
HAL Id: hal-00691222
https://hal.science/hal-00691222

Submitted on 25 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real-Time Scheduling for Energy Harvesting Sensors
Maryline Chetto, Hussein El Ghor, Rafic Hage Chehade

To cite this version:
Maryline Chetto, Hussein El Ghor, Rafic Hage Chehade. Real-Time Scheduling for Energy Harvesting
Sensors. The 6th International Conference for Internet Technology and Secured Transactions, Dec
2011, Abu Dhabi, United Arab Emirates. pp.396. �hal-00691222�

https://hal.science/hal-00691222
https://hal.archives-ouvertes.fr


Real-Time Scheduling
for Energy Harvesting Sensors

Maryline Chetto
IRCCyN Lab

University of Nantes
UMR CNRS 6597 IRCCyN

Email: maryline.chetto@univ-nantes.fr

Hussein EL Ghor
IRCCyN Lab

University of Nantes
UMR CNRS 6597 IRCCyN

Email: elghorh@irccyn.ec-nantes.fr

Rafic Hage Chehade
Lebanese University

Institut Universitaire de Technologie - Saida
E-mail: rafichagechehade@ul.edu.lb

Abstract— Energy harvesting is the conversion of ambient
energy into electricity to power small devices such as wireless
sensors, making them self-sufficient. The electrical energy used
to power them is variable over time and limited by the capacity
of the energy storage (battery or ultra-capacitor). In general,
these embedded devices have to adhere to real-time constraints
expressed in terms of deadlines. In this paper, we present power
management and scheduling solutions for energy harvesting
systems having real-time constraints such as most of wireless
sensors. We show how to answer questions like the following:
When should the system use energy? When should it be idle and
recharge the energy storage? We review the main properties of
a scheduler known as Earliest Deadline with Energy Guarantee
(EDeg) and we report results of an experimental study.

I. INTRODUCTION

New powering methods, as an alternative to the current
disposable battery, permit autonomous sensors to scavenge
the energy in the environment. Environmental applications
include forest fire detection, monitoring the level of air pol-
lution and health applications like tele-monitoring of human
physiological data. Numerous harvesting modalities have been
demonstrated such as solar, vibrational, motion based, etc. The
energy harvested from the environment can be stored in either
batteries or ultra-capacitors. Batteries have a higher energy
density and lower leakage, while ultra-capacitors have a higher
round trip efficiency and offer higher endurance in terms of
charge-discharge cycles.
Over the last decade, several energy sources have evolved from
human and animal power to fossil fuels, nuclear, hydropower,
wind, and solar energy [6]. Moreover, many alternative sources
of energy are still being researched and tested. Technologies
are continually being developed and enhanced to improve
energy sources. In our work, we focus on the solar energy
since it can be assumed constant on average in a long term
perspective.
In a REH (Real-time Energy Harvesting) system, we have to
make the best use of the available power and the goal of a
scheduler is to assign the tasks (programs) to time slots such
that all timing and power constraints are satisfied every time.
We then say that the system operates in an energy neutral
mode by consuming only as much energy as harvested [4].

In this paper, we will describe how to dynamically man-
age power in a single processor REH system where tasks

are scheduled according to the famous preemptive dynamic
priority policy, Earliest Deadline First (EDF).

The intuition behind the proposed scheme is to run tasks as
long as the energy storage is sufficient to provide energy for
all future occurring tasks, considering their timing and energy
requirements and the replenishment rate of the storage unit.
When this condition is not verified, the processor has to be
idle so that the storage unit recharges as much as possible and
as long as the system will be able to meet all the deadlines.

The rest of the paper is organized as follows: We first
present the necessary background and related work in Section
II. We outline the models in Section III and crucial concepts
including the slack energy in Section IV. In Section V,
we present EDeg scheduler. Section VI is concerned with
experimental results. Finally, we conclude the paper in Section
VII.

II. RELATED WORK AND NECESSARY BACKGROUND

Researchers started to address power and scheduling issues
in the last decade but most of them do not consider both
rechargeability of the batteries and real-time constraints. In
the work by Allavena et al. in [1], power scavenged by the
energy source is constant and all tasks consume energy at a
constant rate. Later in [5], Moser et al. propose LSA (Lazy
scheduling Scheduling Algorithm) to optimally schedule tasks
with deadlines, periodic or not. In that work, the total energy
consumption of every task is directly connected to its execu-
tion time through the constant power of the processing device.
But in a real application, instantaneous power consumed by
tasks may vary along time depending on circuitry and devices
required by the tasks. Very recently, in [3], we relaxed the
restrictive hypothesis that links together energy requirement
and execution time of tasks. We presented an on-line schedul-
ing scheme called EDeg. Under energy constraints, simply
executing tasks according to the EDF rule, either as soon as
possible (EDS) or as late as possible (EDL) may lead to violate
some deadlines. EDeg is a variation of EDF that relies on
two fundamental concepts, namely slack time and slack energy.



III. MODELS AND ASSUMPTIONS

A. Application model

We consider here a set of independent periodic tasks that
can be denoted as follows: τ = {τi, i = 1, . . . , n}. A
four-tuple (Ci, Ei, Di, Ti) is associated with each τi. In this
characterization, task τi makes its initial request at time 0
and its subsequent requests at times kTi, k = 1, 2, ... called
release times. The least common multiple of T1, T2, . . . , Tn
(called the hyperperiod) is denoted by TLCM . Each request of
τi requires a Worst Case Execution Time (WCET) of Ci time
units and has a Worst Case Energy Consumption (WCEC) of
Ei. We assume that the WCEC of a task has no relation with
its WCET.
A deadline for τi occurs Di units after each request by which
task τi must have completed its execution. We assume that
0 < Ci ≤ Di ≤ Ti for each 1 ≤ i ≤ n.

Tasks are scheduled on a single processor system. Task set
τ is said to be feasible if all tasks meet the deadlines.

B. Energy model

We assume that ambient energy is harvested and converted
into electrical power. We cannot control the energy source but
we can predict the expected availability with a lower bound on
the harvested source power output, namely Ps(t). This power
is then the instantaneous charging rate that incorporates all
losses caused by power conversion and charging process. It is
stored in a device with capacity C.

The stored energy at current time t is denoted as E(t). It
can be measured with reasonable accuracy, used at any time
later with no leak over time. We assume that energy production
times can overlap with the consumption times.

IV. FUNDAMENTAL CONCEPTS

A. Slack time

The slack time of a hard deadline task set at current time
t is the length of the longest interval starting at t during
which the processor may be idle continuously while still
satisfying all the timing constraints. Slack time analysis has
been extensively investigated in real-time server systems in
which aperiodic (or sporadic) tasks are jointly scheduled with
periodic tasks [2]. In these systems, the purpose of slack time
analysis is to improve the response time of aperiodic tasks
or to increase their acceptance ratio. A means of determining
the maximum amount of slack which may be stolen, without
jeopardizing the hard timing constraints, is thus a key to
the operation of the so-called slack-stealing algorithms.
Determining slack time is realized at run-time by computing
the so-called dynamic EDL(Earliest Deadline as Late as
possible) schedule [2].

Illustrative Example:
Consider a periodic task set Γ that is composed of three tasks,
Γ = {τi | 1 ≤ i ≤ 3} and τi = (Ci, Di, Ti). Let τ1 = (1, 5, 6),
τ2 = (2, 8, 10) and τ3 = (4, 11, 15). Before beginning to
schedule the task set Γ, we must verify the timing feasibility

Ƭ3

5 6 242318171211 2930

8 10 18 20 28 30

3011 15 26Slack 

Time

Execution of tasks under EDF

Release Time Deadline

Ƭ1

Ƭ2

Fig. 1. Computing Slack Time

condition. The processor utilization Up =
∑n

i=0
Ci

Ci
= 19

30 ≤ 1,
consequently the necessary feasibility condition related to
timing constraints, Up ≤ 1 is satisfied. Hence the total slack
time that can be used is equal to 11. We begin scheduling the
task set Γ according to EDS until t = 8 where we have to
insert a slack time.
To determine the slack time at time t = 18, we first
compute the static EDL schedule for the interval [0, 30].
That means we have to compute the static deadline
vector K and the static idle time vector D [2]. We
note that K = (0, 5, 8, 11, 17, 18, 23, 26, 28, 29) and
D = (3, 0, 0, 4, 0, 3, 0, 0, 0, 1).

Determining the slack time at time t = 18 is realized at
run-time by computing the so-called dynamic EDL schedule
precisely defined by the dynamic deadline vector K(t) and
the dynamic idle time vector D(t) [2]. Figure 1 enables
us to verify that K(t) = (18, 23, 26, 28, 29) and D(t) =
(4, 2, 0, 0, 0, 1) and consequently the slack time is equal to
4. In what follows, we will use the idea of slack time to
recharge the energy storage capacity whenever it is insufficient
to execute more tasks.

B. Slack energy

On the other hand, slack energy is the maximum amount
of energy that can be consumed from a given time t while
still satisfying the timing and energy requirements of all
the future occurring tasks. Slack energy must be computed
by taking into account all periodic instances which have a
deadline less than or equal to d, the deadline of the highest
priority instance ready at current time t.
As total energy produced by the source within [t, d] is∫ d

t
Ps(t)dt, Slack energy(t) = E(t) +

∫ d

t
Ps(t)dt − A

where A is the energy demand required by the periodic task
instances ready to be executed within the interval [t, d).

Illustrative Example:
Consider the above example. Now, we introduce the
energy consumption of tasks. Γ = {τi | 1 ≤ i ≤ 3} and
τi = (Ci, Di, Ti, Ei). Let τ1 = (1, 5, 6, 12), τ2 = (2, 8, 10, 15)
and τ3 = (4, 11, 15, 22) (figure 2). We assume that the energy
storage capacity is C = 25 energy units at t = 0. For
simplicity, we assume that the rechargeable power is constant



along time with (Ps = 5). Before beginning to schedule the

5 6 242318171211 2930

8 10 18 20 28 30

3011 15 26

Execution of tasks under EDF

Release Time Deadline

T1 is released after t=10 

and has deadline <18 

Ƭ1

Ƭ2

Ƭ3

Fig. 2. Computing Slack Energy

task set Γ, we must verify the energy feasibility condition.
Ue =

∑n
i=0

Ei

Ci
= 149

30 ≤ 5. Consequently, Ue ≤ Ps.

Under EDeg, slack energy is computed whenever the
highest priority task ready to be executed can be preempted
by a task requiring energy. From time 0 until t = 10, tasks
are executed according to EDS and the energy level is given
by E(10) = 14 energy units. At t = 10 (figure 2), τ2 is the
highest priority task. Slack energy is then computed from all
task instances released after t = 10 with deadline less than or
equal to deadline of τ2 equal to 18.

Slack energy(10) = E(10)+

∫ 18

10

Psdt−E1−E2 = 22 (1)

Since slack energy is positive, τ2 can start execution while
still guaranteeing sufficient energy for all future occuring task
instances.

V. THE EDeg ALGORITHM

We present hereafter a new scheduler based on the two
previous concepts in order to enhance performance of classical
EDF.

A. Presentation of the Algorithm

EDeg (Earliest Deadline with energy guarantee) runs tasks
according to the earliest deadline first (EDF ). We consider
that a task can consume energy with any power. This means
that before executing a task, we must ensure that the energy
storage is sufficient to execute this task during at least one
time unit. When there is no sufficient energy in the storage
unit, the processor has to remain idle so that the storage unit
recharges entirely (E(t) = Emax) but making sure that there
is sufficient slack time.
Thus, the three major components of EDeg algorithm are
E(t), Slack energy(t) and Slack time(t) where E(t) is
the amount of energy that is currently stored at time t.
PENDING is a boolean which equals true whenever there is
at least one task instance ready to be executed. Also, we define
the function wait() to put the processor in the idle state and
the function execute() to put the processor to run the ready
job with the earliest deadline. The framework of the EDeg
scheduling algorithm is as follows:

Algorithm 1 Earliest Deadline with energy guarantee algo-
rithm (EDeg)
Input: A Set of Periodic Tasks τ = {τi|τi =
(Ci, Di, Ti, Ei) i = 1, · · · , n} According to EDF ,
current time t, battery with capacity ranging from Emax

to Emin, energy level of the battery E(t), source power Ps(t).

Output: EDeg Schedule.

1: while (1) do
2: while PENDING=true do
3: while (E(t) > Emin and Slack energy(t) > 0) do
4: execute()
5: end while
6: while (E(t) < Emax and Slack time(t) > 0) do
7: wait()
8: end while
9: end while

10: while PENDING=false do
11: wait()
12: end while
13: end while

From the EDeg algorithm, we notice the following: First,
we never run out of storage, that means we always check
for sufficient energy in the battery before executing any task
instance. Second, the processor is only entered in the idle
state when either the battery is empty or there is no more
sufficient energy to guarantee the feasible execution of all
future occurring tasks. Third, we recharge the battery to the
maximum level when there is sufficient slack time. We only
stop recharging when there is no more slack time or the battery
is fully replenished. We can easily detect this condition by
using an interrupt mechanism and adequate circuitry between
storage unit and processing device. Finally, we only lose
recharging power when there are no pending instances and
the battery is fully recharged.

B. Efficiency

Complexity of an on-line algorithm is an evaluation of
overheads that are produced when this algorithm actually
runs. So, in a hard real-time context where all the tasks must
imperatively meet their timing requirements, it is of more
practical interest to make use of an algorithm which is both
optimal in terms of scheduling performance and efficient in
terms of computational complexity.

Under EDeg scheduling, overheads are mainly induced by
computating the slack time and the slack energy. Slack time
is computed solely when recharging the battery. Computing
slack energy is realized when executing a periodic instance
while other ones with earliest deadline will occur in the fu-
ture. Consequently, complexity of computing the slack energy
directly depends on the number of preemptions. Higher the
number of preemptions, higher the overhead induced by the
scheduler.



As shown in [2], the slack time of a periodic task set at a
given time instant can be obtained on-line by computing the
dynamic EDL schedule, with complexity O(K.n). n is the
number of periodic tasks, and K is equal to dRp e, where R
and p are respectively the longest deadline and the shortest
period of current ready tasks.

Moreover, the complexity for computing the slack energy is
O(K.n). As EDeg has low and constant space requirements,
this makes it easily implementable on many low-power, unso-
phisticated hardware platforms including micro-controllers.

A suggestion to improve the efficiency of the scheduler in
terms of overhead is to make some computations off-line. We
can compute statically a lower bound on the slack time and a
lower bound on the slack energy and use these approximation
values at run time. The consequences will be only to stop
charging earlier and to stop executing tasks earlier. And the
number of tasks preemptions will increase while the processor
overheads will decrease.

C. Illustrative Example

We consider the previous example. We note that Γ is not
feasible if tasks are executed as soon as possible according
to Earliest Deadline since the energy storage becomes empty
at t = 18 (figure 3) where the system stops immediately. In

Ƭ3

5 6 242318171211 2930

8 10 18 20 28 30

3011 15 26

Execution of tasks under EDF

Release Time Deadline

Idle 

Time

Processor Idle time under EDeg

Ƭ1

Ƭ2

E(t) 5

3

1

Fig. 3. Task scheduling according to EDeg

details:
• According to EDeg, tasks of Γ are executed as soon as

possible according to EDF until t = 15 where E(t) =
12 energy units.

• At t = 15, slack energy needs to be computed since
τ3 is the highest priority task ready to be executed with
future preemptions. As the slack energy is positive, τ3 is
executed until t = 18 where there is no sufficient energy
in the battery for execution. The processor is let inactive
as long as the energy storage has not filled completely
and the slack time is still positive.

• At t = 22, the battery is fully replenished (E(22) = 25)
energy units, τ1 is executed till t = 23, where E(t) = 18
energy units.

• At t = 23, τ3 completes its execution till t = 24 where
E(t) = 8 energy units.

• At t = 24, τ2 has the highest priority and is executed till
t = 26, where E(t) = 3 energy units.

• Now, τ1 is ready and has the highest priority. As there
is no sufficient energy in the battery for execution, the
processor is let idle for recharging till t = 28 where
E(t) = 13 energy units.

• At time t = 28, τ1 is executed till t = 29, where E(t) = 6
energy units.

• Finally, the processor is idle from t = 29 to t = 30 where
E(t) = 11 energy units.

VI. EXPERIMENTAL RESULTS

A. Setup

We have implemented EDeg in a discrete event simulator
in C/C++. To evaluate its effectiveness, we consider several
task sets, each containing up to 30 randomly generated tasks.
In this simulator, we implement EDeg with respect to EDS
and two heuristics EDd 1 and EDd A. Where, EDd A is the
Earliest Deadline as Soon as possible scheduler that discards
ALL the ready instances whenever the storage unit is empty
and consequently let the processor idle until the next release
time and EDd 1 is the Earliest Deadline as Soon as possible
scheduler that discards only one instance (the highest priority
one) whenever the storage unit is empty and then let the
processor idle until the next release time.

The rechargeable power Ps is constant and we consider two
cases: low and high energy utilization. We assume that the
energy storage is fully charged at the beginning of the sim-
ulation. After a deadline violation is detected, the simulation
terminates for EDL and EDS. Under EDd 1 and EDd A,
the simulation continues until the end of the hyperperiod.

We compare the performance of the following techniques:
(i) percentage of feasible task sets, (ii) average idle time and
(iii) time overhead.

B. Low Energy Utilization

We first consider a system that consumes little energy
relative to energy produced by the environment i.e. Ue/Ps =
0.3 where Ue =

∑n
i=1

Ei

Ti
.

1) Percentage of Feasible Task Set: We experiment the
percentage of feasible task sets which are feasible with EDeg
and not feasible with a greedy algorithm (EDS). We report the
results of this simulation study where the processor utilization
Up = {0.3, 0.6, 0.9}. Our simulation depicts the percentage
of feasible task sets over the energy storage E(t). For each
task set, we compute Efeas as the minimum storage capacity
which permits to achieve neutral operation i.e. all tasks are
executed without violating deadlines and the battery is fully
recharged at the end of the hyperperiod. When Up = 0.3
(figure 4), all task sets are feasible under EDeg when the
feasible energy Efeas = 7100 energy units since EDeg will
benefit from the idle time to recharge the battery whenever
the energy storage is insufficient to execute more tasks. On
the other hand, EDS will need more energy storage than



1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
20

40

60

80

100

E / Efeas

%
 o

f F
ea

si
bl

e 
T

as
k 

S
et

Up=0.3

 

 

1 1.5 2 2.5 3
20

40

60

80

100

E / Efeas

%
 o

f F
ea

si
bl

e 
T

as
k 

S
et

Up=0.6

 

 

1 1.2 1.4 1.6 1.8
40

60

80

100

E / Efeas

%
 o

f F
ea

si
bl

e 
T

as
k 

S
et

Up=0.9

 

 

EDS
EDeg

EDS
EDeg

EDS
EDeg

Fig. 4. % of Feasible Task Sets for low energy utilization

EDeg to guarantee feasibility. In this case, all task sets are
feasible under EDS when the energy storage is 21300 energy
units. This means that EDeg can provide the same level of
performance with a storage unit which is four times less.

When Up = 0.6 (figure 4), all task sets are feasible under
EDeg when the feasible energy Efeas = 10800 energy
units. Under EDS, all task sets are feasible when the storage
energy is about 28620 energy units,this means that the storage
unit must be about 2.65 times bigger with EDS to maintain
100% feasible task sets compared to EDeg. We observe that,
the relative performance gain of EDeg in terms of capacity
savings is decreasing when the processor utilization rate is
increasing.

For high processor utilization, the performance gain in ca-
pacity savings decreases. This can be proved by our simulation
since when Up = 0.9, EDeg obtains capacity savings of about
59% compared to EDS.

2) Average Idle Time: The schedule produced by any
scheduling algorithm can be characterized by the average
duration of idle time intervals or the average number of idle
time intervals in a given time window such as the hyperperiod
of the schedule. Lower is the number of idle time intervals,
lower will be the energy spent in transferring the processor
from the inactive state to the active state. Let us note that new
generation processors use dynamic power management (DPM)
mechanisms. Using such mechanism can greatly enhance the
performance of the system since it consists in putting off the
processor whenever the processor has no task to execute. How-
ever, this mechanism consumes energy and will be efficient as
long as the processor remains inactive during a sufficiently
long period.

In this section, we compute the total number of idle time
intervals for EDeg, EDd A and EDd 1 by varying the
processor utilization Up. In order to get an objective measure-
ment we take into account the percentage of deadlines being
satisfied. Figure 5 gives a measurement of the total number

of idle time intervals weighted by the percentage of deadlines
being satisfied.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Up

W
ei

gh
te

d 
T

ot
al

 N
um

be
r 

of
 Id

le
 T

im
e 

In
te

rv
al

s

 

 
EDeg
EDd_A
EDd_1

Fig. 5. Idle time intervals for Low Energy Utilization

The total number of idle times in EDeg is lower than that
of EDd A and EDd 1 since EDeg will benefit from the
maximum time used to recharge the battery at the maximum
level. As a result, the average idle time in EDeg will be greater
than that of EDd A and EDd 1 and consequently the total
number of idle times is smaller.

Consequently, short idle intervals that result in leakage
are avoided with EDeg. And EDeg will have low energy
overhead coming from transferring the processor from the
inactive state to the active state.

3) Time Overhead: This experiment explores the time
overhead of EDeg i.e time spent to compute both slack
energy and slack time. The objective is to prove that the gain
in performance (from the above sections) is higher than the
cost incurred by its implementation. Let us recall that EDF
has no overhead (except due to preemptions and context
switches) since no on-line computations are required.
In the following, we measure the time overhead as the number
of slack time and slack energy computations divided by the
number of task instances. Under EDeg, for low values of
Up, the time overhead is low (figure 6). As Up increases,
the time overhead increases. Nevertheless, it remains low
even for Up = 0.9. Slack time computations are performed
whenever the processor needs to be idle because of no
more energy. For low energy utilization, overhead to due
slack time computations is consequently low. Slack energy
computations are performed whenever a task is preempted by
at least one higher priority task. Higher is Up, higher is the
number of task instances and so the number of preemptions
and consequently higher is the overhead due to slack energy
computations.

C. High Energy Utilization

Let us consider a system with high energy utilization i.e.
Ue/Ps = 0.9. That means that the periodic task set consumes
90% of the energy produced by the environment.



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.01

0.02

0.03

0.04

0.05

0.06

Up

T
im

e 
O

ve
rh

ea
d

 

 

EDeg
EDS

Fig. 6. Time Overhead for Low Energy Utilization

1) Percentage of Feasible Task Sets: As previously, for each
task set, we compute Efeas as the minimum storage capacity
which permits to achieve neutral operation. Then we begin to
increase Efeas until we reach 100% of feasible task sets with
EDS. When Up = 0.3 (figure 7), all task sets are feasible

1 1.5 2 2.5 3 3.5 4 4.5
0

20

40

60

80

100

E / Efeas

%
 o

f F
ea

si
bl

e 
T

as
k 

S
et

s

Up=0.3

 

 

1 2 3 4
0

20

40

60

80

100

E / Efeas

%
 o

f F
ea

si
bl

e 
T

as
k 

S
et

s

Up=0.6

 

 

1 1.5 2 2.5
20

40

60

80

100

E / Efeas

%
 o

f F
ea

si
bl

e 
T

as
k 

S
et

s

Up=0.9

 

 

EDS
EDeg

EDS
EDeg

EDS
EDeg

Fig. 7. % of Feasible Task Sets for high energy utilization

under EDeg when the feasible energy Efeas = 10000 energy
units. This means that the feasible energy is increased by
29% relative to low energy utilization. This is because as the
energy utilization increases, the consumed energy increases
and consequently the minimum storage capacity which permits
to achieve neutral operation Efeas increases. On the other side,
all task sets are feasible under EDS when the energy storage
is 44000 energy units. This means that EDeg can provide the
same level of performance with a storage unit which is about
4.4 times less.

If we increase Up to 0.6 (figure 7), and run the simulation
again, we find that all task sets are feasible under EDeg when
the feasible energy Efeas = 15200 energy units. Under EDS,
all task sets are feasible when the storage energy is about
58000 energy units; that means that the storage unit must be

about 3.8 times bigger with EDS to maintain 100% feasible
task sets compared to EDeg. We observe that, the relative
performance gain of EDeg in terms of capacity savings is
decreasing when the processor utilization rate is increasing.

For high processor utilization, the performance gain in ca-
pacity savings decreases. This can be proved by our simulation
since when Up = 0.9, EDeg obtains capacity savings of
about 45% compared to EDS. That is because when the
processor utilization is high, the processor rarely has chance
to be idle to recharge the battery. This results in the decrease
of performance gain of EDeg in terms of capacity savings.
When Up = 1, EDeg and EDS are the same since there is
no chance for EDeg to be idle to save energy.

As a conclusion, as the energy utilization increases, the
consumed energy increases and as a result, the energy storage
needed to achieve feasibility for EDeg increases. This is
clearly shown in the simulation results since the feasible
energy in high energy utilization is increased respectively by
29%, 28% and 25% for Up = 0.3, 0.6 and 0.9 when compared
to low energy utilization.

2) Average Idle Time: In this section, we present results of
simulations performed to compute the weighted total number
of idle time intervals for EDeg, EDd A and EDd 1 by
varying the processor utilization Up from 0.1 to 1.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Up

W
ei

gh
te

d 
T

ot
al

 N
um

be
r 

of
 Id

le
 T

im
e 

In
te

rv
al

s

 

 
EDeg
EDd_A
EDd_1

Fig. 8. Idle time intervals for High Energy Utilization

From figure 8, we can rapidly conclude that the total number
of idle times in EDd 1 is greater than EDd A.

Depending on the concept of EDeg, when the energy
storage is empty, the processor has to be idle so that the storage
unit recharges to its maximum capacity or as much as possible
and as long as the system will be able to meet all the deadlines.
For this reason, the total number of idle time intervals must
be smaller in EDeg than EDd A and EDd 1. Also, task
instances are 100% feasible in EDeg and not in EDd A and
EDd 1. Then, by dividing the total number of idle times over
the percentage of feasible task instances, we will conclude that
the weighted total number of idle time intervals in EDeg is
lower than EDd A and EDd 1 by respectively 71% and 68%.

Moreover, for high energy utilization, the consuming energy
increases and the number of low battery level also increases.
Thus, the number of idle times increases and consequently
the average idle time decreases. This is proved by simulations



since the average idle time decreases by 45% from low to high
energy utilization.

3) Time Overhead: For a realistic scenario, we must
take the time overhead into consideration. As stated above,
there is no overhead under ED scheduling. In this ex-
periment, we explore the time overhead by varying the
processor utilization (Up). The chosen values for Up are
{0.1, 0.2, 0.4, 0.6, 0.8, 0.9}.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Up

T
im

e 
O

ve
rh

ea
d

 

 

EDeg
EDS

Fig. 9. Time Overhead for High Energy Utilization

As shown in figure 9, when processor utilization Up in-
creases the time overhead increases till it reaches maximum
value when Up = 0.9. It is important here to note that time
overhead at Up = 0.9 relative to the total number of feasible
instances is very low. This means that the gain in performance
for EDeg is higher than the time overhead.

Moreover, under high energy utilization, the time overhead
increases. This is because as energy utilization increases, the
consumed energy increases and as a result the need to compute
the slack time increases. Consequently, the time overhead
increases. This is proved by simulations since the average
time overhead in high energy utilization increases by about
47% relative to low energy utilization.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we presented a scheduler dedicated to embed-
ded systems such as wireless sensors which harvest energy
from the environment. We considered a uniprocessor system
that execute periodic tasks that consume energy during their
execution with possibly different instantaneous consumption
powers. The crucial part of the so-called EDeg scheduling
algorithm lies on two on-line functions called slack time and
slack energy.

The simulation study reports the performance of EDeg,
primarily measured by the percentage of feasible task instances
i.e. percentage of task that meet their timing requirements
expressed in terms of deadlines. The study shows that EDeg
outperforms the classical and well known Earliest Deadline
First scheduler. Moreover, we demonstrated that the overhead
of EDeg remains acceptable which makes it a practicable
scheduler.

REFERENCES

[1] A. Allavena and D. Mosse, Scheduling of frame-based embedded systems
with rechargeable batteries, In Workshop on Power Management for Real-
time and Embedded systems (in conjunction with RTAS 2001), 2001.

[2] M. Silly-Chetto. The EDL Server for scheduling periodic and soft aperi-
odic tasks with resource constraints. The Journal of Real-Time Systems,
17: 1-25, 1999.

[3] M. Chetto and H.El Ghor. Real-time Scheduling of periodic tasks in
a monoprocessor system with rechargeable energy storage. In WIP
Proceedings of the 30th IEEE Real-Time Systems Symposium December
2009.

[4] A. Kansal, J. Hsu. Harvesting aware power management for sensor
networks, In IEEE Proceedings of Design Automation Conference, 2006.

[5] C. Moser, D. Brunelli, L. Thiele, L. Benini. Real-time scheduling for
energy harvesting sensor nodes, Real-Time Systems, Volume 37, Issue 3,
Pages: 233 - 260, December 2007.

[6] S. Priya and D.-J. Inman. Energy Harvesting Technologies. Springer, New
York (USA), 2009.


