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Real-Time Scheduling for Energy Harvesting Sensors

Energy harvesting is the conversion of ambient energy into electricity to power small devices such as wireless sensors, making them self-sufficient. The electrical energy used to power them is variable over time and limited by the capacity of the energy storage (battery or ultra-capacitor). In general, these embedded devices have to adhere to real-time constraints expressed in terms of deadlines. In this paper, we present power management and scheduling solutions for energy harvesting systems having real-time constraints such as most of wireless sensors. We show how to answer questions like the following: When should the system use energy? When should it be idle and recharge the energy storage? We review the main properties of a scheduler known as Earliest Deadline with Energy Guarantee (EDeg) and we report results of an experimental study.

I. INTRODUCTION

New powering methods, as an alternative to the current disposable battery, permit autonomous sensors to scavenge the energy in the environment. Environmental applications include forest fire detection, monitoring the level of air pollution and health applications like tele-monitoring of human physiological data. Numerous harvesting modalities have been demonstrated such as solar, vibrational, motion based, etc. The energy harvested from the environment can be stored in either batteries or ultra-capacitors. Batteries have a higher energy density and lower leakage, while ultra-capacitors have a higher round trip efficiency and offer higher endurance in terms of charge-discharge cycles. Over the last decade, several energy sources have evolved from human and animal power to fossil fuels, nuclear, hydropower, wind, and solar energy [START_REF] Priya | Energy Harvesting Technologies[END_REF]. Moreover, many alternative sources of energy are still being researched and tested. Technologies are continually being developed and enhanced to improve energy sources. In our work, we focus on the solar energy since it can be assumed constant on average in a long term perspective. In a REH (Real-time Energy Harvesting) system, we have to make the best use of the available power and the goal of a scheduler is to assign the tasks (programs) to time slots such that all timing and power constraints are satisfied every time. We then say that the system operates in an energy neutral mode by consuming only as much energy as harvested [START_REF] Kansal | Harvesting aware power management for sensor networks[END_REF].

In this paper, we will describe how to dynamically manage power in a single processor REH system where tasks are scheduled according to the famous preemptive dynamic priority policy, Earliest Deadline First (EDF).

The intuition behind the proposed scheme is to run tasks as long as the energy storage is sufficient to provide energy for all future occurring tasks, considering their timing and energy requirements and the replenishment rate of the storage unit. When this condition is not verified, the processor has to be idle so that the storage unit recharges as much as possible and as long as the system will be able to meet all the deadlines. The rest of the paper is organized as follows: We first present the necessary background and related work in Section II. We outline the models in Section III and crucial concepts including the slack energy in Section IV. In Section V, we present EDeg scheduler. Section VI is concerned with experimental results. Finally, we conclude the paper in Section VII.

II. RELATED WORK AND NECESSARY BACKGROUND

Researchers started to address power and scheduling issues in the last decade but most of them do not consider both rechargeability of the batteries and real-time constraints. In the work by Allavena et al. in [START_REF] Allavena | Scheduling of frame-based embedded systems with rechargeable batteries[END_REF], power scavenged by the energy source is constant and all tasks consume energy at a constant rate. Later in [START_REF] Moser | Real-time scheduling for energy harvesting sensor nodes[END_REF], Moser et al. propose LSA (Lazy scheduling Scheduling Algorithm) to optimally schedule tasks with deadlines, periodic or not. In that work, the total energy consumption of every task is directly connected to its execution time through the constant power of the processing device. But in a real application, instantaneous power consumed by tasks may vary along time depending on circuitry and devices required by the tasks. Very recently, in [START_REF] Chetto | Real-time Scheduling of periodic tasks in a monoprocessor system with rechargeable energy storage[END_REF], we relaxed the restrictive hypothesis that links together energy requirement and execution time of tasks. We presented an on-line scheduling scheme called EDeg. Under energy constraints, simply executing tasks according to the EDF rule, either as soon as possible (EDS) or as late as possible (EDL) may lead to violate some deadlines. EDeg is a variation of EDF that relies on two fundamental concepts, namely slack time and slack energy.

III. MODELS AND ASSUMPTIONS

A. Application model

We consider here a set of independent periodic tasks that can be denoted as follows: τ = {τ i , i = 1, . . . , n}. A four-tuple (C i , E i , D i , T i ) is associated with each τ i . In this characterization, task τ i makes its initial request at time 0 and its subsequent requests at times kT i , k = 1, 2, ... called release times. The least common multiple of T 1 , T 2 , . . . , T n (called the hyperperiod) is denoted by T LCM . Each request of τ i requires a Worst Case Execution Time (WCET) of C i time units and has a Worst Case Energy Consumption (WCEC) of E i . We assume that the WCEC of a task has no relation with its WCET. A deadline for τ i occurs D i units after each request by which task τ i must have completed its execution. We assume that

0 < C i ≤ D i ≤ T i for each 1 ≤ i ≤ n.
Tasks are scheduled on a single processor system. Task set τ is said to be feasible if all tasks meet the deadlines.

B. Energy model

We assume that ambient energy is harvested and converted into electrical power. We cannot control the energy source but we can predict the expected availability with a lower bound on the harvested source power output, namely P s (t). This power is then the instantaneous charging rate that incorporates all losses caused by power conversion and charging process. It is stored in a device with capacity C.

The stored energy at current time t is denoted as E(t). It can be measured with reasonable accuracy, used at any time later with no leak over time. We assume that energy production times can overlap with the consumption times.

IV. FUNDAMENTAL CONCEPTS

A. Slack time

The slack time of a hard deadline task set at current time t is the length of the longest interval starting at t during which the processor may be idle continuously while still satisfying all the timing constraints. Slack time analysis has been extensively investigated in real-time server systems in which aperiodic (or sporadic) tasks are jointly scheduled with periodic tasks [START_REF] Silly-Chetto | The EDL Server for scheduling periodic and soft aperiodic tasks with resource constraints[END_REF]. In these systems, the purpose of slack time analysis is to improve the response time of aperiodic tasks or to increase their acceptance ratio. A means of determining the maximum amount of slack which may be stolen, without jeopardizing the hard timing constraints, is thus a key to the operation of the so-called slack-stealing algorithms. Determining slack time is realized at run-time by computing the so-called dynamic EDL(Earliest Deadline as Late as possible) schedule [START_REF] Silly-Chetto | The EDL Server for scheduling periodic and soft aperiodic tasks with resource constraints[END_REF].

Illustrative Example: Consider a periodic task set Γ that is composed of three tasks, Ci Ci = 19 30 ≤ 1, consequently the necessary feasibility condition related to timing constraints, U p ≤ 1 is satisfied. Hence the total slack time that can be used is equal to 11. We begin scheduling the task set Γ according to EDS until t = 8 where we have to insert a slack time. To determine the slack time at time t = 18, we first compute the static EDL schedule for the interval [0, 30]. That means we have to compute the static deadline vector K and the static idle time vector D [START_REF] Silly-Chetto | The EDL Server for scheduling periodic and soft aperiodic tasks with resource constraints[END_REF]. We note that K = (0, [START_REF] Moser | Real-time scheduling for energy harvesting sensor nodes[END_REF]8,11,17,18,23,26,28,29) and D = (3, 0, 0, 4, 0, 3, 0, 0, 0, 1).

Γ = {τ i | 1 ≤ i ≤ 3} and τ i = (C i , D i , T i ). Let τ 1 = (1,
Determining the slack time at time t = 18 is realized at run-time by computing the so-called dynamic EDL schedule precisely defined by the dynamic deadline vector K(t) and the dynamic idle time vector D(t) [START_REF] Silly-Chetto | The EDL Server for scheduling periodic and soft aperiodic tasks with resource constraints[END_REF]. Figure 1 enables us to verify that K(t) = (18, 23, 26, 28, 29) and D(t) = (4, 2, 0, 0, 0, 1) and consequently the slack time is equal to 4. In what follows, we will use the idea of slack time to recharge the energy storage capacity whenever it is insufficient to execute more tasks.

B. Slack energy

On the other hand, slack energy is the maximum amount of energy that can be consumed from a given time t while still satisfying the timing and energy requirements of all the future occurring tasks. Slack energy must be computed by taking into account all periodic instances which have a deadline less than or equal to d, the deadline of the highest priority instance ready at current time t. As total energy produced by the source within [t, d] is

d t P s (t)dt, Slack energy(t) = E(t) + d t P s (t)dt -A
where A is the energy demand required by the periodic task instances ready to be executed within the interval [t, d).

Illustrative Example:

Consider the above example. Now, we introduce the energy consumption of tasks. [START_REF] Moser | Real-time scheduling for energy harvesting sensor nodes[END_REF][START_REF] Priya | Energy Harvesting Technologies[END_REF]12), τ 2 = (2, 8, 10, 15) and τ 3 = (4, 11, 15, 22) (figure 2). We assume that the energy storage capacity is C = 25 energy units at t = 0. For simplicity, we assume that the rechargeable power is constant along time with (P s = 5). Before beginning to schedule the Under EDeg, slack energy is computed whenever the highest priority task ready to be executed can be preempted by a task requiring energy. From time 0 until t = 10, tasks are executed according to EDS and the energy level is given by E(10) = 14 energy units. At t = 10 (figure 2), τ 2 is the highest priority task. Slack energy is then computed from all task instances released after t = 10 with deadline less than or equal to deadline of τ 2 equal to 18.

Γ = {τ i | 1 ≤ i ≤ 3} and τ i = (C i , D i , T i , E i ). Let τ 1 = (1,
Slack energy(10) = E(10)+

18 10 P s dt-E 1 -E 2 = 22 (1)
Since slack energy is positive, τ 2 can start execution while still guaranteeing sufficient energy for all future occuring task instances.

V. THE EDeg ALGORITHM

We present hereafter a new scheduler based on the two previous concepts in order to enhance performance of classical EDF.

A. Presentation of the Algorithm

EDeg (Earliest Deadline with energy guarantee) runs tasks according to the earliest deadline first (EDF ). We consider that a task can consume energy with any power. This means that before executing a task, we must ensure that the energy storage is sufficient to execute this task during at least one time unit. When there is no sufficient energy in the storage unit, the processor has to remain idle so that the storage unit recharges entirely (E(t) = E max ) but making sure that there is sufficient slack time. Thus, the three major components of EDeg algorithm are E(t), Slack energy(t) and Slack time(t) where E(t) is the amount of energy that is currently stored at time t. P EN DIN G is a boolean which equals true whenever there is at least one task instance ready to be executed. Also, we define the function wait() to put the processor in the idle state and the function execute() to put the processor to run the ready job with the earliest deadline. The framework of the EDeg scheduling algorithm is as follows:

Algorithm 1 Earliest Deadline with energy guarantee algorithm (EDeg) end while 13: end while From the EDeg algorithm, we notice the following: First, we never run out of storage, that means we always check for sufficient energy in the battery before executing any task instance. Second, the processor is only entered in the idle state when either the battery is empty or there is no more sufficient energy to guarantee the feasible execution of all future occurring tasks. Third, we recharge the battery to the maximum level when there is sufficient slack time. We only stop recharging when there is no more slack time or the battery is fully replenished. We can easily detect this condition by using an interrupt mechanism and adequate circuitry between storage unit and processing device. Finally, we only lose recharging power when there are no pending instances and the battery is fully recharged.

Input: A Set of Periodic Tasks τ = {τ i |τ i = (C i , D i , T i , E i ) i = 1, • • • , n}

B. Efficiency

Complexity of an on-line algorithm is an evaluation of overheads that are produced when this algorithm actually runs. So, in a hard real-time context where all the tasks must imperatively meet their timing requirements, it is of more practical interest to make use of an algorithm which is both optimal in terms of scheduling performance and efficient in terms of computational complexity.

Under EDeg scheduling, overheads are mainly induced by computating the slack time and the slack energy. Slack time is computed solely when recharging the battery. Computing slack energy is realized when executing a periodic instance while other ones with earliest deadline will occur in the future. Consequently, complexity of computing the slack energy directly depends on the number of preemptions. Higher the number of preemptions, higher the overhead induced by the scheduler.

As shown in [START_REF] Silly-Chetto | The EDL Server for scheduling periodic and soft aperiodic tasks with resource constraints[END_REF], the slack time of a periodic task set at a given time instant can be obtained on-line by computing the dynamic EDL schedule, with complexity O(K.n). n is the number of periodic tasks, and K is equal to R p , where R and p are respectively the longest deadline and the shortest period of current ready tasks.

Moreover, the complexity for computing the slack energy is O(K.n). As EDeg has low and constant space requirements, this makes it easily implementable on many low-power, unsophisticated hardware platforms including micro-controllers.

A suggestion to improve the efficiency of the scheduler in terms of overhead is to make some computations off-line. We can compute statically a lower bound on the slack time and a lower bound on the slack energy and use these approximation values at run time. The consequences will be only to stop charging earlier and to stop executing tasks earlier. And the number of tasks preemptions will increase while the processor overheads will decrease.

C. Illustrative Example

We consider the previous example. We note that Γ is not feasible if tasks are executed as soon as possible according to Earliest Deadline since the energy storage becomes empty at t = 18 (figure 3) where the system stops immediately. In • According to EDeg, tasks of Γ are executed as soon as possible according to EDF until t = 15 where E(t) = 12 energy units. • At t = 15, slack energy needs to be computed since τ 3 is the highest priority task ready to be executed with future preemptions. As the slack energy is positive, τ 3 is executed until t = 18 where there is no sufficient energy in the battery for execution. The processor is let inactive as long as the energy storage has not filled completely and the slack time is still positive. • At t = 22, the battery is fully replenished (E(22) = 25) energy units, τ 1 is executed till t = 23, where E(t) = 18 energy units.

• At t = 23, τ 3 completes its execution till t = 24 where E(t) = 8 energy units. • At t = 24, τ 2 has the highest priority and is executed till t = 26, where E(t) = 3 energy units. • Now, τ 1 is ready and has the highest priority. As there is no sufficient energy in the battery for execution, the processor is let idle for recharging till t = 28 where E(t) = 13 energy units. • At time t = 28, τ 1 is executed till t = 29, where E(t) = 6 energy units. • Finally, the processor is idle from t = 29 to t = 30 where E(t) = 11 energy units.

VI. EXPERIMENTAL RESULTS

A. Setup

We have implemented EDeg in a discrete event simulator in C/C++. To evaluate its effectiveness, we consider several task sets, each containing up to 30 randomly generated tasks. In this simulator, we implement EDeg with respect to EDS and two heuristics EDd 1 and EDd A. Where, EDd A is the Earliest Deadline as Soon as possible scheduler that discards ALL the ready instances whenever the storage unit is empty and consequently let the processor idle until the next release time and EDd 1 is the Earliest Deadline as Soon as possible scheduler that discards only one instance (the highest priority one) whenever the storage unit is empty and then let the processor idle until the next release time.

The rechargeable power P s is constant and we consider two cases: low and high energy utilization. We assume that the energy storage is fully charged at the beginning of the simulation. After a deadline violation is detected, the simulation terminates for EDL and EDS. Under EDd 1 and EDd A, the simulation continues until the end of the hyperperiod.

We compare the performance of the following techniques: (i) percentage of feasible task sets, (ii) average idle time and (iii) time overhead.

B. Low Energy Utilization

We first consider a system that consumes little energy relative to energy produced by the environment i.e. U e /P s = 0.3 where U e = n i=1 Ei Ti . 1) Percentage of Feasible Task Set: We experiment the percentage of feasible task sets which are feasible with EDeg and not feasible with a greedy algorithm (EDS). We report the results of this simulation study where the processor utilization U p = {0.3, 0.6, 0.9}. Our simulation depicts the percentage of feasible task sets over the energy storage E(t). For each task set, we compute E f eas as the minimum storage capacity which permits to achieve neutral operation i.e. all tasks are executed without violating deadlines and the battery is fully recharged at the end of the hyperperiod. When U p = 0.3 (figure 4), all task sets are feasible under EDeg when the feasible energy E f eas = 7100 energy units since EDeg will benefit from the idle time to recharge the battery whenever the energy storage is insufficient to execute more tasks. On the other hand, EDS will need more energy storage than 

Fig. % of Feasible Task Sets for low energy utilization

EDeg to guarantee feasibility. In this case, all task sets are feasible under EDS when the energy storage is 21300 energy units. This means that EDeg can provide the same level of performance with a storage unit which is four times less.

When U p = 0.6 (figure 4), all task sets are feasible under EDeg when the feasible energy E f eas = 10800 energy units. Under EDS, all task sets are feasible when the storage energy is about 28620 energy units,this means that the storage unit must be about 2.65 times bigger with EDS to maintain 100% feasible task sets compared to EDeg. We observe that, the relative performance gain of EDeg in terms of capacity savings is decreasing when the processor utilization rate is increasing.

For high processor utilization, the performance gain in capacity savings decreases. This can be proved by our simulation since when U p = 0.9, EDeg obtains capacity savings of about 59% compared to EDS.

2) Average Idle Time: The schedule produced by any scheduling algorithm can be characterized by the average duration of idle time intervals or the average number of idle time intervals in a given time window such as the hyperperiod of the schedule. Lower is the number of idle time intervals, lower will be the energy spent in transferring the processor from the inactive state to the active state. Let us note that new generation processors use dynamic power management (DPM) mechanisms. Using such mechanism can greatly enhance the performance of the system since it consists in putting off the processor whenever the processor has no task to execute. However, this mechanism consumes energy and will be efficient as long as the processor remains inactive during a sufficiently long period.

In this section, we compute the total number of idle time intervals for EDeg, EDd A and EDd 1 by varying the processor utilization U p . In order to get an objective measurement we take into account the percentage of deadlines being satisfied. Figure 5 gives a measurement of the total number of idle time intervals weighted by the percentage of deadlines being satisfied. The total number of idle times in EDeg is lower than that of EDd A and EDd 1 since EDeg will benefit from the maximum time used to recharge the battery at the maximum level. As a result, the average idle time in EDeg will be greater than that of EDd A and EDd 1 and consequently the total number of idle times is smaller.

Consequently, short idle intervals that result in leakage are avoided with EDeg. And EDeg will have low energy overhead coming from transferring the processor from the inactive state to the active state.

3) Time Overhead: This experiment explores the time overhead of EDeg i.e time spent to compute both slack energy and slack time. The objective is to prove that the gain in performance (from the above sections) is higher than the cost incurred by its implementation. Let us recall that EDF has no overhead (except due to preemptions and context switches) since no on-line computations are required. In the following, we measure the time overhead as the number of slack time and slack energy computations divided by the number of task instances. Under EDeg, for low values of U p , the time overhead is low (figure 6). As U p increases, the time overhead increases. Nevertheless, it remains low even for U p = 0.9. Slack time computations are performed whenever the processor needs to be idle because of no more energy. For low energy utilization, overhead to due slack time computations is consequently low. Slack energy computations are performed whenever a task is preempted by at least one higher priority task. Higher is U p , higher is the number of task instances and so the number of preemptions and consequently higher is the overhead due to slack energy computations.

C. High Energy Utilization

Let us consider a system with high energy utilization i.e. U e /P s = 0.9. That means that the periodic task set consumes 90% of the energy produced by the environment. 1) Percentage of Feasible Task Sets: As previously, for each task set, we compute E f eas as the minimum storage capacity which permits to achieve neutral operation. Then we begin to increase E f eas until we reach 100% of feasible task sets with EDS. When U p = 0.3 (figure 7), all task sets are feasible under EDeg when the feasible energy E f eas = 10000 energy units. This means that the feasible energy is increased by 29% relative to low energy utilization. This is because as the energy utilization increases, the consumed energy increases and consequently the minimum storage capacity which permits to achieve neutral operation E f eas increases. On the other side, all task sets are feasible under EDS when the energy storage is 44000 energy units. This means that EDeg can provide the same level of performance with a storage unit which is about 4.4 times less.

If we increase U p to 0.6 (figure 7), and run the simulation again, we find that all task sets are feasible under EDeg when the feasible energy E f eas = 15200 energy units. Under EDS, all task sets are feasible when the storage energy is about 58000 energy units; that means that the storage unit must be about 3.8 times bigger with EDS to maintain 100% feasible task sets compared to EDeg. We observe that, the relative performance gain of EDeg in terms of capacity savings is decreasing when the processor utilization rate is increasing.

For high processor utilization, the performance gain in capacity savings decreases. This can be proved by our simulation since when U p = 0.9, EDeg obtains capacity savings of about 45% compared to EDS. That is because when the processor utilization is high, the processor rarely has chance to be idle to recharge the battery. This results in the decrease of performance gain of EDeg in terms of capacity savings. When U p = 1, EDeg and EDS are the same since there is no chance for EDeg to be idle to save energy.

As a conclusion, as the energy utilization increases, the consumed energy increases and as a result, the energy storage needed to achieve feasibility for EDeg increases. This is clearly shown in the simulation results since the feasible energy in high energy utilization is increased respectively by 29%, 28% and 25% for U p = 0.3, 0.6 and 0.9 when compared to low energy utilization.

2) Average Idle Time: In this section, we present results of simulations performed to compute the weighted total number of idle time intervals for EDeg, EDd A and EDd 1 by varying the processor utilization U p from 0.1 to 1. From figure 8, we can rapidly conclude that the total number of idle times in EDd 1 is greater than EDd A.

Depending on the concept of EDeg, when the energy storage is empty, the processor has to be idle so that the storage unit recharges to its maximum capacity or as much as possible and as long as the system will be able to meet all the deadlines. For this reason, the total number of idle time intervals must be smaller in EDeg than EDd A and EDd 1. Also, task instances are 100% feasible in EDeg and not in EDd A and EDd 1. Then, by dividing the total number of idle times over the percentage of feasible task instances, we will conclude that the weighted total number of idle time intervals in EDeg is lower than EDd A and EDd 1 by respectively 71% and 68%.

Moreover, for high energy utilization, the consuming energy increases and the number of low battery level also increases. Thus, the number of idle times increases and consequently the average idle time decreases. This is proved by simulations since the average idle time decreases by 45% from low to high energy utilization.

3) Time Overhead: For a realistic scenario, we must take the time overhead into consideration. As stated above, there is no overhead under ED scheduling. In this experiment, we explore the time overhead by varying the processor utilization (U p ). The chosen values for U p are {0.1, 0.2, 0.4, 0.6, 0.8, 0.9}. As shown in figure 9, when processor utilization U p increases the time overhead increases till it reaches maximum value when U p = 0.9. It is important here to note that time overhead at U p = 0.9 relative to the total number of feasible instances is very low. This means that the gain in performance for EDeg is higher than the time overhead.

Moreover, under high energy utilization, the time overhead increases. This is because as energy utilization increases, the consumed energy increases and as a result the need to compute the slack time increases. Consequently, the time overhead increases. This is proved by simulations since the average time overhead in high energy utilization increases by about 47% relative to low energy utilization.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we presented a scheduler dedicated to embedded systems such as wireless sensors which harvest energy from the environment. We considered a uniprocessor system that execute periodic tasks that consume energy during their execution with possibly different instantaneous consumption powers. The crucial part of the so-called EDeg scheduling algorithm lies on two on-line functions called slack time and slack energy.

The simulation study reports the performance of EDeg, primarily measured by the percentage of feasible task instances i.e. percentage of task that meet their timing requirements expressed in terms of deadlines. The study shows that EDeg outperforms the classical and well known Earliest Deadline First scheduler. Moreover, we demonstrated that the overhead of EDeg remains acceptable which makes it a practicable scheduler.
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  According to EDF , current time t, battery with capacity ranging from E max to E min , energy level of the battery E(t), source power P s (t).

	Output: EDeg Schedule.
	1: while (1) do
	2:	while PENDING=true do
	3:	while (E(t) > E min and Slack energy(t) > 0) do
	4:	execute()
	5:	end while
	6:	while (E(t) < E max and Slack time(t) > 0) do
	7:	wait()
	8:	end while
	9:	end while
	10:	while PENDING=false do
	11:	wait()
	12: