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Abstract

Numerical simulation of thermal convection induced by solvent evaporation in an
initially isothermal fluid is considered. Both thermocapillarity and buoyancy driving
forces are taken into account, and a criterium based on the Peclet number is used
to analyze the stability of this transient problem. Critical Marangoni and Rayleigh
numbers are obtained for a large range of Biot and Prandtl numbers. Results of
the non linear simulations are compared with a previous linear transient stability
analysis based on a non normal approach and with visualizations performed during
PIB/Toluene solutions drying experiments. A scaling analysis is developed for the
Marangoni problem and correlations are derived to predict the order of magnitude
of temperature and velocity as a function of Bi, Ma and Pr numbers.
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1 Introduction

Evaporation of a volatil fluid or drying of a solution induces a decrease of the
temperature at the free surface due to the vaporization latent heat. This situ-
ation can generate convective motion due to both buoyancy and thermocapil-
lary driving forces [1-6]. Several points may be pointed out when studying such
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systems. First the boundary condition at the free surface results from the cou-
pling between the system and the surroundings. The evaporating flux and then
the temperature gradient in the fluid depends on the heat and mass transfers
with the ambient air. Several authors have developed numerical or theoretical
studies taking into account this coupling, for example Merkt and Bestehorn
[7], Colinet and co-authors [8], Ozen and Narayanan [9] and Moussy and co-
authors [10]. Both surface tension- and buoyancy-driven convection may occur
as studied for example by Medale and Cerisier in several geometries but in
a nonvolatile fluid [11]. Another point that is more specifically considered in
this paper is the transient nature of many experiments. Indeed, starting from
an initial state where the fluid is isotherm, evaporation induces a decrease
of the surface temperature. The basic temperature field corresponding to the
pure diffusive problem (null velocity field) is time dependent so that a classical
stability analysis based on the perturbation of a steady conductive regime is
questionable. Then the prediction of critical conditions for the onset of con-
vection is a complex problem. A theoretical linear analysis based on a non
normal approach has been recently developed to take into account the time
dependent basic state for this same problem (cf. [12] and references herein).

In this paper we present a 2D non linear numerical simulation to study the
development and evolution of convective patterns in the transient regime,
when both buoyancy and thermocapillary effects can be put forward. A large
range of parameters characterizing the problem (Biot, Marangoni, Prandtl and
Rayleigh numbers) are investigated. This numerical approach follows an ex-
perimental study where numerous experiments of drying of a polymer/solvent
solution have been performed with different thicknesses and viscosities. Sim-
plifying assumptions follow from experimental results and are presented in
section 2, as well as the model equations and numerical method. Section 3
and 4 are devoted to 2D non linear numerical simulations and to the deter-
mination of convection thresholds for this transient problem. Comparisons
are made with experimental results and with previous results deduced from
the linear stability analysis. At last, a scaling analysis is developed for the
Marangoni problem in section 5.

2 Problem formulation

2.1 Thermal model

Drying experiments that underlie the simulations presented in this paper have
been performed on the system Polyisobutylene (PIB)/Toluene. Experiments
are described in detail in [13] and we only recall the main points used to estab-
lish the simplified model considered here. The solution initially at the ambient



temperature is poured in a dish located in an extractor hood. The two con-
trol parameters used in the experiments are the initial thickness (0.3mm <
e < 14.3mm) and the initial polymer mass fraction (0 < wp < 15%). Poly-
mer solution viscosity is strongly sensitive to polymer concentration [14]. The
viscosity g is 5.5 x 107*Pa.s and 2.4Pa.s for wp 0% and 15% respectively.

Several simplifying assumptions have been inferred from experimental ob-
servations. They are valid only at the beginning of the drying which is the
time under consideration in this paper. When evaporation begins, convective
patterns have been observed at the very beginning of the experiment(quasi-
instantaneous or less than 100 s after pouring the solution). They disappear
well before the end of the drying. The Lewis number (ratio of the thermal
diffusivity to mass diffusivity) being very large (about 10%), it is assumed that
convective patterns observed in the first minutes are mainly driven by ther-
mal effects. Two experimental observations detailed in [13] support this thesis.
First, a few experiments were conducted with deuterated solvent, whose den-
sity is higher than the polymer density. In that case, the density of the solution
decreases when the polymer concentration increases, leading to a stable situa-
tion if the solutal Rayleigh-Bénard problem is considered. Since no differences
were found with the experiments conducted with the standard solvent, we
can exclude solutal buoyancy as a dominant mechanism. Second, free surface
temperature fields measured by infrared camera showed that the end of free
convection was related to the duration of the transient thermal regime. Solutal
convection is then not taken into account in this paper.

Moreover, the layer thickness is assumed to remain constant. This hypothesis
can be adopted if Pe;,; < 1, where the interface Peclet number is defined as
Pein = (evey)/a with e the layer thickness, v,, the interface velocity due to
evaporation and « the thermal diffusivity. Indeed when Pe < 1, the surface
displacement v.,04i¢¢ remains negligible compared to the total thickness e
during the problem characteristic time i.e. the diffusion time 645y = e?/k. In
the experiments, the Peclet number is smaller than 0.1. In the same way, the
rate of change of the polymer mass fraction is small and the physical properties
of the solution are assumed constant.

The free surface is assumed flat. Surface deformation can be neglected if the
crispation number Cr = (pra)/(ve) < 1 [15] and if the Galileo number Ga =
(ge®)/(va) > 1, where p, v, 7, respectively denote fluid density, viscosity,
surface tension, and where g is the acceleration due to gravity. Such conditions
are shown to be satisfied for the experiments considered here. Then surface
deformability can be disregarded.

For sake of simplicity the numerical analysis is restricted to a two-dimensional
geometry since the study focuses on the onset of convection and not on the
description of convective patterns morphology. Comparison of experimental



and simulated thresholds (see section 4.2) validates the 2D approach a poste-
riori. The solution layer is contained in a rectangular domain of aspect ratio
A = L/e = 20, where L is the horizontal length and e the thickness of the
solution layer. The vertical and bottom solid walls are supposed to be adia-
batic and non permeable. Evaporation occurs at the free surface only. Heat
and mass transfers between the free surface and the ambient air are described
by global transfer coefficients.

With the Boussinesq approximation, the Navier-Stokes and energy equations
are:

V.7=0, (1a)

0., L= 1o . .
50T (0.V)i= —;Vp + VAT + gBr(T — Tp)ey, (1b)
%T + (8.V)T = aAT, (1c)

where U(Z,t) is the velocity field, p(Z,t) is the pressure field, T'(Z,t) is the
temperature field, 7j the temperature of the ambient air and ¢, the unit vec-
tor in the vertical direction. In this approximation, the density p is taken to
be the density at T' = Ty. fBr, v = pu/p, a = k/pc are the thermal expansion
coefficient, the kinematic viscosity and the thermal diffusivity with g the dy-
namic viscosity, k£ the thermal conductivity and ¢ the specific heat.

The polymer mass fraction being small, we have used the physical proper-
ties of the toluene except for the viscosity that is very sensitive to poly-
mer concentration. The following values have been used: p = 865kg.m 3,
E=0.142Wm K=, a=097x10""m?.s7!, B = 1.07 x 103K ~1. For each
experiment the viscosity is also assumed constant but depends on the initial
polymer concentration, according to an empirical law (Fig.1) deduced from
viscosity measurements performed with a Low Shear 30 rheometer (coaxial
cylinders and imposed deformation) [16].

2.2 Initial and boundary conditions

At t = 0 the fluid is at the ambient temperature 7'(Z,0) = Ty. To study
the stability of the system, a perturbation is imposed on the velocity field at
t = 0. Since the structures of real experimental perturbations are not known
a priori, a random velocity perturbation with zero mean and amplitude r
is implemented in the following way: numerical resolution of the problem is
achieved using a finite volume scheme. For each spatial node, the value allotted
to the velocity at t = 0 comes from a random drawing of a uniform distribution
between —r/2 and +r/2. Further studies have shown that the choice of the



initial perturbation does not modify much the stability thresholds (cf. section
3.2 and [12,17]).

The solid walls are adiabatic with a zero velocity boundary condition. On the
free surface located at y = e, the thermal boundary condition is :

k (a—T> (T e, t) — To) + L, @)

The first term of the r.h.s. is the convective heat transfer between the free
surface and the ambient air where hy, is the heat transfer coefficient. The
second term, L ®.,, corresponds to the solvent evaporation with L the latent
heat of vaporization and ®., the evaporative flux, that can be expressed as

Py = Iy (pg'z‘nt - p%oo) (3)

where h,,, is the mass transfer coefficient, p%,,, and p%_ are the solvent con-
centration in the gas phase just above the interface and far from the interface
respectively. The last one is zero, due to the important air flow rate in the
extractor hood. With the ideal gas law, we get:

MgPyso(T(x,e,t))
RT (z,e,t)

(Dev = hm CI,(T(.T, €, t)v ¢S<x7 €, t)) (4)
where Mg is the solvent molar mass, a is the solvent activity, Py gg is the
saturated solvent vapor pressure, @g is the solvent volume fraction in the liquid
phase at the interface and R is the ideal gas constant. In polymer solutions
the activity is close to one for solvent volume fraction greater than about 0.4
[18], so that ®., can be assumed independent of the solvent concentration at
the beginning of the drying (a ~ 1).

Moreover, given the small amplitude of temperature variations observed in the
experiments (a few degrees), it is possible to use a first order development of
d,,, i.e.

O (T'(,6,1)) = Pey (T) + 8;’;“ I, (T(x,e,t) —Tp)

The thermal boundary condition at the free surface can then be approximated
by the following expression

_k (%)y:e — Ho(T(x,e,t) — Ty) + L Bon(Th) (5)

with Hy, = hy, + L 2322 5,

A shear stress boundary condition is imposed at the free surface, given by the



balance of surface tension forces with the viscous stresses in the fluid.

o) (2 ()
a oy ) dT \oz ) _
y=e y=e

where v, the surface tension, is a linearly decreasing function of temperature.

The other boundary condition at the interface concerns the vertical component
of the velocity, v,. Assuming a planar surface, and assuming that the spatial
variations of the evaporation flux are much smaller than the flux itself, it can
be shown [12] that, in the limit of Pe;,; < 1, the boundary condition reduces
to:

v, =0 aty=e. (7)

According to experimental results, the following values have been used: Hy, =
28W.m 2. K1, L = 396kJ. kg™, ®.,(Tp) = 3.37 x 10~ *kg.m =257, dy/dT =
—0.119 x 102 N.m~ L. KL,

2.3  Non-dimensional equations

The non-dimensional form of the equations results from scaling the lengths
by the thickness of the fluid e, the velocity ¢ by the diffusion velocity a/e,
and time ¢ and pressure p respectively by e?/a and pa?/e?. The temperature
scale is 0 = T_ITO where AT is the difference between the initial temperature
Ty and the steady temperature obtained at the end of the transient regime,
when the temperature is uniform in the solution. From equation 5 we have
AT = Lq)e”(TO) , that is AT = 4.8K for the experimental configuration. Let
us note that thls temperature scale is different from the one used in classical
stability analysis where the basic state is characterized by a constant temper-
ature gradient in the fluid.

The dimensionless form of equations (la-1c¢) is

V.5=0 (8a)

% + (T ﬁ)ﬂ’: —Vp+ RaProe, + PrAv (8b)
0

‘2_ +(TV)0=A0 (8¢)

where Pr = v/« is the Prandtl number, Ra = BrgATe?/(va) is the Rayleigh
number.



The dimensionless form of thermal (Eq. 5) and dynamic (Eq. 6 and 7) bound-
ary conditions at the free surface are :

— <%> = Bi (0(z,y = 1,t) + 1) with Bi = Hune (9)
),
(a%) ~ Ma <@> with Ma — — <21 <8i> (10)
Y ) - o), poe \ 0T
v,=0 aty=e. (11)

with Ma the Marangoni number and Bi a modified Biot number that takes
into account the evaporative flux.

The flow and thermal behaviour in the solution are governed by four non-
dimensional parameters (Bi, Ma, Pr and Ra), that depend on the two control
parameters used in the experiments, the initial thickness and viscosity [13].

2.4 Numerical method

Computations are carried out with a collocated finite volume scheme with a
second order space and time discretization [19]. The discrete scheme is fully
coupled. The set of the discrete balance equations is solved by an under-relaxed
Newton’s method with the iterative linear solver BICGSTAB, preconditioned
by an incomplete LU factorization. The chosen mesh is a standard regular
mesh L x e = (800 * 40) and the time step is equal to At = 1073. Results
obtained with finer grids or time steps did not show any noticeable changes
in the results.

3 Transient convection

3.1 Typical temperature and velocity fields

Fig.2 gives a typical example of the time evolution of the non dimensional
temperature difference between the bottom and the free surface of the solu-
tion for a configuration where convection is observed (parameters of the test
case are given in table 1, initial velocity disturbance amplitude r = 4). As
a comparison, the temperature evolution obtained for a pure diffusive prob-
lem is also drawn (dashed line obtained with Ma = 0 and Ra = 0). Several
domains can be observed. At the beginning, heat transfer is dominated by
the diffusion and the two curves are superposed (domain I). Then convection



starts and it is characterized first by strong and rapid changes of the temper-
ature field (domain IT). This regime is followed by a quasi-steady regime with
a slow decrease of the temperature difference between the bottom and the free
surface (domain IIT). At last for large times the two curves corresponding to
pure diffusive or convective regimes go to zero. Indeed the temperature in the
fluid is uniform at the end of the thermal transient regime (not represented in
Fig.2).

The stream lines and the temperature on the free surface are given in Fig.3
for three dimensionless times t=0.5, t=0.6 and t=0.65. We can observe the
vanishing of the central cell between t= 0.5 and t=0.65 that corresponds to
the second peak that can be observed on the temperature evolution in Fig.2.
It is followed by the quasi-steady regime, with a constant number of cells.

The objective of this paper is to analyze the three regimes, as a function
of the four non dimensional parameters that characterize the problem, Bi,
Ma, Pr and Ra numbers. The transition from domain I to domain II, i.e.
the onset of convection is analyzed in section 4. Section 5 is dedicated to
the characterization of the quasi-steady regime, using scaling laws to get an
estimation of the temperature and velocity in this regime.

To characterize the presence of observable convection, a criterium based on the
thermal Peclet number was chosen. The thermal Peclet number Pe = e v/«
compares the relative importance of advection and diffusion. The velocity
v used in the estimation of the Peclet number is the maximal value of the
velocity norm. Then convection will be considered significant if, when the
system is submitted to an initial velocity perturbation, there is a time ¢ where
the perturbation is significantly amplified, i.e. such as dPe(t)/dt > 0 and
Pe(t) > 1.

3.2 Effect of the initial disturbance amplitude

As the problem is sensitive to initial conditions, we have first performed a
preliminary study to analyze the influence of the amplitude of the initial dis-
turbance on the time evolution of the Peclet number. The parameters used for
this test are given in Tab.1.

Fig.4a shows the temporal evolution of the Peclet number in log scale. At
the beginning a linear regime can be observed with a decreasing of the initial
perturbation followed by its amplification. But at large ¢, in the non linear
regime, Pe becomes quasi independent of the initial perturbation. If we con-
sider the chosen criterium (Pe > 1), all the tests lead to the same conclusion,
i.e. convection is observed; only the time delay depends on the amplitude of the
disturbance. The corresponding time is about t = 0.1 for r = 4 and ¢t = 0.03



for r = 400. Fig.4b shows the Peclet number normalized by its initial value,
so that the transition between the linear and non linear regime can be clearly
observed.

Since the general trends observed in the three regimes and the occurrence of
convection do not depend strongly on the perturbation amplitude (at least in a
large domain), we use r = 4 in the following. A more detailed stochastic anal-
ysis of the influence of the initial perturbation structure has been performed
[17] and gives the same conclusions: changing the initial perturbation induces
only small changes in the pattern wavelength, in the temperature or in the
Peclet variations. The threshold value corresponding to the onset of convection
is therefore little sensitive to the initial perturbation. This assumption is con-
firmed in section 4.3 by the good agreement between the thresholds obtained
with the non-linear simulations and the linear stability analysis. However the
threshold must not be understood as a precise delimitation between stable and
unstable domains but rather as a transition region (a factor of about two is
obtained for different initial perturbations). This "blurring" effect is inherent
to the transient character of the problem under study [12].

4 Stability

4.1 Influence of the dynamic viscosity

The viscosity of solutions understudy being very sensitive to the initial poly-
mer concentration, we first study the influence of the dynamic viscosity u
on the Peclet transient behavior. Both buoyancy and surface tension driving
forces are taken into account (Rayleigh-Bénard-Marangoni configuration) and
results are given in Fig.5 for e = Imm and for different values of the dynamic
viscosity fi.

For the largest viscosities, the Peclet number is a monotone decreasing func-
tions and the initial perturbation dies down. For smaller viscosities, there is
an amplification of the initial perturbation after some times. However this
amplification may be very weak and for viscosity larger than 5mPa.s the
Peclet number is always smaller than one, so that this configuration is "sta-
ble" according to the criterium defined in section 3.1. The critical viscosity
corresponding to the onset of convection lies between 4mPa.s and 5mPa.s for
this thickness. In the next section, the same study was performed for other
thicknesses in order to compare simulations and experimental data.



4.2 Comparison of simulations and experiments

Comparison is made with experimental points in the range of Bi, Ma, Pr
and Ra covered by the variation of the two experimental control parameters
(initial thickness and viscosity), that is:

006 < Bi <5 66<Pr<2510% 20< Ma<1210° 13<Ra<
1.4 108

Numerical simulations have been performed for 1mm < e < 30mm. For each
thickness, we look for the maximum viscosity such as the convection criterium
is fulfilled. This systematic study leads to the construction of the transition
boundary between the "stable" and "unstable" domain in the plane thickness-
viscosity, according to the criterium previously defined. Numerical results and
experimental points are given in Fig .6. When the whole Rayleigh-Bénard-
Marangoni problem (RBM) is considered (blue line), a change in the frontier
slope is observed around e = 8mm. As already known for RBM configura-
tion [1] this corresponds to the transition between the domain dominated by
Bénard-Marangoni (BM) instabilities (small thicknesses) and Rayleigh-Bénard
(RB) instabilities (large thicknesses). To illustrate this point, the same simula-
tions were performed canceling the buoyancy term or the surface tension term
in the Navier Stokes equation. The corresponding thresholds are compared in
Fig.6. For thicknesses smaller than a few millimeters the curves with or without
buoyancy are similar and Marangoni effects are dominant. The reverse is ob-
served for thicknesses larger than 8mm, where buoyancy effects become dom-
inant. This confirms experimental results where two different morphologies of
convective patterns had been observed for small and large thicknesses respec-
tively (transition from cells to a mixture of cells and rolls, cf. [13]). Agreement
between experimental observations and simulated thresholds is good, except
for some experiments located in the "stable" domain and exhibiting convective
patterns. This point is discussed in the next section.

4.3 Comparison with linear stability analysis

The results obtained in this paper with direct non linear simulation are com-
pared to a linear stability analysis otherwise performed and detailed in [12].
For this transient problem, a specific method was used, based on the non-
normal approach. First, as usually done, linear perturbation equations were
derived. Two amplification gains were defined. The first one Gy (t) is based
on the kinetic energy of velocity perturbations and the second one Gr(t) is a
quadratic term based on temperature perturbation. Then for each wavenumber
k (spatial development of the perturbation in the infinite horizontal direction)
and each time ¢ an optimization problem was solved in order to get the ver-
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tical profile (0 < y < e) of the initial optimal perturbation which leads to
the maximization of Gy (¢, k) (velocity perturbation) or Gr(t, k) (temperature
perturbation). For a given set of non dimensional parameters (Ra, Ma, Pr
and Bi numbers) we then define G}, = Max,; Gy, the larger amplification
for any time and wavenumber when the initial perturbation is imposed on the
velocity, and G = Max, G that is the larger amplification for any time and
wavenumber when the initial perturbation is imposed on the temperature. Gy
and Gp are normalized with the initial values of the kinetic energy or tem-
perature norm, so that G* < 1 means that the initial perturbation is never
amplified [12].

The different criteria are compared in Fig.7. As can be seen, the boundaries
obtained with velocity perturbations either with non linear simulations (cri-
terium "Pe = 1") or with linear analysis ("G}, = 1") are very close. Perturba-
tions on the temperature field (with criterium "G% = 1") give thresholds above
the other ones, but, as previously said, the thresholds must rather be seen as
a transition region, and all the criteria lead to the same order of magnitude.

At last, the pattern wavelengths obtained from simulations (quasi-steady regime)
and experiments have also been compared and are in good agreement, as shown
in Fig.8. As already obtained in RBM studies [20], no change is observed at
the transition from surface tension driven flow to buoyancy driven flow, that
occurs for a thickness around lem.

4.4 Critical Marangoni and Rayleigh numbers

Beyond the experiments a more general analysis of the influence of the Biot
and Prandtl numbers on the stability thresholds have been performed. In the
case of pure Bénard-Marangoni flow, the critical Marangoni number is shown
to depend very few on the Prandtl number and to depend non monotonically
on the Biot number, with a minimum value around Bi = 2 (Fig.9). Compari-
son with results obtained with the linear analysis and criterium G}, = 1 [12]
is made in Fig.9. The thresholds obtained with the two approaches are very
close and two asymptotic power laws can be defined: "Bi Ma ~ constant" and
"Bi ~ constant Ma" for low and large values of Biot numbers respectively.
Similar results (not presented here) have been obtained with the RB configu-
ration, i.e. linear and non linear results are very close.
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5 Scaling laws in the quasi-steady regime

This last section is devoted to the analysis of the quasi-steady regime in the
Bénard-Marangoni case (Ra = 0). For such conditions, we aim to obtain the
scaling laws that give the order of magnitude of the temperature variations
and of the velocity inside the liquid layer, as a function of the three non-
dimensional parameters Ma, Bt and Pr. This objective is reached by solving
equations 8a to 11 in terms of order of magnitude (scaling analysis, cf. for
instance ref. [21] for an example of scaling derivation applied to a transient
free convection problem). The derivation is made possible by use of symplifying
assumptions listed below.

First, the existence of the quasi steady regime is assumed a priori. The ob-
tained results are then restricted to the domain where convection is expected,
i.e. the domain above the two asymptotical lines defined in Fig.9 (cf. [12] for
a detailed analysis of the asymptotical values). The following assumptions are
made:

H1 we assume the existence of an hydrodynamic boundary layer (resp. ther-
mal boundary layer) of thickness dy (resp. dr) below the free surface.

H2 time derivative terms in equations (1b) and (1c¢) are neglected (quasi-
steady regime assumption).

H3 the vertical and horizontal temperature variations across a convective cell
are of same order of magnitude, denoted Af (compare for instance Figs .2 and
.3).

H4 the wavelength of convective structures is of the order of the thickness (cf.
Fig.8), so that the order of magnitude of the characteristic length scale in the
x-direction is 1.

H5 the analysis is restricted to fluid with Pr > 11.

In addition, the order of magnitude of the velocity component parallel to

the free surface in the hydrodynamic layer is denoted v,, while the order of
magnitude of the vertical velocity component is denoted v,.

5.1 equations

In the following, the equations of section 2.3 are written in terms of order of
magnitude.

* Thanks to H1, H3 and H4, the shear stress boundary condition (equation

' >1 stands for ~ 1 or > 1
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(10)) reads :
;’—”C ~ Ma Ad (12)

H
* The mass conservation (equation (8a)), with assumptions H1 and H4 reads:

~ %
Om

Uy (13)
* Momentum conservation.

Following a classical derivation, the pressure gradient term can be eliminated
from equations (8b) :

i[ﬁ(% " %H} %)_g(%ﬂ, %H} %)] _ 2(62%+82Uy)_g(a2vx+a2v$)

Prioz ot “ox YOy’ Oy ot “or Yoy Ox Oz 8y2( )&y ox?  Oy?
14

This relation states a balance between inertia (left-hand side) and friction

(right-hand side). The times derivatives 0,v, and 0,v, can be dropped out

thanks to the assumption of quasi-steady regime (H2). To go further, we need

to distinguish two cases : dy < 1 or dy ~ 1. According to equation (13), the

condition dy < 1 implies v, > v,. In that case, it is easy to show that, in

terms of order of magnitude, equation (14) reads v2/(Prdy) ~ v, /8%, which

leads to:

Pr

Vg

(15)

Op ~

This equation is valid for / Pr /v, < 1 only, since it was established by assum-

ing 0y < 1. In the opposite case such that /Pr/v, 2 1, the hydrodynamic
boundary layer thickness saturates at 5 ~ 1, and inertia is no more involved

in the problem.

* Energy conservation.

Denoting v,y the order of magnitude of the vertical velocity component in-
side the thermal boundary layer, the equation (8c) is a balance between four
terms, due to advection and diffusion. With assumptions H3, we get the fol-
lowing terms (v, A0 ; v,r7A0/67 ; AB ; AB/d3). Once again two cases must
be considered, according to the value of dr. In the case dr < 1, one can easily

show that 1

VU
This relation is valid if 1/,/v, < 1 only. In that case, the thermal boundary
layer thickness results from a balance between advection and diffusion. In the
opposite case 1/y/v, 2 1, it saturates at o7 ~ 1, and another regime occurs
where advection is negligible compared to diffusion.

o7 ~ (16)

* Thermal boundary condition.
The equation (9) states a balance between three terms, characterizing respec-
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tively the diffusion in the liquid, the heat supplied by convection from the gaz
phase, and the cooling due to evaporation :

a0 ; BiAf ; Bi (17)
or
Two regimes can be considered, depending on which terms dominate the heat
balance at the interface. If the condition Af < 1 is satisfied, the heat flux from
convection in the gas phase is negligible, and the energy needed by evaporation
is balanced by the diffusion in the liquid. The equation (17) hence reads:

A§ ~ Bidy (18)

The equation (18) is valid if Bidr < 1 only. Conversely, another regime occur
if Bidop 2 1, characterized by the temperature variation saturating at A6 ~ 1.
In that case the energy is supplied by convection in the gas phase, since the
terms BiAf# and Bi dominate in equation (17).

5.2 Synthesis of the different regimes

The previous section shows that we must consider a combination of the fol-
lowing cases :

gyl or dg~1 (19)
5T <1 or 5T ~1 (20)
Al <1 or Af~1 (21)

We see from equations (15) and (16) that only cases where dy 2 dr are to
be taken into account since the analysis is restricted to fluid with Pr = 1
(H5 assumption). Moreover, only unstable configurations are considered and,
in the Ma/Bi plane, the domain is restricted to the points above the two
asymptotical curves of the critical Marangoni obtained from the complete
stability analysis, i.e. Bi ~ Ma~! for small Biot numbers and Bi ~ Ma for
large Biot numbers (cf. Fig.9). Taking into account these remarks, we obtain
the five domains listed in table .2 and Fig.10. Correlations and boundaries
between the different domains are deduced from the previous equations. Their
derivation is detailed in the annex.

At last Fig.11 shows an illustration of the scaling laws in the domain B, de-
duced from simulations performed for configurations close to the experimental
conditions. As can be seen numerical simulations are in good agreement with
scaling laws.
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6 Conclusion

In this paper a numerical analysis of a thermal transient problem induced by
solvent, evaporation in an initially isothermal fluid is considered. The thermal
behavior shows the succession of three steps: the first one, before the onset of
convection, is purely diffusive, the second step corresponds to the beginning
of convection and important variations in temperature and velocity fields are
observed, and the last one is characterized by a very slow evolution of the
system towards the final isothermal state. The problem is described by four
non-dimensional parameters, Bi, Ma, Pr and Ra. Our approach takes into
account, explicitly the transient character of the problem. A criterium based
on the Peclet number is used to characterize the onset of convection. It is
important to notice that the threshold must not be understood as a precise
delimitation between stable and unstable domains but rather as a transition
domain, since the obtained threshold values depend slightly on the initial per-
turbation. The complete problem (i.e. convection induced by thermocapillarity
and buoyancy) or the pure Rayleigh-Bénard and pure Bénard-Marangoni con-
figuration is considered. It was found that the obtained thresholds do not
depend on the value of the Pr number significantly.

Results of the non linear simulations are compared with a linear transient
stability analysis based on a non normal approach [12]. Stability thresholds
obtained with the two approaches are very close, which validates the lin-
ear approach for the determination of the onset of convection. Results also
well compare with experimental observations obtained from experiments of
PIB/Toluene solutions drying [13], for stability thresholds and convective
structures wavelengths. This validates the simplifying assumptions made to
simulate the beginning of the drying where only thermal phenomena have
been taken into account.

At last a scaling analysis is developed for the quasi-steady regime in the BM
configuration. Correlations are derived to get the order of magnitude of the
temperature and velocity as a function of Bi, Ma and Pr numbers. Further
developments would imply to get a better description of the coupling between
the liquid and the gas (two layers model) and to allow deformations of the
interface. Other development concerns the second part of the drying process
when solutal convection takes place. This problem is more complex since the
assumption of constant physical properties and fixed interface are no more
valid.
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Annex: Scaling analysis: derivation of correlations and boundaries

Derivation of correlations is detailed for domain B only, since the method is
the same for all the domains. From equation 13 it can be seen that v, 2 v,,
so that the order of magnitude of the Peclet number is given by v,

Domain B is characterized by A0 < 1, 6r < 1 and oy ~ 1. It is then described
by equations 12, 13, 16 and 18. Correlations given in table .2 follows easily
from this set of equations with the condition dyz ~ 1.

The boundaries between the domain B and adjacent domains are obtained
in the following way: Equation 16 and condition ;7 < 1 gives v, > 1 in
domain B. Then the boundary between domain A (no convection, i.e. very
small velocities) and B is obtained writing v, ~ 1, that is Pe ~ 1 and then
Ma Bi ~ 1. The domains B and C differ by the temperature difference Af
which is close to one in domain C. The boundary between the two domains is
then obtained writing A ~ 1 in the correlation A8 ~ Ma~'/3Bi*? of domain
B. In the same way, the boundary between domain B and E is obtained writing
6y ~ 1 in the correlation dy ~ (Ma Bi)~Y4Pr3/® of domain E. The other
boundary equations follow from the same kind of arguments. However, let us
note that the boundary between domains C and A deduced from scaling laws
is Ma ~ 1, while asymptotes deduced from stability analysis reads Bi ~ Ma
(in terms of order of magnitude). As previously said, scaling laws have been
derived assuming the existence of the quasi-steady regime. The differences
between the two boundaries mean that the quasi-steady regime is not reached
for points below Bi ~ Ma.
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for three values of the initial disturbance: r = 4, 40, 400 - test
case of table 1.

Péclet number for e = Imm and various dynamic viscosities.

Comparison of RBM, BM and RB configurations. Symbols
refer to experimental results: no convection (red squares),
convective patterns (blue stars). Lines refer to simulations:
thresholds obtained with RBM configuration (blue continuous
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(green dotted line).

Comparison of theory and experiments. Experimental results:
same symbols than in Fig.6. Simulation thresholds obtained
with the following criteria: linear analysis and G = 1 (red
dotted line), linear analysis and G}, = 1 (red dashed line), non
linear analysis and Pe = 1 (green continuous line).

Wavelengths of the convective patterns, experimental points
(blue triangles) and simulations (red cross).

Comparison of critical Marangoni obtained with linear and
non linear analysis. non linear analysis and Pr =1 (red empty
triangles), linear analysis and Pr = 1 (red full triangles), non
linear analysis and Pr = 1000 (blue empty circles), linear
analysis and Pr = 1000 (blue full circles). The dashed black
lines are asymptotical lines with slope +1 and -1.

Quasi-steady regime in the BM configuration. Domains derived
from the scaling analysis (the figure is drawn for Pr—=100).
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.11 Comparison of simulations and correlations in the B domain.
(a) Pe versus BiMa, simulations (crosses) and straight line
with slope 2/3, (b) Pe versus Bi?/Ma, simulations (stars) and
straight line with slope 1/3. 26
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Table .1

p|mPa.s|

0.2 | 12 | 5850 | 451

Testcase parameters.

domain | A0 | op O correlations
A no convection
B <l|<1|~1 5y ~ (Ma.Bi)~/?
AO ~ Ma='/3.Bi?13, Pe ~ (Ma.Bi)*?
C ~1l | <l|~1 Op ~ Ma~1/?
Pe ~ Ma
D ~1 <l |kl Op ~ Ma V3 Pr=YS 6y ~ Ma='/3 Prt/3
Pe ~ Ma?3.pPri/3

E <1<l |<1| dp~(MaBi) VA Pr—18 5y ~ (Ma.Bi)~ V4. Pr3/®

AO ~ Ma='4 B3/t Pr=1/8 Pe ~ (Ma.Bi)"/? Prt/*

Table .2

Quasi-steady regime in the BM configuration - Correlations.

Table .3

domain

domain

boundary equation

A

B

Bix Ma ~1

Bi~ Ma

Bi’ x Ma= '~ 1

Bi%*3 x Ma*? ~ Pr

Ma ~ Pr

O|lQ|l®@|®

cEBUENCENONNE®!

Bi% x Ma=2 ~ Pr

Quasi-steady regime in the BM configuration - boundaries between the different

domains.
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Fig. .1. Viscosity, experimental points and interpolation curve.
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Fig. .2. Time evolution of the temperature difference between the bottom and top
of the layer for the convective model. 8(x = A/2,y = 0,t) — 0(z = A/2,y = 1,t)
(grey continuous line), < 6(y = 0,t) > — < §(y = 1,t) > (black continuous line),
pure diffusive model (dashed dotted line)- test case of table 1.

22



-0.10

-0.12 -

8(y=1)

-0.14 —

-0.16 —

I I I I I
0 5 10 15 20
X

(a) V(x,y,t=0.5) (b) O(z,1,¢ = 0.5)

-0.10 —

-0.12 —

6(y=1)

-0.14 —

-0.16 —

I I I I I
0 5 10 15 20
X

(¢) V(x,y,t—0.6) (d) 0(z,1,t = 0.6)

-0.10

-0.12 —

6(y=1)

-0.14 —

-0.16

I I I I
0 5 10 15 20
X

(e) V(x,y,t=0.65) (f) 6(z,1,t = 0.65)

Fig. .3. Stream lines and temperature at the free surface for t=0.5, t=0.6 and t=0.65
- test case of table 1.
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Fig. .4. Evolution of (a) Peclet number Pe(t) and (b) Pe(t)/Pe(t = 0) for three
values of the initial disturbance: r = 4, 40, 400 - test case of table 1.
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Fig. .5. Péclet number for e = Ilmm and various dynamic viscosities.
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Fig. .6. Comparison of RBM, BM and RB configurations. Symbols refer to experi-
mental results: no convection (red squares), convective patterns (blue stars). Lines
refer to simulations: thresholds obtained with RBM configuration (blue continuous
line), BM configuration (red dashed line) and RB configuration (green dotted line).

24



viscosity / mPa.s

thickness / mm

Fig. .7. Comparison of theory and experiments. Experimental results: same sym-
bols than in Fig.6. Simulation thresholds obtained with the following criteria: linear
analysis and G, = 1 (red dotted line), linear analysis and Gy, = 1 (red dashed line),
non linear analysis and Pe = 1 (green continuous line).
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Fig. .8. Wavelengths of the convective patterns, experimental points (blue triangles)
and simulations (red cross).
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Fig. .9. Comparison of critical Marangoni obtained with linear and non linear analy-
sis. non linear analysis and Pr = 1 (red empty triangles), linear analysis and Pr = 1
(red full triangles), non linear analysis and Pr = 1000 (blue empty circles), linear
analysis and Pr = 1000 (blue full circles). The dashed black lines are asymptotical
lines with slope +1 and -1.
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Fig. .10. Quasi-steady regime in the BM configuration. Domains derived from the
scaling analysis (the figure is drawn for Pr=100).
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Fig. .11. Comparison of simulations and correlations in the B domain. (a) Pe versus
BiMa, simulations (crosses) and straight line with slope 2/3, (b) Pe versus Bi?/Ma,
simulations (stars) and straight line with slope 1/3.
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