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Abstract 

 
The physical model considered in the present numerical work is a square air-filled cavity 

cooled from below and above, with a heated square body located at the cavity center. The aim is 

to establish the effects of radiation interchanges amongst surfaces on the transition from steady, 

symmetric flows about the cavity centerline to complex periodic flows. Owing to the low 

temperature differences involved (1 K ≤ ∆T ≤ 5 K), the two-dimensional model is based on the 

Boussinesq approximation and constant thermophysical fluid properties at room temperature. 

The cavity walls are assumed grey and diffuse. The flow structure is investigated for various 

Rayleigh numbers, emissivities of the wall surfaces and sizes of the inner body. The results 

clearly establish the influence of surface radiation, both for steady and unsteady flows. For the 

geometry and thermal boundary conditions considered, the Rayleigh number for the transition to 

unsteady flows is considerably increased under the influence of radiation. This work underlines 

the difficulties in comparing experimental data and numerical solutions for gas-filled cavities 

partly subjected to wall heat flux boundary conditions. 
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Nomenclature 

A            aspect ratio of the inner body, A = W/L 

B            dimensionless radiosity 

k            fluid thermal conductivity (W/m K) 

L             length of the cavity side-walls (m) 

Nr            radiation number 

Nu           Nusselt number 

P             dimensionless motion pressure 

Pr            Prandtl number, Pr = ν/α 

qr,i           net dimensionless radiative heat flux along surface “i” 

RaL         cavity Rayleigh number, RaL = gβ∆TL
3
/αν 

Rat           top Rayleigh number, Rat = A
3
RaL  

t               dimensionless time 

T              temperature (K) 

T0            reference temperature, T0 = (Th + Tc)/2 (K) 

V             dimensionless velocity vector 

W            length of the sides of the inner body (m) 

(x, y, z)    Cartesian coordinates with the origin at cavity center. 

Greeks 

α                 thermal diffusivity (m
2
/s) 

ε                 emissivity 

∆T              temperature difference, ∆T = Th – Tc (K) 

η                 temperature ratio, η = T/T0 

ψ                dimensionless streamfunction  

ρ                 density (kg/m
3
) 

σ                 Stefan-Boltzmann constant (W/m
2
K

4
) 

θ                dimensionless temperature difference 

Subscripts 

c                cold wall 

cv              convection 

h                hot wall 

r                 radiation 

s                side wall 

Superscripts 

*                dimensional quantity 

http://ees.elsevier.com/ate/viewRCResults.aspx?pdf=1&docID=6127&rev=1&fileID=131226&msid={08371582-6130-475D-8A02-D891CD4E3595}
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1. Introduction 

In this paper, the results of a numerical study of combined natural convection and surface 

radiation from an inner body enclosed in a cavity are reported. Relevant to the present work are 

engineering applications such as electronic cooling, manufacturing processes, building energy 

components … in which natural convection heat transfer between a gas-filled enclosure and 

inner bodies occurs. Considerable research has been performed for fully partitioned cavities or 

obstructions in the form of partial baffles centered vertically in a vertical enclosure and, for 

various shaped obstructions located within a rectangular cavity because the obstructions may 

increase as well as decrease the heat transfer. For tall cavities with multiple partitions, the 

numerical study by Rabhi et al. [1] demonstrates the effects of surface radiation on the overall 

thermal resistance of partitioned cavities. 

    Relevant to the geometry investigated in the present study are the work by House et al. [2] 

who considered the influence of a centered square obstruction in a differentially heated cavity, 

and those by Deng and Tang [3], Ha et al. [4] and Lee et al. [5,6]. More recently Bouafia and 

Daube [7] reconsidered this class of problem by using the low Mach number approximation 

[8] for large temperature differences between a heated body within a rectangular cavity with 

cold vertical walls and insulated horizontal walls. This approximation allows to take density 

variations into account in all terms of the conservation equations, and it based on a pressure 

decomposition into a leading term, assumed spatially uniform, and a second-order, fluctuating 

term. 

Studies on combined natural convection and surface radiation from heated body inside a 

cavity are more scarse (for an overview of recent references, see Bouali et al. [9], Lauriat and 

Desrayaud [10], Mezrhab et al. [11]) while the interaction of natural convection and radiation in 

participating media was the purpose of many studies (see Colomer et al. [12], for example). The 

paper by Mezrhab et al. [13] may be considered as the most related study to the present work. 

They considered a differentially-heated cavity of square cross-section containing a conducting, 

centered square body. Amongst the conclusions drawn for this particular configuration, the effect 

of the inner body on the flow field and heat transfer was shown much important when surface 

radiation exchanges were taken into account. In the range of Rayleigh number considered, it is 

also shown that radiation augments the fluid velocities in comparison with those obtained for an 

empty cavity. It what follows, it will be shown that surface radiation has opposite effects for the 

boundary conditions considered herein, and on the stability properties of the flow.  
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There is still lacking information about the influence of radiation exchanges between surfaces, 

even when considering the simplest model based on gray, diffuse surfaces. For example, 

although many experimental, numerical and theoretical works are available in the archival 

literature, some questions remain open, in particular the relevance in comparisons between 

experimental data and numerical simulations when the experiments are conducted for gas-filled 

cavities (generally air at an average temperature close to room temperature). Up-to-date flow 

visualization techniques are widely used (Cesini et al. [14], Leplat et al. [15]), but the 

requirements are generally that two parallel walls should be transparent to laser beams in order to 

allow optical access to the cavity. Except for small scale experimental set-up for which glasses 

having high infra-red (I.R.) transmittance can be used (such as KRS-5 or KBr crystal material), 

the experiments are often conducted by using common glass window or polycarbonate sheets, 

opaque at I.R. wavelengths corresponding to room temperature. As it is well known, these 

materials have also a high emissivity (close to one) for this wavelength domain. Therefore, 

owing to the low temperature differences involved in many experimental work (typically of the 

order of 10 K around ambient temperature in air-filled cavities), it was assumed that radiation 

exchanges amongst the walls have a negligible influence on the flow and temperature fields. 

Such an assumption may be justified if a great care is taken during both designs of the 

experimental set-up and measurements. Unfortunately, experiments are still conducted to 

determine routes to chaos (bifurcation phenomena) or to validate direct numerical simulations 

(DNS) of weakly turbulent flows without taking into account the right boundary conditions at the 

semi-transparent walls and, consequently, the effects of surface radiation on the critical 

parameters. 

The purpose of this investigation is to emphasize the effect of radiation exchanges amongst 

surfaces on the stability properties of natural convection flows around an inner body. To this end, 

a numerical analysis is performed for natural convection from a single horizontal, heated solid 

body of square section immersed at the center of an air-filled cavity of square cross section, as 

shown schematically in Fig.1. The solid body is assumed at uniform hot temperature, Th, close to 

ambient temperature (300 K). The vertical side walls are adiabatic while the lower and upper 

horizontal walls are isothermally cooled at a temperature Tc, not very different from Th. We are 

particularly interested in the flow transitions (or bifurcations) which occur when the Rayleigh 

number is increased through increases in the temperature difference between the inner body and 

the cold horizontal surfaces (ΔT = Th –Tc) within the range [1 K, 5 K] for a square cavity whose 

side length is L = 10 cm, containing a body having a side length W ranging from W = 2 cm to W 

= 8 cm, as in the experiments conducted recently by Ménard [16] and Leplat [17]. Since the 
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study concerns an air-filled cavity, the Rayleigh number based on L and on physical properties of 

air at 298.15 K is very close to RaL = 10
5
 ΔT.  

The influence of radiation exchanges amongst the surfaces on the flow field originates in the 

thermal boundary conditions applied at the vertical side walls. By assuming the side-walls as 

isothermal, radiation has no effect on the flow structure. On the other hand, noticeable interaction 

between convection and radiation arises if heat flux boundary conditions are applied at some 

parts of the cavity walls, while the emissivities of the surfaces are not close to zero. In order to 

reduce the heat losses at the non isothermal parts of the walls, most of the experimental set-ups 

were designed such that the non-isothermal walls may be assumed as adiabatic, so that the 

number of parameters involved is reduced. Unfortunately, the adiabatic conditions are the worst 

for experimental studies of natural convection in gas-filled cavities when the emissivities of the 

thermally insulated surfaces are high. 

The present study being restricted to two-dimensional flows, the Rayleigh number should not 

be too high in order that this assumption may be assumed valid, as in Boufia and Daube [7]. For 

RaL much higher than the supercritical value corresponding to the geometric configuration 

investigated, the experimental and numerical results by Leplat [17, 18] for A = W/L = 0.4 and 

ΔT ≈ 9.6 K show indeed that complex 3D flows develop. We believe that the effect of surface 

radiation would be similar to those discussed in the present study because larger temperature 

differences imply also larger effects of radiation on the topology of chaotic flows. A 

comprehensive study of such flows is beyond the scope of the present work. 

 

2. Governing equations 

The dimensions of the box and of the heated inner solid body and, the temperature difference 

are such that the flows generated are assumed two-dimensional, incompressible, laminar and that 

the Boussinesq approximation can be applied with constant fluid properties. The surfaces are 

supposed to be gray and diffuse and, separated by a radiatively nonparticipating medium. The net 

radiative heat flux distributions are calculated by using the well-known radiosity-irradiation 

method [19, 20]. The governing equations can be written in dimensionless form as  

0 .V                                                                                                                                    (1) 

2Pr PrLP Ra
t




      
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                                                                       (2) 
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The above equations were cast in dimensionless form by scaling length, time, velocity, pressure 

and temperature difference (T – T0) by L, L
2
/α, V0 = α/L, ρV0

2
 and ΔT. Therefore, the 

dimensionless variables in the above equations are defined as 
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where superscript « * » stands for dimensional quantities. 

For the boundary conditions, no-slip velocity conditions are applied at the boundaries. When 

radiative interchanges among surfaces are accounted for, the thermal boundary conditions at the 

adiabatic walls must include the contribution of the net radiative heat flux. The net radiative heat 

flux distributions are axially symmetric provided that the flow is also axially symmetric. 

Otherwise, the radiosity distributions being dependent on the wall temperature profiles, 

dissymmetry in the flow field implies different radiative heat flux distributions at the vertical 

walls. In what follows, the scale for the radiative flux and radiosity is σT0
4
. The net radiative flux 

density along the surfaces of the diffuse-gray and opaque, vertical walls is written in the 

following dimensionless form: 

,

1

( ) ( , )
j

N

r i i j j
S

j

q B B K dS


  j i jr r r                                                                           (5) 

where Bi(ri) is the dimensionless radiosity along surface Si : 
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where ηi = T/T0 is the dimensionless temperature used for non-dimensionalizing the radiation 

part of the problem. The position vectors ri and rj denote the locations of elementary surfaces 

dSi and dSj on surfaces Si and Sj. The kernel function K is defined as 

j

dSdS

dS

dF
K

ji
),( ji rr          (7) 

where dFdSi-dSj is the elementary view factor between dSi and dSj [20]. The N surfaces involved 

are the four walls of the cavity and the four sides of the inner body (i.e. N = 8).  

The thermal boundary conditions are: 
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θ= 0.5 at the inner body surface                                                                                             (8a) 

θ= -0.5 at the bottom and top horizontal surfaces at y=-0.5 and 0.5                                     (8b) 

, ( )

i

r r i i

y

N q y
x





 at the adiabatic cavity side walls at x=-0.5 and 0.5                                      (8c) 

where Nr = σT0
4 

L/kΔT is the radiation number. Whatever the Nr-value, the radiation effects may 

be discarded provided that the wall emissivity is very small. 

The local Nusselt number along the walls is defined as: 

,( ) . ( )

( ) ( )

i i i r r i i

cv i r i

Nu N q

Nu Nu

   

 

r n r

r r
                                                                                                       (9) 

where ni is the outward unit normal to wall “i”. Nucv and Nur are the local convective and 

radiative Nusselt number, respectively. The average Nusselt number along a side wall is obtained 

by integration along the wall.  

 

3. Numerical methods 

Calculations were carried-out using the control volume code ANSYS FLUENT (Ansys Fluent 

12 User’Guide [21]). Results of the simulations were collected and processed by employing in-

house softwares.  

Collocated, rectangular, structured and weakly non-uniform grids were used on account of the 

expected flow structures. The Quadratic Upwind Interpolation for Convective Kinematics 

scheme (QUICK) was used for the advective and transport terms in order to compute third-order 

truncation error of the convected variables [22]. The velocity-pressure coupling was solved with 

the Pressure-Implicit with Splitting of Operators algorithm (PISO [23]) since transient 

computations were carried out, and the pressure was calculated with a body-force weighted 

scheme which is well adapted for natural convection flows.  

The governing equations were solved either in their transient form, sequentially, with a second-

order decoupled implicit scheme (segregated solver) or using the implicit coupled scheme for 

purely steady approaches. In both cases, the implicit treatment of the equations was achieved 

using an iterative solver with a convergence criterion of 10
-6

 and 10
-10

 for unsteady and steady 

problems, respectively. The radiation fluxes were updated once every 10 iterations of the 

iterative solver ensuring the implicit coupling of all the variables and the radiosity field was 
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assumed converged when its maximum normalized changes from one sweep to the next was less 

than 10
-6

. 

Validations of the results for pure natural convection flows were carried out by comparison of 

our results with those reported in Leplat [16]. A mesh study for uniform grids was also 

conducted using a steady approach and the dependences of the wall heat fluxes on the grid 

resolution are reported in Table 1. Comparison of these results with those obtained with a 

150×150 weakly non-uniform grid (see Tab. 2 for εc = εs =0) shows a good agreement and 

justifies the use of this latter mesh which presents a good compromise between accuracy and 

computational loads. 

The computational costs depend strongly on the flow regime. For steady flows, at RaL ≤ 2.10
5
 

for pure natural convection with a 150×150 grid, for example, the CPU-time is about 2900 s to 

reach convergence on a workstation with a mono-processor (2.8GHz) and 4GB of RAM. With 

radiation taken into account, the CPU-time is increased up to about 3500 s. For unsteady flows, 

one thousand time-steps requires about 7 hours for pure natural convection and more than 8 

hours with radiation 

4. Results 

All the computations were carried out for a square cavity of L = 10 cm side-length, containing 

a centered, square body made in aluminum, having a side length ranging from W = 2 cm to W = 

8 cm. The average temperature of air was kept fixed at T0 = 298.15 K (α = 2.15 10
-5

 m
2
/s, Pr = 

0.71). The temperature difference between the hot inner body and the cold horizontal surfaces 

(ΔT = Th – Tc) was varying between 2 K and 4 K. The emissivity of the inner body surface was 

εh =0.05 for all of the cases investigated. The reference heat flux used for the dimensionless heat 

flux is thus qref = 0.2607 ΔT (W/m
2
) and the radiation number is Nr = 1718/ΔT. 

4.1. Case A = 0.4: steady flows  

In that case, the flow is stable up to a Rayleigh number very close to Rac = 2.10
5
 (i.e. ΔT ≈2 

K) when neglecting radiant interchanges among the surfaces. Below this Rayleigh number, the 

flow is steady and symmetric about the vertical centerline of the cavity (reflection symmetry, 

Boufia and Daube [7]). 

4.1.1. Pure natural convection 

The isothermal patterns and streamlines displayed in Fig. 2a for RaL = 2.10
5 

 and A = 0.4 show 

that the flow structure consists in two symmetric, counter-rotating, Rayleigh-Bénard type cells at 

the upper part of the cavity delimited by two large cells rotating in opposite directions along the 
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vertical walls (clockwise at the right-hand side). These side-cells extend up and penetrate into the 

thermally stratified fluid layer below the inner body. For this case, the Rayleigh numbers based 

on the distance between the cavity and inner solid walls (e = 3 cm) are Rat = 5400 for the bottom 

and upper parts of the cavity. Therefore, Rat being larger than 1708, potentially unstable flows 

occur within the horizontal upper part of the cavity (note that Rat = 1708 for ΔT =0.63 K). From 

our computations and those reported in Leplat [17], the flow undergoes a bifurcation leading to a 

periodic motion as it will be discussed in the next section. About the fluid layers along the 

vertical sides, the effective Rayleigh numbers, Ras, could be evaluated from a characteristic 

temperature difference ΔTs = Th –Tside, where Tside is the average temperature of the parts A”B” 

or C”D” (see Fig. 1) of the adiabatic walls facing the inner body (Ras = 2700 ΔTs). These parts 

being obviously the hottest parts of the side walls, Ras is smaller than Rat as can be seen in Fig. 3 

from which it is found that Ras ≈ 2295 (ΔTs ≈ 0.85 K) when neglecting surface-to-surface 

radiation exchanges (εc = εs = εh = 0). 

4.1.2. Effects of surface radiation 

The effects of radiation were considered for four cases: first, the asymptotic case of four black 

surfaces of the cavity (εc = εs = 1). This case corresponds to the emissivities of the wall surfaces 

in the experimental set-up used in Ménard [16] and Leplat [17], i.e. black cold horizontal walls, 

side walls made of double-glazing windows. Second, the isothermal, cold horizontal surfaces 

made in copper could have been polished instead of being painted in black. In that case, we 

assumed that their emissivities could be close to εc = 0.05 while double-glazing windows are still 

used to allow flow visualization (εs = 1). Third, we considered that the four side walls have the 

same emissivity εc = εs = 0.05 (insulated vertical walls covered with aluminum sheets, for 

example). Fourth, we assumed that the four cavity walls were slightly oxidized (εc = εs = 0.1). 

The averaged convective Nusselt numbers at the various surfaces shown in Fig.1 are reported in 

Table 2 for these four cases. Due to space limitation, the streamlines and isothermal patterns are 

plotted in Fig. 2b and 2c for the cases (εc = 0.05, εs = 1) and (εc = εs = 1) only. 

Comparisons between Figs. 2a (pure natural convection) and 2b shows a rather small effect of 

radiation exchanges on the flow field, and effects of radiation restricted to small fluid layers 

along the vertical adiabatic walls where the impingements of the isotherms are not perpendicular 

to the black surfaces. The largest effects of radiation are seen at the bottom part of the cavity 

where the thermal stratification differs. However, these effects of radiation may be assumed to 

have a small influence on the main flow circulations, and thus on the bifurcation path to unsteady 
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flows. The reason is that the temperature distribution along the vertical walls does not differ 

much from that for pure natural convection, as can be seen in Fig. 3.  

When the cold horizontal walls are recovered with a black paint (εc = 1), a comparison between 

Fig. 2a (no radiation) and 2c shows that the fluid recirculations in the vertical side layers are 

noticeably increased (about 30%). The explanation can be found in the decrease in the adiabatic 

wall temperatures, as can be seen in Fig. 3. It is found that Ras increases then up to 4185 due to 

the reduction of about 1.3 K in the mean temperature of segment A”B”. Since the emissivity of 

the hot inner body is very small (εh = 0.05), the heating of the adiabatic walls by radiation is 

insignificant. On the other hand, the view factors between the horizontal cold surfaces and the 

vertical wall surfaces being quite large (Fc,a ≈ 0.46 as a rough approximation) due to the 

relatively small size of the inner body, the radiation exchanges between the vertical sides and the 

cold horizontal surfaces lead to significant decreases in the temperatures of the adiabatic walls. 

Radiation has a rather weak effect on the Rayleigh-Bénard cells because the two horizontal, top 

surfaces BC and B’C’ are isothermal. 

Finally, since the effect of the radiation exchanges amongst the cold and adiabatic surfaces are to 

decrease the adiabatic surfaces temperature, it could be assumed that the case of a cavity with 

four cold walls at Tc = 297.15 K is an asymptotic configuration. In that case, surface radiation 

has no effect. Through comparisons between Fig. 2a, 2c and 2d, it can be deduced that the flow 

structure predicted for isothermal, cold vertical walls (Fig. 2d) is closer to the experimental 

conditions than that for pure natural convection in a cavity with two adiabatic, non-radiating 

vertical surfaces (Fig. 2a). The values of the convective Nusselt number at the surfaces of the 

inner body, reported in Table 2, support this observation. The stabilizing influence of radiation 

can be indeed exemplified by the increase in the fluid recirculations produced within the vertical 

layers which, in turn, leads to higher convective heat flux at surfaces A’B’ and C’D’. 

The increases in fluid recirculations along the side walls caused by radiation can be 

depicted by the variation of the maximum value of the streamfunction (Fig. 4). It was found 

that the flow rate increases almost linearly with the emissivity according to the smoothed law: 

ψmax = 1.464 + 0.339 ε                   for A = 0.4, ε = εc = εs and RaL = 3.10
5 

 

 

The question is whether two-dimensionality of the flow field may be invoked. In order to check 

this assumption, 3D simulations were carried out for a 18 cm-depth cavity, i.e. the length of the 

experimental set-up in [17]. Isothermal patterns are displayed in Fig. 5a for pure natural 
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convection and in Fig. 5b in the case of four black walls. These patterns for the middle plane 

section (z* = 0) and two symmetrical sections (z*=-4.5 cm and z* = 4.5 cm) clearly show that 

3D effects can be neglected over most of the cavity depth for Ra = 2.10
5
. The influence of 

surface radiation does not differ from that found through 2D-simulations. 

The conclusion which could be drawn is that the experiments conducted for four black walls, 

two adiabatic vertical walls and two cold isothermal walls, lead to measurements far from those 

expected for pure natural convection. 

4.2. Case A = 0.4: unsteady flows 

     4.2.1. Pure natural convection  

As described in the previous sections, the flow structure consists in two symmetric counter-

rotating Rayleigh-Bénard cells above the heated body, delimited by two large circulation flows 

along the vertical walls. In the classical Rayleigh-Bénard problem between infinite plates, the 

natural dimensionless wavelength based on the fluid thickness is 2/3.117 ≈ 2 at the 

conduction/convection transition, and then increases with Ra. In the present configuration, the 

Rayleigh-Bénard cell stretching is limited from below by the size of the inner body (W = 4 cm) 

and also by the distance between the heated body and the cold horizontal surfaces (e = 3 cm). 

Since W/e = 1.33, this distance is smaller than the natural wavelength. If the two large circulation 

flows located on both sides of the solid body are suppressed, for example by changing the 

adiabatic boundary conditions into hot wall temperature boundary conditions for RaL = 7.5 10
4
 

(∆T ≈ 0.75 K) the two upper cells become unstable (Rat = 2025), and a new steady flow 

configuration takes place which is characterized by an overall circulation around the inner body. 

The two large lateral circulation cells have thus a stabilizing effect on the Rayleigh-Bénard 

convection above the heated inner body.  

When the temperature difference is increased up to ∆T ≈ 2 K, the Rayleigh number is beyond 

the critical value deduced from the linear stability theory. For larger ∆T, the steady flow 

displayed in Fig. 2a becomes unstable through a growing oscillatory disturbance and, finally, 

reaches a mono-periodic regime. Before describing the behavior of the flow as a function of 

time, let us first notice that the Rayleigh number based on the height between the hot and cold 

horizontal surfaces is equal to about Rat = 5400 for ∆T = 2 K, a value much smaller than Rac ≈ 3 

10
4
, which is the critical value for the onset of oscillations for 2D Rayleigh-Bénard flows 

between infinite horizontal plates (Shan [19]). Thus, the transition in the present problem is 

probably not explained through classical Rayleigh-Bénard instability theories. When the Ra-
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number is increased, the intensities of the cells are strengthened, but proportionally more for the 

Rayleigh-Bénard cells than those for the lateral circulations. As a result, the lateral cells cannot 

restrain the size of the cells below the top cold wall.  

Let us assume that a small perturbation amplifies the horizontal stretching of the left 

Rayleigh-Bénard cell with respect to the right one. This left cell (LHS) tends to recover its 

natural extension just above the heated body at the expense of the right cell (RHS). Because the 

right circulation flow is not strong enough to prevent displacement of the RHS Rayleigh-Bénard 

cell, this cell is shifted above the inner body toward the right upper corner of the cavity (Fig. 6a). 

Consequently, the size and intensity of the side circulation are considerably reduced. On the 

other hand, the circulation cell along the left wall being not blocked by the top Rayleigh-Bénard 

cell, it grows until the occurrence of an overall circulation around the heated body (Fig. 6b). 

Finally, the top RHS cell comes back above the inner body and ejects the left cell in the LHS 

upper corner (Fig. 6c). 

While the oscillatory flow breaks the natural symmetry of the problem, this property may be 

recovered by averaging the flow field over an oscillation period. It should be noticed that this 

average solution is nevertheless different from the unstable steady flow (i.e. before the growth of 

the disturbances). The temporal variations of the vertical velocity component v1(t) and v2(t) at 

locations P1(-0.22, 0.35) and P2(0.22,0.35), shown in Fig. 1, were recorded and then used to 

compute the difference v1(t) - v2(t). This signal centered upon zero can be viewed as a local 

symmetry indicator. Figure 7 shows its time variation for RaL = 2.15 10
5
: the amplitude of the 

oscillation growths exponentially at first, and becomes constant for t > 8.5, showing an unsteady, 

asymptotic mono-periodic flow. It should be noted that the dimensionless frequency of this 

solution is equal to 15.9 (0.0342 Hz), about half of the values measured during the exponential 

growth, i.e. 32.1 (0.0690 Hz). The amplitudes of the oscillations are then extracted and drawn for 

unsteady flows at various Rayleigh numbers (RaL = 2.15 10
5
 in Fig. 8). The exponential 

development of a perturbation is clearly highlighted with a linear growth rate, obtained by a least 

mean square fit of the logarithm of the amplitudes, equal to 1.68. At dimensionless times t > 8.5, 

the amplitudes of the oscillations become constant (a(t) = a∞).  

Similar amplitude analyses performed for various Rayleigh numbers allow the time variation 

of the growth rates in the exponential regime to be plotted (Fig 9, left axis) and the amplitudes of 

the oscillations for the asymptotic flows (Fig 9, right axis) as a function of RaL. The positive 

growth rates were obtained by starting the computations for a fluid initially at rest and at the 
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uniform temperature T0, whereas oscillatory solutions were used to initialize the computations 

and calculate the negative values. From the growth rate analysis, the linear stability threshold 

Rac1 for the steady symmetric flow is found to be slightly greater than RaL = 2 10
5
. On the other 

hand, numerical simulations indicate that oscillatory solutions are also predicted for RaL < Rac1, 

until RaL = 1,75 10
5
. For RaL ≤ 1.7 10

5
, the flow always converges toward a symmetrical, steady 

solution. From this study, it can be concluded that the steady solution is stable for finite 

amplitude perturbations if RaL ≤ Rac2, a critical Rayleigh number value located within the range 

[1.7 10
5
 - 1.75 10

5
]. For Rac2 < RaL < Rac1, two established flows (periodic or steady) are thus 

possible according to the choice of the initial conditions. A hysteretic behavior for the fluid flow 

is therefore expected. It should be noted that the asymptotic mono-periodic regime is 

characterized by a dimensionless frequency which decreases linearly from 15.7 (0.0338Hz) at 

RaL = 2.5 10
5
 to 14.4 (0.0310Hz) at RaL = 3.5 10

5
. 

 

4.2.2. Effects of radiation  

As depicted previously for stable steady flows, increases in the effect of surface radiation lead 

to strengthen the intensity of the circulation cells along the vertical walls owing to the decrease in 

wall temperatures. Therefore, the circulation cells along the vertical walls increase with the wall 

emissivity and prevent the top cells from periodically moving from one side of the cavity to the 

other side. It can be concluded that surface radiation leads to larger critical Rayleigh numbers for 

the onset of the first bifurcation, as shown in Fig. 10 for emissivites of the cavity walls set to εc = 

εs = 0.1. The transitions between steady and oscillatory flows are shifted from Rac1=2 10
5
 and 

1.7 10
5
 < Rac2 < 1.75 10

5 
for pure natural convection (Fig. 9) to Rac1=3.15 10

5
 and to 2.85 10

5
 < 

Rac2 < 2.9 10
5
 for εc = εs = 0.1 (Fig. 10), namely an increase of 50% in the stability threshold 

values. 

4.3. Effects of the inner body size 

Changes in the size of the inner body lead to large modifications in the flow structure. For a 

small body size, say A ≤ 0.2, Rayleigh-Bénard cells cannot develop above the top side and the 

flow turns into buoyant plume convection with interaction with the boundaries: for small enough 

Rayleigh numbers, the flow pattern is characterized by two counter-rotating, recirculating flows 

spreading over most of the flow domain, and separated by an ascending thermal plume which 

raises above the top wall. The results are thus similar to those discussed in Desrayaud and 

Lauriat [25] and Bouafia and Daube [7], with transition to unsteady flows beyond a critical value 

of the Rayleigh number. On account of the value of the Rayleigh number considered here (RaL = 
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2. 10
5
), the flow is unsteady for A = 0.2 because Rat = 12,800. The breaking of the reflection 

symmetry induces a swaying motion of the thermal plume which oscillates horizontally. 

Increases in the inner body size lead to smaller effective top and side Rayleigh numbers (Rat and 

Ras). Therefore, the fluid motions decrease along the side walls as well as in the top part of the 

cavity. The computations carried out for 0.3 ≤ A ≤ 0.8 confirmed these predictions. For A = 0.3, 

the flow exhibits a periodic behaviour. On the other hand, an almost pure conductive régime is 

obtained for A = 0.8 since Rat = 200. In that case, Figure 11a shows that the fluid is fully 

thermally stratified below and above the inner body, and it is almost uniformly hot along the side 

walls. 

When the effects of surface radiation are taken into account (in the case of a cavity with four 

black walls as in the experimental set-up used by Ménard [16] and Leplat [17]), the view factors 

between the horizontal and vertical black walls are reduced by increasing A, and the effect of 

radiation exchanges amongst these surfaces decreases. On the other hand, the view factors 

between the hot vertical surfaces of the inner body and the cavity walls increases. However, the 

inner body emissivity being εh = 0.05, the radiation exchanges between the adiabatic walls and 

the hot vertical surfaces have a rather weak influence on the flow field. The overall result is that 

the side recirculation cells are strengthened whatever the aspect ratio provided that A ≥ 0.3. For 

A = 0.3, a complex unsteady flow was predicted without radiation: the Rayleigh-Bénard cells 

oscillate and then merge into one or the other of  the two side cells to produce a periodic fluid 

circulation around the inner body. A Fourier analysis of the signals at point P1(-0.22, 0.35) yields 

a fundamental frequency of this periodic flow equal to f = 5.11 (0.011 Hz) with numerous 

harmonics. When surface radiation is taken into account, the flow is steady and exhibits then a 

symmetric motion about the vertical centerline of the cavity with two stable Rayleigh-Bénard 

cells below the top wall. Figure 11b shows the effect of surface radiation on the conductive 

regime predicted for the largest aspect ratio considered (A = 0.8): the small temperature 

differences between the vertical walls produce weak recirculation cells. The largest effects of 

radiation occur at the four corner regions where the decreases in the adiabatic wall temperatures 

are the origin of the vertical fluid motion.  

The averaged heat flux density at the inner body surfaces is reported in Table 3 for 0.3 ≤ A ≤ 0.8, 

with and without radiation taken into account. For A = 0.3 without radiation, the value reported 

in Table 3 is a time averaged heat flux obtained by integrating instantaneous data over one 

period. The increase in heat flux due to radiation is about 50% for A = 0.3 and 30% for A = 0.8. 

That is due in part to the radiation exchanges between the surfaces of the inner body and the 
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cavity walls. However, the most significant result to be considered is the increase in the 

convective heat flux induced by the decrease in the temperatures of the adiabatic walls. The third 

line of Table 3 shows that effects of radiation on the increase in the convective part of the 

Nusselt number are reduced as the size of the inner body is increased, because the view factors 

between the cold horizontal walls and the vertical walls become smaller. However, it is clear that 

there is a critical aspect ratio above which the conductive heat transfer becomes dominant, as it is 

for A = 0.8. 

The above results show that surface radiation exchanges strengthen the recirculation cells along 

the vertical side walls which, in turn, stabilize the flow fields. However, it should be underlined 

that these results are valid for the specific configuration studied here. By just changing the 

thermal boundary conditions, radiation exchanges could produce opposite effects (Mezrhab et al. 

[12]). 

 

5. Conclusion 

A numerical study of combined natural convection and surface radiation has been carried out 

with the aim at demonstrating the influence of radiation on the first transition to periodic flows 

which occurs in air-filled cavities when the Rayleigh number is increased. To this end, we have 

modeled an experimental set-up recently used to study the flow and heat transfer characteristics 

in a square cavity with an inner heated body. For this particular case, the stabilizing effect of 

radiation has been clearly demonstrated. 

This work underlines that discrepancies between experimental and numerical results for gas-

filled cavities may be explained just by having neglected the influence of surface radiation. We 

can conclude that it is highly difficult to properly interpret experimental results for gas-filled 

cavities with non isothermal boundary conditions. We believe that the present results can be 

extended for 3D flows as well as for turbulent natural convection flows (Ampofo and 

Karayiannis [26]). 
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Table captions 

 

Table 1 Effect of the grid resolution on the average Nusselt numbers at the isothermal surfaces 

(see Fig. 1) in the case A = 0.4, Ra = 2.10
5
 for pure natural convection. 

Table 2 Average convective Nusselt numbers at the various surfaces (see Fig. 1) in the case A = 

0.4, Ra = 2.10
5
 for pure natural convection and for combined natural convection and radiation. 

The last column is for cold isothermal side walls. 

Table 3 Effect of the body size on the average Nusselt number at the inner body surface in the 

case Ra = 2.10
5
 (ΔNucv is the increase in the convective Nusselt number due to surface radiation). 
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Figure captions 

 

Figure 1 Schematic of the system of interest: a square, heated inner-body centred within a 

square cavity. 

Figure 2 Comparisons between streamlines and isothermal patterns for pure natural 

convection at RaL = 2.10
5
 (a), combined convection and surface radiation [(b) εc=0.05, εs =1 

and (c) εc= εs =1] and for cold vertical side walls (d). Isotherms and streamlines equally 

spaced (Ψn=0.3856 + n×0.7713 for the streamline contours, the dashed lines indicate 

clockwise circulations). 

Figure 3 Effect of surface radiation on the dimensionless temperature distributions along the 

vertical, adiabatic side-walls at RaL = 2.10
5
. 

Figure 4 Variation of the maximum streamfunction for the side wall circulations as a function 

of emissivity of the cavity walls (εc = εs = ε) at RaL = 3.10
5
. The continuous line is for steady, 

symmetric flow structures.  

Figure 5 3D-isothermal patterns (Th = 299.15 K in red, Tc =297.15 K in dark blue) for three 

cross sections (z* = -4.50 cm, z* = 0, z* = 4.5 cm) of the parallelepipedic cavity (10 cm ×10cm 

×18 cm) at RaL = 2.10
5 

(a): pure natural convection, (b): combined convection and surface 

radiation (εc= εs =1). 

Figure 6 Characteristic flows and temperature patterns over a period for supercritical pure 

natural convection (A = 0.4, RaL = 2.15 10
5
) Isotherms and streamlines equally spaced 

(Ψn=0.3856 + n×0.7713 for the streamline contours, the dashed lines indicate clockwise 

circulations). 

Figure 7 Time variation of the difference between the vertical velocity components at point 

P1 and P2 shown in Fig. 1 (Ra = 2.15 10
5
, A = 0.4, pure natural convection). 

Figure 8 Variation of the logarithm of the amplitude disturbance, a(t), versus dimensionless 

time for RaL = 2.15 10
5
 and A = 0.4 (pure natural convection). τg is the linear growth rate and 

a∞ the amplitude of the asymptotic periodic flow. Open circles denotes numerical results, the 

full line is the least mean square fit. 

Figure 9 Linear growth rate of the disturbances (left axis, filled square) and amplitude of the 

disturbance for the asymptotic flow (right axis, cross-symbols) versus the Rayleigh number 

for pure natural convection. 

Figure 10 Linear growth rate of the disturbances (left axis, filled square) and amplitude of the 

disturbance for the asymptotic flow (right axis, cross-symbols) versus the Rayleigh number 

for combined surface radiation and natural convection (εc = εs = 0.1). 

Figure 11 Comparisons between streamlines and isothermal patterns for pure natural 

convection in the case A = 0.8 and RaL = 2.10
5
 (a), combined convection and surface radiation 

for εc = εs = 1 (b) (Ψ1= + 0.07713 for the streamline contours, the dashed lines indicate 

clockwise circulations). 
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TABLES 

 

Mesh 100x100 150x150 200x200 250x250 

Side A’B’or C’D’ 3.7044 3.7107 3.7143 3.7165 

Side A’D’ (bottom) 5.6550 5.6456 5.6405 5.6374 

Side B’C’ (top) 9.5066 9.4764 9.4657 9.4608 

Bottom wall (AD) 2.5334 2.5345 2.5349 2.5352 

Top wall (BC) 6.4948 6.4829 6.4790 6.4773 

 

Table 1 Effect of the grid resolution on the average Nusselt numbesr at the isothermal surfaces 

(see Fig. 1) in the case A = 0.4, Ra = 2.10
5
 for pure natural convection. 

 

 

 

 

Emissivity 

 

 

εc = εs =0  

 

=0 

εc = εs = 0.05 

 

 

=00.5 

εc = εs = 0.1 

 

εc = 0.05, εs = 1 

 

εc = εs = 1 

 

Ts = Tc 

Side A’B’ or  C’D’ 3.7174 3.7601 3.9955 4.1719 6.2773 8.2144 

Side A’D’ (bottom) 5.6347 5.6876 5.9172 6.0218 8.0667 11.0136 

Side B’C’ (top) 9.4614 9.4726 9.4807 9.5454 9.4448 9.3594 

Bottom wall (AD) 2.5346 2.5738 2.4910 2.9873 1.4540 0.6020 

Top wall (BC) 6.4778 6.4875 6.4770 6.6339 6.3673 6.1314 

Side Wall 0 -5.4 10
-3

 -0.1937 +0.0288 -2.1026 3.7373 

 

 

Table 2 Average convective Nusselt numbers at the various surfaces (see Fig. 1) in the case A = 

0.4, Ra = 2.10
5
 for pure natural convection and for combined natural convection and radiation. 

The last column is for cold isothermal side walls. 



 2 

 

 

 

 

 

 

                      A 0.3 0.4 0.6 0.8 

Nu (ε = 0) 6.4169* 5.6303 4.2322 5.8985 

Nu (εc = εs = 1) 9.6709 8.5481 6.4180 7.8931 

ΔNucv  2.2030 1.8835 1.1988 1.2199 

Nur (εc = εs = 1) 1.0510 1.0343 0.9870 0.7747 

 

* mean value for an oscillatory flow 

 

Table 3 Effect of the body size on the average Nusselt number at the inner body surface in the 

case Ra = 2.10
5
 (ΔNucv is the increase in the convective Nusselt number due to surface radiation). 
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Figure 1 Schematic of the system of interest: a square, heated inner-body centred within a 

square cavity. 

 



 
Figure 2 Comparisons between streamlines and isothermal patterns for pure natural 

convection at RaL = 2.10
5
 (a), combined convection and surface radiation [(b) εc=0.05, εs =1 

and (c) εc= εs =1] and for cold vertical side walls (d). Isotherms and streamlines equally 

spaced (Ψn=0.3856 + n×0.7713 for the streamline contours, the dashed lines indicate 

clockwise circulations). 



 

 

 

 

Figure 3 Effect of surface radiation on the dimensionless temperature distributions along the 

vertical, adiabatic side-walls at RaL = 2.10
5
. 

 

 

 

 

 

Figure 4 Variation of the maximum streamfunction for the side wall circulations as a function 

of emissivity of the cavity walls (εc = εs = ε) at RaL = 3.10
5
. The continuous line is for steady, 

symmetric flow structures.  
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Figure 5 3D-isothermal patterns (Th = 299.15 K -red, Tc =297.15 K –dark blue) for three cross 

sections (z* = -4.50 cm, z* = 0, z* = 4.5 cm) of the parallelepipedic cavity (10 cm ×10cm ×18 

cm) at RaL = 2.10
5 

(a): pure natural convection, (b): combined convection and surface radiation 

(εc= εs =1). 

 



 

 

Figure 6 Characteristic flows and temperature patterns over a period for supercritical pure 

natural convection (A = 0.4, RaL = 2.15 10
5
) Isotherms and streamlines equally spaced 

(Ψn=0.3856 + n×0.7713 for the streamline contours, the dashed lines indicate clockwise 

circulations). 
 

 



 

Figure 7 Time variation of the difference between the vertical velocity components at point 

P1 and P2 shown in Fig. 1 (Ra = 2.15 10
5
, A = 0.4, pure natural convection). 

 

 

 

 

Figure 8 Variation of the logarithm of the amplitude disturbance, a(t), versus dimensionless 

time for RaL = 2.15 10
5
 and A = 0.4 (pure natural convection). τg is the linear growth rate and 

a∞ the amplitude of the asymptotic periodic flow. Open circles denotes numerical results, the 

full line is the least mean square fit. 

 



 

Figure 9 Linear growth rate of the disturbances (left axis, filled square) and amplitude of 

the disturbance for the asymptotic flow (right axis, cross-symbols) versus the Rayleigh 

number for pure natural convection. 

 

 

Figure 10 Linear growth rate of the disturbances (left axis, filled square) and amplitude of the 

disturbance for the asymptotic flow (right axis, cross-symbols) versus the Rayleigh number 

for combined surface radiation and natural convection (εc = εs = 0.1). 

 



 
 

 

 

 

 

 

 

Figure 11 Comparisons between streamlines and isothermal patterns for pure natural 

convection in the case A = 0.8 and RaL = 2.10
5
 (a), combined convection and surface radiation 

for εc = εs = 1 (b) (Ψ1= + 0.07713 for the streamline contours, the dashed lines indicate 

clockwise circulations). 


