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Numerical simulation of two-phase immiscible incompressible flows

in heterogeneous porous media with capillary barriers
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aDepartamento de Matemática, Universidade Federal de Santa Catarina, 88040-900, Florianópolis-SC,
Brasil

Abstract

We present a new version of the sequential discontinuous Galerkin method introduced in
[24] for two-phase immiscible incompressible flows in heterogeneous porous media with a
discontinuous capillary field. Here, a new implementation of the extended interface condi-
tion, that not uses the threshold saturation value at the interface and permits treatment of
different residual saturations in different rocks, is considered. Another novel ingredient is
the implicit treatment of the diffusion term and the non-linear interface conditions in the
saturation equation. The proposed method is validated in two-dimensional test cases and
confirms theoretically known optimal orders of convergence. The numerical experiments
demonstrate that for two-dimensional interface problems the method exhibits better perfor-
mance on moderately refined meshes, which is particularly important for multidimensional
heterogeneous problems related to realistic field studies. We consider also two heterogeneous
five-spot benchmark problems to assess the potential of the proposed method in simulations
of reservoirs with discontinuous permeability and capillary pressure fields in different types
of rock.
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1. Introduction

Numerical simulation of two-phase immiscible incompressible flows through heteroge-
neous porous media is significantly complicated by the discontinuity of capillary pressure
fields at interfaces that separate subdomains with different rock properties. In such a case,
the saturation is forced to be discontinuous at the interface to guarantee the capillary pres-
sure continuity if both phases are present on both sides of the interface; when one of the
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phases is absent, the capillary pressure can be discontinuous also owing to the difference
between the entry pressures of the different rocks. For such applications, the global pressure
and the saturation can exhibit strong discontinuities due to drastic (up to some orders) per-
meability changes and swift variations in the capillary forces. The development of numerical
methods for two-phase flows in heterogeneous porous media, which besides being compat-
ible with the non-linearity and degeneracy of the pressure and the saturation equations,
should satisfactorily deal with this discontinuity of the saturation and the global pressure is
a relevant and challenging problem.

The system of equations governing two-phase immiscible incompressible flows in porous
media, is usually considered in global pressure - fractional flow formulation, see e.g. [5, 13,
15, 30]. In such formulation the system consists of a nonlinear elliptic Darcy-type equation
for the global pressure and a nonlinear parabolic equation with degenerate diffusion term for
the saturation, which are coupled by means of the total velocity, recuperated from Darcy’s
equation. In heterogeneous porous media, capillary force discontinuities require nonlinear
interface conditions for the global pressure and the saturation, owing to which both variables
can exhibit a nonzero jump at the interface, see [42, 27, 6, 20] for a detailed discussion.

During recent decades mathematical analysis and numerical simulation of two-phase flows
in heterogeneous porous media have been the subject of investigation of many researchers
and practitioners owing to important applications in petroleum engineering and hydrology.
The well-posedness of the interface problem with nonlinear interface conditions was ana-
lyzed in [7, 2, 6, 20, 9, 11, 10, 12]. A semi-analytical similarity solution for the saturation
equation in a pure diffusion case and homogeneous media was presented in [35], [16], [36].
For heterogeneous media similarity solution to the interface problem for saturation equation
in diffusion case was obtained in [43]. Later the solution was extended in [39] to the satura-
tion equation in homogeneous medium, that includes advective term corresponding to more
general entry fluxes, and to the case of a medium with a simple heterogeneity in [40].

Many numerical schemes have been developed for two-phase flows in heterogeneous media
with discontinuous capillary forces. Finite volume schemes have been proposed in [27, 20,
10] and a convergence of the numerical solution to a weak solution to the problem was
demonstrated. A combination of a mixed finite elements method for the pressure equation
and discontinuous Galerkin (dG) for saturation equation was suggested in [37], [32].

Recently, discontinuous Galerkin methods have been effectively used for developing nu-
merical schemes for the sequential global pressure-fractional flow formulation of two-phase
flows in porous media. Local conservation properties, the potential to capture fronts sharply
and flexibility in the use of non-matching meshes in regions of different rock type are, proba-
bly, some of the most attractive features offered by dG methods for these kinds of problems.
A mathematical analysis of dG methods and implementation techniques encompassing var-
ious partial differential equations can be found in recent monographs [18, 41, 31].

Different versions of dG methods have been considered for mathematical models of flow
in homogeneous and heterogeneous media, but these do not include the discontinuity of
capillary forces, see e.g. [4], [3], [33], [28], [21]. Firstly, a sequential dG method for two
phase flows in heterogeneous porous media that includes capillary barriers at interfaces was
introduced in [24]. The method uses symmetric interior penalties dG for both pressure and
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saturation equations, in which, exploring the advantages of dG methods, the nonlinear in-
terface conditions are implemented weakly through adequate design of the symmetrization
term and penalties on interelement jumps at the interface. An effective algorithm of recon-
struction in the Raviart–Thomas(–Nédélec) finite element spaces of the conservative total
velocity from the discontinuous potential, suggested in [25, 23], was extended to the interface
problem. The diffusivity-dependent weighted averages technique [26] was used to cope with
degeneracy in the saturation equation and with global pressure and saturation discontinuity
owing heterogeneity of the media. This paper is devoted to the further development and
two-dimensional validation of the dG method, introduced in [24]. In particular, we study
two phase incompressible immiscible flows in two-dimensional domains with heterogeneous
sub-domains of complex geometry. In such a case the trapping effect can take a more com-
plicated form owing to different mobility of the fluid and different permeability of the rock
in different regions in combination with the presence of capillary barriers at interfaces.

The paper is organized as follows. In section 2 we present a short description of the
mathematical model of two-phase flow in heterogeneous porous media in the global pressure
- fractional flow formulation, introduce basics assumptions regarding the coefficients of the
equations and discuss the respective interface conditions. The formulation of the sequential
dG method for the considered interface problem is presented in section 3. Here we introduced
a new implementation of the nonlinear interface condition and redesign the dG sequential
scheme for the saturation equation, considering implicit treatment of the elliptic part of the
saturation equation and the non-linear interface condition. The efficiency and the accuracy
of the method are validated in section 4. Firstly, we analyze numerically for the two -
dimensional case the order of convergence of the weighted average symmetric dG for the
non-linear advection-diffusion equation (test case 1) and the order of convergence of the
sequential dG for a coupled system of equations (test case 2). Then, in test case 3, we
study the convergence of the numerical solution of implicit and explicit versions of the dG
method to a semi analytical solution of the interface problem for the degenerate diffusion
equation. Finally, in section 4, using the sequential dG method introduced, we consider the
numerical simulation of two phase flow in the heterogeneous five-spot problem with different
rock properties in order to demonstrate the potential of the method in realistic field studies
in two-dimensional heterogeneous problems with capillary barriers.

2. Problem formulation

Let Ω be a bounded, open, polyhedral domain in R
d, d = 2, 3 with boundary ∂Ω. Let us

suppose that the interior of Ω is a porous medium that can admit different physical charac-
teristics in different sub-domains; for simplicity we shall limit this study to considering two
subdomain only. So let us suppose that Ω is divided into two open, polyhedral subdomains
Ω(β), β = 1, 2 such that Ω = Ω(1)∪Ω(2) and Ω(1)∩Ω(2) = ∅ and let Γ := ∂Ω(1)∩∂Ω(2) denotes
the interface. Let us denote the outward normal to ∂Ω by η and the normal to Γ, oriented
outward to Ω(1), by ηΓ. In what follows, for any real function (distribution) u, defined in Ω,
we will denote its restriction to Ω(β) by u(β).

Thus, let us consider a two-phase immiscible incompressible flow in Ω where the wetting
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and the non-wetting phases are characterized by their saturation sα and phase pressure pα;
here and in the sequel we use index α = w for the wetting and α = n for the non-wetting
phase. From the saturation and pressure laws we have

sw + sn = 1, (1)

pn − pw = π(sn), (2)

where π is the capillary pressure.
Let us suppose that the porous medium in each subdomain Ω(β), β = 1, 2 has different

porosity Φ(β) and intrinsic (absolute) permeability K(β) and that (for simplicity) both quan-
tities are constant in each subdomain. In what follows we will designate by s = sn the non-
wetting phase saturation omitting also the index β when it is clear in which subdomain the
saturation is considered. We denote by s

(β)
αr the residual saturation of the phase α is the sub-

domain Ω(β) and denote by s
(β)
ne (s) = (s−s(β)nr )/(1−s

(β)
nr −s(β)wr ), s

(β)
ne : [s

(β)
nr , 1−s

(β)
wr ] → [0, 1]

the effective saturation of the non-wetting phase.
According to the Leverett model the capillary pressure (cf. [34])

π(β)(s) = σ

√
Φ(β)

K(β)
J (β)(s(β)ne (s)), (3)

where σ is the interfacial tension and J (β) : [0, 1) → R is the Leverett function. The value

P
(β)
e = σ

√
Φ(β)

K(β)J
(β)(0) is known as the entry pressure; this is the minimum pressure that is

needed for a non-wetting phase to enter a medium that is saturated by the wetting phase.
The entry pressure is particularly important for flows in heterogeneous porous media: if the
entry pressures are different on the different sides of the interface then, as is well known, cf.
[42, 20], the capillary pressure can be discontinuous across the interface and the extended
pressure condition is needed. In such a situation the saturation equation can admit solutions
describing the entrapment of the non-wetting phase in one of the subdomains, see e.g [42, 43].

Let us denote by kr
(β)
α (s) = k̂r

(β)

α (s
(β)
ne (s)) the relative permeability of the phase α in

Ω(β).

Assumption 1. In the sequel we will suppose that the following assumptions are valid for

β = 1, 2:

1. function J (β) ∈ C1[0, 1) ∩ L1(0, 1) is strictly increasing with J (β)(0) > 0, J (1)(s) 6=
J (2)(s) ∀s ∈ [0, 1) and lims→1− J

(β)(s) = +∞;

2. function k̂r
(β)

w ∈ C1[0, 1] is strictly decreasing with k̂r
(β)

w (0) = 1 and k̂r
(β)

w (1) = 0;

3. function k̂r
(β)

n ∈ C1[0, 1] is strictly increasing with k̂r
(β)

n (0) = 0 and k̂r
(β)

n (1) = 1.

Let us consider the governing equations of two-phase immiscible incompressible flows
through the heterogeneous porous medium Ω in the classical [13] global pressure/fractional
flow formulation:
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for a given simulation time T , find (p, s) that satisfies in Ω(β) × [0, T ] for each β = 1, 2
the following system of partial differential equations

−∇ ·
(
κ(β)(s)∇p

)
= F (β)

w + F (β)
n , (4)

q(β) = −κ(β)(s)∇p,

Φ(β)∂ts+∇ ·
(
−ǫ(β)(s)∇s+ q(β)f (β)

n (s)
)
= F (β)

n ,

where λ
(β)
α = kr

(β)
α /µα denotes the mobility of the phase α, µα is the viscosity of the fluid,

λ(β) = λ
(β)
w + λ

(β)
n denotes the total mobility, f

(β)
α = λ

(β)
α /λ(β) denotes the fractional flux

of the phase α, κ(β) = λ(β)K(β), ǫ(β) = λ
(β)
w f

(β)
n K(β)(π(β))′, and F

(β)
α denotes volumetric

sources or sinks of phase α in medium β. We will suppose that the diffusion coefficient in
the saturation equation and the fractional flux have the following property.

Assumption 2. Function

ǫ(β) =
kr

(β)
w kr

(β)
n (π(β))′

µnkr
(β)
w + µwkr

(β)
n

K(β)

is Lipschitz continuous and the fractional flux f
(β)
n is increasing function on [s

(β)
nr , 1−s

(β)
wr ], β =

1, 2.

The unknowns in this system are the non-wetting phase saturation s and the global
pressure, which is defined in terms of wetting or non-wetting phase pressure (see e.g [13]) as

p(β) = p(β)w + π(β)(s(β)nr ) +

∫ s

s
(β)
nr

f (β)
n (π(β))′ = p(β)n −

∫ s

s
(β)
nr

f (β)
w (π(β))′. (5)

At the interface we impose the extended interface conditions ( see e.g. [13, 42, 20] and

[24]) using different but equivalent formulation. Let us suppose, to fix ideas, that P
(1)
e < P

(2)
e

and

π(1)(s) < π(2)(s) ∀s ∈ ∩
β=1,2

[s(β)nr , 1− s(β)wr ).

Let us denote by π(β) : R → [s
(β)
nr , 1− s

(β)
wr ) the extension to R of the inverse function for π(β)

π̄(β)(p) =

{
s
(β)
nr , if p < P

(β)
e ,

(π(β))−1(p), if p ≥ P
(β)
e ,

(6)

and let us introduce the jump of saturation at the interface by

js(ξ) = ξ − π̄(2)(π(1)(ξ)), if ξ ∈ [s(1)nr , 1− s(1)wr). (7)

Note that js is continuous function in [s
(1)
nr , 1 − s

(1)
wr) and owing to the definition of the

extended inverse function π̄(β) permits define jump for different values of the residual phase
saturations s

(β)
αr in each subdomain avoiding the necessity of the rescaling, se e.g. [24].
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Differently from the definitions in cited previous publications, this definition not depends
explicitly on the threshold saturation s∗ ∈ (s

(1)
nr , 1− s

(1)
wr) such that

π(1)(s∗) = π(2)(s(2)nr ),

that exists and is unique owing to the item 1 of the Assumption 1. Nevertheless it is easy
to see that

js(ξ) =

{
ξ − s

(2)
nr , if s

(1)
nr ≤ ξ ≤ s∗,

(π(2))−1(π(1)(ξ)), if s∗ < ξ ≤ 1− s
(1)
wr ;

(8)

so this definition of the jump of the saturation exactly coincides with the one from [24], and,
consequently, with the extended interface conditions for the saturation at the interface.

Let r(β)(p, ξ; s) = −ǫ(β)(s)∇s+ q(β)(p, ξ)f
(β)
n (s) be the volumetric flux of the saturation.

The interface conditions for saturation impose the continuity of the normal component of r
at the interface (due to the mass conservation) and prescribe the jump of the saturation at
the interface to satisfy the extended pressure condition (c.f. [20, 24]):

{
r(1)(p(1), s(1); s(1)) · ηΓ = r(2)(p(2), s(2); s(2)) · ηΓ at Γ

s(1) − s(2) = js(s
(1)) at Γ.

(9)

Similarly, to define the interface condition for the global pressure, let us introduce the jump
function

jp(ξ) =





∫ ξ

s
(1)
nr

f
(1)
n (π(1))′ + P

(1)
e − P

(2)
e , if ξ ∈ [s

(1)
nr , s∗),

∫ π̄(2)(π(1)(ξ))

s
(2)
nr

f
(2)
w (π(2))′ −

∫ ξ

s
(1)
nr

f
(1)
w (π(1))′, if ξ ∈ [s∗, 1− s

(1)
wr),

(10)

which is extended by the respective constants to provide continuity in R. The interface
conditions for the global pressure are (c.f.[13],[24]):

{
q(1)(p(1), s(1)) · ηΓ = q(2)(p(2), s(2)) · ηΓ at Γ

p(1) − p(2) = jp(s
(1)) at Γ.

(11)

Here the first condition imposes the continuity of the normal component of the flux q at
the interface and the second prescribes the continuity of the wetting phase pressure, when
the non-wetting phase is absent from one side of the interface, and the continuity of the
non-wetting phase pressure, when the non-wetting phase is present in both media (c.f. [13]).
In the definitions above, the jump of the global pressure, prescribed at the interface by (10),
depends on the saturation value from one side of the interface only while its value from the
another side is calculated (exactly) from the continuity of the capillary pressure. Observe
that this formulation differs from the respective one used in [24] and provides more exact
implementation of the interface conditions for the global pressure.
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Depending on the physics of the considered model, different types of boundary conditions
can be applied at the boundary of Ω, c.f [13]; we consider here the Dirichlet and Neumann
type boundary conditions. Let us suppose that the boundary Ω is divided as ∂Ω = ∂ΩD ∪
∂ΩN , where ∂ΩD 6= ∅ has a nonzero (d− 1) - dimensional measure and ∂ΩD ∩ ∂ΩN = ∅. On
the respective parts of the boundary ∂Ω the following boundary conditions are imposed:

{
p = pD, s = sD at ∂ΩD

q(p, s) · η = 0, r(p, s; s) · η = 0 at ∂ΩN .
(12)

To close the formulation, we add the initial condition for saturation

s(β) = s
(β)
0 in Ω(β), β = 1, 2. (13)

The existence of a weak solution to the problem (4),(12),(13) under assumptions 1 and
2 was proven in [12] for the Neumann type boundary conditions.

3. The sequential dG method

3.1. Time discretization

Let {tm}0≤m≤M be a partition of time interval [0, T ] such that t0 = 0, tM = T , let
τm = tm − tm−1, m = 1, . . . ,M be the time step and let τ = max1≤m≤M τm. For any
vector space V of sufficiently smooth functions defined in Ω let us denote by U0

τ (V ) =
{u ∈ L∞((0, T ), V ) : u|(tm−1,tm) = um ∈ V } the discretisation space of L∞((0, T ), V ) in
time of order zero. Using implicit Euler timestepping, the sequential method for the time
discretisation of the system (4) is written as:

for a given s0 = s0 sequentially solve in Ω for pm, sm, m = 1, . . . ,M the following
interface elliptic boundary value problems:

−∇ ·
(
κ(β)(sm−1)∇pm

)
= (F (β)

w + F (β)
n )m in Ω(β), β = 1, 2; (14){

q(1)((p(1))m, (s(1))m−1) · ηΓ = q(2)((p(2))m, (s(2))m−1) · ηΓ at Γ

(p(1))m − (p(2))m = jp((s
(1))m−1) at Γ;

pm = pmD at ∂ΩD, q(pm, sm−1) · η = 0 at ∂ΩN .

∇ ·
(
−ǫ(β)(sm)∇sm + q(β)(pm, sm−1)f (β)

n (sm)
)
+ τ−1

m Φ(β)sm (15)

= τ−1
m Φ(β)sm−1 + (F (β)

n )m in Ω(β), β = 1, 2; (16){
r(1)((p(1))m, (s(1))m−1; (s(1))m) · ηΓ = r(2)((p(2))m, (s(2))m−1; (s(2))m) · ηΓ at Γ

(s(1))m − (s(2))m = js((s
(1))m) at Γ;

sm = smD at ∂ΩD, r(pm, sm−1; sm) · η = 0 at ∂ΩN .

Note, that in contrast to that in [24], the scheme introduced here for the saturation equa-
tion is completely implicit in time including the diffusion term and the interface boundary
condition.
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3.2. dG space discretization

Let {Th}h>0 be a family of shape-regular triangular meshes of the domain Ω ∈ R
2 (in

the sequel for simplicity we will consider the two-dimensional case only). Let hT be the
diameter of element T and h = maxT∈Th hT denotes the mesh size. Let Eh be the set of all
edges of the mesh Th and hE denotes the diameter of edge E. We will suppose that the
meshes are exactly fitted to the partition of Ω in subdomains and to the partition of ∂Ω,
corresponding to different boundary condition types; thus, we assume that Γ, ∂ΩD and ∂ΩN

are exactly covered by edges from Eh. We will denote the set of all edges covering ∂ΩD , ∂ΩN

and Γ by E∂D
h , E∂N

h and EΓ
h respectively. The set of all boundary edges will be denoted E∂

h ,
so we have E∂

h = E∂D
h ∪ E∂N

h . We say that E is an interior edge of the mesh if E has a
nonzero one-dimensional measure and if there are distinct T−, T+ ⊂ Ω(β) in Th such that
E = ∂T− ∩ ∂T+. The set of all interior edges is denoted by E i

h; so the set of all edges is
decomposed as Eh = E i

h ∪ E∂
h ∪ EΓ

h .
Consider broken Sobolev space

Hs(Th) = {u ∈ L2(Ω)|u ∈ Hs(T ) ∀T ∈ Th}

with s ≥ 0; here and in what follows we use standard notations from the Sobolev space
theory, c.f. [1]. For any real function v ∈ H

1
2 (Th) let us denote the jump of v at E ∈ E i

h∪EΓ
h

by

[[v]] := v−|E − v+|E, v± := v|T±,

and set for boundary edge E ∈ E∂
h

[[v]] = v|E.

For E ∈ E i
h, we define nE as the unit normal vector to E pointing from T− toward T+,

whereas for E ∈ E∂
h we set nE = η and for E ∈ EΓ

h we set nE = ηΓ. Note that the orientation
of nE for interior faces is chosen in accordance with the definition of the jump; in such a
case the arbitrariness in the choice of T− and T+ is irrelevant.

Let us introduce for E ∈ E i
h ∪ EΓ

h the standard arithmetic average of v at E by

{{v}} =
v−|E + v+|E

2
. (17)

To cope with the discontinuity or degeneracy of diffusion coefficients in the elliptic part of
the equations in system (4), we also introduce weighted averages as follows, c.f. [19, 26].
Consider a diffusion coefficient, say a, belonging to H(1)(Th). This coefficient can be two-
valued on E ∈ E i

h, so let us denote by aT−,E and aT+,E the values of a associated with T−

and T+ respectively.
For all E ∈ E i

h such that ‖aT−,E‖L∞(E) · ‖aT+,E‖L∞(E) 6= 0 we introduce the weights

ωT−,E(a) =
‖aT+,E‖L∞(E)

‖aT−,E‖L∞(E) + ‖aT+,E‖L∞(E)

,

ωT+,E(a) =
‖aT−,E‖L∞(E)

‖aT−,E‖L∞(E) + ‖aT+,E‖L∞(E)

, (18)
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such that ωT−,E(a) +ωT+,E(a) = 1; the weighted average (in respect of a ) of the function v
is defined as

{{v}}a = ωT−,E(a)v
− + ωT+,E(a)v

+. (19)

We also denote the harmonic mean of a at E as

〈a〉E =
2‖aT−,E‖L∞(E)‖aT+,E‖L∞(E)

‖aT−,E‖L∞(E) + ‖aT+,E‖L∞(E)

. (20)

If ‖aT−,E‖L∞(E) · ‖aT+,E‖L∞(E) = 0 at E ∈ E i
h we set {{v}}a = {{v}} and 〈a〉E = ‖a‖L∞(Ω(β))

if E ∈ Ω(β). For E ∈ EΓ
h we define {{v}}a = {{v}} and

〈a〉E =
2‖a‖L∞(Ω(1))‖a‖L∞(Ω(2))

‖a‖L∞(Ω(1)) + ‖a‖L∞(Ω(2))

. (21)

The above definitions are extended to boundary edges E by setting {{v}}a = v and
〈a〉E = ‖a‖L∞(Ω(β)) for E ⊂ ∂T, T ⊂ Ω(β).

For a given order of polynomial approximation k ≥ 0 we define the dG finite element
space V k

h as:
V k
h := {vh ∈ L2(Ω); ∀T ∈ Th, vh|T ∈ Pk(T )}, (22)

where Pk(T ) denotes the vector space of polynomials with total degree ≤ k on T . Also, let
us denote by U0

τ (V
k
h ) the respective time discretisation space.

Given sm−1
h ∈ V k

h , 1 ≤ m ≤M from the previous time step (m ≥ 1) we solve the pressure
equation (14) using the interior penalty dG method, that is, we solve for pmh ∈ V k

h such that
∀vh ∈ V k

h ,

∑

T∈Th

∫

T

κ(sm−1
h )∇pmh ·∇vh

−
∑

E∈E i
h
∪E∂D

h

∫

E

(
{{nE · κ(sm−1

h )∇pmh }}κ(sm−1
h

)[[vh]] + ϑ{{nE·κ(s
m−1
h )∇vh}}κ(sm−1

h
)[[p

m
h ]]

)

+
∑

E∈E i
h
∪E∂D

h

〈κ(sm−1
h )〉E

σEk
2

hE

∫

E

[[pmh ]][[vh]] =
∑

T∈Th

∫

T

(Fm
w + Fm

n ) vh

+
∑

E∈EΓ
h

∫

E

(
−ϑ{{nE ·κ(s

m−1
h )∇vh}}κ(sm−1

h
) + 〈κ(sm−1

h )〉E
σEk

2

hE
[[vh]]

)
jp(χ

(1)
E (sm−1

h ))

+
∑

E∈E∂D
h

∫

E

(
−ϑnE ·κ(s

m−1
h )∇vh + 〈κ(sm−1

h )〉E
σEk

2

hE
vh

)
pmD . (23)

Here the method parameter ϑ = 1 corresponds to the symmetric version and ϑ = −1
corresponds to the non-symmetric version of dG, σE is a mesh dependent parameter and for
E ∈ EΓ

h , E = T− ∩ T+ the functional χ
(1)
E on V k

h is defined by

χ
(1)
E (vh) =

{
v−h |E, if T− ⊂ Ω(1),
v+h |E, if T+ ⊂ Ω(1).

(24)
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The approximate pressure pmh has been computed in V k
h , so the normal component of

qm
h = κ(β)(sm−1)∇pm, locally defined in each element T , can not be continuous at the faces
E ∈ E i

h ∪ EΓ
h . To correct this, we use the reconstruction operator R0 : V

k
h × V k

h → RT0(Th),
introduced in [24] in more general setting, that project qh in the lowest-order Raviart-
Thomas-Nédélec finite element space

RT0(Th) = {uh ∈ H(div); ∀T ∈ Th, uh|T ∈ [P0(T )]
d + xP0(T )}. (25)

The reconstructed flux um
h = R0q

m
h has continuous normal component at all interior faces

and at the interface, that is satisfies the first interface condition in (14). Moreover, the
divergence of the reconstructed flux is optimal, i.e. the next equality is valid ∇ · um

h =
Π1

h(F
m
w + Fm

n ), where Πk
h is the L2 projector on V k

h . In the lowest-order Raviart-Thomas-
Nédélec space the local degrees of freedom of umh are easily calculated from the equations

∫

E

(um
h · nE) =

∫

E

(
−nE · {{κ(sm−1

h )∇pmh }}κ(sm−1
h

) + 〈κ(sm−1
h )〉E

σEk
2

hE
[[pmh ]]

′

)
,

∀E ∈ Eh \ E
∂N
h ;∫

E

(um
h · nE) = 0 ∀E ∈ E∂N

h ;

(26)

where [[·]]′ is define by

[[pmh ]]
′ =





[[pmh ]], se E ∈ E i
h,

[[pmh ]]− jp(χ
1
E(s

m−1
h )), se E ∈ EΓ

h ,
pmh − pD, se E ∈ E∂D

h .

Let us consider standard edge-oriented basis {ψE |E ∈ Eh} of RT0(Th) (see e.g. [22]) such
that (ψE · nE)|E′ = δE,E′ ∀E,E ′ ∈ Eh , and let um

h =
∑

E∈Eh
uh,mE ψE be the representation

of um
h with respect to this basis. Then the system (26) is recast into the diagonal system

for the unknown ψE that has the solution

uh,mE =

∫

E

(
−nE · {{κ(sm−1

h )∇pmh }}κ(sm−1
h

) + 〈κ(sm−1
h )〉E

σEk
2

hE
[[pmh ]]

′

)
,

∀E ∈ Eh \ E
∂N
h ;

uh,mE = 0 ∀E ∈ E∂N
h .

Consequently the reconstruction procedure can be performed edgewise and demands the
minimal computational effort.

Next we solve numerically the saturation equation (15) using the interior penalty dG
method for approximation of the diffusion term and the dG method with Godunov numerical
flux for the nonlinear advective term. For a given pmh ∈ V k

h and um
h ∈ RT0(Th) we solve for

10



smh ∈ V k
h such that for all zh ∈ V k

h ,

∑

T∈Th

∫

T

ǫ(smh )∇s
m
h ·∇zh

−
∑

E∈E i
h
∪E∂D

h

∫

E

(
{{nE · ǫ(smh )∇s

m
h }}ǫ(sm−1

h
)[[zh]] + ϑ{{nE · ǫ(smh )∇zh}}ǫ(sm−1

h
)[[s

m
h ]]

)

+
∑

E∈E i
h
∪E∂D

h

〈ǫ(sm−1
h )〉E

σEk
2

hE

∫

E

[[smh ]][[zh]] +
∑

T∈Th

∫

T

τ−1
m Φsmh zh

−
∑

T∈Th

∫

T

um
h fn(s

m
h )·∇zh +

∑

E∈Eh

∫

E

(um
h · nE)Ψ

m
hE[[zh]] (27)

+
∑

E∈EΓ
h

∫

E

(
ϑ{{nE · ǫ(smh )∇zh}}ǫ(sm−1

h
) − 〈ǫ(sm−1

h )〉E
σEk

2

hE
[[zh]]

)
js(χ

(1)
E (smh ))

+
∑

E∈E∂D
h

∫

E

ϑnE ·ǫ(s
m
h )∇zhs

m
D =

∑

T∈Th

∫

T

τ−1
m Φsm−1

h zh

+
∑

T∈Th

∫

T

Fm
n zh +

∑

E∈E∂D
h

∫

E

〈ǫ(sm−1
h )〉E

σEk
2

hE
zhs

m
D

The numerical flux of the Godunov type Ψm
hE is defined as

Ψm
hE =





fn(s
m,↑
h ) if E ∈ E i

h,

{{fn(smh )}} if F ∈ EΓ
h ,

fn(s
m
h ) if E ∈ E∂N

h ,

f(smD) if F ∈ E∂D
h ,

(28)

where sm,↑
h denotes the upwind value of smh .

To resolve the nonlinear system we utilize the Newton-like method using the Picard
linearization for the diffusion term and the Newton linearization for the advective term of
the saturation equation. More exactly, let {ψn}, n = 1, . . . , N = dimV k

h be a basis of V k
h

and let umh ∈ R
N be the representation of the saturation smh at a time step m with respect to

this basis. Non-linear system (27) can be rewritten as A(umh )u
m
h = f , where A is the global

stiffness matrix and f is the load vector. Let decompose A(u) = D(u) + C(u), where D
incudes the terms corresponding to the diffusion operator and the interface condition while
the terms of the advective part are collected in C. Denote by JC the Jacobian of non-linear
function C(u) = C(u)u, C : RN → R

N . The Newton-like scheme for the non-linear system
is:

for a given 1 ≤ m ≤M , i ∈ N , um,i−1
h ∈ R

N , um,0
h = um−1

h , solve for um,i
h ∈ R

N

D(um,i−1
h )um,i

h + JRN (um,i−1
h )(um,i

h − um,i−1
h ) = −C(um,i−1

h ) + f.

11



This scheme is simpler than the Newton method and is more appropriate to convection
dominated problems. In comparison with [24], where the diffusion terms and the interface
condition were linearized by freezing at the previous time step, a more robust and faster
converging solution procedure can be expected.

4. Numerical results

For numerical validation of the dG method presented in the previous section we consider
four two-dimensional test cases. The first one aims to examine the convergence order of
the dG method for a non-linear degenerate parabolic equation with linear advection. The
second one assesses the dG method in the synthetic problem for a coupled system of pressure
- saturation equation, that admits an exact solution, and investigates the effects of the
accuracy of total velocity reconstruction on the convergence order for a coupled system.
The third test case aims to analyze the accuracy of the implementation of the non-linear
interface condition using the dG penalty technique described above. In the fourth test
case we demonstrate the potential of the proposed dG method considering the numerical
simulation of the heterogeneous five-spot problem with different rock types in the presence
of capillary barriers.

In all test cases we use the symmetric version of the the sequential interior penalty dG
method. For stability of the symmetric method, the size of the penalty parameter has to
be large enough, see e.g. [18]. The minimal value of the penalty parameter depends on the
value of the constant from the inverse trace inequality and the mesh regularity; its evaluation
is a non-trivial task even for linear elliptic equation. In presented simulations we use the
value σE = 10 that was observed to be large enough to guarantee stability of the method.

The numerical simulations have been performed using developed by authors MATLAB
software package that implements discontinuous Galerkin method in two-dimensional geom-
etry in fast sparse matrix programming environment. For mesh management we use the
data structure and algorithms from iFEM MATLAB package [14] containing robust and ef-
ficient codes for unstructured simplicial grids. Standard MATLAB’s sparse matrix utilities,
including built-in backslash operator that uses UMFPACK package for sparse multifrontal
LU factorization [17], are employed for solve linear systems.

4.1. Test case 1

In Ω = (0, 1)2 consider the initial boundary value problem for the non-linear degenerate
diffusion - advection equation

∂tu+∇ · (−ǫ(u)∇u+ qf(u)) = F, (29)

u|∂Ω = 0,

u|t=0 = u0,

where f(u) = u, ǫ(u) = 2νu,q = (1, 1) and F, u0 are such that

u(x, t) = (et − 1)x1x2 tanh

(
1− x1
0.2

)
tanh

(
1− x2
0.2

)

12



is the exact solution to the problem. For ν = 0.1 we solve numerically the problem (29) at
the nested sequence of the uniform structured triangular meshes using a uniform sufficiently
small time step τ = 5×10−3 on the time interval (0, 1) to guarantee a dominance of the space
approximation error. Let uh denote the approximate solution at time t = 1, k denote the
order of polynomial approximation and h denote the diameter of the mesh. Below for orders
of approximation k = 1, 2 we present the convergence orders of the implicit dG method,
introduced for the saturation equation in Section 3 (Table 1). As the convergence criterion
in the Newton-like method we use a tolerance of 10−12 in the L2(Ω) norm. We observe
that the implicit dG method exhibits optimal orders of the convergence for the considered
approximation orders.

k h ‖u− uh‖L2(Ω) Conv. order ‖∇u−∇huh‖L2(Ω) Conv. order
0.35 3.5472e-2 7.8450e-1

1 0.18 1.0587e-2 1.7444 4.4422e-1 0.8205
0.088 2.5152e-3 2.0735 2.2333e-1 0.9921
0.044 6.1060e-4 2.0424 1.1017e-1 1.0194
0.35 6.8491e-3 2.4800e-1

2 0.18 1.0655e-3 2.6844 6.6036e-2 1.9090
0.088 1.4240e-4 2.9035 1.6112e-2 2.0351
0.044 1.8343e-5 2.9566 4.0417e-3 1.9951

Table 1: Implicit dG method: errors and convergence orders at t = 1 for test case 1.

4.2. Test case 2

Following [38], consider in Ω = (0, 1)2 the benchmark problem given below:

∇ · (κ(s)∇p) = 0, (30)

q = κ(s)∇p,

∂ts +∇ · (−ǫ∇s + qf(s)) = F,

with κ(s) = (0.5−0.2s)−1, ǫ = 0.01, f(s) = s, where F = 2π2ǫ sin(π(x1+x2−2t)), boundary
and initial conditions correspond to the exact solution

p =
0.2

π
cos(π(x1 + x2 − 2t)) + 0.5(x1 + x2),

s = sin(π(x1 + x2 − 2t)).

In Tables 2 and 3 the errors and convergence orders of first order dG, calculated on
nested sequences of structured triangular meshes, are presented for pressure, total velocity
and saturation at final time T = 0.2. In the simulation a small uniform time step was used
to eliminate time error pollution. We can observe that the convergence order is optimal for
all three variables.
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h ‖p− ph‖L2 Conv.ord. ‖∇p−∇hph‖L2 Conv.ord. ‖q− qh‖L2×L2 Conv.ord.
0.35 3.4454e-3 2.0182 6.3955e-2 1.1928 2.5046e-2 1.8927
0.18 9.0223e-4 1.9331 3.2005e-2 0.9988 6.3191e-3 1.9868
0.088 2.2732e-4 1.9888 1.5934e-2 1.0062 1.5999e-3 1.9817
0.044 5.7361e-5 1.9866 7.9442e-3 1.0041 4.2322e-4 1.9185

Table 2: Errors and convergence orders of dG method for pressure and reconstructed total velocity at
T = 0.2 for first order of approximation; τ = 3.1250× 10−5 was used, which corresponds to 6400 time steps.

h ‖s− sh‖L(2) Conv. ord. ‖∇s−∇hsh‖L(2) Conv. ord.
0.35 4.0669e-2 1.7523 1.0058e+0 0.5907
0.18 9.8238e-3 2.0496 5.0519e-1 0.9934
0.088 2.3300e-3 2.0760 2.4628e-1 1.0365
0.044 5.6721e-4 2.0384 1.1982e-1 1.0394

Table 3: Errors and convergence orders of dG method for saturation at T = 0.2 for first order of approxi-
mation; τ = 3.1250× 10−5 was used, which corresponds to 6400 time steps

4.3. Test case 3

Here we consider the two-dimensional extension of the interface problem, for which a one
dimensional quasi analytical solution is available [43]. Consider the domain Ω = (−0.6, 0.6)2

divided into the two subdomains Ω(1) = (−0.6, 0)× (−0.6, 0.6), Ω(2) = (0, 0.6)× (−0.6, 0.6)
by interface Γ = {(0, y) : y ∈ (−0.6, 06)}. The evolution problem for the degenerate
parabolic equation is

Φβ∂ts
β −∇

(
ǫβ(sβ)∇sβ

)
= 0, (x, y, t) ∈ Ω(β) × (0, T ), β ∈ {1, 2},

s(−0.6, y, t) = 0, s(0.6, y, t) = 1, y ∈ (−0.6, 06), t ∈ (0, T ),

∂ys(x,−0.6, t) = ∂ys(x, 0.6, t) = 0, x ∈ (−0.6, 06), t ∈ (0, T ),

ǫ(1)(s(1))∂xs
(1)|Γ = ǫ(2)(s(2))∂xs

(2)|Γ, [[s]]|Γ = js(s
(1)), t ∈ (0, T )

s(x, y, 0) =

{
0 if x ∈ (−0.6, 0),

1 if x ∈ (0, 0.6).

(31)

We use the Brooks-Corey model [5] for relative permeability and capillary pressure

kr(β)w = (1− s(β)ne )
(2+3θ(β))/θ(β)

,

kr(β)n = (s(β)ne )
2(1− (1− s(β)ne )

(2+θ(β))/θ(β)

),

π = P (β)
e (1− s(β)ne )

−1/θ(β)

,

with entry pressure P
(β)
e = (Φ(β)/K(β))1/2. The parameters values for the porous medium

corresponding to example in [43] are presented in Table 4, where the columns contain two
values, one for each subdomain. Here we consider two test cases TC3a and TC3b; in both
of them the porous medium occupying the subdomain Ω(2) has a finer texture while the

14



jump of the permeability at the interface is larger in TC3b. In both test cases we consider
µw = µn = 1. Note, that owing to the different values of the jump of the permeability in
considered test cases, the solution exhibits different type of discontinuity at the interface
for t = 1, see Figures 1 and 2. In the first test case the threshold saturation is s∗ ≈ 0.36
and s(1) ≈ 0.58 > s∗, so the capillary pressure is continuous at the interface, see (8). In the
second one s∗ ≈ 0.75 and s(1) ≈ 0.54 < s∗, so the capillary pressure is discontinuous at the
interface.

Porous medium
Par. Value Par. Value
Φ (1, 1) θ (2, 2)
K (1, 0.64) (TC3a) snr (0, 0)
K (1, 0.25) (TC3b) swr (0, 0)

Table 4: Parameter values for the porous medium used in test case 3a and 3b.

Below we present examples of two numerical experiments for test case 3a and test case 3b
respectively. For the simulation time t = 1 we compare the restriction to y = 0 of the numer-
ical two-dimensional solution, calculated by the present method, with the one-dimensional
self-similar solution from [43] for different mesh sizes, time steps and polynomial orders of
approximation. In absence of the adjective term, Newton-like method, used for solution of
the non-linear system, reduces to the fixed point (Picard) iteration (dGfp). The objective
of this test is to study the efficiency of the dG method with fixed point iteration (dGfp) in
resolving the non-linearity of the diffusion term and interface condition in comparison with
the linearization from the previous time step (dGl) used in [24].

Figures 1 and 2 present the results for test cases 3a and 3b, respectively, where fol-
lowing [43], we plot the wetting phase saturation profiles. Mesh parameters and order of
approximation are indicated in figure captions, the stopping error 10−4 in the L2(Ω) norm
was used in the Picard iteration. The approximate solution converges to the exact solution in
all cases, but the implicit dGfp method converges faster even on moderately refined meshes
while the dGl method still exhibits a visible error even on the finest mesh. Although the
discontinuity of the saturation at the interface seems to be well captured by both methods,
the delay of the saturation front of the approximate solution of the dGl method could be
caused by imposing the value of the saturation jump on the interface from the previous time
step.

4.4. Heterogeneous five-spot problem

In this test case we consider the heterogeneous five-spot problem with the geometric
configuration presented in the Figure 3(a). The domain is divided into two subdomains
Ω(2) = (93.75, 206.25)×(93.75, 206.25) and Ω(1) = Ω\Ω̄(2) with the porous medium properties
defined in Table 5 for two test cases TC4a and TC4b respectively. Here the Brooks-Corey
model [5] is used for relative permeability and capillary pressure. We consider an oil as
the non-wetting fluid with viscosity µn = 0.01 kg/m s and water as the wetting fluid with
viscosity µw = 0.001 kg/m s. Initially the oil blob is placed in Ωoil (see Figure 3(b)) while
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Figure 1: Test case 3a. Wetting phase saturation calculated in space U0
τi
(V 1

hi
) with τ1 = 5 × 10−2, h1 =

9.5 × 10−2, τ2 = 2.5 × 10−2, h2 = 5.4 × 10−2, τ3 = 1.25 × 10−2, h3 = 3.2 × 10−2 (first line, from left to
right) and in space U0

τi
(V 2

hi
) with τ1 = 2.5× 10−2, h1 = 9.5× 10−2, τ2 = 1.25× 10−2, h2 = 5.4× 10−2, τ3 =

6.25× 10−3, h3 = 3.2× 10−2 (second line, from left to right) using the dGl and dGfp methods in comparison
with the similarity solution from [43].

the rest of Ω is saturated by water. Water is injected along the boundary ∂Ω− and fluid is
pushed out through the boundary ∂Ω+; no flow boundary condition is assumed on the rest
of the boundary. Thus, the boundary and initial conditions are given by

−η · q(1)
n |∂Ω− = 0, −η · q(1)

w |∂Ω− = 7× 10−6m/s;

p|∂Ω+ = 1.16× 105 Pa, s|∂Ω+ = 0;

−η · q(1)|∂ΩN
= 0, −η · q(1)

w |∂ΩN
= 0;

s0(x, y, 0) =

{
0.8 if(x, y) ∈ Ωoil,

0 otherwise.

Here q
(β)
α = −κ(β)∇pα denotes volumetric flux of the phase α in Ω(β) and the global pressure

prescribed at Ω+ corresponds to the wetting pressure value pw = 105 Pa. The objective
of these two tests is to study the propagation of the oil blobs in the heterogeneous domain
with different capillary pressure forces.

For the simulation we generate two non-uniform triangular meshes T (a)
h and T (b)

h for test
cases 4a and 4b respectively; both meshes are presented in Figure 4. The quality of the

16



−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

S
w

 

 

Similarity solution

U0
τ

1

(V1
h

1

), dGl

U0
τ

1

(V1
h

1

), dGfp

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

S
w

 

 

Similarity solution

U0
τ

2

(V1
h

2

), dGl

U0
τ

2

(V1
h

2

), dGfp

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

S
w

 

 

Similarity solution

U0
τ

3

(V1
h

3

), dGl

U0
τ

3

(V1
h

3

), dGfp

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

S
w

 

 

Similarity solution

U0
τ

1

(V2
h

1

), dGl

U0
τ

1

(V2
h

1

), dGfp

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

S
w

 

 

Similarity solution

U0
τ

2

(V2
h

2

), dGl

U0
τ

2

(V2
h

2

), dGfp

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x
S

w

 

 

Similarity solution

U0
τ

3

(V2
h

3

), dGl

U0
τ

3

(V2
h

3

), dGfp

Figure 2: Test case 3b. Wetting phase saturation calculated in space U0
τi
(V 1

hi
) with τ1 = 5 × 10−2, h1 =

9.5 × 10−2, τ2 = 2.5 × 10−2, h2 = 5.4 × 10−2, τ3 = 1.25 × 10−2, h3 = 3.2 × 10−2 (first line, from left to
right) and in space U0

τi
(V 2

hi
) with τ1 = 2.5× 10−2, h1 = 9.5× 10−2, τ2 = 1.25× 10−2, h2 = 5.4× 10−2, τ3 =

6.25× 10−3, h3 = 3.2× 10−2 (second line, from left to right) using the dGl and dGfp methods in comparison
with the similarity solution from [43].

mesh Th is evaluated as (see e.g. [29])

q̄(Th) =
1

#(Th)

∑

T∈Th

q(T ), q(T ) = 2
ρ(T )

r(T )
,

where ρ(T ) is the radius of the inscribed circle and r(T ) is the radius of the circumscribed
circle; note that an equilateral triangle T has q(T ) = 1. For the meshes considered we have

q̄(T (a)
h ) = q̄(T (b)

h ) = 0.95. Below in Figures 5-6 we present the results of the simulations
for test case TC4a and TC4b respectively. We use the implicit sequential dG method
described above with the first order of approximation for the pressure and the saturation
and with total velocity reconstruction in the lowest-order Raviart-Thomas-Nédélec finite
element space. The stopping error in the Newton-like method is 10−8 in the L2(Ω) norm.
The additional isotropic diffusion stabilization in the saturation equation (see [8]) was used
to remedy overshoots or undershoots near sharp fronts (interface).

In test case 4a (Figure 5) initially the oil is pushed by the water in the diagonal direction
until reaching the interface at time t ≈ 70 days. Next oil preferentially enters Ω(2) which
has higher permeability through the inflow part of the interface stimulated by a ”sucking”
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effect owing to a difference in the entry pressures as observed from the respective vector
plots of the total velocity field. At approximately 350 days oil arrives at the outflow part of
the interface and is stopped here while the saturation reaches threshold saturation s∗ = 0.6
at t ≈ 725 days firstly in the bottom right corner of Ω(2). Next the oil crosses the interface
and enters Ω(1) forming the ”finger” in the diagonal direction; the oil front in Ω(1) that get
around Ω(2) is delayed owing to a lower permeability of the rock and the finger reaches the
production well at t ≈ 1800 days.

In test case 4b, in contrast to the previous test case, Ω(2) is less permeable and has a
higher entry pressure, so when the oil reaches the interface at t ≈ 2 days, it preferentially gets
around Ω(2) since to enter in this sub-domain the pressure must surpass the entry pressure.
When this occurs at t ≈ 60 days, only small fraction of the oil enters Ω(2). At t ≈ 950 days
the oil completely turn out Ω(2) and reaches the production well at t ≈ 2970 days.

From this test case we can conclude that contrast discontinuous permeability and cap-
illary pressure barriers, depending on geometry of heterogeneities in simulated petroleum
reservoir, can significantly influence on the secondary oil recovery process, in particular on
the arrival time.

Test Case 4a Test Case 4b
Par. Value Par. Value
Φ (0.2, 0.2) (-) Φ (0.2, 0.2) (-)
K (10−12, 10−10) m(2) K (10−10, 10−11) m(2)

Pe (1.58× 104, 1× 104) Pa Pe (1× 104, 1.58× 104) Pa
θ (2, 2) (-) θ (2, 2) (-)
snr (0, 0) (-) snr (0, 0) (-)
swr (0, 0) (-) swr (0, 0) (-)

Table 5: Parameter values for the porous medium used in test case 4.
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Figure 3: (a)Heterogeneous five-spot geometry. (b) Initial position of the boil of oil.
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Figure 5: Saturation, global pressure and total velocity for test case 4a calculated on mesh q(T
(a)
h

). First
line: t = 70 days, τ = 0.27 days; second line: t = 350 days, τ = 0.62 days; third line: t = 725 days, τ = 0.72
days and fourth line: t = 1800 days, τ = 0.7 days.
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Figure 6: Saturation, global pressure and total velocity for test case 4b calculated on mesh q(T
(b)
h

). First
line: t = 2 days, τ = 0.12 days, second line: t = 60 days, τ = 0.74 days; third line: t = 950 days, τ = 6 days
and fourth line: t = 2970 days, τ = 10 days.
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