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Simulation of transientRayleigh-Bénard-Marangoni 
onve
tion indu
edby evaporationO. Touazi a,b, E. Chénier a, F. Doumen
 b,∗, B. Guerrier b

a Université Paris-Est, laboratoire Modélisation et Simulation Multi E
helle,MSME FRE3160 CNRS, 5 bd Des
artes, 77454 Marne-la-Vallee, Fran
e
b Univ Pierre et Marie Curie-Paris6, Univ Paris-Sud, CNRS, F-91405,Lab FAST, Bat 502, Campus Univ, Orsay, F-91405.Abstra
tNumeri
al simulation of thermal 
onve
tion indu
ed by solvent evaporation in aninitially isothermal �uid is 
onsidered. Both thermo
apillarity and buoyan
y drivingfor
es are taken into a

ount, and a 
riterium based on the Pe
let number is usedto analyze the stability of this transient problem. Criti
al Marangoni and Rayleighnumbers are obtained for a large range of Biot and Prandtl numbers. Results ofthe non linear simulations are 
ompared with a previous linear transient stabilityanalysis based on a non normal approa
h and with visualizations performed duringPIB/Toluene solutions drying experiments. A s
aling analysis is developed for theMarangoni problem and 
orrelations are derived to predi
t the order of magnitudeof temperature and velo
ity as a fun
tion of Bi, Ma and Pr numbers.Key words: free 
onve
tion, evaporation, stability, heat transfer

1 Introdu
tionEvaporation of a volatil �uid or drying of a solution indu
es a de
rease of thetemperature at the free surfa
e due to the vaporization latent heat. This situ-ation 
an generate 
onve
tive motion due to both buoyan
y and thermo
apil-lary driving for
es [1�6℄. Several points may be pointed out when studying su
h
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systems. First the boundary 
ondition at the free surfa
e results from the 
ou-pling between the system and the surroundings. The evaporating �ux and thenthe temperature gradient in the �uid depends on the heat and mass transferswith the ambient air. Several authors have developed numeri
al or theoreti
alstudies taking into a

ount this 
oupling, for example Merkt and Bestehorn[7℄, Colinet and 
o-authors [8℄, Ozen and Narayanan [9℄ and Moussy and 
o-authors [10℄. Both surfa
e tension- and buoyan
y-driven 
onve
tion may o

uras studied for example by Medale and Cerisier in several geometries but ina nonvolatile �uid [11℄. Another point that is more spe
i�
ally 
onsidered inthis paper is the transient nature of many experiments. Indeed, starting froman initial state where the �uid is isotherm, evaporation indu
es a de
reaseof the surfa
e temperature. The basi
 temperature �eld 
orresponding to thepure di�usive problem (null velo
ity �eld) is time dependent so that a 
lassi
alstability analysis based on the perturbation of a steady 
ondu
tive regime isquestionable. Then the predi
tion of 
riti
al 
onditions for the onset of 
on-ve
tion is a 
omplex problem. A theoreti
al linear analysis based on a nonnormal approa
h has been re
ently developed to take into a

ount the timedependent basi
 state for this same problem (
f. [12℄ and referen
es herein).In this paper we present a 2D non linear numeri
al simulation to study thedevelopment and evolution of 
onve
tive patterns in the transient regime,when both buoyan
y and thermo
apillary e�e
ts 
an be put forward. A largerange of parameters 
hara
terizing the problem (Biot, Marangoni, Prandtl andRayleigh numbers) are investigated. This numeri
al approa
h follows an ex-perimental study where numerous experiments of drying of a polymer/solventsolution have been performed with di�erent thi
knesses and vis
osities. Sim-plifying assumptions follow from experimental results and are presented inse
tion 2, as well as the model equations and numeri
al method. Se
tion 3and 4 are devoted to 2D non linear numeri
al simulations and to the deter-mination of 
onve
tion thresholds for this transient problem. Comparisonsare made with experimental results and with previous results dedu
ed fromthe linear stability analysis. At last, a s
aling analysis is developed for theMarangoni problem in se
tion 5.2 Problem formulation2.1 Thermal modelDrying experiments that underlie the simulations presented in this paper havebeen performed on the system Polyisobutylene (PIB)/Toluene. Experimentsare des
ribed in detail in [13℄ and we only re
all the main points used to estab-lish the simpli�ed model 
onsidered here. The solution initially at the ambient2



temperature is poured in a dish lo
ated in an extra
tor hood. The two 
on-trol parameters used in the experiments are the initial thi
kness (0.3mm ≤
e ≤ 14.3mm) and the initial polymer mass fra
tion (0 ≤ ωP ≤ 15%). Poly-mer solution vis
osity is strongly sensitive to polymer 
on
entration [14℄. Thevis
osity µ is 5.5 × 10−4Pa.s and 2.4Pa.s for ωP 0% and 15% respe
tively.Several simplifying assumptions have been inferred from experimental ob-servations. They are valid only at the beginning of the drying whi
h is thetime under 
onsideration in this paper. When evaporation begins, 
onve
tivepatterns have been observed at the very beginning of the experiment(quasi-instantaneous or less than 100 s after pouring the solution). They disappearwell before the end of the drying. The Lewis number (ratio of the thermaldi�usivity to mass di�usivity) being very large (about 103), it is assumed that
onve
tive patterns observed in the �rst minutes are mainly driven by ther-mal e�e
ts. Two experimental observations detailed in [13℄ support this thesis.First, a few experiments were 
ondu
ted with deuterated solvent, whose den-sity is higher than the polymer density. In that 
ase, the density of the solutionde
reases when the polymer 
on
entration in
reases, leading to a stable situa-tion if the solutal Rayleigh-Bénard problem is 
onsidered. Sin
e no di�eren
eswere found with the experiments 
ondu
ted with the standard solvent, we
an ex
lude solutal buoyan
y as a dominant me
hanism. Se
ond, free surfa
etemperature �elds measured by infrared 
amera showed that the end of free
onve
tion was related to the duration of the transient thermal regime. Solutal
onve
tion is then not taken into a

ount in this paper.Moreover, the layer thi
kness is assumed to remain 
onstant. This hypothesis
an be adopted if Peint ≪ 1, where the interfa
e Pe
let number is de�ned as
Peint ≡ (evev)/α with e the layer thi
kness, vev the interfa
e velo
ity due toevaporation and α the thermal di�usivity. Indeed when Pe ≪ 1, the surfa
edispla
ement vevδdiff remains negligible 
ompared to the total thi
kness eduring the problem 
hara
teristi
 time i.e. the di�usion time δdiff ≡ e2/κ. Inthe experiments, the Pe
let number is smaller than 0.1. In the same way, therate of 
hange of the polymer mass fra
tion is small and the physi
al propertiesof the solution are assumed 
onstant.The free surfa
e is assumed �at. Surfa
e deformation 
an be negle
ted if the
rispation number Cr ≡ (ρνα)/(γe) ≪ 1 [15℄ and if the Galileo number Ga ≡
(ge3)/(να) ≫ 1, where ρ, ν, γ, respe
tively denote �uid density, vis
osity,surfa
e tension, and where g is the a

eleration due to gravity. Su
h 
onditionsare shown to be satis�ed for the experiments 
onsidered here. Then surfa
edeformability 
an be disregarded.For sake of simpli
ity the numeri
al analysis is restri
ted to a two-dimensionalgeometry sin
e the study fo
uses on the onset of 
onve
tion and not on thedes
ription of 
onve
tive patterns morphology. Comparison of experimental3



and simulated thresholds (see se
tion 4.2) validates the 2D approa
h a poste-riori. The solution layer is 
ontained in a re
tangular domain of aspe
t ratio
A = L/e = 20, where L is the horizontal length and e the thi
kness of thesolution layer. The verti
al and bottom solid walls are supposed to be adia-bati
 and non permeable. Evaporation o

urs at the free surfa
e only. Heatand mass transfers between the free surfa
e and the ambient air are des
ribedby global transfer 
oe�
ients.With the Boussinesq approximation, the Navier-Stokes and energy equationsare:

~∇.~v = 0, (1a)
∂

∂t
~v + (~v.~∇)~v =−1

ρ
~∇p + ν∆~v + gβT (T − T0)~ey, (1b)

∂

∂t
T + (~v.~∇)T = α∆T, (1
)where ~v(~x, t) is the velo
ity �eld, p(~x, t) is the pressure �eld, T (~x, t) is thetemperature �eld, T0 the temperature of the ambient air and ~ey the unit ve
-tor in the verti
al dire
tion. In this approximation, the density ρ is taken tobe the density at T = T0. βT , ν = µ/ρ, α = k/ρc are the thermal expansion
oe�
ient, the kinemati
 vis
osity and the thermal di�usivity with µ the dy-nami
 vis
osity, k the thermal 
ondu
tivity and c the spe
i�
 heat.The polymer mass fra
tion being small, we have used the physi
al proper-ties of the toluene ex
ept for the vis
osity that is very sensitive to poly-mer 
on
entration. The following values have been used: ρ = 865kg.m−3,

k = 0.142W.m−1.K−1, α = 0.97×10−7m2.s−1, βT = 1.07×10−3K−1. For ea
hexperiment the vis
osity is also assumed 
onstant but depends on the initialpolymer 
on
entration, a

ording to an empiri
al law (Fig.1) dedu
ed fromvis
osity measurements performed with a Low Shear 30 rheometer (
oaxial
ylinders and imposed deformation) [16℄.2.2 Initial and boundary 
onditionsAt t = 0 the �uid is at the ambient temperature T (~x, 0) = T0. To studythe stability of the system, a perturbation is imposed on the velo
ity �eld at
t = 0. Sin
e the stru
tures of real experimental perturbations are not knowna priori, a random velo
ity perturbation with zero mean and amplitude ris implemented in the following way: numeri
al resolution of the problem isa
hieved using a �nite volume s
heme. For ea
h spatial node, the value allottedto the velo
ity at t = 0 
omes from a random drawing of a uniform distributionbetween −r/2 and +r/2. Further studies have shown that the 
hoi
e of the4



initial perturbation does not modify mu
h the stability thresholds (
f. se
tion3.2 and [12,17℄).The solid walls are adiabati
 with a zero velo
ity boundary 
ondition. On thefree surfa
e lo
ated at y = e, the thermal boundary 
ondition is :
−k

(

∂T

∂y

)

y=e

= hth(T (x, e, t) − T0) + LΦev (2)The �rst term of the r.h.s. is the 
onve
tive heat transfer between the freesurfa
e and the ambient air where hth is the heat transfer 
oe�
ient. These
ond term, L Φev, 
orresponds to the solvent evaporation with L the latentheat of vaporization and Φev the evaporative �ux, that 
an be expressed as
Φev = hm(ρg

Sint − ρg
S∞) (3)where hm is the mass transfer 
oe�
ient, ρg

Sint and ρg
S∞ are the solvent 
on-
entration in the gas phase just above the interfa
e and far from the interfa
erespe
tively. The last one is zero, due to the important air �ow rate in theextra
tor hood. With the ideal gas law, we get:

Φev = hm
MSPV S0(T (x, e, t))

RT (x, e, t)
a(T (x, e, t), ϕS(x, e, t)) (4)where MS is the solvent molar mass, a is the solvent a
tivity, PV S0 is thesaturated solvent vapor pressure, ϕS is the solvent volume fra
tion in the liquidphase at the interfa
e and R is the ideal gas 
onstant. In polymer solutionsthe a
tivity is 
lose to one for solvent volume fra
tion greater than about 0.4[18℄, so that Φev 
an be assumed independent of the solvent 
on
entration atthe beginning of the drying (a ≃ 1).Moreover, given the small amplitude of temperature variations observed in theexperiments (a few degrees), it is possible to use a �rst order development of

Φev, i.e.
Φev(T (x, e, t)) ≃ Φev(T0) + ∂Φev

∂T
|T0

(T (x, e, t) − T0)The thermal boundary 
ondition at the free surfa
e 
an then be approximatedby the following expression
−k

(

∂T

∂y

)

y=e

= Hth(T (x, e, t) − T0) + L Φev(T0) (5)with Hth = hth + L ∂Φev

∂T
|T0A shear stress boundary 
ondition is imposed at the free surfa
e, given by the5



balan
e of surfa
e tension for
es with the vis
ous stresses in the �uid.
µ

(

∂vx

∂y

)

y=e

=
dγ

dT

(

∂T

∂x

)

y=e

(6)where γ, the surfa
e tension, is a linearly de
reasing fun
tion of temperature.The other boundary 
ondition at the interfa
e 
on
erns the verti
al 
omponentof the velo
ity, vy. Assuming a planar surfa
e, and assuming that the spatialvariations of the evaporation �ux are mu
h smaller than the �ux itself, it 
anbe shown [12℄ that, in the limit of Peint ≪ 1, the boundary 
ondition redu
esto:
vy = 0 at y = e. (7)A

ording to experimental results, the following values have been used: Hth =

28W.m−2.K−1, L = 396kJ.kg−1, Φev(T0) = 3.37 × 10−4kg.m−2.s−1, dγ/dT =
−0.119 × 10−3N.m−1.K−1.2.3 Non-dimensional equationsThe non-dimensional form of the equations results from s
aling the lengthsby the thi
kness of the �uid e, the velo
ity ~v by the di�usion velo
ity α/e,and time t and pressure p respe
tively by e2/α and ρα2/e2. The temperatures
ale is θ = T−T0

∆T
where ∆T is the di�eren
e between the initial temperature

T0 and the steady temperature obtained at the end of the transient regime,when the temperature is uniform in the solution. From equation 5 we have
∆T = LΦev(T0)

Hth

, that is ∆T = 4.8K for the experimental 
on�guration. Letus note that this temperature s
ale is di�erent from the one used in 
lassi
alstability analysis where the basi
 state is 
hara
terized by a 
onstant temper-ature gradient in the �uid.The dimensionless form of equations (1a-1
) is:
~∇.~v =0 (8a)

∂~v

∂t
+ (~v.~∇)~v =−~∇p + RaPrθ~ey + Pr∆~v (8b)

∂θ

∂t
+ (~v.~∇)θ =∆θ (8
)where Pr = ν/α is the Prandtl number, Ra = βT g∆Te3/(να) is the Rayleighnumber. 6



The dimensionless form of thermal (Eq. 5) and dynami
 (Eq. 6 and 7) bound-ary 
onditions at the free surfa
e are :
−
(

∂θ

∂y

)

y=1

= Bi (θ(x, y = 1, t) + 1) with Bi =
Hthe

k
(9)

(

∂vx

∂y

)

y=1

= −Ma

(

∂θ

∂x

)

y=1

with Ma = −e ∆T

µα

(

∂γ

∂T

) (10)
vy = 0 at y = e. (11)with Ma the Marangoni number and Bi a modi�ed Biot number that takesinto a

ount the evaporative �ux.The �ow and thermal behaviour in the solution are governed by four non-dimensional parameters (Bi, Ma, Pr and Ra), that depend on the two 
ontrolparameters used in the experiments, the initial thi
kness and vis
osity [13℄.2.4 Numeri
al methodComputations are 
arried out with a 
ollo
ated �nite volume s
heme with ase
ond order spa
e and time dis
retization [19℄. The dis
rete s
heme is fully
oupled. The set of the dis
rete balan
e equations is solved by an under-relaxedNewton's method with the iterative linear solver BICGSTAB, pre
onditionedby an in
omplete LU fa
torization. The 
hosen mesh is a standard regularmesh L ∗ e = (800 ∗ 40) and the time step is equal to ∆t = 10−3. Resultsobtained with �ner grids or time steps did not show any noti
eable 
hangesin the results.3 Transient 
onve
tion3.1 Typi
al temperature and velo
ity �eldsFig.2 gives a typi
al example of the time evolution of the non dimensionaltemperature di�eren
e between the bottom and the free surfa
e of the solu-tion for a 
on�guration where 
onve
tion is observed (parameters of the test
ase are given in table 1, initial velo
ity disturban
e amplitude r = 4). Asa 
omparison, the temperature evolution obtained for a pure di�usive prob-lem is also drawn (dashed line obtained with Ma = 0 and Ra = 0). Severaldomains 
an be observed. At the beginning, heat transfer is dominated bythe di�usion and the two 
urves are superposed (domain I). Then 
onve
tion7



starts and it is 
hara
terized �rst by strong and rapid 
hanges of the temper-ature �eld (domain II). This regime is followed by a quasi-steady regime witha slow de
rease of the temperature di�eren
e between the bottom and the freesurfa
e (domain III). At last for large times the two 
urves 
orresponding topure di�usive or 
onve
tive regimes go to zero. Indeed the temperature in the�uid is uniform at the end of the thermal transient regime (not represented inFig.2).The stream lines and the temperature on the free surfa
e are given in Fig.3for three dimensionless times t=0.5, t=0.6 and t=0.65. We 
an observe thevanishing of the 
entral 
ell between t= 0.5 and t=0.65 that 
orresponds tothe se
ond peak that 
an be observed on the temperature evolution in Fig.2.It is followed by the quasi-steady regime, with a 
onstant number of 
ells.The obje
tive of this paper is to analyze the three regimes, as a fun
tionof the four non dimensional parameters that 
hara
terize the problem, Bi,
Ma, Pr and Ra numbers. The transition from domain I to domain II, i.e.the onset of 
onve
tion is analyzed in se
tion 4. Se
tion 5 is dedi
ated tothe 
hara
terization of the quasi-steady regime, using s
aling laws to get anestimation of the temperature and velo
ity in this regime.To 
hara
terize the presen
e of observable 
onve
tion, a 
riterium based on thethermal Pe
let number was 
hosen. The thermal Pe
let number Pe = e v/α
ompares the relative importan
e of adve
tion and di�usion. The velo
ity
v used in the estimation of the Pe
let number is the maximal value of thevelo
ity norm. Then 
onve
tion will be 
onsidered signi�
ant if, when thesystem is submitted to an initial velo
ity perturbation, there is a time t wherethe perturbation is signi�
antly ampli�ed, i.e. su
h as dPe(t)/dt > 0 and
Pe(t) > 1.3.2 E�e
t of the initial disturban
e amplitudeAs the problem is sensitive to initial 
onditions, we have �rst performed apreliminary study to analyze the in�uen
e of the amplitude of the initial dis-turban
e on the time evolution of the Pe
let number. The parameters used forthis test are given in Tab.1.Fig.4a shows the temporal evolution of the Pe
let number in log s
ale. Atthe beginning a linear regime 
an be observed with a de
reasing of the initialperturbation followed by its ampli�
ation. But at large t, in the non linearregime, Pe be
omes quasi independent of the initial perturbation. If we 
on-sider the 
hosen 
riterium (Pe > 1), all the tests lead to the same 
on
lusion,i.e. 
onve
tion is observed; only the time delay depends on the amplitude of thedisturban
e. The 
orresponding time is about t = 0.1 for r = 4 and t = 0.038



for r = 400. Fig.4b shows the Pe
let number normalized by its initial value,so that the transition between the linear and non linear regime 
an be 
learlyobserved.Sin
e the general trends observed in the three regimes and the o

urren
e of
onve
tion do not depend strongly on the perturbation amplitude (at least in alarge domain), we use r = 4 in the following. A more detailed sto
hasti
 anal-ysis of the in�uen
e of the initial perturbation stru
ture has been performed[17℄ and gives the same 
on
lusions: 
hanging the initial perturbation indu
esonly small 
hanges in the pattern wavelength, in the temperature or in thePe
let variations. The threshold value 
orresponding to the onset of 
onve
tionis therefore little sensitive to the initial perturbation. This assumption is 
on-�rmed in se
tion 4.3 by the good agreement between the thresholds obtainedwith the non-linear simulations and the linear stability analysis. However thethreshold must not be understood as a pre
ise delimitation between stable andunstable domains but rather as a transition region (a fa
tor of about two isobtained for di�erent initial perturbations). This "blurring" e�e
t is inherentto the transient 
hara
ter of the problem under study [12℄.
4 Stability4.1 In�uen
e of the dynami
 vis
osityThe vis
osity of solutions understudy being very sensitive to the initial poly-mer 
on
entration, we �rst study the in�uen
e of the dynami
 vis
osity µon the Pe
let transient behavior. Both buoyan
y and surfa
e tension drivingfor
es are taken into a

ount (Rayleigh-Bénard-Marangoni 
on�guration) andresults are given in Fig.5 for e = 1mm and for di�erent values of the dynami
vis
osity µ.For the largest vis
osities, the Pe
let number is a monotone de
reasing fun
-tions and the initial perturbation dies down. For smaller vis
osities, there isan ampli�
ation of the initial perturbation after some times. However thisampli�
ation may be very weak and for vis
osity larger than 5mPa.s thePe
let number is always smaller than one, so that this 
on�guration is "sta-ble" a

ording to the 
riterium de�ned in se
tion 3.1. The 
riti
al vis
osity
orresponding to the onset of 
onve
tion lies between 4mPa.s and 5mPa.s forthis thi
kness. In the next se
tion, the same study was performed for otherthi
knesses in order to 
ompare simulations and experimental data.9



4.2 Comparison of simulations and experimentsComparison is made with experimental points in the range of Bi, Ma, Prand Ra 
overed by the variation of the two experimental 
ontrol parameters(initial thi
kness and vis
osity), that is:
0.06 ≤ Bi ≤ 5; 6.6 ≤ Pr ≤ 2.5 104; 20 ≤ Ma ≤ 1.2 105; 1.3 ≤ Ra ≤
1.4 106Numeri
al simulations have been performed for 1mm < e < 30mm. For ea
hthi
kness, we look for the maximum vis
osity su
h as the 
onve
tion 
riteriumis ful�lled. This systemati
 study leads to the 
onstru
tion of the transitionboundary between the "stable" and "unstable" domain in the plane thi
kness-vis
osity, a

ording to the 
riterium previously de�ned. Numeri
al results andexperimental points are given in Fig .6. When the whole Rayleigh-Bénard-Marangoni problem (RBM) is 
onsidered (blue line), a 
hange in the frontierslope is observed around e = 8mm. As already known for RBM 
on�gura-tion [1℄ this 
orresponds to the transition between the domain dominated byBénard-Marangoni (BM) instabilities (small thi
knesses) and Rayleigh-Bénard(RB) instabilities (large thi
knesses). To illustrate this point, the same simula-tions were performed 
an
eling the buoyan
y term or the surfa
e tension termin the Navier Stokes equation. The 
orresponding thresholds are 
ompared inFig.6. For thi
knesses smaller than a few millimeters the 
urves with or withoutbuoyan
y are similar and Marangoni e�e
ts are dominant. The reverse is ob-served for thi
knesses larger than 8mm, where buoyan
y e�e
ts be
ome dom-inant. This 
on�rms experimental results where two di�erent morphologies of
onve
tive patterns had been observed for small and large thi
knesses respe
-tively (transition from 
ells to a mixture of 
ells and rolls, 
f. [13℄). Agreementbetween experimental observations and simulated thresholds is good, ex
eptfor some experiments lo
ated in the "stable" domain and exhibiting 
onve
tivepatterns. This point is dis
ussed in the next se
tion.4.3 Comparison with linear stability analysisThe results obtained in this paper with dire
t non linear simulation are 
om-pared to a linear stability analysis otherwise performed and detailed in [12℄.For this transient problem, a spe
i�
 method was used, based on the non-normal approa
h. First, as usually done, linear perturbation equations werederived. Two ampli�
ation gains were de�ned. The �rst one GV (t) is basedon the kineti
 energy of velo
ity perturbations and the se
ond one GT (t) is aquadrati
 term based on temperature perturbation. Then for ea
h wavenumber
k (spatial development of the perturbation in the in�nite horizontal dire
tion)and ea
h time t an optimization problem was solved in order to get the ver-10



ti
al pro�le (0 < y < e) of the initial optimal perturbation whi
h leads tothe maximization of GV (t, k) (velo
ity perturbation) or GT (t, k) (temperatureperturbation). For a given set of non dimensional parameters (Ra, Ma, Prand Bi numbers) we then de�ne G∗

V = Maxt,kGV , the larger ampli�
ationfor any time and wavenumber when the initial perturbation is imposed on thevelo
ity, and G∗

T = Maxt,kGT that is the larger ampli�
ation for any time andwavenumber when the initial perturbation is imposed on the temperature. GVand GT are normalized with the initial values of the kineti
 energy or tem-perature norm, so that G∗ < 1 means that the initial perturbation is neverampli�ed [12℄.The di�erent 
riteria are 
ompared in Fig.7. As 
an be seen, the boundariesobtained with velo
ity perturbations either with non linear simulations (
ri-terium "Pe = 1") or with linear analysis ("G∗

V = 1") are very 
lose. Perturba-tions on the temperature �eld (with 
riterium "G∗

T = 1") give thresholds abovethe other ones, but, as previously said, the thresholds must rather be seen asa transition region, and all the 
riteria lead to the same order of magnitude.At last, the pattern wavelengths obtained from simulations (quasi-steady regime)and experiments have also been 
ompared and are in good agreement, as shownin Fig.8. As already obtained in RBM studies [20℄, no 
hange is observed atthe transition from surfa
e tension driven �ow to buoyan
y driven �ow, thato

urs for a thi
kness around 1
m.
4.4 Criti
al Marangoni and Rayleigh numbersBeyond the experiments a more general analysis of the in�uen
e of the Biotand Prandtl numbers on the stability thresholds have been performed. In the
ase of pure Bénard-Marangoni �ow, the 
riti
al Marangoni number is shownto depend very few on the Prandtl number and to depend non monotoni
allyon the Biot number, with a minimum value around Bi = 2 (Fig.9). Compari-son with results obtained with the linear analysis and 
riterium G∗

V = 1 [12℄is made in Fig.9. The thresholds obtained with the two approa
hes are very
lose and two asymptoti
 power laws 
an be de�ned: "Bi Ma ≃ constant" and"Bi ≃ constant Ma" for low and large values of Biot numbers respe
tively.Similar results (not presented here) have been obtained with the RB 
on�gu-ration, i.e. linear and non linear results are very 
lose.11



5 S
aling laws in the quasi-steady regimeThis last se
tion is devoted to the analysis of the quasi-steady regime in theBénard-Marangoni 
ase (Ra = 0). For su
h 
onditions, we aim to obtain thes
aling laws that give the order of magnitude of the temperature variationsand of the velo
ity inside the liquid layer, as a fun
tion of the three non-dimensional parameters Ma, Bi and Pr. This obje
tive is rea
hed by solvingequations 8a to 11 in terms of order of magnitude (s
aling analysis, 
f. forinstan
e ref. [21℄ for an example of s
aling derivation applied to a transientfree 
onve
tion problem). The derivation is made possible by use of symplifyingassumptions listed below.First, the existen
e of the quasi steady regime is assumed a priori. The ob-tained results are then restri
ted to the domain where 
onve
tion is expe
ted,i.e. the domain above the two asymptoti
al lines de�ned in Fig.9 (
f. [12℄ fora detailed analysis of the asymptoti
al values). The following assumptions aremade:H1 we assume the existen
e of an hydrodynami
 boundary layer (resp. ther-mal boundary layer) of thi
kness δH (resp. δT ) below the free surfa
e.H2 time derivative terms in equations (1b) and (1
) are negle
ted (quasi-steady regime assumption).H3 the verti
al and horizontal temperature variations a
ross a 
onve
tive 
ellare of same order of magnitude, denoted ∆θ (
ompare for instan
e Figs .2 and.3).H4 the wavelength of 
onve
tive stru
tures is of the order of the thi
kness (
f.Fig.8), so that the order of magnitude of the 
hara
teristi
 length s
ale in the
x-dire
tion is 1.H5 the analysis is restri
ted to �uid with Pr & 1 1 .In addition, the order of magnitude of the velo
ity 
omponent parallel tothe free surfa
e in the hydrodynami
 layer is denoted vx, while the order ofmagnitude of the verti
al velo
ity 
omponent is denoted vy.5.1 equationsIn the following, the equations of se
tion 2.3 are written in terms of order ofmagnitude.* Thanks to H1, H3 and H4, the shear stress boundary 
ondition (equation
1 & 1 stands for ∼ 1 or ≫ 1 12



(10)) reads :
vx

δH
∼ Ma ∆θ (12)* The mass 
onservation (equation (8a)), with assumptions H1 and H4 reads:

vx ∼ vy

δH
(13)* Momentum 
onservation.Following a 
lassi
al derivation, the pressure gradient term 
an be eliminatedfrom equations (8b) :

1

Pr
[
∂

∂x
(
∂vy

∂t
+vx

∂vy

∂x
+vy

∂vy

∂y
)− ∂

∂y
(
∂vx

∂t
+vx

∂vx

∂x
+vy

∂vx

∂y
)] =

∂

∂x
(
∂2vy

∂x2
+

∂2vy

∂y2
)− ∂

∂y
(
∂2vx

∂x2
+

∂2vx

∂y2
)(14)This relation states a balan
e between inertia (left-hand side) and fri
tion(right-hand side). The times derivatives ∂tvx and ∂tvy 
an be dropped outthanks to the assumption of quasi-steady regime (H2). To go further, we needto distinguish two 
ases : δH ≪ 1 or δH ∼ 1. A

ording to equation (13), the
ondition δH ≪ 1 implies vx ≫ vy. In that 
ase, it is easy to show that, interms of order of magnitude, equation (14) reads v2

x/(PrδH) ∼ vx/δ
3
H , whi
hleads to:

δH ∼
√

Pr

vx

(15)This equation is valid for √Pr/vx ≪ 1 only, sin
e it was established by assum-ing δH ≪ 1. In the opposite 
ase su
h that √Pr/vx & 1, the hydrodynami
boundary layer thi
kness saturates at δH ∼ 1, and inertia is no more involvedin the problem.* Energy 
onservation.Denoting vyT the order of magnitude of the verti
al velo
ity 
omponent in-side the thermal boundary layer, the equation (8
) is a balan
e between fourterms, due to adve
tion and di�usion. With assumptions H3, we get the fol-lowing terms (vx∆θ ; vyT ∆θ/δT ; ∆θ ; ∆θ/δ2
T ). On
e again two 
ases mustbe 
onsidered, a

ording to the value of δT . In the 
ase δT ≪ 1, one 
an easilyshow that

δT ∼ 1√
vx

(16)This relation is valid if 1/
√

vx ≪ 1 only. In that 
ase, the thermal boundarylayer thi
kness results from a balan
e between adve
tion and di�usion. In theopposite 
ase 1/
√

vx & 1, it saturates at δT ∼ 1, and another regime o

urswhere adve
tion is negligible 
ompared to di�usion.* Thermal boundary 
ondition.The equation (9) states a balan
e between three terms, 
hara
terizing respe
-13



tively the di�usion in the liquid, the heat supplied by 
onve
tion from the gazphase, and the 
ooling due to evaporation :
∆θ

δT

; Bi∆θ ; Bi (17)Two regimes 
an be 
onsidered, depending on whi
h terms dominate the heatbalan
e at the interfa
e. If the 
ondition ∆θ ≪ 1 is satis�ed, the heat �ux from
onve
tion in the gas phase is negligible, and the energy needed by evaporationis balan
ed by the di�usion in the liquid. The equation (17) hen
e reads:
∆θ ∼ BiδT (18)The equation (18) is valid if BiδT ≪ 1 only. Conversely, another regime o

urif BiδT & 1, 
hara
terized by the temperature variation saturating at ∆θ ∼ 1.In that 
ase the energy is supplied by 
onve
tion in the gas phase, sin
e theterms Bi∆θ and Bi dominate in equation (17).5.2 Synthesis of the di�erent regimesThe previous se
tion shows that we must 
onsider a 
ombination of the fol-lowing 
ases :

δH ≪ 1 or δH ∼ 1 (19)
δT ≪ 1 or δT ∼ 1 (20)

∆θ ≪ 1 or ∆θ ∼ 1 (21)We see from equations (15) and (16) that only 
ases where δH & δT are tobe taken into a

ount sin
e the analysis is restri
ted to �uid with Pr & 1(H5 assumption). Moreover, only unstable 
on�gurations are 
onsidered and,in the Ma/Bi plane, the domain is restri
ted to the points above the twoasymptoti
al 
urves of the 
riti
al Marangoni obtained from the 
ompletestability analysis, i.e. Bi ∼ Ma−1 for small Biot numbers and Bi ∼ Ma forlarge Biot numbers (
f. Fig.9). Taking into a

ount these remarks, we obtainthe �ve domains listed in table .2 and Fig.10. Correlations and boundariesbetween the di�erent domains are dedu
ed from the previous equations. Theirderivation is detailed in the annex.At last Fig.11 shows an illustration of the s
aling laws in the domain B, de-du
ed from simulations performed for 
on�gurations 
lose to the experimental
onditions. As 
an be seen numeri
al simulations are in good agreement withs
aling laws. 14



6 Con
lusionIn this paper a numeri
al analysis of a thermal transient problem indu
ed bysolvent evaporation in an initially isothermal �uid is 
onsidered. The thermalbehavior shows the su

ession of three steps: the �rst one, before the onset of
onve
tion, is purely di�usive, the se
ond step 
orresponds to the beginningof 
onve
tion and important variations in temperature and velo
ity �elds areobserved, and the last one is 
hara
terized by a very slow evolution of thesystem towards the �nal isothermal state. The problem is des
ribed by fournon-dimensional parameters, Bi, Ma, Pr and Ra. Our approa
h takes intoa

ount expli
itly the transient 
hara
ter of the problem. A 
riterium basedon the Pe
let number is used to 
hara
terize the onset of 
onve
tion. It isimportant to noti
e that the threshold must not be understood as a pre
isedelimitation between stable and unstable domains but rather as a transitiondomain, sin
e the obtained threshold values depend slightly on the initial per-turbation. The 
omplete problem (i.e. 
onve
tion indu
ed by thermo
apillarityand buoyan
y) or the pure Rayleigh-Bénard and pure Bénard-Marangoni 
on-�guration is 
onsidered. It was found that the obtained thresholds do notdepend on the value of the Pr number signi�
antly.Results of the non linear simulations are 
ompared with a linear transientstability analysis based on a non normal approa
h [12℄. Stability thresholdsobtained with the two approa
hes are very 
lose, whi
h validates the lin-ear approa
h for the determination of the onset of 
onve
tion. Results alsowell 
ompare with experimental observations obtained from experiments ofPIB/Toluene solutions drying [13℄, for stability thresholds and 
onve
tivestru
tures wavelengths. This validates the simplifying assumptions made tosimulate the beginning of the drying where only thermal phenomena havebeen taken into a

ount.At last a s
aling analysis is developed for the quasi-steady regime in the BM
on�guration. Correlations are derived to get the order of magnitude of thetemperature and velo
ity as a fun
tion of Bi, Ma and Pr numbers. Furtherdevelopments would imply to get a better des
ription of the 
oupling betweenthe liquid and the gas (two layers model) and to allow deformations of theinterfa
e. Other development 
on
erns the se
ond part of the drying pro
esswhen solutal 
onve
tion takes pla
e. This problem is more 
omplex sin
e theassumption of 
onstant physi
al properties and �xed interfa
e are no morevalid.A
knowledgmentThe authors thank M. Rossi from "Institut Jean Le Rond d'Alembert, CNRS-UPMC, Fran
e" and T.Boe
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Annex: S
aling analysis: derivation of 
orrelations and boundariesDerivation of 
orrelations is detailed for domain B only, sin
e the method isthe same for all the domains. From equation 13 it 
an be seen that vx & vy,so that the order of magnitude of the Pe
let number is given by vxDomain B is 
hara
terized by ∆θ ≪ 1, δT ≪ 1 and δH ∼ 1. It is then des
ribedby equations 12, 13, 16 and 18. Correlations given in table .2 follows easilyfrom this set of equations with the 
ondition δH ∼ 1.The boundaries between the domain B and adja
ent domains are obtainedin the following way: Equation 16 and 
ondition δT ≪ 1 gives vx ≫ 1 indomain B. Then the boundary between domain A (no 
onve
tion, i.e. verysmall velo
ities) and B is obtained writing vx ∼ 1, that is Pe ∼ 1 and then
Ma Bi ∼ 1. The domains B and C di�er by the temperature di�eren
e ∆θwhi
h is 
lose to one in domain C. The boundary between the two domains isthen obtained writing ∆θ ∼ 1 in the 
orrelation ∆θ ∼ Ma−1/3Bi2/3 of domainB. In the same way, the boundary between domain B and E is obtained writing
δH ∼ 1 in the 
orrelation δH ∼ (Ma Bi)−1/4Pr3/8 of domain E. The otherboundary equations follow from the same kind of arguments. However, let usnote that the boundary between domains C and A dedu
ed from s
aling lawsis Ma ∼ 1, while asymptotes dedu
ed from stability analysis reads Bi ∼ Ma(in terms of order of magnitude). As previously said, s
aling laws have beenderived assuming the existen
e of the quasi-steady regime. The di�eren
esbetween the two boundaries mean that the quasi-steady regime is not rea
hedfor points below Bi ∼ Ma.Referen
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.11 Comparison of simulations and 
orrelations in the B domain.(a) Pe versus BiMa, simulations (
rosses) and straight linewith slope 2/3, (b) Pe versus Bi2/Ma, simulations (stars) andstraight line with slope 1/3. 26
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e[mm℄ µ[mPa.s℄ Bi Pr Ma Ra1 1 0.2 12 5850 451Table .1Test
ase parameters.
domain ∆θ δT δH 
orrelationsA no 
onve
tionB ≪ 1 ≪ 1 ∼ 1 δT ∼ (Ma.Bi)−1/3

∆θ ∼ Ma−1/3.Bi2/3, Pe ∼ (Ma.Bi)2/3C ∼ 1 ≪ 1 ∼ 1 δT ∼ Ma−1/2

Pe ∼ MaD ∼ 1 ≪ 1 ≪ 1 δT ∼ Ma−1/3.P r−1/6, δH ∼ Ma−1/3.P r1/3

Pe ∼ Ma2/3.P r1/3E ≪ 1 ≪ 1 ≪ 1 δT ∼ (Ma.Bi)−1/4.P r−1/8, δH ∼ (Ma.Bi)−1/4.P r3/8

∆θ ∼ Ma−1/4.Bi3/4.P r−1/8, Pe ∼ (Ma.Bi)1/2.P r1/4Table .2Quasi-steady regime in the BM 
on�guration - Correlations.
domain domain boundary equationA B Bi × Ma ∼ 1A C Bi ∼ MaB C Bi2 × Ma−1 ∼ 1B E Bi2/3 × Ma2/3 ∼ PrC D Ma ∼ PrD E Bi6 × Ma−2 ∼ PrTable .3Quasi-steady regime in the BM 
on�guration - boundaries between the di�erentdomains.
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