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PreGarside monoids and groups, parabolicity,

amalgamation, and FC property

Eddy Godelle∗and Luis Paris∗

April 25, 2012

Abstract

We define the notion of preGarside group slightly lightening the definition of Garside group
so that all Artin-Tits groups are preGarside groups. This paper intends to give a first basic
study on these groups. Firstly, we introduce the notion of parabolic subgroup, we prove
that any preGarside group has a (partial) complemented presentation, and we characterize
the parbolic subgroups in terms of these presentations. Afterwards we prove that the amal-
gamated product of two preGarside groups along a common parabolic subgroup is again a
preGarside group. This enables us to define the family of preGarside groups of FC type as the
smallest family of preGarside groups that contains the Garside groups and that is closed by
amalgamation along parabolic subgroups. Finally, we make an algebraic and combinatorial
study on FC type preGarside groups and their parabolic subgroups.

AMS Subject Classification. Primary: 20F36.

1 Introduction

Let S be a (non necessarily finite) set. A Coxeter matrix over S is a square matrix M =
(ms,t)s,t∈S indexed by the elements of S and satisfying (1) ms,s = 1 for all s ∈ S; (2) ms,t =
mt,s ∈ {2, 3, 4, . . . ,∞} for all s, t ∈ S, s 6= t. With this combinatorial data one can associate
an Artin-Tits group, which we denote by G = GM , and which is combinatorially defined by the
generating set S and the relations

sts · · ·︸ ︷︷ ︸
ms,t terms

= tst · · ·︸ ︷︷ ︸
ms,t terms

, for s, t ∈ S , s 6= t and ms,t 6=∞ .

The Coxeter group associated with M , denoted by W = WM , is the quotient of G by the
relations s2 = 1, s ∈ S.

An Artin-Tits group GM is called of spherical type if the Coxeter group WM of M is finite. In
the early 1970s, inspired in particular by the work of Arnold [3, 4, 5, 6] on the cohomolgy of
braid groups and the work of Garside [29] on the conjugacy problem of braid groups, Brieskorn
[8, 9, 10], Saito [11], and Deligne [23] (see also [40, 36]) initiated the study of spherical type

∗Both authors are partially supported by the Agence Nationale de la Recherche (projet Théorie de Garside,
ANR-08-BLAN-0269-03).
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Artin-Tits groups as well as they links with hyperplane arrangements. These groups are now very
well-understood. In particular, they are known to have solvable word and conjugacy problems,
and to be biautomatic [12, 13], and the spaces of regular orbits of the associated Coxeter groups
are classifying spaces for them [23].

The next important step in the study of Artin-Tits groups was Van der Lek’s thesis [46] whose
main result is that every Artin-Tits group is the fundamental group of the space of regular orbits
of the associated Coxeter group acting on the complexified Tits cone. But, it also contains a
study on parabolic subgroups of Artin-Tits groups, as well as the statement of the so-called
K(π, 1) conjecture for Artin-Tits groups, one of the central questions in the subject. Recall that
a standard parabolic subgroup of GM is defined to be a subgroup generated by a subset of S,
and a parabolic subgroup is a subgroup conjugate to a standard parabolic subgroup. By [46] (see
also [42, 35]), a standard parabolic subgroup is itself an Artin-Tits group in a canonical way.

In [14] Charney and Davis used techniques from hyperbolic geometry and geometric group theory
(CAT(0) spaces) to solve the K(π, 1) conjecture on two new families of Artin-Tits groups: that
of Artin-Tits groups of FC type, and that of Artin-Tits groups of dimension 2 (see also [15]). The
family of Artin-Tits groups of FC type is the smallest family of Artin-Tits groups that contains
the Artin-Tits groups of spherical type and that is closed under amalgamation over standard
parabolic subgroups. On the other hand, an Artin-Tits group GM is of dimension 2 if, for every
subset X of S of cardinality at least 3, the parabolic subgroup of GM generated by X is not
of spherical type. The word problem is known to be solvable for these groups [16, 1, 2], but it
is not known whether they have solvable conjugacy problem. An algebraic and combinatorial
study of parabolic subgroups of these groups can be found in [31, 32].

Two notions play a prominent role in all these studies: that of parabolic subgroup (already
defined), and that of Artin-Tits monoid. The Artin-Tits monoid associated with the Coxeter
matrix M is the monoid having as monoid presentation the same presentation as GM viewed as
a group. By [43], this embeds into GM .

Inspired by Garside’s work [29] and Thurston’s work [28] on braid groups, both extended to
spherical type Artin-Tits groups (see [12, 13]), Dehornoy and the second author [22] introduced
in 1999 the notions of Garside monoids and Garside groups (see also [18]), and they showed that
these monoids and groups share many properties with Artin-Tits monoids and groups of spherical
type such as solvable word and conjugacy problems, torsion freeness, and biautomaticity. Since
then, Garside groups have become popular objects of study. Their definitions are given in
Section 2.

We define (see Section 2) the notion of preGarside monoid slightly lightening the definition of
Garside monoid so that all Artin-Tits monoids are preGarside monoids. A preGarside group is
defined to be the enveloping group of a preGarside monoid. Although these notions are not new
(see [26, 19, 20]) (preGarside monoids are often called locally Garside monoids), there are no
studies dedicated to these monoids and groups. Hence, the present paper may be considered as
a first step to their study.

In Section 2 we define the notions of standard parabolic submonoid of a preGarside monoid
and of standard parabolic subgroup of a preGarside group. These definitions extend, in the one
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hand, the notion of standard parabolic subgroup (resp. submonoid) of an Artin-Tits group (resp.
monoid), and, in the other hand, the notion of standard parabolic subgroup (resp. submonoid)
of a Garside group (resp. monoid) [33, 34]. We prove that any preGarside monoid (or group)
has a (partial) complemented presentation in the style of the complemented presentations for
Garside groups and monoids given in [22] (see Theorem 2.6). Moreover, we show that a standard
parabolic subgroup (resp. submonoid) is necessarily generated by some subset of the generating
family of the (partial) complemented presentation, and give necessary and sufficent conditions
for a subset of this generating family to span a standard parabolic subgroup (resp. submonoid)
(see Theorem 2.8).

The most significant result in Section 3 is that the amalgamated product M1 ∗N M2 of two
preGarside monoids M1,M2 along a common standard parabolic submonoid N is again a pre-
Garside monoid (see Proposition 3.11). But, our study does not end with this result. Indeed,
we also prove that the two monoids M1,M2 embed into M1∗NM2 (Proposition 3.1) –this is not
true in general– and that the amalgamated product M1∗NM2 admits normal forms similar to
the standard normal forms for amalgamated products of groups (Proposition 3.3). Moreover,
we characterize the standard parabolic submonoids of M1∗NM2 in terms of standard parabolic
submonoids of M1 and of M2 (Proposition 3.12).

The fact that the amalgamated product of two preGarside monoids along a common standard
parabolic submonoid is still a preGarside monoid enables us to construct new examples of
preGarside groups (and monoids). It also enables us to define the family of preGarside monoids
of FC type as the smallest family of preGarside monoids that contains the Garside monoids
and that is closed by amalgamation along standard parabolic submonoids. This extends the
definition of Artin-Tits monoids (and groups) of FC type given above.

Section 4 is dedicated to the algebraic and combinatorial study of preGarside groups of FC type
and their standard parabolic subgroups. In particular, we prove the following.

Theorem 4.10. Let M be a preGarside monoid of FC type, and let G(M) be its enveloping
group.

(P1) The natural morphism ι : M → G(M) is injective.

(P2) Let N be a standard parabolic submonoid of M . The standard parabolic subgroup of G(M)
generated by N is isomorphic to G(N), and we have G(N) ∩M = N .

(P3) Let N,N ′ be standard parabolic submonoids of M . Then N ∩ N ′ is a standard parabolic
submonoid, and G(N) ∩G(N ′) = G(N ∩N ′).

(P4) G(M) is torsion free.

Properties (P1), (P2), and (P3) of the above theorem are known to hold for all Artin-Tits
monoids [43, 46]. Actually, the second part of Property (P2) is not proved (nor stated) in [46],
but it can be easily deduced from it. However, to know whether Property (P4) holds for all
Artin-Tits monoids is an open question.

Concerning the algorithmic properties of FC type preGarside groups we prove the following.
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Corollary 4.16. Let M be a finitely generated preGarside monoid of FC type, let S be its set
of atoms (which generates M), and let G(M) be the enveloping group of M .

(1) G(M) has a solution to the word problem.

(2) There exists an algorithm which, given w ∈ S±∗, decides whether the element w in G(M)
represented by w belongs to M or not.

(3) Let H be a standard parabolic subgroup of G(M). There exists an algorithm which, given
w ∈ S±∗, decides whether w ∈ H.

2 Parabolic submonoids and subgroups, and presentations

2.1 Definitions and basic properties

We start with some terminology. Consider a monoid M . It is said to be cancellative if, for
all a, b, c, d ∈ M , the equality cad = cbd imposes a = b. An element b is called a factor of an
element a if we can write a = cbd in M . We denote by Div(a) the set of factors of a. When
a = bc, we say that b left-divides a and write b �L a. Similarly, we say that c right-divides a and
write c �R a. An element a is said to be balanced if its sets of right-divisors and of left-divisors
are equal, which in this case have to be equal to Div(a). We say that M is atomic if there exists
a mapping ν : M → N, called a norm, satisfying ν(a) > 0 for a 6= 1 and ν(ab) ≥ ν(a) + ν(b)
for all a, b ∈ M . Note that the existence of such a mapping implies that the relations �L and
�R are partiel orders on M . The enveloping group of a monoid M will be always denoted by
G(M), and the canonical morphism M → G(M) by ι = ιM : M → G(M).

Definition. A monoid M is said to be a preGarside monoid if

(a) it is cancellative and atomic;

(b) for all a, b ∈ M , if the set {c ∈ M | a �L c and b �L c} is nonempty, then it has a least
element, denoted by a ∨L b;

(c) for all a, b ∈ M , if the set {c ∈ M | a �R c and b �R c} is nonempty, then it has a least
element, denoted by a ∨R b.

A Garside element of a preGarside monoid is a balanced element whose set of factors generates
the whole monoid. When such an element exists, we say that the monoid is a Garside monoid.
A preGarside group G(M) is the enveloping group of a preGarside monoid M . Similarly, a
Garside group G(M) is the enveloping group of a Garside monoid M .

Remark. We will not assume that our monoids are finitely generated, except when we will study
algorithmic questions. Indeed, although our algorithmic results can be applied to some well-
understood (pre)Garside monoids and groups such as the ones introduced by Digne in [24, 25], a
treatment of questions such as the word problem in the context of infinitely generated monoids
and groups requires extra hypothesis such as a machine which recognizes the generating system
of the given monoid or group. On the other hand, in most of the references (see [21, 22] for
instance), a requirement in the definition of a Garside monoid is that it is finitely generated, but
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this is not always true (see [24, 25]). In this paper we remove this requirement, but the reader
must understand that this is not completely standard.

As pointed out in the introduction, the seminal examples of Garside groups are the Artin-Tits
groups of spherical type. Note also that all the Artin-Tits monoids are preGarside monoids, and
hence all the Artin-Tits groups are preGarside groups (see [11] and [41]). We refer to [18, 21]
for the general theory on Garside groups.

Recall that an atom in an atomic monoid M is an element a ∈M satisfying a = bc⇒ b = 1 or
c = 1 for all b, c ∈ M . We denote by A(M) the set of atoms of M . Note that any generating
set of M contains A(M). In particular, M is finitely generated if and only if A(M) is finite.

Remark. Let ν : M → N be a norm. Let g ∈ M . If g = x1 · · · xℓ is an expression of g over
the atoms, then ℓ ≤ ν(g). In particular, the lengths of the expressions of g over the atoms are
bounded. Then, it is easily seen that the map ν̃ : M → N which sends each g ∈ M to the
maximal length of an expression of g over the atoms is a norm.

Remark. A monoid M is Noetherian if every sequence (an)n∈N of elements of M such an+1 is
a factor of an stabilizes. It is easily seen that an atomic monoid is Noetherian, and, if M is a
finitely generated monoid, then M is Noetherian if and only if it is atomic. Many of the results
in the paper can be proved in the framework of Noetherian monoids, but the proofs are longer
and more complicate. So, in order to simplify and shorten the proofs, we decide to make our
study with atomic monoids.

Lemma 2.1. Let M be a preGarside monoid, and let X ⊂M be a nonempty subset.

(1) The set {a ∈ M | a �L x for all x ∈ X} has a greatest element (for the ordering �L),
denoted by ∧LX. Similarly, the set {a ∈M | a �R x for all x ∈ X} has a greatest element
(for the ordering �R), denoted by ∧RX.

(2) If the set {a ∈ M |x �L a for all x ∈ X} is nonempty, then it has a least element (for
the ordering �L), denoted by ∨LX. Similarly, if the set {a ∈M |x �R a for all x ∈ X} is
nonempty, then it has a least element (for the ordering �R), denoted by ∨RX.

Proof. Let Y = {y ∈M | y �L x for all x ∈ X}. Note that 1 ∈ Y , thus Y 6= ∅. Let ν : M → N
be a norm on M . The set {ν(y) | y ∈ Y } is bounded by ν(x) for any x ∈ X, thus we may
choose y0 ∈ Y such that ν(y0) is maximal. If y ∈ Y , then y ∨L y0 exists and (y ∨L y0) �L x for
all x ∈ X, that is, (y ∨L y0) ∈ Y . Since ν(y0) is maximal, it follows that y0 = (y ∨L y0), hence
y �L y0. So, y0 = ∧LX. Now, set Z = {z ∈M | x �L z for all x ∈ X} and suppose Z 6= ∅. It is
easily checked that ∧LZ ∈ Z, hence ∧LZ is the least element of Z.

In the next proposition we gather some results on Garside monoids that we will need in the
sequel. We refer to [18, 26] for the proof.

Proposition 2.2. Assume M is a Garside monoid.

(1) The monoid M has a (unique) minimal Garside element δ, simply called the minimal
Garside element of M .
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(2) M is a lattice for left-divisibility and for right-divisibility. Furthermore, it injects into its
enveloping group G(M).

(3) Let ∆ be a Garside element. Any element a in M has a unique decomposition a1 · · · an
such that an 6= 1 and ai is the greatest element of Div(∆) that left-divides ai · · · an for all
i ∈ {1, . . . , n}.

(4) Every element g in G(M) has a unique decomposition ab−1 with a, b in M and a ∧R b =
1.

The decomposition in Proposition 2.2 (3) is called left greedy normal form. One can define a
right greedy normal form in a similar way. In this paper, by a greedy normal form we will always
mean a left greedy normal form. The decomposition in Proposition 2.2 (4) is called right normal
form. One can also define a left normal form in a similar way. From now on, by a normal form
we will always mean a right normal form.

2.2 Parabolic subgroups

In [33] the first author introduced the notion of a standard parabolic subgroup of a Garside
group. Here we extend this notion to the framework of preGarside groups.

Definition. Let M be a monoid and let N be a submonoid. We say that N is special if it is
closed by factors, that is, ab ∈ N =⇒ a, b ∈ N , for all a, b ∈M .

Definition. Let M be a preGarside monoid, and let G(M) be its associated preGarside group.
Denote by ι : M → G(M) the canonical morphism. A submonoid N of M is said to be a
standard parabolic submonoid if

(a) it is special;

(b) for all a, b ∈ N , if a ∨L b exists, then a ∨L b ∈ N , and if a ∨R b exists, then a ∨R b ∈ N .

A standard parabolic submonoid is of spherical type if it has a Garside element. A subgroup
of G(M) is a standard parabolic subgroup if it is generated by the image ι(N) of a parabolic
submonoid N of M . From now on, as we will never talk about general parabolic submonoids and
subgroups, by a parabolic submonoid or subgroup we will mean a standard parabolic submonoid
or subgroup.

Lemma 2.3. Let M be a preGarside monoid, and let N be a parabolic submonoid of M .

(1) The monoid N is a preGarside monoid. Moreover, it is a Garside monoid if and only if
it is a spherical type submonoid of M .

(2) Let X be a non-empty subset of N . Then ∧LX and ∧RX belong to N . Similarly, ∨LX and
∨RX belong to N when they exist.

Proof. The only non-trivial part of the lemma is that ∨LX and ∨RX belong to N when they
exist. Suppose that ∨LX exists. Let ν : M → N be a norm. Observe that, if Y is a nonempty
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finite subset of X, then ∨LY exists, ∨LY ∈ N , and ∨LY �L ∨LX, thus ν(∨LY ) ≤ ν(∨LX). Now,
choose a nonempty finite subset Y0 of X such that ν(∨LY0) is maximal. If there was x ∈ X such
that x 6�L ∨LY0, then we would have (∨LY0) �L (∨L(Y0 ∪ {x})), thus ν(∨LY0) � ν(∨L(Y0 ∪ {x}),
which would contradict the maximality of ν(∨LY0). Hence, x �L ∨LY0 for all x ∈ X, therefore
∨LX = ∨LY0 ∈ N .

As in the case of Artin-Tits groups, we can say more on parabolic submonoids when the pre-
Garside monoid is a Garside monoid.

Lemma 2.4. Let M be a Garside monoid, let ∆ be a Garside element of M , and let N be a
parabolic submonoid of M .

(1) The monoid N is of spherical type. Moreover, there exists a Garside element ∆N of N
such that Div(∆N ) = Div(∆) ∩N .

(2) An element of G(N) has the same left-normal form (resp. right-normal form) in G(N) as
in G(M).

Proof. Every element of Div(∆) ∩ N left-divides ∆, thus ∨L(Div(∆) ∩ N) exists. It lies in
N by Lemma 2.3. Similarly, ∨R(Div(∆) ∩ N) exists and lies in N . Since ∨L(Div(∆) ∩N) and
∨R(Div(∆) ∩ N) belong to Div(∆) ∩ N , we have ∨L(Div(∆) ∩ N) �R ∨R(Div(∆) ∩ N) and
∨R(Div(∆) ∩ N) �L ∨L(Div(∆) ∩ N), thus ∨L(Div(∆) ∩ N) = ∨R(Div(∆) ∩ N), because M
is atomic. We denote by ∆N that element. By definition, we have Div(∆) ∩ N ⊆ Div(∆N ).
On the other hand, we have Div(∆N ) ⊆ Div(∆) ∩ N , since Div(∆) ∩ N contains ∆N . So,
Div(∆N ) = Div(∆) ∩N , and ∆N is balanced. It remains to show that Div(∆N ) generates N .
Let a ∈ N . Let a = a1a2 · · · an be its left greedy normal form. Then ai ∈ Div(∆) by definition,
and ai ∈ N since N is special, thus ai ∈ Div(∆)∩N = Div(∆N ). The second part of the lemma
is left to the reader.

Proposition 2.5. Any Garside monoid M satisfies the following properties.

(P1) The canonical morphism ι : M → G(M) is into.

(P2) If N is a parabolic submonoid, then the associated standard parabolic subgroup is isomor-
phic to G(N). Moreover, one has G(N) ∩M = N in G(M).

(P3) If N and N ′ are parabolic submonoids, then N ∩N ′ is parabolic and G(N ∩N ′) = G(N)∩
G(N ′).

(P4) The group G(M) is torsion free.

Proof. Property (P1) is proved in [22]. Property (P2) is implicit in Lemma 2.4 and proved in
[33]. Property (P3) is also proved in [33]. Property (P4) is proved in [17].
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2.3 Presentations

Definition. Recall that an (undirected simple) graph is an ordered pair Γ = (S(Γ), E(Γ)) =
(S,E) consisting of a set S of vertices together with a set E of edges, that are 2-element subsets
of S. With Γ we associate the set

Ê(Γ) = {(a, b) ∈ S × S | {a, b} ∈ E(Γ)} .

A partial complement on S (based on the graph Γ) is a mapping f : Ê(Γ) → S∗. The monoid
associated to f on the left is the monoid ML(Γ, f) defined by the following monoid presentation

ML(Γ, f) = 〈S | x f(x, y) = y f(y, x) for {x, y} ∈ E(Γ)〉+ .

Similarly, the monoid associated to f on the right is the monoid MR(Γ, f) defined by the monoid
presentation

MR(Γ, f) = 〈S | f(y, x)x = f(x, y) y for {x, y} ∈ E(Γ)〉+ .

Definition. Let M be a preGarside monoid, and let S be a generating set for M which does
not contain 1. Let ΓL = ΓL(S,M) denote the graph on S such that {a, b} ∈ E(ΓL) if and
only if a 6= b and a ∨L b exists. Similarly, ΓR = ΓR(S,M) denotes the graph on S such that
{a, b} ∈ E(ΓR) if and only if a 6= b and a ∨R b exists. A left selector on S in M is a partial
complement fL on S based on ΓL such that x fL(x, y) and y fL(y, x) represent x ∨L y for all
{x, y} ∈ E(ΓL). Similarly, a right selector on S in M is a partial complement fR on S based on
ΓR such that fR(y, x)x and fR(x, y) y represent x ∨R y for all {x, y} ∈ E(ΓR).

The following theorem extends [22, Thm.4.1] and is proved in the same way.

Theorem 2.6. Let M be a preGarside monoid, let S be a generating set for M that does not
contain 1, let ΓL = ΓL(S,M) be as defined above, and let fL be a left selector on S in M . Then
M ≃ML(ΓL, fL).

Proof. We denote by ≡ the congruence relation on S∗ such that M = (S∗/ ≡). On the
other hand, we denote by ≡L the congruence relation on S∗ generated by the pairs (x fL(x, y),
y fL(y, x)), (x, y) ∈ Ê(ΓL). If (x, y) ∈ Ê(ΓL), then x fL(x, y) and y fL(y, x) represent the same
element, x ∨L y, thus x fL(x, y) ≡ y fL(y, x). So, if u ≡L v, then u ≡ v, for all u, v ∈ S∗.

For w ∈ S∗, we denote by w the element of M represented by w. Let ν : M → N be a norm.
We take u, v ∈ S∗ such that u ≡ v, and turn to prove by induction on ν(u) = ν(v) that u ≡L v.
Set ǫ = (), the empty word. If ν(u) = ν(v) = 0, then u = v = ǫ, thus u ≡L v. Suppose that
ν(u) = ν(v) > 0 plus the induction hypothesis. Write u = xu′ and v = yv′, where x, y ∈ S and
u′, v′ ∈ S∗. If x = y, then, by cancellativity, u′ ≡ v′, thus, by the induction hypothesis, u′ ≡L v′,
therefore u = xu′ ≡L v = xv′. Hence, we can suppose x 6= y. Since x, y �L u, the element x∨L y
exists, and (x ∨L y) �L u. Choose w ∈ S∗ such that u = (x ∨L y)w. By cancellativity, we have
fL(x, y)w ≡ u′, thus, by the induction hypothesis, fL(x, y)w ≡L u′, therefore xfL(x, y)w ≡L u.
Similarly, yfL(y, x)w ≡L v. Since xfL(x, y)w ≡L yfL(y, x)w, we conclude that u ≡L v.

Remark. In all the algorithmic studies in the theory of Garside groups, a Garside monoid (or
group) is given by a finite generating set S together with two complements fL, fR on S such
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that M = ML(KS , fL) = MR(KS , fR), where KS denotes the complete graph on S. There is no
algorithm that, given a finite set S and two complements fL, fR on S (based on KS) such that
ML(KS , fL) = MR(KS , fR), determines whether ML(KS , fL) is a Garside monoid. However,
there are partial algorithms, say methods, to solve this question (see [18], for instance). Anyway,
it seems reasonable to us that, in order to study algorithmic questions on preGarside monoids
and groups, one has to start with a finite set S and two complements fL, fR based on ΓL,ΓR,
respectively, and to assume that ML(ΓL, fL) = MR(ΓR, fR) is a preGarside monoid.

Recall that the set of atoms of an atomic monoid M is denoted by A(M). It is easily seen that,
if M is a preGarside monoid and N is a parabolic submonoid, then A(N) ⊂ A(M). The proof
of the following is left to the reader.

Lemma 2.7. Let M be a preGarside monoid. Let S be a generating set for M , let ΓL =
ΓL(M,S), and let fL be a left-selector on S in M . An element x ∈ S is an atom if and only if,
for all y ∈ S \ {x}, either {x, y} 6∈ E(ΓL), or fL(x, y) 6= ǫ.

So, without loss of generality, in order to study algorithmic questions on preGarside groups, one
may assume that the generating set S of M = M(ΓL, FL) = M(ΓR, fR) is the set of atoms.
Now, the following shows that (if S is finite) there is an effective way to determine all parabolic
submonoids of a preGarside monoid.

Theorem 2.8. Let M be a preGarside monoid, let fL be a left selector on A(M) in M , and let
fR be a right selector on A(M) in M . Let X be a subset of A(M), and let N be the submonoid
of M generated by X. Then N is a parabolic submonoid if and only if the following properties
hold.

(a) For all x, y ∈ X, x 6= y, if x ∨L y exists, then fL(x, y), fL(y, x) ∈ X∗. Similarly, for all
x, y ∈ X, x 6= y, if x ∨R y exists, then fR(x, y), fR(y, x) ∈ X∗.

(b) For all x ∈ X and y ∈ A(M) \X, if x ∨L y exists, then fL(x, y) 6∈ X∗. Similarly, for all
x ∈ X and y ∈ A(M) \X, if x ∨R y exists, then fR(y, x) 6∈ X∗.

Proof. Assume thatN is parabolic. Let x, y ∈ X, x 6= y. If x∨Ly exists, then x∨Ly ∈ N , and any
expression of x∨Ly belongs toX∗, thus fL(x, y), fL(y, x) ∈ X∗. Similarly, fR(x, y), fR(y, x) ∈ X∗

if x∨R y exists. Let x ∈ X and y ∈ A(M)\X. Suppose that x∨L y exists and that fL(x, y) ∈ X∗.
Then x ∨L y = x fL(x, y) ∈ N , y �L x ∨L y, and y 6∈ N : a contradiction. So, fL(x, y) 6∈ X∗.
Similarly, fR(y, x) 6∈ X∗ if x ∨R y exists.

Now, we assume that N satisfies Properties (a) and (b), and turn to prove that N is parabolic.
Firstly, we take a ∈ N and an expression a = y1 · · · ym, with yj ∈ A(M) for all j ∈ {1, . . . ,m},
and we prove that yj ∈ X for all j ∈ {1, . . . ,m}. We take a norm ν : M → N and we argue
by induction on ν(a). The case ν(a) = 0 being trivial, we can assume that ν(a) > 0 plus the
induction hypothesis.

We choose an expression a = x1 · · · xn of a such that xi ∈ X for all i ∈ {1, . . . , n}. Since x1 �L a
and y1 �L a, x1 ∨L y1 exists. Suppose first that x1 = y1. Then x2 · · · xn = y2 · · · ym, thus, by the
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induction hypothesis, y2, . . . , ym belong to X. Now, suppose that y1 6= x1. There exist z1, . . . , zp
in A(M) such that

a = x1 fL(x1, y1) z1 · · · zp = y1 fL(y1, x1) z1 · · · zp .

We have
fL(x1, y1) z1 · · · zp = x2 · · · xn ∈ N ,

thus, by the induction hypothesis, fL(x1, y1) belongs to X∗ and z1, . . . , zp lie in X. In particular,
by Property (b), we have y1 ∈ X, and so, by Property (a), fL(y1, x1) belongs to X∗. Finally,

y2 · · · ym = fL(y1, x1) z1 · · · zp ∈ N,

thus, by the induction hypothesis, y2, . . . , ym lie in X.

Now, we take a, b ∈ N such that a ∨L b exists, and turn to show that a ∨L b ∈ N . We argue by
induction on ν(a ∨L b). The case ν(a ∨L b) = 0 being trivial, we may assume that ν(a ∨L b) > 0
plus the induction hypothesis. If a = 1, then a ∨L b = b ∈ N . Similarly, if b = 1, then
a ∨L b = a ∈ N . So, we can assume that a 6= 1 and b 6= 1. Write a = xa1 and b = yb1, where
x, y ∈ X and a1, b1 ∈ N . We have xa1 = a �L (a ∨L b) and x fL(x, y) = (x ∨L y) �L (a ∨L b),
thus a1 ∨L fL(x, y) exists and x(a1 ∨L fL(x, y)) �L (a ∨L b). By the induction hypothesis, it
follows that (a1 ∨L fL(x, y)) ∈ N . Similarly, b1 ∨L fL(y, x) exists, y(b1 ∨L fL(y, x)) �L (a ∨L b),
and (b1 ∨L fL(y, x)) ∈ N . Since, by the above, any expression of a1 ∨L fL(x, y) lies in X∗,
there is a2 ∈ N such that fL(x, y)a2 = (a1 ∨L fL(x, y)). Similarly, there is b2 ∈ N such that
fL(y, x)b2 = (b1 ∨L fL(y, x)). We have

(x ∨L y)a2 = x fL(x, y)a2 = x(a1 ∨L fL(x, y)) �L (a ∨L b) .

Similarly, (x ∨L y)b2 �L (a ∨L b), thus a2 ∨L b2 exists, and (x ∨L y)(a2 ∨L b2) �L (a ∨L b). By the
induction hypothesis, it follows that (a2 ∨L b2) ∈ N . Finally,

a = xa1 �L x(a1 ∨L fL(x, y)) = (x ∨L y)a2 �L (x ∨L y)(a2 ∨L b2) ,

b = yb1 �L y(b1 ∨L fL(y, x)) = (x ∨L y)b2 �L (x ∨L y)(a2 ∨L b2) ,

thus (a ∨L b) � (x ∨L y)(a2 ∨L b2), therefore

(a ∨L b) = (x ∨L y)(a2 ∨L b2) ∈ N .

It is easily proved in the same way that a ∨R b lies in N if it exists.

3 Amalgamation of monoids

Given two groups G1 and G2 with a common subgroup H, it is known since the work of Schreier
[44] (see also [27]) that both groups G1 and G2 embed in the amalgamated product G1∗HG2

above H. In this context, given transversals of G1/H and G2/H that contain 1, it is also known
by results of Serre [45] that every element of the amalgamated product G1∗HG2 has a unique
amalgam decomposition. In the context of monoids this is not true anymore (see [39, 38]).
In particular, amalgam decompositions do not exist in general, and, even if we can effectively
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decide whether an element of Mi lies in N for i = 1, 2, the word problem may be not decidable
in M1∗N M2 (see [7]). The aim of this section is to prove that, if M1 and M2 are preGarside
monoids and N is a common parabolic submonoid, then M1∗NM2 is also a preGarside monoid,
M1 and M2 embed in M1 ∗N M2, and amalgam decompositions exist in the later monoid. In
Section 4 we will use this to define and investigate the notion of preGarside monoids and groups
of FC type.

3.1 Special amalgamation of monoids

If M1, M2 are two monoids, we denote by F+(M1,M2) the semigroup {(g1, . . . , gn) | n ≥ 1, gi ∈
M1 ∪M2} equipped with the concatenation operation. For g = (g1, . . . , gn) we set |g| = n, and
we define εi(g) by gi ∈ Mεi(g) for 1 ≤ i ≤ |g|. Note that, with this definition, the semigroup
F+(M1,M2) is not a monoid, since it does not contain the empty sequence ǫ = ().

Definition. Let M1,M2 and N be three monoids such that there exist injective morphisms of
monoids ι1 : N →M1 and ι2 : N →M2. The amalgamated product of the monoids M1 and M2

over N is the monoid M1∗NM2 obtained as the quotient of the free semigroup F+(M1,M2) by
the congruence ≡ generated by the binary relation ≡0 defined by

(g1, . . . , gn) ≡0 (g1, . . . , gi−1, g̃i, gi+2, . . . , gn)

if one of the following conditions holds:

(a) g̃i = gigi+1, with εi = εi+1;

(b) g̃i = gi (ιεi◦ι
−1
εi+1

)(gi+1), with εi 6= εi+1 and gi+1 belonging to ιεi+1(N);

(c) g̃i = (ιεi+1◦ι
−1
εi

)(gi) gi+1, with εi 6= εi+1 and gi belonging to ιεi(N);

where εi = εi(g1, . . . , gn) and εi+1 = εi+1(g1, . . . , gn).

Definition. We say that M1∗NM2 is a special amalgam when M1,M2 and N are three monoids
with two injective morphisms of monoids ι1 : N → M1 and ι2 : N → M2 such that ι1(N) and
ι2(N) are special submonoids of M1 and M2, respectively.

Proposition 3.1. Let M1 ∗N M2 be a special amalgam. Then the canonical morphisms j1 :
M1 →M1∗NM2 and j2 : M2 →M1∗NM2 are injective, and the submonoids j1(M1), j2(M2) and
j1 ◦ ι1(N) are special in M1∗NM2. Moreover, j1(M1) ∩ j2(M2) = (j1 ◦ ι1)(N) = (j2 ◦ ι2)(N).

Proof. Let g belong to M1 and assume (g) ≡ (g1, . . . , gn). Using that ι1(N) and ι2(N) are
special, we prove by an easy induction on the number of elementary relations ≡0 needed to
transform (g) into (g1, . . . , gn) that, firstly, for each i, gi belongs either to M1, or to ι2(N) and,
secondly, g = h1 · · · hn in M1, where hi = gi, or hi = ι1 ◦ ι

−1
2 (gi). Therefore, the morphism j1

is injective, and j1(M1) is a special submonoid. The rest of the proposition follows from similar
arguments.

Note that the fact that the canonical morphisms j1 : M1 →M1∗NM2 and j2 : M2 →M1∗NM2

are injective was known before [39], because a special submonoid is unitary (see [7, p. 273] for a
definition). In the sequel, when M1∗NM2 is a special amalgam, we identify M1,M2 and N with
their images in M1∗NM2.
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3.2 Amalgam decomposition

In order to introduce the second main notion of this section, we need first to recall the notion of
a confluent reduction rule. Consider a set X. A reduction rule on X is a map f from a set Y to
the set P(X ×X) of subsets of X ×X such that, for every y in Y and every x in X, there is at

most one x′ in X such that (x, x′) belongs to f(y). In this case, we write x′
y
←− x, and we say

that x reduces to x′ by a reduction of type y. We denote by
∗
←− the reflexive-transitive binary

relation induced by f . In other words, x′
∗
←− x if there is a finite sequence of reductions

x′ = xn
yn
←− · · ·

y2
←− x1

y1
←− x0 = x .

Finally, by ←→ we denote the induced equivalence relation on X. We say that the reduction
rule is globally confluent if, for every two elements x1, x2 in X such that x1 ←→ x2, there exists
z in X such that z

∗
←− x1 and z

∗
←− x2. We say that the reduction rule is locally confluent if

the following property holds: for all x1, x2, x3 in X such that x1
y1
←− x3 and x2

y2
←− x3, there

exists x4 in X such that x4
∗
←− x1 and x4

∗
←− x2. Finally, we say that the the reduction rule is

Noetherian if every infinite sequence (xi) such that xi+1
∗
←− xi has to stabilize. The following

is classical in the subject.

Lemma 3.2 (Diamond Lemma). Every Noetherian and locally confluent reduction rule is glob-
ally confluent.

Note that a consequence of the Diamond lemma is that, for a Noetherian and locally confluent
reduction rule ←−, every equivalence class for the relation ←→ possesses a unique minimal
element. In other words, if C is an equivalence class for ←→, there is a unique x in C such that
x

∗
←− y for all y in C.

Now, recall some classical notions from semigroup theory [37]. Let M be a monoid, and let N be
a submonoid. We define two relations RN and LN on M setting gRNh and gLNh if gN = hN
and Ng = Nh, respectively. When N = M , the relations RM and LM are denoted by R and
L, respectively. They are called the Green relations on M . In what follows, we assume the set
P(M) of subsets of M to be endowed with the reduction rule P1 ←− P2 if P1 ! P2. This induces
a reduction rule on the set of RN -classes, {gN, g ∈ M}, that verifies g1N ←− g2N if g2 ∈ g1N
and g1 /∈ g2N . Similarly, it induces a reduction rule on the set of LN -classes, {Ng, g ∈M}.

Definition. LetM be a monoid, and letN be a submonoid. We say thatN has the L confluence
property if the reduction rule ←− is Noetherian and locally confluent on the set of LN -classes.
Similarly, We say that N has the R confluence property if the reduction rule ←− is Noetherian
and locally confluent on the set of RN -classes, and we say that N has the confluence property
if it has both L and R confluence properties.

Remark. If N is a special submonoid of a monoid M , then N is minimal for the reduction rule
←− in the set of LN -classes, as well as in the set of RN -classes.

If M is a cancellative monoid, N is a special submonoid with the confluence property, and T
is a set of representatives of the minimal RN -classes that contains 1, then, for every element g
of M , there exists a unique pair (g1, h) in T × N such that g = g1h. In the sequel we will set
[g]N = (g1, h) if g1 6= 1 and [g]N = (h) otherwise.
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Proposition 3.3. Let M1∗NM2 be a special amalgam such that N has the confluence property
in both, M1 and M2. For i = 1, 2, consider a set Ti of representatives of the minimal RN -classes
in Mi that contains 1. If M1 and M2 are cancellative, then every element g of M1∗NM2 has a
unique decomposition

g = g1 · · · gmh

such that each gi belongs to either T1 \ {1} or T2 \ {1}, h belongs to N , and two consecutive gi
do not lie in the same set of representatives.

In the sequel the sequence (g1, . . . , gm, h) is called the (left) amalgam decomposition of g and
is denoted by [g]N . We denote the integer m by ℓN (g). If g belongs to N , we set ℓN (g) =
0. Clearly, ℓN (g) does not depend on the choice of the transversals. Note that, choosing
a set Ti of representatives of the minimal LN -classes in Mi that contains 1, one can define
similarly a right amalgam decomposition (h, gm, . . . , g1) of every g. Moreover, we have m =
ℓN (g). Proposition 3.3 is a consequence of the following lemma.

Lemme 3.4. Let M1∗NM2 be a special amalgam such that N has the confluence property in
both, M1 and M2. For i = 1, 2, we choose a set Ti of representatives of the minimal RN -classes
in Mi that contains 1. Assume M1 and M2 are cancellative. Consider the reduction rule on
F+(M1,M2) whose types are in {a, b, c} × N∗ and which is defined in the following way. If
X = (g1, . . . , gm) and X ′ = (g′1, . . . , g

′
n), then

(a) X ′ (a,i)
←− X if m = n, 1 ≤ i ≤ m−1, (gi, gi+1) ∈ (M1×M1)∪(M2×M2), (g

′
i, g

′
i+1) = [gigi+1]N ,

and g′j = gj for j 6= i, i + 1;

(b) X ′ (b,i)
←− X if n = m + 1, 1 ≤ i ≤ m, gi 6∈ N ∪ T1 ∪ T2, (g

′
i, g

′
i+1) = [gi]N , and g′j = gj ,

g′k+1 = gk for j < i < k;

(c) X ′ (c,i)
←− X if n = m − 1, 1 ≤ i ≤ m − 1, (gi, gi+1) ∈ N × N , g′i = gigi+1, and g′j = gj ,

g′k = gk+1 for j < i < k.

Then the reduction rule is Noetherian and locally confluent.

Proof. Consider a sequence (Xk)k in F+(M1,M2) such that Xk+1
∗
←− Xk for all k. If X =

(g1, . . . , gn) belongs to F+(M1,M2), set

|X|6∈N = |{i | gi 6∈ N}| , |X|6∈T∪N = |{i | gi 6∈ T1 ∪ T2 ∪N}| ,

Inv(X) = |{(i, j) | i < j, gi ∈ N, gj 6∈ N}| .

It is easily seen that |Xk|6∈N ≥ |Xk+1|6∈N and |Xk|6∈T∪N ≥ |Xk+1|6∈T∪N for all k ∈ N, therefore
there exists K ∈ N such that the sequences |Xk|6∈N and |Xk|6∈T∪N stabilize for k ≥ K. It follows
that, for k ≥ K, the only reduction rules that can be applied are either of type (c, i) or of
type (a, i). Moreover, in the latter case, (gi, gi+1) has to belong either to N × Tε or to Tε ×N ,
where ε = 1, 2. Now, |Xk| ≥ |Xk+1| and Inv(Xk) ≥ Inv(Xk+1) for k ≥ K, thus there exists
K1 ≥ K such that the sequences |Xk| and Inv(Xk) stabilize for k ≥ K1. For k ≥ K1, the only
reduction rules that can be applied are of type (a, i) with (gi, gi+1) in Tε×N . But, in this case,
[gigi+1]N = (gi, gi+1). Therefore, (Xk)k stabilizes for k ≥ K1. This shows that the reduction
rule is Noetherian.
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Now, assume X ′ (e,i)
←− X and X ′′ (f,j)

← X with X = (g1, . . . , gm) and 1 ≤ i ≤ j ≤ m. We need to

find some X ′′′ such that X ′′′ ∗
←− X ′ and X ′′′ ∗

←− X ′′. If either j ≥ i+2, or e = b with j ≥ i+1,
then such a X ′′′ is easily found. Also, if e = f = c and j = i+1, then X ′′′ is easily constructed.
So, we should treat the following remaining three cases: (1) {e, f} = {a, b} and i = j; (2) e = c,
f = a and j = i+ 1; (3) e = a, j = i+ 1 and f = a, b, c.

Case 1. Assume by symmetry that e = a and f = b. Then we have

X ′ (c,i+1)
←− ·

(a,i)
←− ·

(a,i+1)
←− X ′′

by the uniqueness of the decomposition [gigi+1]N .

Case 2. We have

X ′′′ (a,i)
←− X ′ and X ′′′ (c,i+1)

←− ·
(a,i)
←− X ′′

by the uniqueness of the decomposition [gigi+1gi+2]N .

Case 3. Assume first f = a. We have two cases depending on whether gi and gi+2 belong to the
same Mj or not. In the first case, we have

X ′′′ (c,i+1)
←− ·

(a,i)
←− ·

(a,i+1)
←− X ′ and X ′′′ (c,i+1)

←− ·
(a,i)
←− X ′′

by the uniqueness of the decomposition [gigi+1gi+2]N . In the second case, gi+1 has to lie in N .
This is the only non-obvious case. We may assume without loss of generality that m = 2 and
i = 1. Up to symmetry, we may also assume g1 ∈M1 and g3 ∈M2. So, we have X = (g1, g2, g3).

Set X ′ = (g′1, g
′
2, g

′
3) and X ′′ = (g′′1 , g

′′
2 , g

′′
3 ). Let X ′′′ = (g′1, g

(3)
2 , g

(3)
3 ) be such that X ′′′ (a,2)

←− X ′.

The following equalities have to hold: g′3 = g3, [g1g2]N = (g′1, g
′
2), and [g′2g3]N = (g

(3)
2 , g

(3)
3 ).

Consider the sequence of reductions

X(6) (c,3)
←− X(5) (a,2)

←− X(4) (b,1)
←− X ′′ .

Write X(4) = (g
(4)
1 , g

(4)
2 , g′′2 , g

′′
3 ), X

(5) = (g
(4)
1 , g

(5)
2 , g

(5)
3 , g′′3 ), and X(6) = (g

(4)
1 , g

(5)
2 , g

(6)
3 ). We have

[g1]N = (g
(4)
1 , g

(4)
2 ). In particular, g1g2 = g′1g

′
2 = g

(4)
1 g

(4)
2 g2. Thus, g

(4)
1 = g′1 and g′2 = g

(4)
2 g2. It

follows from the latter equality that, in M2, we have

g
(3)
2 g

(3)
3 = g′2g3 = g

(4)
2 g2g3 = g

(4)
2 g′′2g

′′
3 = g

(5)
2 g

(5)
3 g′′3 = g

(5)
2 g

(6)
3 .

Hence, g
(5)
2 = g

(3)
2 and g

(3)
3 = g

(6)
3 . In other words, X(6) = X ′′′. Assume now f = b. Then

X ′ (c,i+1)
←− ·

(a,i)
←− X ′′

by the uniqueness of the decomposition [gigi+1]N . Assume finally f = c. Then we have

X ′′′ (c,i+1)
←− X ′ and X ′′′ (a,i)

←− X ′′ .
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Proof of Proposition 3.3. We keep the notations of Lemma 3.4. No reduction rule can be
applied to (g1, . . . , gn, h) if and only if the decomposition g1 · · · gnh is as stated in Proposition 3.3.
Now, it is immediate from the definitions that the equivalence relation ←→ on F+(M1,M2)

generated by
∗
←− is equal to the relation ≡ given in the definition of a amalgamated product of

monoids. Then the result is a consequence of Lemma 3.2 and Lemma 3.4.

Lemma 3.5. Let M1∗NM2 be a special amalgam such that M1 and M2 are cancellative and N has
the confluence property in both, M1 and M2. For i = 1, 2, consider a set Ti of representatives
of the minimal RN -classes in Mi which contains 1. Let g belong to M1 ∗N M2, and assume
that g = g1 · · · gn, where gi lies in Mεi \ N and εi 6= εi+1. Let g′1, . . . , g

′
n ∈ T1 ∪ T2 and

h0, h1, . . . , hn ∈ N be inductively defined by

h0 = 1, [hi−1gi]N = (g′i, hi) if 1 ≤ i ≤ n .

Then (g′1, . . . , g
′
n, hn) is the amalgam decomposition of g.

Proof. One has g = g′1 · · · g
′
nhn and (g′1, . . . , g

′
n, hn) is an amalgam decomposition: no g′i is equal

to 1 because g′ihi = hi−1gi and N is special.

Lemma 3.6. We keep the notations of Proposition 3.3. Assume M1 and M2 are cancellative.
Let g, g′ belong to M1∗NM2, and let [g]N = (g1, . . . , gn, h) and [g′]N = (g′1, . . . , g

′
m, h′). If m ≥ 1,

n ≥ 1, and εm([g′]N ) = ε1([g]N ), then

[g′g]N = (g′1, . . . , g
′
m−1, g̃1, . . . , g̃n, h̃) ,

where (g̃1, . . . , g̃n, h̃) = [g′mh′g]N . Otherwise,

[g′g]N = (g′1, . . . , g
′
m, g̃1, . . . , g̃n, h̃) ,

where (g̃1, . . . , g̃n, h̃) = [h′g]N .

Proof. This is a direct consequence of Lemma 3.5. In the first case g′mhg1 does not belong to
N because the latter is special and g′m does not belong to N .

Remark. Assume M1∗NM2 is a special amalgam such that M1 and M2 are cancellative and
N has the confluence property in both, M1 and M2. Replacing minimal RN -classes by minimal
LN -classes, and choosing representatives, we can associate to each element g of M1 ∗N M2 a
left amalgam decomposition (h̃, g̃m, . . . , g̃1). Then one obtains properties for the left amalgam
decompositions that are similar to those proved in Lemmas 3.5 and 3.6 for right amalgam
decompositions.

Corollary 3.7. Let M1∗NM2 be a special amalgam such that N has the confluence property in
both M1 and M2. Assume M1 and M2 are cancellative. Then M1∗NM2 is cancellative.

Proof. Let g, g′, g′′ belong to M1∗NM2 such that g′g = g′′g. Clearly, we can assume without
loss of generality that ℓN (g) ≤ 1. Set [g′]N = (g′1, . . . , g

′
m, h′) and [g′′]N = (g′′1 , . . . , g

′′
p , h

′′). If
ℓN (g) = 0, then [g′g]N = (g′1, . . . , g

′
m, h′g) and [g′′g]N = (g′′1 , . . . , g

′′
p , h

′′g). By the uniqueness of
the amalgam decomposition, it follows that m = p, g′1 = g′′1 , . . . , g

′
p = g′′p , and h′g = h′′g in N .
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The latter equality implies h′ = h′′ because N is cancellative. Now, assume ℓN (g) = 1 (say g ∈
M1\N). If g′m lies in M2, then the amalgam decomposition [g′g]N of g′g is (g′1, . . . , g

′
m, g̃′m+1, h̃

′),

where (g̃′m+1, h̃
′) = [h′g]N , and, if g′m lies in M1, then the amalgam decomposition of g′g is

(g′1, . . . , g
′
m−1, g̃

′
m, h̃′), where (g̃′m, h̃′) = [g′mh′g]N . Similarly, if g′′p lies in M2 then the amalgam

decomposition [g′′g]N of g′′g is (g′′1 , . . . , g
′′
p , g̃

′′
p+1, h̃

′′), where (g̃′′p+1, h̃
′′) = [h′′g]N , and, if g′′p lies in

M1, then the amalgam decomposition of g′′g is (g′′1 , . . . , g
′′
p−1, g̃

′′
p , h̃

′′), where (g̃′′p , h̃
′′) = [g′′ph

′′g]N .
If both g′m and g′′p belong to M2, then one can easily show that g′ = g′′ in the same way as
for the case ℓN (g) = 0. If we assume g′m lies in M1 and g′′p lies in M2, then the uniqueness

of the amalgam decomposition implies that g′mh′g = g̃′mh̃′ = g̃′′p+1h̃
′′ = h′′g, thus g′mh′ = h′′,

since M1 is cancellative. This is a contradiction since N is special. Similarly, we obtain a
contradiction if we assume that g′m lies in M2 and g′′p lies in M1. Assume finally both g′m and g′′p
belong to M1. Again by the uniqueness of the amalgam decomposition, it follows that m = p,
g′1 = g′′1 , . . . , g

′
p−1 = g′′p−1, and g′ph

′g = g′′ph
′′g in M1, which is cancellative. We conclude that

g′ph
′ = g′′ph

′′ and therefore g′ = g′′. By similar arguments, the equality gg′ = gg′′ in M1∗NM2

implies g′ = g′′.

Corollary 3.8. Let M1∗NM2 be a special amalgam such that N has the confluence property in
both, M1 and M2. Assume M1 and M2 are cancellative and atomic. Then M1∗NM2 is atomic.

Proof. For all g in Mi, i ∈ {1, 2}, we denote by νi(g) the maximal length of g over the atoms
of Mi. Recall that the map νi : Mi → N is well-defined and is a norm. Note that, since N is
special, we have ν1(h) = ν2(h) for all h ∈ N . Let g ∈M1∗NM2, g 6∈ N , and let (g1, . . . , gk, h) be
the amalgam normal form of g. Let ε(i) be the element of {±1} such that gi ∈Mε(i). We take
a sequence (g′1, . . . , g

′
k) such that g′i ∈Mε(i) for all i ∈ {1, . . . , k} and g = g′1 · · · g

′
k, and turn now

to prove that νε(i)(g
′
i) is bounded for all i. We argue by induction on k.

The case k = 1 being trivial, we can assume that k ≥ 2 plus the induction hypothesis. By
Lemma 3.5, there exists hk−1 ∈ N such that hk−1g

′
k = gkh. This implies that νε(k)(g

′
k) is

bounded above by νε(k)(gkh). Similarly, replacing the right normal form of g by its left normal
form, it is shown that νε(1)(g

′
1) is bounded. Again by Lemma 3.5, there exists h1 ∈ N such that

g′1 = g1h1. Finally, from the equality

(h1g
′
2)g

′
3 · · · g

′
k = g2 · · · gkh

and the induction hypothesis, it follows that νε(i)(g
′
i) is bounded for all i ∈ {3, . . . , k}, and

that νε(2)(h1g
′
2) is bounded, too. The fact that νε(2)(h1g

′
2) is bounded implies that νε(2)(g

′
2) is

bounded.

For g in M1∗NM2, g 6∈ N , we set

ν(g) = max{νε(1)(g
′
1) + · · ·+ νε(k)(g

′
k) | g = g′1 · · · g

′
k et g′i ∈M1 ∪M2 \N} ,

and for g ∈ N , we set ν(g) = ν1(g) = ν2(g). It is easily checked that ν is a norm. So, M1∗NM2

is atomic.
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3.3 Amalgamation of preGarside monoids above parabolic submonoids

The following lemma will allow us to apply the results of the previous subsection to parabolic
submonoids in preGarside monoids.

Lemma 3.9. Let M be a preGarside monoid, and let N be a parabolic submonoid of M . Then
N has the confluence property. Moreover, each minimal RN -class (resp. LN -class) has a unique
representative.

Proof. It is easily checked that the fact that M is atomic and N is special implies that the
rewriting rule

∗
←− on the RN -classes is Noetherian, and that each minimal class has a unique

representative. It remains to show that
∗
←− is locally confluent. Let g, g′, g′′ ∈ M such that

g′N
∗
←− gN and g′′N

∗
←− gN . Let h′, h′′ ∈ N such that g = g′h′ = g′′h′′. We have h′ �R g and

h′′ �R g, thus h0 = h′ ∨R h′′ exists and belongs to N . Let g0 ∈M such that g = g0h0. Using the
cancellation property it is then easily shown that g0N

∗
←− g′N and g0N

∗
←− g′′N .

Remark. LetM1 andM2 be preGarside monoids, and let N be a common parabolic submonoid.
Then, by Lemma 3.9, left and right amalgam decompositions in M1∗NM2 exist, and they are
unique in the sense that there is unique choice of transversals T1 and T2 for defining them.

Lemma 3.10. Let M1, M2 be preGarside monoids, and let N be a common parabolic submonoid.
Let g, g′ belong to M = M1∗NM2. If there exists g0 ∈M1∗NM2 such that g �L g0 and g′ �L g0,
then g ∨L g′ exists (in M1∗NM2), and ℓN (g ∨L g′) = max(ℓN (g), ℓN (g′)).

Proof. We argue by induction on m = max(ℓN (g), ℓN (g′)). Set M = M1∗NM2. Let x, x
′ ∈M

be such that gx = g′x′ = g0. Denote by (t, xs, . . . , x1) and (t′, x′s′ , . . . , x
′
1) the right amalgam

decompositions of x and x′, respectively. We get gtxs · · · x1 = g′t′x′s′ · · · x
′
1 = g0. Consider the

case m = 0. Then g and g′ belong to N . By the uniqueness of the right amalgam decomposition,
we get gt = g′t′ in N . Therefore, g∨L g

′ exists in N . It is easily seen that this element is also the
least element in {y ∈M | g �L y and g′ �L y}. Consider now the case m = 1. The uniqueness
of the amalgam decomposition and the existence of a common multiple imply that g and g′ both
belong either to M1, or to M2. By arguments similar to the previous case, g ∨L g′ exists in M1

or M2, and this element is the least element in {y ∈M | g �L y and g′ �L y}.

Now, we assume m ≥ 2 plus the induction hypothesis. Set [g]N = (g1, . . . , gk, h) and [g′]N =
(g′1, . . . , g

′
k′ , h

′). By Lemma 3.6, the k−1 first terms in [gx]N are g1, . . . , gk−1, and the k′−1 first
terms in [g′x]N are g′1, . . . , g

′
k′−1. Since gx = g′x′, it follows that gi = g′i for i ≤ min(k, k′) − 1.

Hence, upon applying cancellation in the left hand side, we may reduce our study to the case
min(k, k′) ≤ 1. So, we can assume ℓN (g) ≤ 1 and [g′]N = (g′1, . . . , g

′
k′ , h

′) with k′ = m ≥ 2. By
the induction hypothesis it follows from the equality gx = g′1 · · · g

′
mh′x′ that g and g′1 · · · g

′
m−1

have a least common multiple g′′ = g∨L (g
′
1 · · · g

′
m−1) in M with ℓN (g′′) = m−1. Write x = x1x2

such that g′′ = gx1 = g′1 · · · g
′
m−1g̃. One has ℓN (g̃) ≤ 1 by Lemma 3.6. By cancellativity, we get

g̃x2 = g′mh′x′. Applying the casem = 1, we deduce that g̃ and g′mh′ have a least common multiple
g′′′ = g̃ ∨L (g

′
mh′) in M such that ℓN (g′′′) = 1. Now, g′1 · · · g

′
m−1g

′′′ left divides g0 and is the least
element in {y ∈M | g �L y and g′ �L y}. Moreover, ℓN (g′) = m = ℓN (g′1 · · · g

′
m−1g

′′′).

Now, combining Corollaries 3.7 and 3.8 and Lemmas 3.9 and 3.10, we get the following.
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Proposition 3.11. Let M1, M2 be preGarside monoids, and let N be a common parabolic
submonoid. Then the amalgamated product M = M1∗NM2 is a preGarside monoid.

So, the amalgamated product of two preGarside monoids above a common parabolic submonoid
is again preGarside. Moreover, the parabolic submonoids of the amalgamated product are as
follows.

Proposition 3.12. Let M1, M2 be preGarside monoids, and let N be a common parabolic
submonoid. Set M = M1∗NM2.

(1) If M ′
1 and M ′

2 are parabolic submonoids of M1 and M2, respectively, such that M ′
1 ∩N =

M ′
2∩N , then M ′

1∗N ′M ′
2 is (canonically isomorphic to) a parabolic submonoid of M , where

N ′ = M ′
1 ∩N . In particular, M1, M2, and N are parabolic submonoids of M .

(2) If M ′ is a parabolic submonoid of M , then there exist parabolic submonoids M ′
1, M

′
2, and

N ′, of M1, M2, and N , respectively, such that M ′
1 ∩N = M ′

2 ∩N = N ′, and M ′ is equal
(isomorphic) to M ′

1∗N ′M ′
2.

Proof. Proof of (1). Let M ′
1 and M ′

2 be parabolic submonoids of M1 and M2, respectively, such
that M ′

1 ∩N = M ′
2 ∩N . Set M ′ = M ′

1∗N ′M ′
2, where N ′ = M ′

1 ∩N . If g ∈M ′
i is such that gN ′

is a minimal RN ′-class in M ′
i , then gN is a minimal RN -class in Mi. Indeed, if g = g1h with

h in N , then g1 ∈M ′
i and h ∈ N ′ because M ′

i is special. Hence, The canonical morphism from
M ′ to M sends amalgam decompositions to amalgam decompositions, thus it is injective.

Now, we prove that M ′ is special. Let g ∈ M ′ and g′, g′′ ∈ M be such that g = g′g′′. Set
[g]N = (g1, . . . , gp, h), [g

′]N = (g′1, . . . , g
′
m, h′), and [g′′]N = (g′′1 , . . . , g

′′
n, h

′′). Note that, since
the embedding of M ′ into M sends amalgam decompositions to amalgam decompositions, we
have g1, . . . , gp ∈ M ′

1 ∪M ′
2 and h ∈ N ′. Assume n ≥ 1, m ≥ 1, and εm([g′]N ) = ε1([g

′′]N ). By
Lemma 3.6, it follows that g′1 = g1, . . . , g

′
m−1 = gm−1, and

[g′mh′g′′]N = (gm, gm+1, . . . , gp, h) .

In particular, g′1, . . . , g
′
m−1 ∈M ′

1 ∪M ′
2. By Lemma 3.5, there exist h̃1, . . . , h̃n−1 ∈ N such that

[g′mh′g′′1 ]N = (gm, h̃1) , [h̃i−1g
′′
i ]N = (gm−1+i, h̃i) for 2 ≤ i ≤ n− 1 ,

and [h̃n−1g
′′
nh

′′]N = (gm+n−1, h) .

Since gm+n−1h ∈ M ′
1 ∪ M ′

2 and the submonoids M ′
1 and M ′

2 are special in M1 and M2, re-
spectively, the equality h̃n−1g

′′
nh

′′ = gm+n−1h implies that h̃n−1, h
′′ ∈ N ′ and g′′n ∈ M ′

1 ∪M ′
2.

Then, using the equality h̃i−1g
′′
i = gm+i−1h̃i, we prove by induction on n − i that h̃i−1 ∈ N ′

and g′′i ∈ M ′
1 ∪ M ′

2 for 2 ≤ i ≤ n − 1. Finally, the equality g′mh′g′′1 = gmh̃1 implies that
g′m, g′′1 ∈ M ′

1 ∪M ′
2 and h′ ∈ N ′. So, g′, g′′ ∈ M ′. It is easily proved in the same way that

g′, g′′ ∈M ′ if either n = 0, or m = 0, or εm([g′]N ) 6= ε1([g
′′]N ).

Now, we take g, g′ ∈ M ′ such that g ∨L g′ exists, and turn to prove that g ∨L g′ ∈ M ′. Set
k = ℓN (g) and m = ℓN (g′), and suppose k ≤ m. We argue by induction on m, following the
construction of g ∨L g′ made in the proof of Lemma 3.10. If m ≤ 1, then there exists i ∈ {1, 2}
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such that g, g′ ∈ M ′
i . Then, since M ′

i is parabolic in Mi, we have g ∨L g′ ∈ M ′
i . Now, assume

m ≥ 2 plus the inductive hypothesis. Set [g]N = (g1, . . . , gk, h) and [g′]N = (g′1, . . . , g
′
m, h′). Note

that g1, . . . , gk, g
′
1, . . . , g

′
m ∈ M ′

1 ∪M ′
2 and h, h′ ∈ N ′. If k ≥ 2, then g1 = g′1, . . . , gk−1 = g′k−1,

and
g ∨L g′ = g1 · · · gk−1((gkh) ∨L (g′k · · · g

′
mh′)) .

By the induction hypothesis we have ((gkh) ∨L (g′k · · · g
′
mh′)) ∈ M ′, thus g ∨L g′ ∈ M ′. Hence,

we may assume that k ≤ 1. Set g′′ = g ∨L (g′1 · · · g
′
m−1). By the induction hypothesis we have

g′′ ∈M ′. Moreover, as pointed out in the proof of Lemma 3.10, there exists g̃ ∈M1 ∪M2 such
that g′′ = g′1 · · · g

′
m−1g̃. Note that g̃ ∈ M ′ since M ′ is special. Set g′′′ = g̃ ∨L (g′mh′). Then,

by the case m = 1 treated above, g′′′ ∈ M ′. On the other hand, it is shown in the proof of
Lemma 3.10 that g ∨L g′ = g′1 · · · g

′
m−1g

′′′. So, g ∨L g′ ∈M ′.

Proof of (2). Let M ′ be a parabolic submonoid of M . Clearly the monoids M ′
1 = M1 ∩M ′,

M ′
2 = M2 ∩M ′ and N ′ = N ∩M ′ are parabolic in M1, M2 and N , respectively, and N ′ =

M ′
1 ∩N = M ′

2 ∩N . Let M ′′ = M ′
1∗N ′M ′

2. We claim that M ′′ is isomorphic to M ′. Indeed, the
image of M ′′ in M by the canonical morphism is clearly included in M ′. Conversely, if g lies
in M ′ and (g1, . . . , gn, h) is its amalgam decomposition in M , then each term g1, . . . , gn and h
belongs to M ′, because M ′ is special, thus lies in M ′

1 ∪M ′
2. So, g ∈M ′′.

4 PreGarside groups of FC type

Now, thanks to the results of the previous section, mainly Proposition 3.11, we are ready to
introduce the main definition of the paper.

Definition. The family of preGarside monoids of FC type is the smallest family of preGarside
monoids that contains all Garside monoids and which is closed under amalgamation above
parabolic submonoids. A preGarside group G(M) is of FC type if M is.

As pointed out in the introduction, our goal in this section is to study preGarside groups of FC
type. But, we need first to understand minimal coset representatives in Garside groups. This is
the objective of the following subsection.

4.1 Minimal coset representatives in Garside groups

Altobelli proved in [1] that, for each parabolic subgroupH of a spherical type Artin-Tits group G,
each left class gH has a distinguished representative element mH(g) that is minimal among the
elements of gH for some partial order ≤H . Here we extend Altobelli’s results to the wider
context of Garside groups, with some new arguments and simplifications.

Throughout the subsection we assume M is a Garside monoid with a Garside element ∆, and
N is a parabolic submonoid of M . Recall from Lemma 2.4 that there is a Garside elements ∆N

of N such that Div(∆) ∩N = Div(∆N ). We start with two technical lemmas.

Lemma 4.1. Let h1, h2 belong to N and g lie in M . If h2∧Lh1 6= h2∧L (h1g), then ∆N ∧L g 6= 1.

Proof. Let h3 be in N such that h1∨L (h2∧L (h1g)) = h1h3. Both, (h2∧L (h1g)) and h1, lie in N
and left divide h1g, therefore h3 belongs to N and left divides g. If h3 = 1, then h2 ∧L (h1g) left
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divides both, h1 and h2, therefore it is equal to h2 ∧L h1. If h3 6= 1, then h3 ∧L ∆N is a common
left divisor of g and ∆N different from 1, hence ∆N ∧L g 6= 1.

Recall that a ∆-simple element is a factor of the Garside element ∆, that is, an element of
Div(∆). Throughout the subsection, for g in G(M), we denote by |g| the smallest non-negative
integer k such that g can be decomposed as a product of k ∆-simple elements and their inverses.
Since here ∆ is fixed, this does not induce confusion. We recall that a normal form is geodesic.
In other words, if g = ab−1 is in normal form, then |g| = |a|+ |b| (see [22]).

Lemma 4.2. Let a and b belong to M .

(1) The increasing sequence (b ∧L ∆n
N )n≥0 stabilizes for n ≥ |b|.

(2) The increasing sequence (a ∧R ∆n
Nb)n≥0 stabilizes for n ≥ |a|.

Proof. By symmetry between left and right divisibilities, it suffices to prove (2). The sequence
(a ∧R ∆n

Nb)n≥0 is bounded by a for right divisibility, therefore it has to stabilize. Let m be
minimal such that (a ∧R ∆n

Nb)n≥0 stabilizes for n ≥ m. We assume m ≥ 1 and a 6= 1, otherwise
there is nothing to prove. For short, we set k = |a∧R ∆m

Nb|. We are going to prove by induction
on k that m ≤ k. This will prove (2), as k ≤ |a|, since a∧R∆

m
Nb right divides a. If k = 0, that is,

a ∧R ∆m
Nb = 1, the result follows from the fact that (a ∧R ∆n

Nb)n≥0 is increasing. Assume k ≥ 1
plus the induction hypothesis. Denote by ck · · · c1 the right greedy normal form of a ∧R ∆m

Nb.
Then there exists a1 in M such that a = a1c1. Moreover,

c1 = ∆ ∧R (a ∧R ∆m
Nb) = a ∧R (∆ ∧R ∆m

Nb) = a ∧R (∆ ∧R ∆Nb) .

The last equality follows from the fact that ∆ ∧R cd = ∆ ∧R ((∆ ∧R c)d) for all c, d ∈ M (see
[22]). Therefore, there exists b1 in M such that ∆Nb = b1c1, and a ∧R ∆n+1

N b = (a1 ∧R ∆n
Nb1)c1

for every non-negative integer n. In particular, (a1 ∧R ∆n
Nb1)n≥0 stabilizes for n ≥ m − 1, and

the right greedy normal form of a1 ∧R ∆m−1
N b1 is ck · · · c2. Applying the induction hypothesis,

we get m− 1 ≤ k − 1 and we are done.

Definition.

(1) For g in M , we set

MN (g) = (g ∧L ∆
|g|
N )−1g .

(2) We define the binary relation ≤N on G(M) in the following way. Let g1 = a1b
−1
1 and

g2 = a2b
−1
2 belong to G(M) and be in normal form. We declare that g1 ≤N g2 if there

exist h1, h2 in N and a in M such that

a2 = a1a , h2b2 = h1b1a , h2 ∧L h1 = h2 ∧L (h1b1) .

(3) We define the binary relation ≤ on G(N) setting h1 ≤ h2 if h2h
−1
1 belongs to N .

(4) For g in G(M) with normal form ab−1, we define the map ϕg : N → G(M) setting

ϕg(h) = a (a ∧R (hb))−1
(
MN

(
hb(a ∧R (hb))−1

))−1
.
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Remark.

(1) Let ab−1 be the normal form of g. Set c = a(a ∧R (hb))−1 and d = MN (hb(a ∧R (hb))−1).
It is easily checked that c, d belong to M and c ∧R d = 1. So, the formula in (4) provides
the normal form for ϕg(h).

(2) The defining formula of ϕg is quite ugly, but it is very easy to explain what this map does:
starting with h, put gh−1 in normal form ef−1; then remove from f−1 the inverse of the
greatest left divisor of f that lies in N . What remains is ϕg(h).

In order to prove Theorem 4.4, we need the following.

Lemma 4.3. For g in G(M) and h in N , one has ϕg(h) = ϕgh−1(1).

Proof. It is easy to see that, for a, b in M , even when ab−1 is not a normal form, we have

ϕab−1(h) = a (a ∧R (hb))−1
(
MN (hb(a ∧R (hb))−1)

)−1
.

In particular, for g = ab−1 we get ϕgh−1(1) = ϕa(hb)−1(1) = ϕg(h).

Theorem 4.4.

(1) The relation ≤N is a partial order on G(M), and, if g1, g2 ∈ G(M) are such that g1 ≤N g2,
then g1G(N) = g2G(N).

(2) The relation ≤ is a partial order on G(N).

(3) For every g, the map ϕg is decreasing from (N,≤) to (G(M),≤N ), that is, ϕg(h2) ≤N

ϕg(h1) if h1, h2 ∈ N are such that h1 ≤ h2. Moreover, for every h in N , ϕg(h) ≤N gh−1.

(4) For every g, the left coset gG(N) has a unique minimal element mN (g) for the partial

order ≤N . Furthermore, mN (g) = ϕg(∆
|g|
N ).

Proof. Proof of (1). The relation ≤N is clearly reflexive. Assume g1 ≤N g2 ≤N g1, where
g1 = a1b

−1
1 and g2 = a2b

−1
2 are in normal form. There exist h1, h2 in N and a in M such that

a2 = a1a, h2b2 = h1b1a, and h2 ∧L h1 = h2 ∧L (h1b1). There exist also h′1, h
′
2 in N and a′ in

M such that a1 = a2a
′, h′2b1 = h′1b2a

′, and h′2 ∧L h′1 = h′2 ∧L (h′1b2). We can assume without
restriction that h2 ∧L h1 = h′2 ∧L h′1 = 1. We get a2 = a2a

′a. By cancellativity and atomicity it
follows that a = a′ = 1 and a1 = a2. Therefore h2b2 = h1b1 and h2 ∧L (h1b1) = 1, which imposes
h2 = 1. Similarly, h′2b1 = h′1b2, h

′
2 ∧L (h′1b2) = 1, and h′2 = 1. We get b2 = h1h

′
1b2 and, by

cancellativity and atomicity, h′1 = h1 = 1. Hence b1 = b2. So, the relation ≤N is anti-symmetric.

Now, assume g1 ≤N g2 and g2 ≤N g3, where g1 = a1b
−1
1 , g2 = a2b

−1
2 , and g3 = a3b

−1
3 are

in normal form. There exist h1, h2 in N and a in M such that a2 = a1a, h2b2 = h1b1a and
h2 ∧L h1 = h2 ∧L (h1b1). There exist also h′2, h3 in N and a′ in M such that a3 = a2a

′,
h3b3 = h′2b2a

′, and h3 ∧L h′2 = h3 ∧L (h′2b2). As above, we assume without restriction that
h2 ∧L h1 = h3 ∧L h′2 = 1. We have a3 = a1aa

′ and

((h2 ∨R h′2)h
′
2
−1

)h3b3 = (h2 ∨R h′2)b2a
′ = ((h2 ∨R h′2)h2

−1)h1b1aa
′ .
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Since N is a parabolic submonoid, the elements h′3 = (h2∨Rh
′
2)h

′
2
−1h3 and h′1 = (h2∨Rh

′
2)h2

−1h1
belong to N . With this notation, we have h′3b3 = h′1b1aa

′. It remains to show that h′3 ∧L h′1 =
h′3 ∧L (h′1b1). Let c = h′3 ∧L (h′1b1). Write h′3 = cx and h′1b1 = cy. By cancellativity, we get
xb3 = yaa′. Since we assume h3 ∧L h′2b2 = 1, we have h3b3 = h′2b2a

′ = b3 ∨R a′. Therefore, there
exists z in M such that x = zh3 and ya = zh′2b2. As before, h2b2 = h1b1a = b2 ∨R a, because
h2 ∧L h1b1 = 1, and there exists t in M such that y = th1b1. Hence h′1b1 = cy = cth1b1, and c
left divides h′1 by cancellativitiy. So, h′3 ∧L h′1 = h′3 ∧L (h′1b1).

Finally, if g1 ≤N g2, then g2 = g1(h
−1
1 h2), with the above used notations. Therefore, g1G(N) =

g2G(N).

Proof of (2). Left to the reader.

Proof of (3). Assume h2 belongs to N . We have ϕg(1) = aMN (b)−1 and, by definition of
MN (b), there exists h in N such that b = hMN (b). Similarly, there exists h′ in N such that
h′MN (h2b(a ∧R (h2b))

−1) = h2b(a ∧R (h2b))
−1. Therefore,

h′MN (h2b(a ∧R (h2b))
−1)(a ∧R (h2b)) = h2hMN (b) .

Moreover, by Lemma 4.2, for b in M , we have MN (b) ∧L ∆N = 1. Applying Lemma 4.1 we get

(h2h) ∧L h′MN (h2b(a ∧R (h2b))
−1) = (h2h) ∧L h′ .

Hence, ϕg(h2) ≤N ϕg(1). Moreover, if we assume h1 ≤ h2 in N and write h2 = h3h1, we have

ϕg(h2) = ϕg(h3h1) = ϕgh−1
1
(h3) ≤N ϕgh−1

1
(1) = ϕg(h1) .

Now, the normal form of ϕg(1) is aMN (b)−1. But, by definition, there exists h in N such that
b = hMN (b). This implies that ϕg(1) ≤N g. Thus, for h ∈ N , we get ϕg(h) = ϕgh−1(1) ≤N gh−1.

Proof of (4). The coset gG(N) contains minimal elements for ≤N by atomicity of M : if (gn)
is a decreasing sequence for ≤N and anb

−1
n is the normal form of gn, then an+1 left-divides an

and the sequence (an) has to stabilize. This implies that, for n large enough, the sequence (bn)
is decreasing for right divisibility. Therefore the sequence bn has to stabilize, too. Now, assume
gG(N) = g′G(N). There exists h in G(N) such that gh = g′. Let h1, h2 lie in N such that
h = h−1

1 h2. Then gh−1
1 = g′h−1

2 . By (3), ϕ
gh−1

1
(1) = ϕg(h1) ≤N ϕg(1) ≤N g and ϕ

g′h−1
2
(1) =

ϕg′(h2) ≤N ϕg′(1) ≤N g′. Assume g′ is minimal. Then g′ = ϕ
gh−1

1
(1) ≤N g. In particular, if g

is also minimal, then g = g′. Therefore, gG(N) contains a unique minimal element, mN (g), for
≤N , and there exists h1 in N such that mN (g) = ϕg(h1). But, there exists a positive integer k
such that h1 ≤ ∆k

N . Still by (3) and by minimality of mN (g), this implies that ϕg(∆
k
N ) = mN (g).

It remains to prove that the decreasing sequence (ϕg(∆
k
N ))k≥0 stabilizes at k = |g|. Assume

that g = ab−1 is in normal form and denote by akb
−1
k the normal form of ϕg(∆

k
N ). It follows

from the definition of the map ϕg that the equality ak = ak+1 implies ϕg(∆
k
N ) = ϕg(∆

k+1
N ).

Now, by Lemma 4.2, for k ≥ |a|, one has a∧R (∆k
Nb) = a∧R (∆

|a|
N b), which implies ak = a|a|, and

ϕg(∆
k
N ) = ϕg(∆

|a|
N ). Since |g| ≥ |a|, we conclude that mN (g) = ϕg(∆

|g|
N ).

Remark.
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(1) It follows from the definition of the function mN that, for every g in M , the element
mN (g) is in M , mN (g−1) = MN (g)−1, and mN (g)N is the minimal RN -class in M which
contains g.

(2) For every g in G(M), gG(N) = mN (g)G(N), thus mN (mN (g)) = mN (g).

Proposition 4.5. Let g1, g2 belong to G(M), let K be a parabolic submonoid of M , and assume
g2 belongs to G(K). If g1 ≤N g2, then g1 belongs to G(K). In particular, mN (g2) lies in G(K).

Proof. We keep the notations of the definition of ≤N . We can assume without restriction that
h1 ∧L h2 = 1. The elements a2 and b2 have to lie in K. Therefore, a1 and a lie in K, too. But
h2b2 = (h1b1)a = b2 ∨R a. This implies that h1, h2 and b1 lie in K. Thus g1 = a1b

−1
1 belongs to

G(K).

Proposition 4.6. Assume M is finitely generated, and denote by w 7→ w the canonical map from
(Div(∆)±)∗ onto G(M). There is an algorithm that associates a word m∗

N (w) in (Div(∆)±)∗ to
every word w in (Div(∆)±)∗ such that

(a) mN (w) = m∗
N (w);

(b) if wG(N) = vG(N), then m∗
N (w) = m∗

N (v);

(c) if w is an element of (Div(∆)±)∗, K is a parabolic submonoid, and ∆K is the Garside
element of K satisfying Div(∆)∩K = Div(∆K), and if G(K)∩wG(N) 6= ∅, then m∗

N (w)
belongs to (Div(∆K)±)∗;

(d) if w belongs to Div(∆)∗, then m∗
N (w) belongs to Div(∆)∗ and m∗

N (w) represents the min-
imal RN -class which contains w.

Proof. As recalled in Proposition 2.2, every element g in G(M) has a unique normal form ab−1,
and the elements a and b have unique right greedy normal forms (ap, . . . , a1) and (bq, . . . , b1),
respectively, where the terms belong to Div(∆). So, to each element g in G(M) is associated a
unique expression ap · · · a1b

−1
1 · · · b

−1
q on Div(∆)±. Moreover, there is an algorithm that, given

w such that w = g, computes the words v1 = ap · · · a1 and v2 = bq · · · b1 [18, 30]. For w in
(Div(∆)±)∗, we denote by m∗

N (w) the unique above expression ap · · · a1b
−1
1 · · · b

−1
q associated

with mN (w).

There are algorithms that, given two words w1, w2 on Div(∆), compute representing words on
Div(∆) of the elements w1 ∨R w2 and w1 ∧R w2. Starting from w, one can compute two words

a, b on Div(∆) such that w = ab
−1

and a ∧R b = 1. One can then compute a representing word

c of a ∧R (∆
|w|
N b), and compute representing words d, e of a c−1, ∆

|w|
N bc−1, respectively. Then

one can compute a representing word f of e ∧L ∆
|e|
N and a representing word g of f

−1
e. Finally,

the word dg−1 is a representing word of mN (w) and can therefore be used to compute m∗
N (w).

Now, (b) follows from Theorem 4.4 (4), (c) follows from Proposition 4.5, and (d) follows from
the remark given after Theorem 4.4.
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4.2 Algebraic properties of preGarside groups of FC type

The aim of this subsection is to extend Proposition 2.5 to preGarside groups of FC type (see
Theorem 4.10). We will also extend Proposition 4.6 in the sense that, given a preGarside group
G of FC type, and given a parabolic subgroup H of G, every coset gH admits some “special”
representative (see Theorem 4.11). We start with some technical results that will be useful in
the remainder. The following is classical in the subject (see [45] for instance).

Proposition 4.7. Let G = G1∗HG2 be the amalgamated product of two groups G1 and G2 over
H. Let C1 and C2 be transversals of G1/H and G2/H, respectively, that contain 1. For all g in
G there exists a unique sequence (g1, . . . , gn, h) such that

(a) g = g1 · · · gnh;

(b) h ∈ H and gi ∈ (C1 ∪ C2) \ {1} for all i ∈ {1, · · · , n};

(c) gi ∈ C1 ⇐⇒ gi+1 ∈ C2 for all i ∈ {1, · · · , n− 1}.

As in the case of the amalgamated product of monoids considered in Section 3, the above
sequence (g1, . . . , gn, h) is called the amalgam normal form of g relative to the amalgamated
product of groups.

Lemma 4.8. Let M1, M2 be two preGarside monoids, and assume N is a parabolic submonoid
of both, M1 and M2. Set M = M1∗NM2. If the morphisms G(N)→ G(M1) and G(N)→ G(M2)
are into, then the group G(M) is equal (isomorphic) to G(M1)∗G(N)G(M2).

Proof. By Theorem 2.6, G(M) and G(M1)∗G(N)G(M2) have the same group presentation.

Now, recall Properties (P1), (P2), and (P3) given in the statement of Proposition 2.5.

Lemma 4.9. Let M1, M2 be two preGarside monoids that satisfy Properties (P1), (P2), and
(P3). Assume N is a parabolic submonoid of both, M1 and M2. Set M = M1∗NM2. Assume
M ′ is a parabolic submonoid of M . Set M ′

1 = M ′∩M1, M
′
2 = M ′∩M2 and N ′ = M ′∩N . Then

the subgroup of G(M) generated by M ′ is isomorphic to G(M ′
1)∗G(N ′)G(M ′

2), that is, to G(M ′).

Proof. By Proposition 3.12 and Lemma 4.8, we know that G(M ′) is isomorphic to G(M ′
1)∗G(N ′)

G(M ′
2). Since M1 and M2 satisfy (P1) and (P2), N also satisfies (P1) and (P2), and G(M ′

1),
G(M ′

2), and G(N ′) inject in G(M1), G(M2), and G(N), respectively. Moreover, by (P3), one
has G(N) ∩ G(M ′

1) = G(N ′) in G(M1) and G(N) ∩ G(M ′
2) = G(N ′) in G(M2). This implies

that the canonical morphism from G(M ′
1)∗G(N ′)G(M ′

2) to G(M1)∗G(N)G(M2) is injective. Its
image is clearly the subgroup of G(M) generated by M ′.

Definition. Let M be a preGarside monoid. We say that a finite labelled binary rooted tree is
a FC tree for M if

(a) each node is labelled by a FC type preGarside monoid;

(b) the root is labelled by M , and each leaf is labelled by a Garside monoid;
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(c) each monoid attached to an inner node is the amalgam product above a common parabolic
monoid of the monoids attached to the two child of the node.

Note that, by definition, there exists a FC tree T for M if and only if M is of FC type. Moreover,
in this case, for each monoid N associated with a node of T, there is an injective morphism
ι(T,N) : N →M .

The following two theorems will be proved together.

Theorem 4.10. Let M be a preGarside monoid of FC type.

(P1) The natural morphism ι : M → G(M) is injective.

(P2) Let N be a parabolic submonoid of M . The parabolic subgroup of G(M) generated by N is
isomorphic to G(N), and we have G(N) ∩M = N .

(P3) Let N,N ′ be parabolic submonoids of M . Then N ∩ N ′ is a parabolic submonoid, and
G(N) ∩G(N ′) = G(N ∩N ′).

(P4) G(M) is torsion free.

Theorem 4.11. Let M be a preGarside monoid of FC type, let P be a parabolic submonoid of
M , and let T be a FC tree for M . Then there exists a map mT,P : G(M) → G(M) satisfying
the following properties.

(a) mT,P (g)G(P ) = g G(P ) for all g ∈ G(M), and, if g′ G(P ) = g G(P ), then mT,P (g) =
mT,P (g

′), for all g, g′ ∈ G(M).

(b) Let g be an element of M . Then mT,P (g) lies in M and represents the minimal RP -class
containing g.

(c) Let M ′ be a parabolic submonoid of M , and let g ∈ G(M). If g G(P ) ∩ G(M ′) 6= ∅, then
mT,P (g) ∈ G(M ′).

Proof. We choose a FC tree T for M , we denote by n the number of leafs of T, and we argue
by induction on n.

Assume n = 1, thus M is a Garside monoid. Then M satisfies Properties (P1)-(P4) of Theo-
rem 4.10 by Proposition 2.5. Let P be a parabolic submonoid of M . Set mT,P = mP . Then
mT,P satisfies Property (a) of Theorem 4.11 by Theorem 4.4, it satisfies Property (b) by the
definition itself of mP (see the remark before Proposition 4.5), and it satisfies Property (c) by
Proposition 4.5.

Now, we assume n ≥ 2, plus the induction hypothesis. Let M1,M2 be the children of M
relatively to the tree T, and let N = M1 ∩M2. So, M = M1∗NM2. For i = 1, 2, we denote by
Ti the full subtree of T rooted at Mi. Clearly, Ti is a FC tree for Mi, and the number of leafs
of Ti is strictly less than n. Hence, we may apply the induction hypothesis to Mi and Ti. On
the other hand, the FC tree Ti,N , obtained from Ti by replacing each monoid M ′ attached to a
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node by M ′ ∩N , is a FC tree for N . So, we may also apply the induction hypothesis to N and
Ti,N .

By the above, for i = 1, 2, there exists a map mTi,N : G(Mi) → G(Mi) satisfying Properties
(a), (b), (c) of Theorem 4.11. Set Ci = {mTi,N (g) | g ∈ G(Mi)}, and denote by Ti the set of
representatives of minimal RN -classes in Mi. Then, by (a), Ci is a transversal of G(Mi)/G(N)
and, by (b), Ti is a subset of Ci (and therefore 1 ∈ Ci). It follows that the natural map
M = M1 ∗N M2 → G(M) = G(M1)∗G(N)G(M2) sends amalgam normal forms to amalgam
normal forms, thus it is injective. In particular, this shows that M satisfies Property (P1) of
Theorem 4.10. This also shows the following.

(∗) If g ∈M and (g1, . . . , gℓ, h) is the amalgam normal form of g relative to the decomposition
G(M) = G(M1)∗G(N)G(M2), then gi ∈M1 ∪M2 for all i ∈ {1, . . . , ℓ}, and h ∈ N .

Let M ′ be a parabolic submonoid of M . Set M ′
1 = M ′ ∩M1, M

′
2 = M ′ ∩M2, and N ′ = M ′ ∩N .

Then M ′ = M ′
1∗N ′M ′

2 (see Proposition 3.12), and the parabolic subgroup of G(M) generated by
M ′ is G(M ′) = G(M ′

1)∗G(N ′)G(M ′
2) (see Proposition 4.9). Let g ∈ G(M ′), and let (g1, . . . , gℓ, h)

be the amalgam normal form of g. For i ∈ {1, . . . , ℓ}, we denote by ε(i) the element of {1, 2}
such that gi ∈ G(Mε(i)). Since g ∈ G(M ′) = G(M ′

1)∗G(N ′)G(M ′
2), g can be written in the form

g = g′1 · · · g
′
ℓ with g′i ∈ G(M ′

ε(i)) for all i ∈ {1, . . . , ℓ}. Moreover, there exist h0, h1, . . . , hℓ ∈ G(N)
such that

gihi = hi−1g
′
i for i ∈ {1, . . . , ℓ} , h0 = 1 , and hℓ = h .

We have g1h1 = g′1 ∈ G(M ′
ε(1)). By (c) applied to mTε(1),N , it follows that g1 ∈ G(M ′

ε(1)). Then,
we also have

h1 ∈ G(N) ∩G(M ′
ε(1)) = G(N ∩M ′

ε(1)) = G(N ′) (by (P3)) .

It is easily proved in the same way, with an induction on i, that gi ∈ G(M ′
ε(i)) and hi ∈ G(N ′)

for all i ∈ {1, . . . , ℓ}. In particular, h = hℓ ∈ G(N ′). Finally, we have the following.

(∗∗) If g ∈ G(M ′) and (g1, . . . , gℓ, h) is the amalgam normal form of g relative to the decompo-
sition G(M) = G(M1)∗G(N)G(M2), then gi ∈ G(M ′

1) ∪ G(M ′
2) for all i ∈ {1, . . . , ℓ}, and

h ∈ G(N ′).

Let g ∈ G(M ′)∩M . Let (g1, . . . , gℓ, h) be the amalgam normal form of g. For i ∈ {1, . . . , ℓ}, we
denote by ε(i) the element of {1, 2} such that gi ∈ G(Mε(i)). By (∗) we have gi ∈ Mε(i) for all
i ∈ {1, . . . , ℓ}, and h ∈ N . By (∗∗) we have gi ∈ G(M ′

ε(i)) for all i ∈ {1, . . . , ℓ}, and h ∈ G(N ′).

By (P2) applied to M1, M2, and N , we have G(M ′
ε(i)) ∩Mε(i) = M ′

ε(i) for all i ∈ {1, . . . , ℓ}, and

G(N ′) ∩N = N ′. So, g ∈M ′. This shows that M satisfies Property (P2) of Theorem 4.10.

Let M ′,M ′′ be parabolic submonoids of M . First, note that M ′ ∩M ′′ is parabolic by definition.
Set M ′

1 = M ′ ∩M1, M
′
2 = M ′ ∩M2, N

′ = M ′ ∩ N , M ′′
1 = M ′′ ∩M1, M

′′
2 = M ′′ ∩M2, and

N ′′ = M ′′ ∩ N . Let g ∈ G(M ′) ∩ G(M ′′). Let (g1, . . . , gℓ, h) be the amalgam normal form
of g. For i ∈ {1, . . . , ℓ}, we denote by ε(i) the element of {1, 2} such that gi ∈ G(Mε(i)).
By (∗∗) we have gi ∈ G(M ′

ε(i)) ∩ G(M ′′
ε(i)) for all i ∈ {1, . . . , ℓ}, and h ∈ G(N ′) ∩ G(N ′′).

By (P3) applied to M1, M2, and N , we have G(M ′
ε(i)) ∩ G(M ′′

ε(i)) = G(M ′
ε(i) ∩M ′′

ε(i)) for all
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i ∈ {1, . . . , ℓ}, and G(N ′) ∩ G(N ′′) = G(N ′ ∩ N ′′). This implies that g ∈ G(M ′ ∩M ′′). The
inclusion G(M ′∩M ′′) ⊂ G(M ′)∩G(M ′′) being trivial, this shows that M satisfies Property (P3)
of Theorem 4.10.

Let g be a finite order element of G(M). Since G = G(M1)∗G(N)G(M2), g is conjugate to an
element of either G(M1) or G(M2) (see [45, p. 54]). But, by the induction hypothesis, G(M1)
and G(M2) are torsion free, thus g = 1. This shows that M satisfies (P4).

Now, we take a parabolic submonoid P of M . We set P1 = M1 ∩ P and P2 = M2 ∩ P . Let
g ∈ G(M), and let (g1, . . . , gℓ, h) be the amalgam normal form of g. For i ∈ {1, . . . , ℓ}, we denote
by ε(i) the element of {1, 2} such that gi ∈ G(Mε(i)). We define mT,P (g) by induction on ℓ as
follows. Suppose ℓ = 0. Then g ∈ G(N), and we set

mT,P (g) = mT1,N ,P1∩P2(g) .

Suppose ℓ = 1. Then g ∈ G(Mε(1)), and we set

mT,P (g) = mTε(1),Pε(1)
(g) .

Suppose ℓ ≥ 2. If mTε(ℓ),Pε(ℓ)
(gℓh) 6∈ G(N), we set

mT,P (g) = g1 · · · gℓ−1 ·mTε(ℓ),Pε(ℓ)
(gℓh) .

If mTε(ℓ),Pε(ℓ)
(gℓh) ∈ G(N), we set

g′ = g1 · · · gℓ−1 ·mTε(ℓ),Pε(ℓ)
(gℓh) and mT,P (g) = mT,P (g

′) .

Let g ∈ G(M), and let (g1, . . . , gℓ, h) be the amalgam normal form of g. For i ∈ {1, . . . , ℓ},
we denote by ε(i) the element of {1, 2} such that gi ∈ G(Mε(i)). The number ℓ will be called
amalgam length of g, and it will be denoted by |g|a. It is easily proved by induction on |g|a that

mT,P (g)G(P ) = g G(P ) .

We turn now to show that |mT,P (g)|a is minimal among the amalgam lengths of the elements
of the coset g G(P ). Since mT,P (g)G(P ) = g G(P ), we can assume that g = mT,P (g). If
mT,P (g) ∈ G(N), then |mT,P (g)|a = 0 is obviously minimal. We can therefore assume that
mT,P (g) 6∈ G(N), thus, by construction, gℓh = mTǫ(ℓ),Pǫ(ℓ)

(gℓh) 6∈ G(N). Let u be in G(P ), and
let (u1, . . . , uk, v) be the amalgam normal form of u. If we had |gu|a < |g|a, then we would
have k ≥ 1, u1 ∈ G(Pε(ℓ)) (by (∗∗)) and gℓhu1 ∈ G(N), thus (gℓh)G(Pε(ℓ)) ∩ G(N) 6= ∅, thus,
by (c) of Theorem 4.11 applied to mTε(ℓ),Pε(ℓ)

, we would have gℓh = mTε(ℓ),Pε(ℓ)
(gℓh) ∈ G(N): a

contradiction.

Now, we take g, g′ ∈ G(M) such that g G(P ) = g′ G(P ), and we prove that mT,P (g) = mT,P (g
′).

By the above, we can assume that g = mT,P (g), g
′ = mT,P (g

′), and |g|a = |g′|a. Let u ∈ G(P )
such that g′ = gu, and let (g1, . . . , gℓ, h), (g′1, . . . , g

′
ℓ, h

′), and (u1, . . . , uk, v) be the amalgam
normal forms of g, g′, and u, respectively. Assume that |g|a = |g′|a = 0. Then we have g = h,
g′ = h′, and u = v ∈ G(P1∩P2), thus gG(P1 ∩P2) = g′G(P1∩P2). By the induction hypothesis,
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it follows that g = mT1,N ,P1∩P2(g) = mT1,N ,P1∩P2(g
′) = g′. Assume that |g|a = |g′|a > 0. It is

easily shown in the same way as before that gℓhu1 6∈ G(N), thus k ≤ 1 and u ∈ G(Pε(ℓ)) (by
(∗∗)). By the uniqueness of the amalgam normal form, it follows that g1 = g′1, . . . , gℓ−1 = g′ℓ−1,
and g′ℓh

′ = gℓhu. Since u ∈ G(Pε(ℓ)), we have gℓhG(Pε(ℓ)) = g′ℓh
′ G(Pε(ℓ)), thus, by (a) of

Theorem 4.11 applied to mTε(ℓ),Pε(ℓ)
,

gℓh = mTε(ℓ),Pε(ℓ)
(gℓh) = mTε(ℓ),Pε(ℓ)

(g′ℓh
′) = g′ℓh

′ .

So, g = g′.

It is easily shown by induction on |g|a that, if g ∈ M , then mT,P (g) also belongs to M . We
turn now to prove that, in that case, mT,P (g) is the representative of the minimal RP -class
containing g. We assume without loss of generality that g = mT,P (g).

Assume first that |g|a = 0, that is, g ∈ N . Then g = mT1,N ,P1∩P2(g). Suppose g is written g = g′u
with g ∈ M and u ∈ P . Since N is parabolic, we must have g′ ∈ N and u ∈ P ∩N = P1 ∩ P2.
Then, by the induction hypothesis (on the number of leaves of the FC tree), u = 1 and g′ = g.

Assume now that |g|a ≥ 1. Let (g1, . . . , gℓ, h) be the amalgam normal form of g. We have by
construction gℓh = mTε(ℓ),Mε(ℓ)

(gℓh). Suppose g is written g = g′u with g′ ∈ M and u ∈ P . By
the above, |g|a is minimal among the amalgam lengths of the elements of the coset g G(P ). By
Lemma 3.6, it follows that the amalgam normal form of g′ is of the form (g1, . . . , gℓ−1, g

′
ℓ, h

′),
that u ∈ Mε(ℓ) (namely, u ∈ Pε(ℓ)), and that gℓh = g′ℓh

′u. By the induction hypothesis, we
conclude that u = 1, thus g′ = g. So, mT,P satisfies Property (b).

LetM ′ be a parabolic submonoid ofM . It is easily shown by induction on |g|a that, if g ∈ G(M ′),
then mT,P (g) ∈ G(M ′). It follows that, if g G(P ) ∩ G(M ′) 6= ∅, then mT,P (g) ∈ G(M ′),
that is, mT,P satisfies Property (c). Indeed, if g′ ∈ g G(P ) ∩ G(M ′), then, by the above,
mT,P (g) = mT,P (g

′) ∈ G(M ′).

4.3 Combinatorial properties of FC type preGarside groups

In this subsection we assume given a finite set S, two binary graphs ΓL and ΓR on S, a partial
complement fL on S based on ΓL, and a partial complement fR on S based on ΓR, and we
assume that M = ML(ΓL, fL) = MR(ΓR, fR) is a FC type preGarside monoid. Recall that,
thanks to Lemma 2.7, we can and we do assume that S is the set of atoms of M .

Remark. We cannot remove the assumption “M is a preGarside monoid of FC type” because
we do not know how to decide whether a monoid of the form M = ML(ΓL, fL) = MR(ΓR, fR)
is a preGarside monoid of FC type.

A direct consequence of Theorem 2.8 is the following.

Proposition 4.12. Let X1,X2 be two non-empty subsets of S such that S = X1 ∪ X2, let
M1,M2 be the submonoids of M generated by X1,X2, respectively, and let N = M1 ∩M2. Then
M1,M2 are parabolic submonoids of M and M = M1 ∗N M2 if and only if the following two
conditions hold.
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(a) Let i ∈ {1, 2}. For all x, y ∈ Xi, either {x, y} is not an edge of ΓL or fL(x, y) ∈ X∗
i , and

either {x, y} is not an edge of ΓR or fR(x, y) ∈ X∗
i .

(b) Let i ∈ {1, 2}. For all x ∈ Xi and all y ∈ S \Xi, the pair {x, y} is an edge of neither ΓL,
nor ΓR.

The next result is easily proved from the above proposition.

Corollary 4.13.

(1) M is a Garside monoid if and only if ΓL = ΓR = KS is the complete graph on S.

(2) There is an algorithm which determines a FC tree for M .

(3) We have ΓL = ΓR.

Definition. If M is a Garside monoid, we denote by S(M) the set of divisors of the minimal
Garside element δ = δM of M . The elements of S(M) are called simple elements of M . Note
that, if N is a parabolic submonoid of M , then S(N) ⊂ S(M). Let M be a finitely generated
preGarside monoid. Then S(M) denotes the union of the simple elements of the spherical
parabolic submonoids of M . Note that, if N is a (spherical) parabolic submonoid of M , then
A(N) = A(M)∩N , thus there are finitely many spherical parabolic submonoids of M , therefore
S(M) is finite. As for Garside monoids, the elements of S(M) are called simple elements.

Remark. We do not necessarily have A(M) ⊂ S(M) in general. For example, the monoid
〈a, b, c | a2 = bc〉+ is a preGarside monoid whose unique spherical parabolic submonoid is
{1}, hence S(M) = ∅ for this monoid while A(M) = {a, b, c}. However, it is easily seen that
A(M) ⊂ S(M) if M is of FC type because it is so for Garside monoids.

Now, we come back to the hypothesis of the subsection: M is a preGarside monoid of FC type
given by two partial complements fL and fR.

Lemma 4.14. There exists an algorithm which determines S(M), where each element x ∈ S(M)
is given by a word a(x) ∈ S∗.

Proof. Let X be a subset of S, and let N be the submonoid of M generated by X. Then,
by Theorem 2.8 and Proposition 4.12, N is a spherical parabolic submonoid if and only if the
following hold.

(a) For all x, y ∈ X, {x, y} is an edge of ΓL = ΓR, fL(x, y) ∈ X∗, and fR(x, y) ∈ X∗.

(b) For all x ∈ X and y ∈ S \ X, if {x, y} is an edge of ΓL = ΓR, then fL(x, y) 6∈ X∗ and
fR(y, x) 6∈ X∗.

In particular, there is an effective way of determining all spherical parabolic submonoids of M .

Now, suppose that N is a spherical parabolic submonoid. Let w ∈ X∗, and let g be the element
of N represented by w. Using any solution to the word problem in N (see [22], [18], for example),
we can determine all left and right factors of g, hence we can decide if g is a Garside element. In
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order to calculate the minimal Garside element δN of N as well as S(N) = Div(δN ), we apply
this test to all words of length 1, then to those of length 2, an so on. We increase the length of
the tested words until we obtain a Garside element, which should be the minimal one.

Theorem 4.15. Let P be a parabolic submonoid of M , and let T be an FC tree for M . There
exists a function m∗

T,P : S(M)±∗ → S(M)±∗ satisfying the following properties.

(a) Let w ∈ S(M)±∗. Then m∗
T,P (w) = mT,P (w).

(b) Let v,w ∈ S(M)±∗. If wG(P ) = vG(P ), then m∗
T,P (w) = m∗

T,P (v).

(c) Let w ∈ S(M)±∗. If M ′ is a parabolic submonoid of M and G(M ′) ∩ wG(P ) 6= ∅, then
m∗

T,P (w) ∈ (S(M) ∩M ′)±∗.

(d) Let w ∈ S(M)±∗. If w ∈M , then m∗
T,P (w) ∈ S(M)∗.

Moreover, there is an algorithm which, given w ∈ S(M)±∗, determines m∗
T,P (w).

Proof. We argue by induction on the number n of leafs of T. If n = 1, then M is a Garside
monoid. In this case we set m∗

T,P = m∗
P , and Properties (a), (b), (c) and (d) are satisfied by

Proposition 4.6. So, we may assume that n ≥ 2 plus the induction hypothesis.

Let M1,M2 be the children of M relative to T, and let N = M1 ∩M2. For i = 1, 2 we denote
by Ti the full subtree of T rooted at Mi. On the other hand, we denote by Ti,N the FC tree for
N obtained from Ti by replacing each monoid M ′ attached to a node by M ′ ∩N . We go back
to the constructions and notations given in the proof of Theorems 4.10 and 4.11.

Suppose M ′ is a preGarside monoid of FC type, P ′ is a parabolic submonoid, and T′ is a
FC tree for M ′, and suppose that the number of leafs of T′ is strictly less than n. Then, by
the induction hypothesis, for all g ∈ G(M ′), there exists a unique word ωT′,P ′(g) such that
ωT′,P ′(g) = m∗

T′,P ′(w) for all w ∈ S(M ′)±∗ such that w = g. This word ωT′,P ′(g) will be used
throughout the whole proof for T′ = T1 or T2 or T1,N and M ′ = M1 or M2 or N , respectively.

Let g ∈ G(M). Let (g1, . . . , gℓ, h) be the amalgam normal form of mT,P (g). For i ∈ {1, . . . , ℓ},
we denote by ε(i) the element of {1, 2} such that gi ∈ Mε(i). We set ui = ωTε(i),N (gi) for all
i ∈ {1, . . . , ℓ}, v = ωT1,N ,{1}(h), and

µ(g) = u1 · · · uℓv .

For w ∈ S(M)±∗ we set
m∗

T,P (w) = µ(w) .

The fact that the function m∗
T,P satisfies Properties (a) and (b) follows from the construction

of the function itself. Let w ∈ S(M)±∗, and let M ′ be a parabolic submonoid of M such that
G(M ′)∩wG(P ) 6= ∅. Set M ′

1 = M1 ∩M
′, M ′

2 = M2 ∩M
′, and N ′ = N ∩M ′. Let (g1, . . . , gℓ, h)

be the amalgam normal form of mT,P (w). By Theorem 4.11, we have mT,P (w) ∈ G(M ′) and,
by Property (∗∗) proved in the proof of Theorems 4.10 and 4.11, we have gi ∈ G(M ′

ε(i)) for all

i ∈ {1, . . . , ℓ}, and h ∈ G(N ′). Then, by the induction hypothesis, ωTε(i),Pε(i)
(gi) ∈ (S(Mε(i)) ∩
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M ′
ε(i))

±∗ for all i ∈ {1, . . . , ℓ}, and ωT1,N ,{1}(h) ∈ (S(N) ∩N ′)±∗. This implies that m∗
T,P (w) ∈

(S(M) ∩M ′)±∗.

Let w ∈ S(M)±∗ be such that w ∈ M . Let (g1, . . . , gℓ, h) be the amalgam normal form of
mT,P (w). By Theorem 4.11, we have mT,P (w) ∈ M and, by Property (∗) proved in the proof
of Theorems 4.10 and 4.11, we have gi ∈ Mε(i) for all i ∈ {1, . . . , ℓ}, and h ∈ N . Then, by the
induction hypothesis, ωTε(i),Pε(i)

(gi) ∈ S(Mε(i))
∗ for all i ∈ {1, . . . , ℓ}, and ωT1,N ,{1}(h) ∈ S(N)∗.

This implies that m∗
T,P (w) ∈ S(M)∗.

It remains to show that there is an algorithm which, given w ∈ S(M)±∗, determines m∗
T,P (w).

Recall that, by hypothesis, the given generating set for M is S = A(M), and every element x
in S(M) is given by a word a(x) ∈ A(M)∗. The map a : S(M) → A(M)∗ induces a morphism
a∗ : S(M)±∗ → A(M)±∗ which will be useful in our construction.

Define a pre-expression of length ℓ to be a pair of sequences

W = ((u1, . . . , uℓ, v), (ε(1), . . . , ε(ℓ)))

such that ε(i) ∈ {1, 2} and ui ∈ S(Mε(i))
±∗ for all i ∈ {1, . . . , ℓ}, and v ∈ S(N)±∗.

Let W be a pre-expression. Suppose that ε(i) = ε(i+ 1) for some i ∈ {1, . . . , ℓ− 1}. Set

W ′ = ((u1, . . . , uiui+1, ui+2, . . . , uℓ), (ε(1), . . . , ε(i), ε(i + 2), . . . , ε(ℓ))) .

Then W ′ is called an elementary reduction of type I of W .

Suppose m∗
Tε(i),N

(ui) = 1, that is, ui ∈ N , for some i ∈ {1, . . . , ℓ}. Set u′i = m∗
Tε(i),{1}

(ui) ∈

(S(M) ∩N)±∗, and set u′′i = a∗(u′i) ∈ A(N)±∗. Set

W ′ =

{
((u1, . . . , ui−1, u

′′
i ui+1, . . . , uℓ, v), (ε(1), . . . , ε(i− 1), ε(i + 1), . . . , ε(ℓ))) if i < ℓ

((u1, . . . , uℓ−1, u
′′
ℓ v), (ε(1), . . . , ε(ℓ− 1))) if i = ℓ

Then W ′ is called an elementary reduction of type II of W .

Suppose m∗
Tε(i),N

(ui) 6= 1 and m∗
Tε(i),N

(ui) 6= ui, for some i ∈ {1, . . . , ℓ}. Set u′i = m∗
Tε(i),N

(ui)

and vi = m∗
Tε(i),N

(ui)
−1 ui. Note that vi ∈ G(N). Set v′i = m∗

Tε(i),{1}
(vi) ∈ (S(Mε(i)) ∩ N)±∗,

and set v′′i = a∗(v′i) ∈ A(N)±∗. Set

W ′ =

{
((u1, . . . , u

′
i, v

′′
i ui+1, . . . , uℓ), (ε(1), . . . , ε(i), ε(i + 1), . . . , ε(ℓ))) if i < ℓ

((u1, . . . , uℓ−1, u
′
ℓ, v

′′
ℓ v), (ε(1), . . . , ε(ℓ− 1), ε(ℓ))) if i = ℓ

Then W ′ is called an elementary reduction of type III of W .

Suppose m∗
T1,N ,{1}(v) 6= v. Set v′ = m∗

T1,N ,{1}(v). Set

W ′ = ((u1, . . . , uℓ, v
′), (ε(1), . . . , ε(ℓ))) .

Then W ′ is called an elementary reduction of type IV of W .
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Set u′ℓ = m∗
Tε(ℓ),Pε(ℓ)

(uℓv), and suppose m∗
Tε(ℓ),{1}

(u′ℓ) 6= m∗
Tε(ℓ),{1}

(uℓv), that is, u
′
ℓ 6= uℓv. Set

W ′ = ((u1, . . . , uℓ−1, u
′
ℓ, 1), (ε(1), . . . , ε(ℓ))) .

Then W ′ is called an elementary reduction of type V of W .

A pre-expressionW ′ is called a reduction ofW if there is a finite sequenceW0 = W,W1, . . . ,Wp =
W ′ of pre-expressions such that Wi is an elementary reduction of Wi−1 for all i ∈ {1, . . . , p}.
We say that a pre-expression W is reduced if it has no elementary reductions. Observe that any
sequence of elementary reductions is finite. Moreover, if W = ((u1, . . . , uℓ, v), (ε(1), . . . , ε(ℓ))) is
reduced, then m∗

T,P (u1 · · · uℓv) = u1 · · · uℓv.

Now, let w = se11 · · · s
eℓ
ℓ ∈ A(M)±∗. For all i ∈ {1, . . . , ℓ} choose ε(i) ∈ {1, 2} such that

si ∈ A(Mε(i)). Let
W0 = ((se11 , . . . , seℓℓ , 1), (ε(1), . . . , ε(ℓ))) .

Then a reduced reduction W = ((u1, . . . , uk, v), (µ(1), . . . , µ(k))) of W0 can be effectively calcu-
lated from the above and the induction hypothesis, and

m∗
T,P (w) = u1 · · · ukv .

Corollary 4.16.

(1) G(M) has a solution to the word problem.

(2) There exists an algorithm which, given w ∈ A(M)±∗, decides whether w ∈M .

(3) Let P be a parabolic submonoid of M . There exists an algorithm which, given w ∈ A(M)±∗,
decides whether w ∈ G(P ).

Proof. As pointed out in Corollary 4.13, a FC tree T for M can be effectively calculated. Let
w ∈ A(M)±∗. Then we have w = 1 if and only if m∗

T,{1}(w) = 1, and we have w ∈ M if and

only if m∗
T,{1}(w) ∈ S(M)∗. Let P be a parabolic submonoid of M . Then w ∈ G(P ) if and only

if m∗
T,P (w) = 1.
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