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In this paper we propose a blind deconvolution algorithm for wide field fluorescence microscopy. The 3D PSF is modeled after a parametrized pupil function. The PSF parameters are estimated jointly with the object in a maximum a posteriori framework. We illustrate the performances of our algorithm on experimental data and show significant resolution improvement notably along the depth. Quantitative measurements on images of calibration beads demonstrate the benefits of blind deconvolution both in terms of contrast and resolution compared to non-blind deconvolution using a theoretical PSF.

INTRODUCTION

Using fluorescent dyes to identify specific cellular structures, the wide field fluorescence microscopy (WFFM) is a widely spread imaging modality in biology. It consists on imaging at its emission wavelength a cellular structure marked by fluorescent dye excited by uniform illumination. On the resulting 2D image, structures are more or less defocalized according to their distance to the focal plane. Moving this focal plane through the sample produces a 3D representation of the object. WFFM however suffers from a very coarse axial resolution compared to the lateral resolution. This blurring of the data y can be modeled by a 3D convolution between a point spread function (PSF) h and the observed 3D object x:

y = h * x + n , (1) 
where n accounts for the noise. The resolution of the setup is given by the shape of the 3D PSF. To improve depth resolution, one can either change the imaging setup (e.g., using confocal or two-photon microscopy) or enhance WFFM 3D data with a deconvolution algorithm ( [START_REF] Sibarita | Deconvolution microscopy[END_REF][START_REF] Sarder | Deconvolution methods for 3-d fluorescence microscopy images[END_REF] and references therein). Most deconvolution algorithms use the theoretical diffraction-limited PSF or a more realistic experimental PSF measured using calibration beads. Blind deconvolution algorithms bypass the problem of PSF calibration by simultaneously estimating the PSF and the object. Few blind deconvolution algorithms have been proposed for WFFM, the most notable being parametric blind deconvolution (PBD) [START_REF] Markham | Parametric blind deconvolution: a robust method for the simultaneous estimation of image and blur[END_REF], AIDA [START_REF] Hom | Aida: an adaptive image deconvolution algorithm with application to multi-frame and three-dimensional data[END_REF][START_REF] Mugnier | Mistral: a myopic edgepreserving image restoration method, with application to astronomical adaptive-optics-corrected long-exposure images[END_REF] and the method proposed by Kenig[6] where the PSF is constrained to lie in a (previously learned) subspace. The proposed method is closely related to PBD [START_REF] Markham | Parametric blind deconvolution: a robust method for the simultaneous estimation of image and blur[END_REF] method as we model a PSF as a function of a parametrized pupil function. The main differences are (i) the use of a much more robust MAP framework instead of maximum likelihood and (ii) the parametrization of the PSF that enforces its normalization and can model nonsymmetric PSF.

MAP FRAMEWORK

In blind deconvolution both object x and PSF h are derived from the same measurements y. We consider maximum a posteriori estimates {x + , h + } obtained by minimizing cost function f (x, h):

{x + , h + } = arg min x∈X,h∈H J (x, h) , (2) 
J (x, h) = J data (x, h) + µ J prior (x) , (3) 
with J data (x, h) the neg-loglikelihood, J prior (x) a regularizing prior and µ a hyper-parameter. Prior knowledge on the PSF is implicitly enforced through PSF parametrization. Regularization J prior is thus applied only to object x.

Data-fitting term

Under Gaussian noise assumption, the neg-loglikelihood reads:

J data (x, h) = (y -h * x) ⊤ • C -1 noise • (y -h * x) , (4) 
where Cnoise is the noise covariance matrix and is diagonal if noise is uncorrelated:

J data (x, h) = k w k (h * x) k -y k 2 , (5) 
where w k is the inverse of the noise variance at pixel k. This model can cope with non-stationary noise and can be used to express confidence on measurements on each pixel of the data. Thus it can deal with unmeasured pixels (due to saturation, borders. . . ) by setting w k = 0 for such pixels. Furthermore, except for very low detector noise, this formulation can account for mixed Poisson + Gaussian noise by approximating it as a non-stationary uncorrelated Gaussian noise [START_REF] Mugnier | Mistral: a myopic edgepreserving image restoration method, with application to astronomical adaptive-optics-corrected long-exposure images[END_REF]:

w k def = γ max(y k , 0) + σ 2 k -1 if y k is measured, 0 otherwise, ( 6 
)
where γ is the quantization factor of the detector and σ 2 k is the variance of other approximately Gaussian noises (e.g., read-out noise) at pixel k.

Object regularization term

As most observed objects are smooth with few sharp structures (e.g., edges and spikes), we use as regularizing prior a hyperbolic version of the classical 3D total variation [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF]:

J prior (x) = k ∇x k 2 2 + ǫ 2 . ( 7 
)
Parameter ǫ > 0 ensures differentiability of J prior at 0. When ǫ value is close to the quantization level, this function smooths out nonsignificant differences between adjacent pixels. In addition, since only intensities are measured, we constrain object x to be positive valued.

PSF PARAMETRIZATION

An abundant literature discusses PSF modeling for fluorescence microscopy. In the present work, we chose a monochromatic scalar model that defines the 3D PSF h from pupil function p. This pupil function is the in-focus point source wavefront phase and modulus at the exit pupil of the objective. To reduce the number of degrees of freedom of our model, the pupil function is parametrized by a limited number of modes. 3D PSF h(x, y, z) is defined as the squared magnitude of complex-valued amplitude PSF h(x, y, z):

h(x, y, z) = h(x, y, z) 2 . (8) 
Complex-valued PSF h is, in turn, defined as the 3D Fourier transform of the complex-valued amplitude optical transfer function (OTF). This OTF is non-zero only on a spherical cap of radius n i /λ limited by the aperture angle. It can thus be fully described by a 2D function: pupil function p(κx, κy) which is non-zero on the disk defined by κ 2 1 + κ 2 2 ≤ NA/λ. 3D PSF h(x, y, z) is then related to pupil function p through:

h(x, y, z) = p(κx, κy) exp (2 i π z d(κx, κy)) . . . exp (2 i π (κx x + κy y)) dκxdκy 2 , (9) 
with d(κx, κy) = (n i /λ) 2 -(κx + κy) 2 the defocus [START_REF] Stokseth | Properties of a defocused optical system[END_REF], n i the refractive index of the immersion medium and λ the emission wavelength of the fluorophore. The defocus and the 2D complex pupil function p(κx, κy) describe the properties of the optical system. As noted by Hanser [START_REF] Hanser | Phaseretrieved pupil functions in wide-field fluorescence microscopy[END_REF], the support of p(κx, κy) is a disk thus Zernike polynomials Zn provide a suitable basis to express both modulus ρ(κx, κy) and phase φ(κx, κy) of pupil function p: ρ(κx, κy) = n βnZn(κx, κy) , [START_REF] Besag | On the statistical analysis of dirty pictures[END_REF] φ(κx, κy) = n αnZn(κx, κy) .

As phase piston has no effect on the resulting PSF we set α0 = 0. Similarly, we cancel the tip-tilt parameters (α1 = α2 = 0) to keep the PSF laterally centered (this fixes the position degeneracy common with blind deconvolution problems). PSF normalization (i.e., energy conservation) can be expressed as an ℓ1 norm constraint h 1 = 1, or equivalently as an ℓ2 constraint on the complex-valued PSF h 2 = 1. This latter ℓ2 constraint can further be written as an ℓ2 constraint in Zernike orthonormal basis: β 2 = 1. By selecting only purely radial Zernike polynomials, one can easily constrain the axial symmetry of the PSF. This relatively simple PSF model offers a flexible parametrization that requires only the knowledge of the wavelength λ, the numerical aperture NA and the refractive index of the immersion medium n i .

BLIND DECONVOLUTION ALGORITHM

To solve the blind deconvolution, we have to find the optimal parameters {x + , α + , β + } that minimizes the cost function J (x, h(α, β)).

A simple way to do this is to use continuous optimization techniques. Due to non-linearity of this cost function and as these parameters have different physical meanings, the simultaneous estimation of parameters of both the object x and the PSF h(α, β) is known to very badly conditioned. This slows down convergence of optimization algorithm. For that reason, as it is classically done [START_REF] Besag | On the statistical analysis of dirty pictures[END_REF], we use an alternating minimization scheme to minimize the criterion J (x, h(α, β)). The algorithm is thus:

1. t = 0, define the initial PSF h (0) as the theoretical diffraction limited PSF of the microscope i.e., α (0) = 0, β (0) = 0.

2. t = t + 1, estimation of the optimal non-negative object x (t) according to given PSF h (t-1) :

x (t) ≈ arg min x≥0 J data (x, h (t-1) ) + µ J prior (x) . (12) 
3. Improvement of the phase parameters α (t) given the other model parameters that minimize:

α (t) = arg min α J data x (t) , h(α, β (t-1) ) . (13) 
4. Improvement of the modulus parameters β (t) given the other model parameters that minimize:

β (t) ≈ arg min β 2 2 =1
J data x (t) , h(α (t) , β) ,

5. Go to step 2 until convergence.

Each step involves minimization of a criterion with respect to a large number of variables. To that end, we used VMLM-B algorithm [START_REF] Thiébaut | Optimization issues in blind deconvolution algorithms[END_REF] which can account for bound constraints on the parameters to enforce object positivity. This algorithm has proved its effectiveness for image reconstruction and only requires the computation of the cost function and its gradient. The memory requirement is a few times the size of the problem. In each step, we do not exactly solve the minimization defined in Eq. ( 12), Eq. ( 13) and Eq. ( 14) but only execute few iterations (about 10) of each inner optimization.

RESULTS

We processed the dataset 1 used by Griffa et al. in [START_REF] Griffa | Comparison of deconvolution software in 3d microscopy. a user point of view part 1[END_REF][START_REF] Griffa | Comparison of deconvolution software in 3d microscopy. a user point of view part 2[END_REF] for comparative study of available deconvolution softwares. That study only considers "non-blind" deconvolution with theoretical PSF and we used it to evaluate the advantages of using a blind deconvolution technique compared to state of the art available "non blind" deconvolution methods. 1. Performance of 3 state-of-the-art deconvolution methods as reported by Griffa [START_REF] Griffa | Comparison of deconvolution software in 3d microscopy. a user point of view part 2[END_REF] compared to the proposed method (both blind and non-blind). Hyugens and AutoDeblur are commercial softwares and Deconvolution Lab is an imageJ plugin implementing [START_REF] Vonesch | A fast thresholded Landweber algorithm for wavelet-regularized multidimensional deconvolution[END_REF].

Calibration bead

The first dataset is an observation of an InSpeck green fluorescent bead with a known diameter (2.5µm) on a Olympus Cell R microscope with a ×63, 1.4 NA oil objective. The data cube is composed of 256 × 256 × 128 voxels of size 64.5 × 64.5 × 160 nm 3 . During the first step of the algorithm, the solution of Eq. ( 12) is a "nonblind" deconvolution with a theoretical PSF (no aberration). On this solution, plotted in Fig. 1 Although the in-focus axial sections of both PSF are similar, there are strong differences between axial sections. Unlike the theoretical PSF, the estimated PSF is not symmetric with respect to the plane (z = 0). This is well explained by a mismatch between the refractive indices of the immersion oil and the mounting medium.

To perform quantitative evaluation, Griffa et al. [START_REF] Griffa | Comparison of deconvolution software in 3d microscopy. a user point of view part 2[END_REF] proposed three criteria: the size of the bead given by the lateral and the axial full width at half maximum (FWHM) and the relative contrast between the center of the bead and the maximum of its radial profile. We present in Tab. 1, the values of these criteria given by [START_REF] Griffa | Comparison of deconvolution software in 3d microscopy. a user point of view part 2[END_REF] together with the values obtained with our method. We can notice that in its non-blind form (i.e. step 2 only), the proposed 3D-TV is competitive with the state of the art. As it tends to smooth the object, TV regularization may lead to an over-estimation of the diameter of the bead (its nominal width is 2500 nm). However the axial FWHM and the relative contrast shows the improvements given by our blind deconvolution method.

C Elegans embryo

In addition to this quantitative evaluation on a calibration bead, we processeded the biological sample used by Griffa et al. in their study. It is an observation of a C. Elegans embryo containing DAPI, FITC and CY3 stainings with the same microscope and objective than in previous section. The data cube is composed of 672 × 712 × 104 voxels of size 64.5 × 64.5 × 200 nm 3 in three spectral channels. The DAPI (blue 477nm) stains chromosomes in the nuclei, the FITC (green 542nm) the microtubule filaments and CY3 (red 654nm) some point wise protein aggregates. We processed each channel from this dataset individually using the same hyperparameter for each channel (µ = 2 × 10 -5 ). For each channel, the algorithm takes about 4 hours to converge using an Intel i7-975 CPU. The result of the blind deconvolution (Fig. 3) presents a significantly improved contrast without the typical haze of fluorescence wide field microscopy: the red spots are much sharper and brighter in the restoration. Furthermore, the resolution is clearly improved especially along the depth axis: the out of focus nuclei encircled in red is almost invisible in the blind deconvolution. However, as it can be seen on axial sections, the deconvolution becomes less effective as one looks deeper in the sample. This can be explained by the use of a single stationary PSF for the whole observation. Because of refractive index mismatch, it is well known that the real PSF may vary axially and even laterally.

CONCLUSION

We presented a new method for blind deconvolution of WFFM data. It uses a PSF parametrization by means of decomposition of the pupil on Zernike basis. We used a continuous optimization method to iteratively estimate both PSF parameters and the object. Except from some parameters of the setup that are generally known (wavelength, numerical aperture and refractive index of the immersion medium), it requires only tuning one hyper-parameter. Results show clear improvements of both resolution and contrast.

Possible directions for future research include extension of the PSF model to more sophisticated models (e.g. vectorial model with pixel integration), extending this method to confocal and two photon microscopy, and introducing space-variant PSF blinddeconvolution [START_REF] Denis | Fast model of space-variant blurring and its application to deconvolution in astronomy[END_REF]. 
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 1 Fig. 1. Sections of observed and restored images of an InSpeck green fluorescent bead of diameter 2.5 µm. Axis are in µm

Fig. 2 .

 2 Fig. 2. Sections of theoretical ((a) and (b)) and estimated PSF ((c), (d) and (e)). Axis are in µm.

Fig. 3 .

 3 Fig. 3. C. Elegans embryo observation and the blind deconvolution result. Each panels are cuts in the 3D volume along the yellow lines.

Table

  

	data	Hyugens AutoDeblur Deconvolution	proposed method
	parameters			Lab	non-blind blind
	transversal FWHM (in nm) 2867	2709	2709	2664	2736	2783
	axial FWHM 4760	4000	4640	4160	3054	2977
	Relative contrast 18 %	53 %	78 %	68 %	84 %	88 %

the dataset can be found at http://bigwww.epfl.ch/ deconvolution
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