<1>"<1>12 2

Zs® Zs: 1 43 22D2 Dy DY D 4 B DY D1 (3

x 0 =5 4<I>2<I>'2<I>"2<I>9<I>12 1
Go 5 L 1\? 4q)"zq)4q)/ Py P19 1

¢3,6 @3(132(1)9(1)12 1

¢9,7 3+\/7 4(1)/ 3(1)4(1)//@9(1)12 1

# i <3 O S A I 1
Zs @ Zs : G —x4<1>2<1>2<1>4<1>"2<1>9<1>'1’g s
4 . C3 3+\/7 4(1)2(1)2(1)/ (I)”(I)gq),{é -1

Zs: 1.1 *43 x4q> PP/, <I>4<I>"2c1>9<1>'1'g 2
Gas[—(s] W T DD, P30,y (i

i 43 210D D20y DYy 1

G5 (3] \/_ T P30y D, Py D1y (3

Zy: 11| 4<I>1<I>2<I>”<I>4<I>’2<I>9<I>’1’g 2

f1s % 14D, P DIDY DY, 1

Gi: 3| =222 4<1>2<1>2<1>"<1>’ AR A
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Y Deg(v) Fr(y)

Zs® Zs: —(3 %x4®%®%®4®82®9®% G
% s 336920, D2, P 1
# Ps.9 S5 003D, DFDY D1y 1
Zy: .11 V3060, 930,0,D20 2

x P P L JL T I 1
# 6,10 V385 B, Bl Dy P 1
Zs:11.. @xgq)lq)zq)ﬂ)gq)u 3

* $1,12 %15512@4@%/2@9@/1,5 1
@313 2212030 PPy P1 1

Zy: 11| $al00,0,°0, 00000 G

P37 2120, 0 D6 b1 1

Zy: AL | 500, 0,070,040 G

# ¢1,24 , %1$12(I)4‘1>/62‘b9‘b/1/§ 1
Zy®Zy: G| Fal2BIBL, B0, Gy
G4 01 %IElQ(I)%(I)g(I)g —1

¢2,15 %3712(1)%@9@12 1
Zy®Z5: —1| $La20i0,00,0505018 G
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A.11. Unipotent characters for Gag.

Some principal (-series
CQ HZlS(C?)x Cél.l’, nga —C;}.T?’/Q, T, —C§1’2, <37 _C§x7 <92x7 _17 <3x7 _C?%xQu
C3I‘3/2 -, CQ ) C?z)lv C??:L‘a _"L‘z)
CQ Hle( C3.CL’ T, —<32,<9.§L’,—C3 CQ 3/27 321’2,C3.§U,—1,C§1.T, -,
C?,v l‘ C3ZL‘ _C2 3/2 C97x7 _C?é,lx)

Non-principal 1-Harish-Chandra series

HG’%(Z?’) HGGQ2(1,C31‘2,C§ZL‘2;1‘3,—1;1‘,—1)
HGQG(G‘l) :HZ6<'T37 32.T4,C3$3,—1,C§l'3,— §1$4)
HGQG (Gfli?l?’, ) = (IA? —<32.T3, Cg.T, -, C§7 C3 )
HG% (Gé,lo, ) %ZG (lAv _C??xv C?n -, C??:L‘a - ?il 3)
v Deg(y)  Fr(v)
* ®1,0 1 1
b19 52Dy P 13 1
# g’5 ?ZL'(I):J,(I)/ (I)GCI)”(I)”(IDH(I) 1
* ®31 —:UCI>3<I>”<I)6<I)’ Oy D15 P 1
®2,9 55(1)4(1)9(1)12(1)18 1
GL, 1| =4 xqﬂqﬂcb’ LD, DYDY DY, g G
Zy .2 ?fs z® <1>2<1>32<1>4<1>g2<1>g<1>’1';<1>'1'8 2
$2,3 = :L’CI)4<I>9<I>’1’§’<I>18 1
Zy: .2, $Lad CI>2<I>”2<I>4<I>’ QUM P 2
Gy 1 *<3x<1>2<1>2<1>"<1>4<1>' DYDY DY (s
®36 372Dy PsDy D1 D1 1
Ls =4 2<I>"2<I>' (DD 1Dy 1
¢3:4 _Z)CS 2(1" 2<I>"2‘199‘1912 D15 1
# » §x2q>g,,2<1>4q>g2q>9q>ng>18 1
GI80y i “SPIPID BB Py G
Zy:l.—| & 20 LDy LD, DL DD D1 2
% ¢6,2 1 2@//2(1)4(1)/ 2(1)9(1)””(1)18 1
Zy:. 1—| 5 2c1> <I>2<I>”<I>4<I>’ PPy 2
G%,OEQ . _C?, 2@2(1)2(1)4@9@////(1)18 C3
* ¢8,3 —373@3@4(1) OSPLOST 1
i Ps 6 2563@%@4@%@12@18 1
G26 [’l] %ﬁgcb%q)gq)z;q)gq)u i.I‘l/Q
GQG[—i] _711'3(1)?(1)%(1)4(1)9(1)12 —il‘1/2
* va | S D DRDL Dy DY Dy 1
# 65 S S A DI, DD Dy DY D1 1
Zy:..1.1 V30, D30, DDy D g 2
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v Deg(y) Fr(y)
g}/w ﬁxig@@g%%% 1
. V3D B, B DDy Dyg 1
Zs:.1.1. V34D 03D, DD Prg (2
Go,7 e 1P D, DyD 1, P15 1
o5 S AP D DY Dy 12Dy 1
e C D30,y Dy D1y Dy (3
Gy: =2 ST D22 D DD Dy —1
Gy —C VS AP DIDL DD DY Dy —1
Gag[—C3] @fl(ﬁ?@fbg‘bz@g@w —(3
% 6.5 SVEB 5Dl Dy DD DBy 1
# Gy S35 B, By Py D1 Dig 1
Zy: .2, V3050, By By Doy g 2
* 8.6 7\/_ 20DIDU D DDy Dg 1
# s { L 1AL T N S 1
6.11 GCS 0PI D DL DD Do Dy 1
- =58 200205 DIDY P 1o D15 1
$2,15 %376@%@2@9@12@18 1
Lo %x6<1>§<1>4<1>§<1>g<1>9<1>'{g<1>18 1
By o LIS D3P, DIDLDy P D 1
Do 3 2= F 64)3‘13/ O, D DE PP 15P15 1
®6,10 3+F 20D DY Dy P PPy D12 P15 1
i V_ 25D 5 D, D, DD D1, D 1
" 6 M 25D DD D3P D1, P 1
o5 . F 2O DID, DY DY D15 P15 1
9,10 3+W TOD3D, P DDy P 12Dy 1
1,12 F LAl IR YL N I 1
®1,24 _F 6@/3‘134‘13/ DgP P15 1
2,18 W DO Dy B Dy D1y D1 1
$2,12 _\/_ 6(I)/3(134(13"3(139(1312<I>18 1
Zy: 1.4 | 223 % L By DI Dy DY Dy By D1 2
Zy: .1+ 3”_ 25D, Dy P, 2D B2 DD, P g 2
A - e 25D, Py®3®, D PyP P 1g 2
Zy: 11| BR300, 030470, 00 0y D P 2
Zy i1 | TEYE5050, 030070, 0 0y 1, Bl 2
Zs: 1.1 246 q>3q>'2q>4q>2q>"q>"q>g’;q>18 2
Zy:. 11| TS50, 300D, diDL D) DYy d g 2
Gyl LS PI3Dy Py By —1
Gy Gy G0 D2DIP DD DY —1
Gy (2 <63 25 D2 D3P, P! <1>9<1>12<1>18 —1
GY:1570132 . C3 —C3 6@2@3@//@4@2@/ (I)”(I)””(I)lg C3




SPLIT SPETSES FOR PRIMITIVE REFLECTION GROUPS

v Deg(y) Fr(v)

Gy G| et DR D Gy
GI%y: —G | 20000300, 0y D1 Pl G
Gy G | 002030, 0, 00 0y D1 Py G
G, -1 B3 62 P2 Dy DDy 1o D1 (s
GI%,: -1 33 62 P2, Dy DDy 1o D (s
GQG[ 1] ;11‘6(13?(135(133(134(1)9(1),1/5@18 —1
G%G[ 1] _—1{E6(I>‘z’(b§(bgq)4q)gq)/1/g(b18 —1
G36[¢3] 3+F 6(133@2‘13/3‘1)4‘13"2‘1)"@12@18 3
G361¢3] *3”_ AL AL AL TR SIS
G- | e 6<1>3<1>2<1>2<1>'<1>4<1>”2<1>9<1>ng>'18 —(3
G~ | —Sa5D3D, 03040, By dYy (3
Ga/Cs] 32,( SPIDIPL D, DpDYD Py G
G3slG) | L5033, 0, 000y 01001 G
Gag[—C3] <3 O DI DIDIDYD DDy Py Dl — (5
G2[— G5 43 1S D3D2D2PL D, DDy DYDY, —(E
Gag[1] /; 1S D3P3D, DD, P g 1
G311 —310D3D, Y Dy D1, D 1
G3(1] F P30, D DD dry 1
Glas[C] V; SP3P3DIP, DDy, 8
Gas[C3] V35033030, 03D, (
Glas[C2] V315 D303, D3P 2
®3,15 1 TH P3P DgP15P g 1

#  deus 1 PRI LR N 1
* D611 1 1D D, D> Dy D D 1
®3,17 7C3 11(1)”2@’2@9@12(1)18 1
G, . 2 <3 T P2P2D, DD D1y (s
Zs .11 ) 11<1> L Do DD, DL Dy DDy 2
$3.13 _CS DL DY DDy Dy 1

Z3 S 33 ll(b (132(13/ (I)4(I>//(I)9(I)/1/é(b18 g
Gyt G i 1 2 B S SRS
* O T
7t ®3,20 3+F TOPLDY DD, D1g 1
Zy: 1.+ V_ 2150, Dy D, Doy 2
£ b BN
¢2724 1 21©2©2©18 1

G4 -1 21(1)2(1)2(1)9 1

Z3 S B %l‘qu)l(bg(bg(bzﬂbG@m ??
# iz e P Tk T JPL U 1




118 MICHEL BROUE, GUNTER MALLE, JEAN MICHEL

A.12. Unipotent characters for Go7.
Some principal (-series
(s My (Ga®, =G5, (5%, — (P 3/2 , G5, C15374/37C51’5/37—<§55L’27<§1’7
~(a?, (i, —Cia?, o9, —(la?, (i, (S, G, —(laa?, (a2,
—C15.§U,C15ZL’, C57C15'T 7_< CQ 3/2 C15.§L’4/3, 115’555/37_$3/27C35L’7_ 115’.1’)

Go ¢ Hap (G~ Gat® G, o, ~CatP, Gl G,
Ci5, —56’3/27C125377— 12§372 5/3 —C z C153j - 5374/3 s, Csl’ 51’3/2
1151$27C175377 —C57373/27C115x5/37— 1537 1’3/2 C111 4/3 <31’7—C57 153j - 115?1’2)

Cg :4H230( §4 x?, ggx —17x32/2 gl £5/3 %"154:70;/3, C§$3/2 19 C :703 2C15xi, 2
_4C57 332 xC 2/22 15523 /4_35 / C154373—2 15:6 :1:/2 233:7
Cis®, —C5 ,§3$ —(i5T7, / §15x/ §15$ —(5 / C15$ —G3T )

Non-principal 1-Harish-Chandra series

HG27<[2<5>[ 73]) HZ(;( 5/2 CQSL’S C —I5/2 <37_ 3 5)
HG27<[2<5>[ 72]> HZ(;( 5/2 C 1’5,< ,—I5 27C37 - 3$5)
HG27<B2) = HZG( 47 - 3565 <37 SL’,C?%, —C§I5)
v Deg(y) Fr(v)
* ¢1,0 1 1
2
* B30 | —Lop DBl Dy DL B D Do B D) By DY) 1
a7 V‘l & 105 D, YDV D1y B @Y B DL 1
L,(5)[1,2] : —=(3 ”11542 DT DFDIOE D, DF DL P, PP 2
L(5)[1,3] : —¢3 V=26 p D3 DI DD Dy PR DG D 1 B DYy 2
By: (3 e R S LR YA A T S |
6.1 - V_ RN S1 AL LT SN A A 1
# e | R <3xq>'3q>4q>'q>"3q>goq>12q> cbﬁ?@@;o@gg’ 1
& 5 L;OICS VAU R N A ST AR 1
L(5)[1,2] : —¢4 5 I DIDIDL D, DIDL D1 DY DY, 2
L(5)[1,3] : ¢4 V58 1 DIDIDL D, DIDL D1 DY DY 2
By —(4 S5 B2, Dy DYDY Dy B 1
¢6,2 3+{ (I)Q (I)/ 3(1)2 ‘I)"q)wq)'féq)""@so 1
3 [C??] $(I)3(I)3(I)4(I)5(I)10(I>12(I) (I)go ??
037[43] _— @3‘1)3@4@5@10@12@15@30 2
G27[C15] q)3q)3q)2q)4q)5q) q)loq)u Cﬁa
G27[C15] $¢3©3©2¢4¢5¢ D1pP1o Ci5
[ (3] %x®?®§®§®4®5®10®15 —(2
GL.[¢) V3 D030, Bs RD 1Dy 2
* ¢10,3 ST PP DD P15Pao 1




SPLIT SPETSES FOR PRIMITIVE REFLECTION GROUPS

v Deg(y)  Fr(v)

56 ST3D D519 D12P15 P30 1

%,6 lfb’ Oy P5P19P12P15P30 1

By:1 L3002 1o D,5Psg 1

i <Z59,6 —374@3@ <I)12<I)15<I)30 1
G5 (6] | 3 4¢3@3®"3@4@5¢'3‘1)10@'1'5"1)'1%@% Coa™?
G3(G]) | 52" PIOFDL Dy D50 Dy DY DIEDY  (Jart?

<Z59,8 —374@3@ <I)12<I)15<I)30 1

G360l | % 4<I>3<I>3<I>”3<I>4<I>5<I>’3<I>10<I>’1’g<1>’1’g<b§g Cor?/?
GorlGo] | 2203030470, 0500° D DYDY DY) (o'l

* $9.4 —374@3@ 5 P12P15P30 1
Gar[(]] -x4<1>3<1>3<1>"3<1>4<1>5<1>'3q>10q>ng>g'gq>gg (ga?/3
Gor[¢] -x4<1>3<1>3<1>'3q>4q>5q>"3q>10q>q;q>ng>gg Lot/

* D155 3+\6/_ 5‘13"3(135@/3‘1)10(1) 5 P15Ps0 1
# P15,7 %375@%3@5@/6'3@10@'{5@15@30 1
G3,[Gl #$5@?¢§¢4¢5¢10@15¢30 €

* 5.6 5 V5 15 D3D, B DFD 1Dy P Dy 1
312 5*“ 2ODFD, PLDID 1P 12D Dy 1
L(5)[1,2]:1 g 6H2P3P2D PED1 D1, D3y 3
L(5)[1,3] : 1 Y515 P2DIDID, DED 1P 1o P 2
4 B o 5— f 28 D3D B DD P15 P Py 1
Lo 5+f 28 P3D DY D3P D1, P, Dy 1

L(5)[1,2] : -1 g 6H2P3P2D ,PED1 D1, D3y 3
L(5)[1,3] : -1 V515 P2DIDID, DED 1P 1o P 2
Glari] 5+f LOP3PID Dy B Py Dy DY, a2

G2 [i] —5 f LOP3DID, DB By D5 PY, izl
Glar|[CAT] =S PIDID D D210 D1y (AT
Glar |23 —f 1SD3D2P3D, Dy P2D 1, Py5 (L3512
G2 [—i] 5+f LOD3DID, DY D1y D5 PY,  —ix!/?
Gz~ 1] *5 f LODIDID, DD D1y D5 PY,  —ix!/?
Glar|—C4T) =S PIDID D D2 P1oDys  (Fp?
Glor[—C13] *mf S3PIDIP, D P2D1, D15 (32

* G158 %ﬁ‘bég‘%‘bgg@m@ﬁ@m@so 1
# ®15,10 %378@%,3@5@%3@10@%@15@30 1
Gor[G3] @958‘1)3@3@4@5@10@15@30 3

* ®9,9 —$9(I)3(I) cP12P15P3 1
G§7 [€95] Cg 9(1)3(1)3(1)/ 3©4©5©//3©10¢/{é©/{g¢% €5 2/3

G5, [1] <3 9<I>3<I>3<I>”3<I>4<I>5<I>’3<I>10<I>’1’g<1>’1’g<b§g 2ot/

7t G911 —$9(I)3(I) ¢ P12P15P3 1
GarlC8] | & 9<1>3<1>3<1>'3<1>4<1>5<1>"3<1>10<1>'1';<1>’1'g<1>g6 8323

G%? [CQS] CS 9(1)3(1)3(1)”3(1)4(1)5(1)’ 3(1)10(1),1%/(1)/1%(1)%/ C98x1/3

119
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v Deg(y) Fr(v)
®9,13 éﬂfgq)gq)gq)u‘bm‘bso 1
2

G7[¢s] S a9D3DIPL Dy D3 0 D DY DYDY (32?/P
Gar[(5] R T S AR L S A I A e
* ®10,12 %5512‘1)3@5@%@10@15@30 1
’5’,15 %3712(1)4(1)5(1)10@12@15@30 1
5 gli %i’flig)(g?gg)qiogugwiso 1
21— 7L 1¥3%5P10%15%30 —1
* Ga16 | LB w00 D, BLDID, B ®Y; B B DY) 1
B300 | TIPS 100L 5D, DUDIDY B P B B DY) 1
I(5)[1,3] : ¢§ I 16 P2 D2 DD, Dy DIy D15 DY Pl 5
L(5)[1,2] : ¢3 V5 10 PR DI DD, Dy DEDY D1, DY DY) 3
By: G S0 D2, D DY DY By DYy 1

: 12
Po.19 VS 10 DI, DI B By B B 1

_ 2

# fao | s B BB 0 B D1 D B DG 1
PG (G SRLY T Y2 VAT TR S8 TR A 1
L()[1,3]: G VG 11693 30204 D, DI D1 B, DY 2
LO)[1,2): G VDG 11093 L0204 D, DI D1 B, DY 2
By : G R L FU S L B A A S A |

: 12
G617 3_1—\é__?’1§16‘1>3©g3‘1’§‘b%‘1>10¢/1/5‘1’/1/é‘1)30 1
G5;(¢] TR 202 1 PR BTN ITL R G
Gor[(s] VLIP30, D5 D1 P12 P, Dl C3
Gor[(3] YD 163 p3 2D, D5 D2D1 D1 i
Gor[¢i3] Y=L 103 p3 D3P, D5 P2D1o D1 i
Gar[—Cs] B33P, DDy Prs  —(f
G3:(¢5] 6303, B P2D 1Dy G
* <Z51,45 ™ 1




SPLIT SPETSES FOR PRIMITIVE REFLECTION GROUPS

A.13. Unipotent characters for G 3.

Some principal (-series

—1: HZG<_’:C37_C§x27_<.§x7_17_<.§x7_C§x2>

v Deg(y) Fr(v) Symbol
*x 1.+ ng)gq)G 1 ( )
* 1.3 >y P 1 (1. CB)
x 1.02 D, 1 (1.53)
« 111 | 22ty 1 (01,12,02)
# 101 | 220 ! 1 (01,02,12)
Gs33(C3] W ¢'ei, 3 (012,012,)
« 111 7 (012,012, 123)
21| 200y 1 (0,2,1)
# 12| 2008 1 (0,1,2)
G3,3,3[C3] —T\/—_?’qq)il’»% (3 (012> ) )
« .21 D, 1 (01,01, 13)
* ..3 1 1 (07073>

121

We used partition tuples for the principal series. The partition with
repeated parts 1.1.1 gives rise to 3 characters denoted by 1.+, 1.(3 and
1.¢2. The cuspidals are labeled by Fr.
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A.14. Unipotent characters for Gy 4 3.
Some principal (-series

(3 : HZS(CBx (s, G3at)
Cs @ Mz (G, (Ia?, (s, Gsa?, B, ¢, (B, (3a?)
—1: ?—[04’1’2(171)(562,— —1,iz; —x,—1)

Non-principal 1-Harish-Chandra series

HG4,4,3 (B2> = HZ4 ('7“27 i.TQ, _17 _Z>

Y Deg(v) Fr(v) Symbol

x 111 D3 Dg 1 0,1,1,1)
« AL | ZHP 0,07 1 (01,01,12,02)
1.11 1P, dg 1 (01,02,01,12)

# 111 Hlg 5q>3q>'2<1>" 1 (01,01, 02, 12)
By i —i Z+1q5<I)2(I)3(I)’ -1 (012, 012 0,1)
Gy.43[—1] HPOID Dy —i (012,01,012,)
By:—1 _Z+1q5<b2<b o —1 (012, 012, 1,0)
x 111 q" 1 (012,012,012,123)
.21 Hlgd,0 7o) 1 (0,0,2,1)
1.2 1q®; s 1 (0,1,0,2)

# 12| =Hed0p ) 1 (0,0,1,2)
BQ ) fl+1qq)2q)3q)l/ -1 (01 02 ,)
G474,3[Z'] %q(b (I)Qq)g 1 (012,,0 )
By: 1 Hlgdid, @ -1 (02,01,,)
.21 ¢"dg 1 (01,01, 01, 13)
x .3 1 1 (0,0,0,3)

We used partition tuples for the principal series. The cuspidals are
labeled by Fr, and the characters 1-Harish-Chandra induced from B,
by the corresponding labels.



SPLIT SPETSES FOR PRIMITIVE REFLECTION GROUPS

A.15. Unipotent characters for Gog.

Some principal (-series
4. 4,4 5/2 2 +11,2 4.3 3/2
G s My (Gha, Cooa™?, —a?, (35, CHa®, (oo™,

3.2 11

17,2 7.2 7.3 3. 17T
2077, —C5 2%, CopT”, (5T, Cyp T

3/2

56$27 C%gxa C57 C30x3/27 -

6

—(8a?, G0, G5, Coo?,
- 57$27C2101x5/2>chac20$2>_ 5L 20$3/2,C§,C201‘,— §x2’
Cg’: HZQO( 5’1’4,
—G3%, (3%, C3, Coga®, —a, (™2, (Ba, (g

C5 : HZ20 (C5.I’4,C30$3, -

) —Cg’an C27037
5%, —(8a?, ()

ngv C%8x27 C5:E7 C30$5/27

3.2 ~19.3 2 9 4,9 +19,.3/2 3 9 .2 2
—C5r7, Gopr”, (57, Con T, — (507, Cop @ / , G517, Cyo”, —a7,

Non-principal 1-Harish-Chandra series
He,, (Bs) = 7-[(;4’172(362, ir?, =1, —i; 23, —1)
Heo (Gaasli]) = Hz, (28, iz, —1, —iz)
HG29 (G47473[—’L.]) = HZ4 ({L‘G, ’i{E5, —1, —il‘5)

v Deg(y)  Fr(v)

* $1,0 1 1
X b4 HLr @307 0y D10 P, DLy 1
$a,4 12030 1,P9 1

W G413 =L §30/, D DY D1 DY, Pl 1
By:.2.. = 030302 D LD, Dl -1
G4’473[Z‘] 01 %m@‘i’@%fﬁg@g—,@@@m 1
By: 2. 13030, D5 DY DY, Dl -1

* $10,2 22 PPy P10 Do 1
Glag[—Cs] S P01 Di0305 DDy (F!/?

* $16,3 S0 DP9 Pog 1
Ga9[(s] 30l 0iD3 D5 DD D1y (srt/?

$16,5 230D P19 Pog 1

* /1/574 %.%'4@3(135@6‘138@10@20 1
®5.8 %964‘135‘1)8@10@12@20 1

$10,6 721 DI D501 P 2P0 1

B2 - 1.1.. %1‘4@%@%@3@5‘@6@10(@20 -1

* P54 ' D305 PP 10P12Pa0 1
* ¢20,5 %$5¢%¢Z2¢5¢6¢g¢10¢32¢20 1
$20,6 §$5@§1@5@10@12¢20 1

i Po07 | L2t RLP, D5 DDy D 1P, Poo 1
By:.2 | HlaP00;0) 5 0pd1P, 0o —1
G4,473[—Z'] 01 %iCCS‘I):{’(I)%‘I)g(I)g;‘I)G(I)w‘I)QO —1
By :.2. | ZHLaP 0300 5D 10D, Pao ~1

* ®24.6 12%966‘1’%@3@5%@8@12%0 1
ng[l] %$6‘1)111‘1)3(I)6‘1)8(I)10(I)12‘1)20 1

S | FeatPs®)  D5DRs P10 P12 DY) 1

ot | et P3P 5 PP P10P1a Pl 1

) 5']77 203:7
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G . Deg(y) Fr(y)
6.10 27 P3P5 PP P10 P12P20 1
$24.9 12803030305 D10P12P20 1
BQZ 1..1 %xﬁq)%@g(bi@f](bﬁ@lQ@QO -1
Guasli] : —i | Fa003D30;0,° 519D 12Dl i
G474,3[—’L'] c %1566@%@%@3@2{2@5@6@10@12(1),2/6’ —1
$24,7 1250233 D1oP12Pog 1
BQ 1.1 iCCG‘I)%(I)Qg‘I)Z(I)g;‘I)G(I)lQ(I)QO —1
Guag[—i]: —i| 12003D3D30,°PsBa®1oP 0Pl —i
G474,3[’L] 1 i:ﬂﬁ@%@?%3@2{2;1)5‘1)6@10@12@,2/8 7
®30,8 72°P3D5P5 PP P12Pog 1
®6,12 1260303065 P10P12P20 1
By:.1.1. }ix%%q)g@g@g,@ﬁ@g@m@u@gg —1
By:1..1 12003 DLD 35D Dy D1 P12DY -1
5,10 225®305 0P P10 P12P20 1
Ga9l[(s] 1300103 D DD P 1o G
GunlC2 Loploloalogddn ¢
Ga9lC?] §x6¢%¢%¢3¢3¢6¢8¢12 ¢
Gag[CH] T SR R L P A Y Y 5
% P29 | et 0I0 D5 PeDLD10DPY,Pag 1
$20,10 $2903 05010 P 12D 1
# $20,11 %wg‘l’%@ﬁf%@s%@g@m@ﬂz%o 1
By 11 | “HLa902030, G50 P 1P, Do —1
G4,473[Z'] -1 - %CEQ‘I):{’(I)%‘I)g(I)g;‘I)G(I)lQ(I)QO )
By : 11. HL9 D3B30/ D Py P 1P Pag ~1
* ,15 12 $12(I)3(I)5‘1)6(I)10(I)12(I)20 1
* ,1/5712 %5612(1)3‘1)5(1)6‘1)8(1)10(1)20 1
®5,16 121285P5P 10 P12Pog 1
®10,14 522 PID5P 10 P12Pog 1
BQ N %xlz@%@%@gq)g,(bﬁq)loq)go -1
GaolC3] 5301 0I03D; PP Py (Sl
$16,13 T2130105 P15y 1
Gag[—(5] 121301 PI03D; PP Py (Il
* ®16,15 %ﬂﬁi@ﬁ@s@u%o 1
* $10,18 T P5PgP1oPag 1
* G121 | L 02D D DL Do DY, DY) 1
¢4,24 - %$21‘1)Z(I)12(I)20 1
W b3 HL a2 B3O DD D 1o P, DY 1
By: .11 L 92D, 0> B B DY, DY) -1
G47473[—i] -1 %x21®?@%®3@5®6@10 —1
By: .11 —LEL 212Dy B D DY D), Dl -1
* $1,40 20 1
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A.16. Unipotent characters for Gss.
Some principal (-series

(3 Mo (Gs2°, (477, <24555/37C§’552 24, Gog2?, §8x11C24’C24x z? Clg 53,
24’§8:L‘ C24l‘ 2141.1‘3 ng 7§274‘T7 §224‘T 7§85L‘5/37 227 4L C&T §24ZL‘ )

st My (GE2°, Cou, (i 2®, (Ja?, C2431j C247C8 23 C2431j , (o4, Cga?, C24~”U (%,

Cgff 24a§24$5/37§8$ 215?$ 2117 8515 2455 C24$ §5$2>C24$5/3 C%sz)

C5 HZao( Q z, §15$4/3 -z C15x §15$3/27§§)$7 _C11§x3 §15> §52
CM 3/2 Cif;x 4/3 —C157C155L;) 2_C55L’ C155L’ _C z? 1C9572—C 5L C15x3/
_st C15x /3 —§15> C15$/ C15x _§5$ C157_C15x )

C5 : HZso@ 7—C z 7C157 C537 C153j _C15373/2 C C157C151’4 /3 _C55U

Cl 3/2 _§1 $2 §5a_§ z? , G157, C5$ C15$ C15a§2 4/3 _Q z, (15 $3/2
C55€ <157 1’3 <5SL’ _CH 3/2 <15x — CH 4/3 C )

Cs: HZ30(C5x C15a§15$ C5$ §15$4/3> §13 3/27C5,—C§5$ §115?$2 §5

C155L’3/2 _C157C537 _C155’7 Clg 4/3 _ng C157 1 1’ , (522, C z? <13 3/27
$>C15$a —Cllg’xQ C5$4/37—C 3/2 15>_§5$ C15$ _GE%B)

C4 : ,HGIO((_:),_\/_)Q%)(_:E27gSaC??;Z"E 1, 1T, Z)

N on—principal 1-Harish-Chandra series

HG32<Z3> HGQG( 1 z C37C3) 5 4
Hey, (Ga) = Hey (2, C37C3,1 G, GG )2 2 _igt b
HG’sz(Z3®Z3) HGG,I,Q( 72 §3$3>C3$ 7_217§374_ 3L X 1)
HG32<G2 [C?)]) HZ(;('T676_ 3.1’2,C3.T,4—1,C35L’, - 3 )
HG32<G2 [ <3]) = HZG(':E(:)7_C23$‘87 CBI -1 C _C34 )8
HG32(G4 Z3) = HZfs(x y =63 7C3x _1 C 7_ )
Y Deg(y) Fr(v)
* $1,0 1 1
. $a1 S Dy D D@1 DY B Bl 1
4 ba11 3+\/7xq)/ LDy DY DD B Doy DL 1
Z3: P10 £$@1®2¢4®5@8¢10¢12@24 (3
®15,6 3962@3%@6‘1)10@12@15@24@30 1
* ¢10,2 3562(1), ‘1)5‘1)”‘1)8(1), ‘1)10‘1)”/2‘1)15‘1) (1)24(1)30 1
i $10,10 122D @8‘1’"‘1)10‘1’"”2@15 PP, D3 1
®5,20 C3 22 DL D5 DYDY Do)y D 15P s Py Do 1
Z3@ Z3: 2. %x2q>2<1>2<1>'2<1>4<1>5<1>” Bg® DY P15PY, Do (s
Z3: Pag 43 2201 Py D3P DDy P 10D 15D Phy Pao 2
¢5,4 ig? x2<1>”<1>5<1>’ (I), ‘1)10‘1)””2‘1)15‘1)18(1)24(1)30 1
Z3:¢23 CS x2<I>1CI>2<I>2<I>5<I>8<I>”<I>10<I>15<I>18<I>24<I>30 g
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A.17. Unipotent characters for Gs3.
Some principal (-series

MICHEL BROUE, GUNTER MALLE, JEAN MICHEL
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A.18. Unipotent characters for Gay4.
Some principal (-series
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APPENDIX B. ERRATA FOR [Spetsl].

e Proof of 1.17: this forgets the case of G(2e, e, 2) with 3 classes
of hyperplanes. This case is still open.

e Page 184, generalized sign: let Ag be the eigenvalue of ¢ on
the discriminant A. Then change the definition of g to eg =
(=1)"¢y ... ¢, Af, where r = dimV.

Most of the subsequent errata come from this, and are su-
perceded by results in the current paper, see in particular 2.3.1.

e 3 lines below: {(i,...,(.} is the spectrum of we¢ (in its ac-
tion on V'), and Ag = 1. In particular we have then g =
(—1)"dety (we). In general, if w¢ is (-regular then the spec-
trum of we is {G¢ %Y so dety(wg) = G ...G¢C N and
eg = (=1)"¢"Ndety (we).

e Second line of 3.3: “Moreover, if there exists v € W such that
v¢ admits a fixed point in V Upgea H, then er = egdety (vw™1)*

e 3.5: |G| = egz™V [[,(1 = ¢rat) = xNA* [1,(z% —¢).

e 3.6 (i): |G| =2VAL T, (I)“(‘I’)

e 3.6 (ii): |G|(1/x) = ALegr™ CNTN'H |G| (z)*.

e 3.7 (1s.2): ¢@ is the product of (1,...,1,¢) actingon Vx...xV
by the a-cycle which permutes cyclically the factors V of V(@
The ¢; for G are {ggCil/a}j:O..a—l,izl..r and Agw = Ag so
G |(z) = |G|(z%).

e 3.8: The ¢; for G¢ are ¢%¢; and Age = AgCV™N" and thus we
get |G*|(z) = ¢"IG| ().

o 4.9: Deg(Ryy) = trre(we)”.

e 4.25 second equality: Deg(adety«) = Ag(—1)"eg

e 4.26, first equality: Deg(det},) = (—1)"Ageka™”

e bottom of page 198: suppress the first |G|Sg(a

e last equality in proof of 5.3: suppress T'G.

e 5.4: In particular we have:

¥ Degg(a”)(1/2)".

5

eV ® = e ™ (mod @),
Agetz¥ ' © = AL 5* N (mod @),
AgaNOHNIC) = A pNOHFNTE) - (1hod P)

e 6.1(b): the polynomial in ¢

j=ec—1
H (t— jync,jW(K)\)
ec
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