
HAL Id: hal-00691249
https://hal.science/hal-00691249v1

Submitted on 25 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Blind deconvolution of 3D data in wide field fluorescence
microscopy

Ferréol Soulez, Loïc Denis, Yves Tourneur, Éric Thiébaut

To cite this version:
Ferréol Soulez, Loïc Denis, Yves Tourneur, Éric Thiébaut. Blind deconvolution of 3D data in wide
field fluorescence microscopy. International Symposium on Biomedical Imaging, May 2012, Barcelone,
Spain. pp.CDROM. �hal-00691249�

https://hal.science/hal-00691249v1
https://hal.archives-ouvertes.fr


BLIND DECONVOLUTION OF 3D DATA IN WIDE FIELD FLUORESCENCE MICROSCOPY
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ABSTRACT

In this paper we propose a blind deconvolution algorithm for wide

field fluorescence microscopy. The 3D PSF is modeled after a

parametrized pupil function. The PSF parameters are estimated

jointly with the object in a maximum a posteriori framework. We

illustrate the performances of our algorithm on experimental data

and show significant resolution improvement notably along the

depth. Quantitative measurements on images of calibration beads

demonstrate the benefits of blind deconvolution both in terms of

contrast and resolution compared to non-blind deconvolution using

a theoretical PSF.

Index Terms— blind deconvolution, wide field fluorescence mi-

croscopy, image restoration, inverses problems

1. INTRODUCTION

Using fluorescent dyes to identify specific cellular structures, the

wide field fluorescence microscopy (WFFM) is a widely spread

imaging modality in biology. It consists on imaging at its emission

wavelength a cellular structure marked by fluorescent dye excited

by uniform illumination. On the resulting 2D image, structures are

more or less defocalized according to their distance to the focal

plane. Moving this focal plane through the sample produces a 3D

representation of the object. WFFM however suffers from a very

coarse axial resolution compared to the lateral resolution. This blur-

ring of the data y can be modeled by a 3D convolution between a

point spread function (PSF) h and the observed 3D object x:

y = h ∗x+ n , (1)

where n accounts for the noise. The resolution of the setup is given

by the shape of the 3D PSF. To improve depth resolution, one can

either change the imaging setup (e.g., using confocal or two-photon

microscopy) or enhance WFFM 3D data with a deconvolution algo-

rithm ([1, 2] and references therein). Most deconvolution algorithms

use the theoretical diffraction-limited PSF or a more realistic exper-

imental PSF measured using calibration beads. Blind deconvolution

algorithms bypass the problem of PSF calibration by simultaneously

estimating the PSF and the object. Few blind deconvolution algo-

rithms have been proposed for WFFM, the most notable being para-

metric blind deconvolution (PBD)[3], AIDA[4, 5] and the method

proposed by Kenig[6] where the PSF is constrained to lie in a (pre-

viously learned) subspace.

The proposed method is closely related to PBD[3] method as

we model a PSF as a function of a parametrized pupil function.
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The main differences are (i) the use of a much more robust MAP

framework instead of maximum likelihood and (ii) the parametriza-

tion of the PSF that enforces its normalization and can model non-

symmetric PSF.

2. MAP FRAMEWORK

In blind deconvolution both object x and PSF h are derived from the

same measurements y. We consider maximum a posteriori estimates

{x+,h+} obtained by minimizing cost function f(x,h):

{x+,h+} = argmin
x∈X,h∈H

J (x,h) , (2)

J (x,h) = Jdata(x,h) + µJprior(x) , (3)

with Jdata(x,h) the neg-loglikelihood, Jprior(x) a regularizing prior

and µ a hyper-parameter. Prior knowledge on the PSF is implicitly

enforced through PSF parametrization. Regularization Jprior is thus

applied only to object x.

2.1. Data-fitting term

Under Gaussian noise assumption, the neg-loglikelihood reads:

Jdata(x,h) = (y − h ∗x)⊤ ·C−1
noise · (y − h ∗x) , (4)

where Cnoise is the noise covariance matrix and is diagonal if noise

is uncorrelated:

Jdata(x,h) =
∑

k

wk

[

(h ∗x)
k
− yk

]2
, (5)

where wk is the inverse of the noise variance at pixel k. This model

can cope with non-stationary noise and can be used to express con-

fidence on measurements on each pixel of the data. Thus it can deal

with unmeasured pixels (due to saturation, borders. . . ) by setting

wk = 0 for such pixels. Furthermore, except for very low detector

noise, this formulation can account for mixed Poisson + Gaussian

noise by approximating it as a non-stationary uncorrelated Gaussian

noise [5]:

wk
def
=

{
(

γmax(yk, 0) + σ2
k

)−1
if yk is measured,

0 otherwise,
(6)

where γ is the quantization factor of the detector and σ2
k is the vari-

ance of other approximately Gaussian noises (e.g., read-out noise) at

pixel k.



2.2. Object regularization term

As most observed objects are smooth with few sharp structures (e.g.,

edges and spikes), we use as regularizing prior a hyperbolic version

of the classical 3D total variation[7]:

Jprior(x) =
∑

k

√

‖∇xk‖
2
2 + ǫ2 . (7)

Parameter ǫ > 0 ensures differentiability of Jprior at 0. When ǫ value

is close to the quantization level, this function smooths out non-

significant differences between adjacent pixels. In addition, since

only intensities are measured, we constrain object x to be positive

valued.

3. PSF PARAMETRIZATION

An abundant literature discusses PSF modeling for fluorescence mi-

croscopy. In the present work, we chose a monochromatic scalar

model that defines the 3D PSF h from pupil function p. This pupil

function is the in-focus point source wavefront phase and modulus

at the exit pupil of the objective. To reduce the number of degrees

of freedom of our model, the pupil function is parametrized by a

limited number of modes.

3D PSF h(x, y, z) is defined as the squared magnitude of

complex-valued amplitude PSF h̄(x, y, z):

h(x, y, z) =
∣

∣h̄(x, y, z)
∣

∣

2
. (8)

Complex-valued PSF h̄ is, in turn, defined as the 3D Fourier trans-

form of the complex-valued amplitude optical transfer function

(OTF). This OTF is non-zero only on a spherical cap of radius ni/λ
limited by the aperture angle. It can thus be fully described by a

2D function: pupil function p(κx, κy) which is non-zero on the disk

defined by
√

κ2
1 + κ2

2 ≤ NA/λ. 3D PSF h(x, y, z) is then related

to pupil function p through:

h(x, y, z) =

∣

∣

∣

∣

∫∫

p(κx, κy) exp (2 iπ z d(κx, κy)) . . .

exp (2 iπ (κx x+ κy y)) dκxdκy

∣

∣

∣

∣

2

, (9)

with d(κx, κy) =
√

(ni/λ)2 − (κx + κy)2 the defocus[8], ni the

refractive index of the immersion medium and λ the emission wave-

length of the fluorophore. The defocus and the 2D complex pupil

function p(κx, κy) describe the properties of the optical system.

As noted by Hanser[9], the support of p(κx, κy) is a disk thus

Zernike polynomials Zn provide a suitable basis to express both

modulus ρ(κx, κy) and phase φ(κx, κy) of pupil function p:

ρ(κx, κy) =
∑

n
βnZn(κx, κy) , (10)

φ(κx, κy) =
∑

n
αnZn(κx, κy) . (11)

As phase piston has no effect on the resulting PSF we set α0 =
0. Similarly, we cancel the tip-tilt parameters (α1 = α2 = 0) to

keep the PSF laterally centered (this fixes the position degeneracy

common with blind deconvolution problems). PSF normalization

(i.e., energy conservation) can be expressed as an ℓ1 norm constraint

‖h‖1 = 1, or equivalently as an ℓ2 constraint on the complex-valued

PSF ‖h̄‖2 = 1. This latter ℓ2 constraint can further be written as an

ℓ2 constraint in Zernike orthonormal basis: ‖β‖2 = 1. By selecting

only purely radial Zernike polynomials, one can easily constrain the

axial symmetry of the PSF. This relatively simple PSF model offers

a flexible parametrization that requires only the knowledge of the

wavelength λ, the numerical aperture NA and the refractive index

of the immersion medium ni.

4. BLIND DECONVOLUTION ALGORITHM

To solve the blind deconvolution, we have to find the optimal param-

eters {x+,α+,β+} that minimizes the cost function J (x,h(α,β)).
A simple way to do this is to use continuous optimization techniques.

Due to non-linearity of this cost function and as these parameters

have different physical meanings, the simultaneous estimation of

parameters of both the object x and the PSF h(α,β) is known to

very badly conditioned. This slows down convergence of optimiza-

tion algorithm. For that reason, as it is classically done[10], we

use an alternating minimization scheme to minimize the criterion

J (x, h(α,β)). The algorithm is thus:

1. t = 0, define the initial PSF h(0) as the theoretical diffraction

limited PSF of the microscope i.e., α(0) = 0, β(0) = 0.

2. t = t+ 1, estimation of the optimal non-negative object x(t)

according to given PSF h(t−1) :

x
(t) ≈ argmin

x≥0

(

Jdata(x,h
(t−1)) + µJprior(x)

)

. (12)

3. Improvement of the phase parameters α(t) given the other

model parameters that minimize:

α
(t) = argmin

α

Jdata

(

x
(t),h(α,β(t−1))

)

. (13)

4. Improvement of the modulus parameters β(t) given the other

model parameters that minimize:

β
(t) ≈ argmin

‖β‖2
2
=1

Jdata

(

x
(t),h(α(t),β)

)

, (14)

5. Go to step 2 until convergence.

Each step involves minimization of a criterion with respect to a large

number of variables. To that end, we used VMLM-B algorithm [11]

which can account for bound constraints on the parameters to en-

force object positivity. This algorithm has proved its effectiveness

for image reconstruction and only requires the computation of the

cost function and its gradient. The memory requirement is a few

times the size of the problem. In each step, we do not exactly solve

the minimization defined in Eq. (12), Eq. (13) and Eq. (14) but only

execute few iterations (about 10) of each inner optimization.

5. RESULTS

We processed the dataset1 used by Griffa et al. in [14, 12] for com-

parative study of available deconvolution softwares. That study only

considers “non-blind” deconvolution with theoretical PSF and we

used it to evaluate the advantages of using a blind deconvolution

technique compared to state of the art available “non blind” decon-

volution methods.

1the dataset can be found at http://bigwww.epfl.ch/

deconvolution



data Hyugens AutoDeblur Deconvolution proposed method

parameters Lab non-blind blind

transversal FWHM (in nm) 2867 2709 2709 2664 2736 2783

axial FWHM 4760 4000 4640 4160 3054 2977

Relative contrast 18% 53% 78% 68% 84% 88%

Table 1. Performance of 3 state-of-the-art deconvolution methods as reported by Griffa [12] compared to the proposed method (both blind

and non-blind). Hyugens and AutoDeblur are commercial softwares and Deconvolution Lab is an imageJ plugin implementing [13].

5.1. Calibration bead

The first dataset is an observation of an InSpeck green fluorescent

bead with a known diameter (2.5µm) on a Olympus Cell R micro-

scope with a ×63, 1.4 NA oil objective. The data cube is composed

of 256× 256× 128 voxels of size 64.5× 64.5× 160 nm3. During

the first step of the algorithm, the solution of Eq. (12) is a “non-

blind” deconvolution with a theoretical PSF (no aberration). On this

solution, plotted in Fig. 1(b) and Fig. 1(e), the transversal resolution

improvement is quite important but, in the axial section, we can no-

tice artifacts caused by PSF mismatches. The result of our blind de-

convolution algorithm (hyper-parameter set to µ = 10−3) is shown

on Fig. 1(c) and Fig. 1(f). These figures illustrate the resolution im-

provement especially in the axial section with almost no artifact.
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Fig. 1. Sections of observed and restored images of an InSpeck green

fluorescent bead of diameter 2.5 µm. Axis are in µm

Both theoretical and estimated PSF are shown on Fig. 2. The es-

timated PSF is representative of wide field fluorescence microscopy.

Although the in-focus axial sections of both PSF are similar, there

are strong differences between axial sections. Unlike the theoretical

PSF, the estimated PSF is not symmetric with respect to the plane

(z = 0). This is well explained by a mismatch between the refrac-

tive indices of the immersion oil and the mounting medium.

To perform quantitative evaluation, Griffa et al. [12] proposed

three criteria: the size of the bead given by the lateral and the ax-

ial full width at half maximum (FWHM) and the relative contrast

between the center of the bead and the maximum of its radial pro-

file. We present in Tab. 1, the values of these criteria given by [12]

together with the values obtained with our method. We can notice

that in its non-blind form (i.e. step 2 only), the proposed 3D-TV is

competitive with the state of the art. As it tends to smooth the object,

TV regularization may lead to an over-estimation of the diameter of

the bead (its nominal width is 2500 nm). However the axial FWHM

and the relative contrast shows the improvements given by our blind

deconvolution method.

5.2. C Elegans embryo

In addition to this quantitative evaluation on a calibration bead, we

processeded the biological sample used by Griffa et al. in their

study. It is an observation of a C. Elegans embryo containing DAPI,

FITC and CY3 stainings with the same microscope and objective

than in previous section. The data cube is composed of 672 ×
712 × 104 voxels of size 64.5 × 64.5 × 200 nm3 in three spectral

channels. The DAPI (blue 477nm) stains chromosomes in the nu-

clei, the FITC (green 542nm) the microtubule filaments and CY3

(red 654nm) some point wise protein aggregates. We processed

each channel from this dataset individually using the same hyper-

parameter for each channel (µ = 2 × 10−5). For each channel,

the algorithm takes about 4 hours to converge using an Intel i7-975

CPU. The result of the blind deconvolution (Fig. 3) presents a sig-

nificantly improved contrast without the typical haze of fluorescence

wide field microscopy: the red spots are much sharper and brighter

in the restoration. Furthermore, the resolution is clearly improved

especially along the depth axis: the out of focus nuclei encircled in

red is almost invisible in the blind deconvolution. However, as it can

be seen on axial sections, the deconvolution becomes less effective

as one looks deeper in the sample. This can be explained by the use

of a single stationary PSF for the whole observation. Because of re-

fractive index mismatch, it is well known that the real PSF may vary

axially and even laterally.

6. CONCLUSION

We presented a new method for blind deconvolution of WFFM data.

It uses a PSF parametrization by means of decomposition of the

pupil on Zernike basis. We used a continuous optimization method

to iteratively estimate both PSF parameters and the object. Except

from some parameters of the setup that are generally known (wave-

length, numerical aperture and refractive index of the immersion

medium), it requires only tuning one hyper-parameter. Results show

clear improvements of both resolution and contrast.

Possible directions for future research include extension of the

PSF model to more sophisticated models (e.g. vectorial model

with pixel integration), extending this method to confocal and

two photon microscopy, and introducing space-variant PSF blind-

deconvolution[15].
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Fig. 2. Sections of theoretical ((a) and (b)) and estimated PSF ((c), (d) and (e)). Axis are in µm.

(a) Observation

(b) Blind deconvolution result

Fig. 3. C. Elegans embryo observation and the blind deconvolution

result. Each panels are cuts in the 3D volume along the yellow lines.
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