Total Synthesis of Isoprostanes Derived from Adrenic Acid and EPA

Camille Oger, Valérie Bultel-Poncé, Alexandre Guy, Thierry Durand, Jean-Marie Galano

- To cite this version:

Camille Oger, Valérie Bultel-Poncé, Alexandre Guy, Thierry Durand, Jean-Marie Galano. Total Synthesis of Isoprostanes Derived from Adrenic Acid and EPA. European Journal of Organic Chemistry, 2012, pp.2621-2634. 10.1002/ejoc.201200070 . hal-00691200

HAL Id: hal-00691200

https://hal.science/hal-00691200

Submitted on 3 Jun 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Total Synthesis of Isoprostanes Derived from Adrenic Acid and EPA

Camille Oger, ${ }^{[a]}$ Valérie Bultel-Poncé, ${ }^{[a]}$ Alexandre Guy, ${ }^{[a]}$ Thierry Durand, ${ }^{[a]}$ and Jean-Marie Galano*[a]

Keywords: Biomarkers / Oxidation / Total synthesis / Natural products

Abstract

Enantiomerically enriched F_{2}-dihomo-isoprostanes and F_{3} isoprostanes have been synthesized. Such compounds are derived from the action of reactive oxygen species on the phospholipid-bound polyunsaturated fatty acids (PUFA), adrenic acid and eicosapentaenoic acid, respectively. Of special interest are the F_{2}-dihomo-isoprostanes because they could

represent potential biomarkers for myelin damage as its main PUFA constituent is adrenic acid. Our strategy, based on a pivotal enantiomerically enriched intermediate, has allowed access to F_{2}-dihomo-IsoP and both C 5 epimers of $5-\mathrm{F}_{3 \mathrm{t}}$-IsoP for the first time.

Introduction

Discovered in 1990 by Morrow and co-workers, isoprostanes (IsoPs) are generated in vivo during the oxidative stress of phospholipid-bound arachidonic acid (AA, $\mathrm{C} 20: 4 \omega 6$) by a free-radical-catalyzed mechanism. ${ }^{[1]}$ Oxidative stress has been implicated in a wide variety of human disorders, for example, diabetes, cardiovascular, and neurodegenerative diseases. Furthermore, IsoPs are commonly used in clinical trials as reliable oxidative stress biomarkers for many diseases and pathologies. ${ }^{[2]}$ But more than reliable markers, IsoPs are also biologically active. ${ }^{[3]}$

In 1998, a novel class of IsoP, named neuroprostane (NeuroP), was discovered independently by two teams. ${ }^{[4,5]}$ The name of neuroprostane was adopted because of their polyunsaturated fatty acid source. Indeed, NeuroPs are generated from docosahexaenoic acid (DHA, C22:6 $\omega 3$), which is among the most abundant fatty acids in both the brain and retina and is essential for their development. ${ }^{[6]}$ Levels of F_{4}-NeuroP are 2.1-fold higher in the temporal lobe of Alzheimer's disease (AD) patients than in a control sample $^{[7]}$ and are four-fold higher than F_{2}-IsoP levels. ${ }^{[8]}$ Recently, a high level of F_{4}-NeuroP in plasma was also found in Rett (RTT) syndrome patients (one order of magnitude higher than the control sample), thus providing a novel RTT marker related to neurological symptoms, severity, mutation type, and clinical presentation. ${ }^{[9]}$

At the same time, novel IsoPs derived from eicosapentaenoic acid (EPA, C20:5 $\omega 3$) were discovered and named F_{3} -

[^0]IsoP. ${ }^{[10]}$ In addition, it was found that at least one F_{3}-IsoP could be generated from F_{4}-NeuroP by a β-oxidation process. ${ }^{[11]}$

The last family of IsoPs to be discovered was from adrenic acid (AdA, C22:4 $\omega 6$) peroxidation. ${ }^{[12]}$ AdA is concentrated in the brain and especially in the myelin within the white matter. VanRollins and co-workers also showed that F_{2}-dihomo-IsoPs are significantly increased in samples of white matter taken from AD patients. Therefore, F_{4}-NeuroP and F_{2}-dihomo-IsoP could represent oxidative stress biomarkers for neuronal oxidative damage.

Having been interested for quite some time in the quantification of oxidative stress, we herein describe the syntheses of the most abundant series of F_{2}-dihomo-IsoP, ent-7-epi7 - $\mathrm{F}_{2 \mathrm{t}}$-dihomo-IsoP (1) and both epimers of $17-\mathrm{F}_{2 \mathrm{t}}$-dihomoIsoP (2; Figure 1). We also describe a novel access to both epimers of $5-\mathrm{F}_{3 \mathrm{t}}$-IsoP (3).

Results and Discussion

We recently described the synthesis of $4-\mathrm{F}_{4 \mathrm{t}}-$ NeuroP and D_{4}-labeled $4-\mathrm{F}_{4 \mathrm{t}}-\mathrm{Ne}$ uroP by a NiP 2 skipped diyne deuteriation strategy. ${ }^{[13]}$ Such complex isoprostanoid syntheses have been made easy by applying our previous approach, which proceeds through an enantiomerically enriched bicyclo[3.3.0] octene keto-epoxide intermediate $4^{[14,15]}$ to give advanced intermediate $5^{[16]}$ (up to 12 g in 10% overall yield from $1,3-\mathrm{COD}$) ready for the introduction of lateral chains (Scheme 1).

Synthesis of ent-7-epi-7-F $\mathbf{2 t}_{2}$-Dihomo-IsoP (1)

The synthesis required the use of unreported β-keto phosphonate 6 , which was prepared in one step by condensation of the lithium salt of dimethyl methylphosphonate

Figure 1. Isoprostanes synthesized in this work.

Scheme 1. Synthesis of bicyclo[3.3.0]octene keto-epoxide intermediate 4 and intermediate 5.
with dimethyl pimelate 7. Despite considerable effort, a yield of only 28% of a $4: 1$ mixture of novel β-keto phosphonate 6 and dimethyl pimelate 7 was recovered after purification (Scheme 2).

Scheme 2. Synthesis of methyl 8-(dimethoxyphosphoryl)-7-oxooctanoate (6).

With phosphonate 6 in hand, alcohol 5 was oxidized to the corresponding aldehyde by using the Dess-Martin periodinane reagent (DMP). ${ }^{[17]}$ Subsequent Horner-Wadsworth-Emmons (HWE) olefination in the presence of $\mathrm{Ba}(\mathrm{OH})_{2}$ gave enone $\mathbf{8}$ in 38% yield (unoptimized conditions, Scheme 3). The poor yield can be explained by the presence of the dimethyl pimelate in the reaction medium. Reduction of the keto group of $\mathbf{8}$ under Luche conditions ${ }^{[18]}$ led to a $1: 1$ epimeric mixture of the corresponding alcohol, which was protected either as the silylated ether (compound 9) or the ethoxyethyl ether (EE, compound 10). Saponification of the acetate group of $\mathbf{9}$ and $\mathbf{1 0}$ led to primary alcohols 11 and 12, respectively. The ω chain was introduced after oxidation followed by Wittig reaction ${ }^{[19]}$ with the hexylphosphonium bromide 13 in the presence of NaHMDS to give compounds $\mathbf{1 4}$ and $\mathbf{1 5}$ in excellent to moderate yields (94 and 63%, respectively). At no stage of this procedure could the C 7 epimeric mixture be separated by flash column chromatography.

Scheme 3. Lateral chain insertion towards ent-7-epi-7-F 2t $_{2 \text {-dihomo-IsoP }}(\mathbf{1} ; \mathrm{Im}=$ imidazole, $\mathrm{EVE}=$ ethyl vinyl ether, $\mathrm{PPTS}=$ pyridinium p-toluenesulfonate).

Therefore, a diastereoselective Noyori (S)-BINAL-H reduction ${ }^{[20]}$ was performed on compound 8, but this gave low diastereoselectivity (approx. 2:1). The more advanced orthogonally protected compound $\mathbf{1 5}$ was then used to access enone 16 by a deprotection/oxidation two-step sequence (Scheme 4). (S)-BINAL-H reduction of 16 led to the allylic alcohol ($7 S$)-17 in 64% yield and with a good diastereomeric ratio ($>95: 5$). Finally, one-pot silyl ether deprotection and methyl ester hydrolysis under acid conditions gave ent-7-epi-7- $\mathrm{F}_{2 \text { t }}$-dihomo-IsoP (1) in 28% yield; ent-(7RS)-7- $\mathrm{F}_{2 \text { t }}$-dihomo-IsoP $[(R S)-1]$ could also be obtained from compound $\mathbf{1 4}$ by similar acidic treatment in 58% yield.

Scheme 4. Diastereoselective reduction and final deprotections in the synthesis of $\mathbf{1}$.

Synthesis of $\mathbf{1 7}-\mathrm{F}_{\mathbf{2 t}}$-Dihomo-IsoP (2)

Starting from monoacetate 5, HWE reaction (to the corresponding aldehyde) with commercially available β-keto phosphonate 18 gave enone 19 in 57% yield (Scheme 5).

Luche reduction gave a $1: 1$ epimeric mixture of the allylic alcohol $\mathbf{2 0}$, which was subsequently protected as the ethoxyethyl ether $\mathbf{2 1}$ in 91% yield over two steps. Acetate saponification led to primary alcohols ($17 R S$)-22 in 88% yield. Chromatographic separation of the two epimers led to (17S)-22 and ($17 R$)-22 in 47 and 48% yields, respectively. The α chain was then introduced after primary alcohol oxidation by Wittig reaction with phosphonium salt 23 and NaHMDS to give compounds (17S)-24 and (17R)-24 in 80 and 25% yields, respectively.

As the first total synthesis of $17-\mathrm{F}_{2 \mathrm{t}}$-dihomo-IsoP, we had to perform a diastereoselective reduction to assess the absolute configuration at C 17 . We consistently observed a low $d r(2: 1)$ after (S)-BINAL-H reduction to various enone systems with the acetoxyethyl moiety as the second lateral chain, and compound 19 suffered the same fate. Therefore, racemic 24 was converted into enone $\mathbf{2 5}$ in a two-step sequence in good yield. (S)-BINAL-H reduction afforded (17S)-26 in 81% yield and with a good diastereomeric ratio ($>95: 5$; Scheme 6). Finally, acid cleavage of the protecting groups followed by ethyl ester saponification of (17S)-26 afforded $17-\mathrm{F}_{2 \mathrm{t}}$-dihomo-IsoP (2) in 77% yield. Similarly, $(17 S)-\mathbf{2 4}$ and $(17 R)-\mathbf{2 4}$ gave access to $17-\mathrm{F}_{2 \mathrm{t}}$-dihomo-IsoP (2) and 17-epi-17- $\mathrm{F}_{2 \mathrm{t}}$-dihomo-IsoP [(17R)-2] in good yields.

Synthesis of 5-F $\mathbf{3 t}_{\mathbf{t}}$-IsoP (3)

Applying the same strategy, the α chain of $5-\mathrm{F}_{3 \mathrm{t}}$-IsoP was introduced after oxidation of the primary alcohol of ent-5 followed by HWE reaction with methyl 6-(diethoxyphos-phoryl)-5-oxohexanoate (27) ${ }^{[21]}$ and NaHMDS as base to afford compound 28 (Scheme 7). Luche reduction and protection of the resulting allylic alcohol as a tert-butyldimethylsilyl ether furnished the protected compound (5RS)29 in excellent yield over two steps. Saponification of the acetate functionality allowed separation of the epimeric mixture, and pure epimers ($5 R$)-30 and ($5 S$)- $\mathbf{3 0}$ were reco-

$$
\begin{aligned}
& R^{1}=H ; R^{2}=O E E:(17 R)-2247 \% \\
& R^{1}=O E E ; R^{2}=H:(17 S)-2248 \%
\end{aligned}
$$

$$
\begin{aligned}
& R^{1}=H ; R^{2}=\text { OEE: }(17 R)-2480 \% \\
& R^{1}=O E E ; R^{2}=H:(17 S)-2425 \%
\end{aligned}
$$

Scheme 5. Lateral chain insertion towards 17- $\mathrm{F}_{2 \mathrm{t}}$-dihomo-IsoP (2).

Scheme 6. Diastereoselective reduction and final deprotections to yield $17-\mathrm{F}_{2 \mathrm{t}}$-dihomo-IsoP (2) and its epimer.
vered. The ω chain was inserted after oxidation of the primary alcohol functionality by Wittig reaction using phosphonium salt 31 and KHMDS in THF. Finally, one-pot silyl ether cleavage and methyl ester hydrolysis under acidic conditions led to $5-\mathrm{F}_{3 \mathrm{t}}-\mathrm{IsoP}(3)$ and 5 -epi-5- $\mathrm{F}_{3 \mathrm{t}}-\mathrm{IsoP}[(5 R)$ 3] in 17 and 3.5% overall yields, respectively.

$\mathrm{R}^{1}=\mathrm{OTBS} ; \mathrm{R}^{2}=\mathrm{H}:(5 S)-3041 \%$
$\mathrm{R}^{1}=\mathrm{H} ; \mathrm{R}^{2}=\mathrm{OTBS}:(5 R)-3020 \%$
recovered: ($5 R S$)-30 36\%

3. $\mathrm{HCl}, \mathrm{THF}$, r.t.

or

Scheme 7. Synthesis of $5-\mathrm{F}_{3 \mathrm{t}}$-IsoP (3) and its C5 epimer (5R)-3.
To confirm the configuration of the stereogenic center at C 5 , and because the $5-\mathrm{F}_{3 \mathrm{t}}$-IsoP previously synthesized has no reported ${ }^{13} \mathrm{C}$ NMR data nor optical rotation value, ${ }^{[11]}$
we had to perform a diastereoselective reduction to access the corresponding diastereomerically enriched allylic alcohol. As (S)-BINAL-H reduction of the enone 28 gave poor diastereoselectivity, we had to resort to the previously described lactol $32{ }^{[14]}$ to complete the diastereoselective synthesis of $5-\mathrm{F}_{3 \mathrm{t}}$-IsoP (3; Scheme 8).

Scheme 8. Synthesis of $5-\mathrm{F}_{3 \mathrm{t}}-\mathrm{IsoP}$ (3) by using (S)-BINAL-H reagent.

By applying a strategy similar to that of Rokach and coworkers, ${ }^{[11]}$ the upper chain was introduced into lactol 32 by Wittig reaction with phosphonium salt 31 and $t \mathrm{BuOK}$ in THF to give diene 33 in 64% yield. The α chain was subsequently attached by DMP oxidation followed by HWE reaction with β-keto phosphonate 27 and NaHMDS to give $\mathbf{3 4}$ in excellent yield. Diastereoselective reduction of the enone 34 with the Noyori (S)-BINAL-H reagent led to allylic alcohol 35 and lactone 36 in a $1: 1$ mixture with a good diastereomeric ratio ($>95 \%$). Hydrolysis of the terminal ester and TBS deprotection was achieved under acidic conditions. A poor overall yield was observed for this stereoselective synthesis of $5-\mathrm{F}_{3 \mathrm{t}}-\mathrm{IsoP}$ (3). The unequivocal determination of the C5 stereocenter was possible by comparison of the ${ }^{13} \mathrm{C}$ NMR spectra.

Conclusions

We have described the enantioselective synthesis of the two most abundant cyclic metabolites of the free-radicalcatalyzed peroxidation of adrenic acid, ent-7-epi-7- $\mathrm{F}_{2 \mathrm{t}}$-di-homo-IsoP and $17-\mathrm{F}_{2 \mathrm{t}}$-dihomo-IsoP. These metabolites are of high interest in lipidomics as dihomo-IsoPs may represent very specific lipidic oxidative stress biomarkers of the brain's white matter. Validation of this hypothesis is underway in our laboratory and will be reported in due course.

Experimental Section

General: All reactions requiring anhydrous conditions were conducted in oven-dried glassware with magnetic stirring under nitrogen unless mentioned otherwise. Syringes and needles for the transfer of reagents were dried at $120^{\circ} \mathrm{C}$ and allowed to cool in a desic-
cator over CaCl_{2} before use. THF and $\mathrm{Et}_{2} \mathrm{O}$ were redistilled from sodium diphenylketyl and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ from CaH_{2}. Other solvents and reagents were used as obtained from the supplier unless otherwise noted. Reactions were monitored by TLC using plates precoated with silica gel 60 (Merck). Reaction components were visualized by using a 254 nm UV lamp, treatment with acidic p-anisaldehyde stain followed by gentle heating. Organic layers were dried with MgSO_{4} unless otherwise stated. Column chromatography was performed by using silica gel $40-63 \mu \mathrm{~m}$, whereas spherical silica gel $30 \mu \mathrm{~m}$ was used for flash column chromatography. Concentrations c reported for the optical rotation data are given in $\mathrm{g} / 100 \mathrm{~mL}$. Infrared data are reported as wavenumbers $\left(\mathrm{cm}^{-1}\right)$. ES-MS data were obtained by ionization methods. ${ }^{1} \mathrm{H}$ NMR spectra were obtained at 300 or 400 MHz . The spectra were recorded in CDCl_{3} (internal reference at $\delta=7.26 \mathrm{ppm}$) unless otherwise noted. The ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shift in ppm [multiplicity, coupling constant(s) J in Hz , relative integral]. The multiplicities are defined as follows: br. = broad, $\mathrm{m}=$ multiplet, $\mathrm{AB}=\mathrm{AB}$ system, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, or combinations thereof. Selected ${ }^{13} \mathrm{C}$ NMR spectra were recorded by using a J-modulated sequence, and the central peak of the CDCl_{3} triplet was used as the internal reference $(\delta=77.16 \mathrm{ppm}$) and MeOD (fixed at $\delta=$ $49.0 \mathrm{ppm})$. The NMR spectra were assigned by homonuclear $\left({ }^{1} \mathrm{H}-\right.$ $\left.{ }^{1} \mathrm{H}\right)$ and heteronuclear $\left({ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\right)$ correlation spectroscopy (COSY45, HMQC, HMBC) and are reported as follows: CH_{3}, $\mathrm{CH}_{2}, \mathrm{CH}$, and Cq (for quaternary carbon atoms).
Synthesis of Methyl 8-(Dimethoxyphosphoryl)-7-oxooctanoate (6): $n \mathrm{BuLi}(2.4 \mathrm{~mL}, 2.5 \mathrm{~m} /$ hexanes, 6.0 mmol$)$ was added dropwise to a solution of dimethyl methylphosphonate $(600 \mu \mathrm{~L}, 5.62 \mathrm{mmol})$ in THF (50 mL) at $-78^{\circ} \mathrm{C}$. After 30 min , the reaction mixture was added through a cannula to dimethyl pimelate $7(1.5 \mathrm{~mL}$, $8.3 \mathrm{mmol})$ in THF $(50 \mathrm{~mL})$ at $-90^{\circ} \mathrm{C}$. After 3.5 h at $-90^{\circ} \mathrm{C}$, AcOH $(1.0 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ were added, and the mixture was warmed to room temp. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 40 \mathrm{~mL})$. The combined organic layers were washed with brine, dried, and filtered. The solvent was evaporated under reduced pressure, and the residue was distilled under reduced pressure (0.5 mbar, approx. $120^{\circ} \mathrm{C}$). The crude from the distillation was purified by column chromatography $\left(95: 5 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right)$ to afford 440 mg of the β-keto phosphonate 6 as an $8: 2$ mixture with the dimethyl pimelate $7(28 \%) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $3.79(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 6 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.09\left(\mathrm{~d}, J_{\mathrm{PH}}=22.0 \mathrm{~Hz}, 2\right.$ H), 2.50-2.70(m, 2 H), 2.20-2.40(m, 2 H), 1.50-1.80(m, 4 H$)$, $1.20-1.50(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=201.0$ $(1 \mathrm{C}, \mathrm{Cq}), 174.5(1 \mathrm{C}, \mathrm{Cq}), 173.1(1 \mathrm{C}, \mathrm{Cq}), 52.3\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 50.6$ $\left(2 \mathrm{C}, \mathrm{CH}_{3}\right), 42.9\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 41.1\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 39.4\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 33.0$ $\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 27.6\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 23.9\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 22.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right) \mathrm{ppm}$. ${ }^{31} \mathrm{P}$ NMR $\left(120 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=23.4 \mathrm{ppm}$.
Methyl (E)-9-[(1S,2R,3R,5S)-2-(2-Acetoxyethyl)-3,5-bis(tert-butyl-dimethylsilyloxy)cyclopentyl]-7-oxonon-8-enoate (8): A Dess-Martin periodinane solution $\left(1.5 \mathrm{~mL}\right.$ of a 0.47 m solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $0.70 \mathrm{mmol})$ was added dropwise to a solution of alcohol $5(225 \mathrm{mg}$, 0.51 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. After completion (TLC), 10% aq. $\mathrm{NaHCO}_{3} / \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1: 1,30 \mathrm{~mL})$ was added. After stirring for 1.5 h , the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with brine, dried, and filtered. The solvent was evaporated under reduced pressure. The material was directly used in the next step without further purification. The β keto phosphonate $6(440 \mathrm{mg}, 1.11 \mathrm{mmol})$ was added dropwise to a suspension of $\mathrm{Ba}(\mathrm{OH})_{2}(70 \mathrm{mg}, 0.41 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$. After 1 h , the aldehyde in THF (20 mL) was added through a cannula to the reaction mixture, which was stirred overnight. Then the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$. The mix-
ture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with brine, dried, and filtered. The solvent was evaporated under reduced pressure. The residue was purified by column chromatography ($7: 3$ pentane/ $\mathrm{Et}_{2} \mathrm{O}$) to afford 115 mg of the enone 8 as a colorless oil (38% over two steps). $R_{\mathrm{f}}=0.55$ (5:5 cyclohexane/Et $\left.t_{2} \mathrm{O}\right) .[\alpha]_{\mathrm{D}}^{20}=+20.6\left(c=1, \mathrm{CHCl}_{3}\right) . \mathrm{IR}: \tilde{v}=2955$, 2927, 2856, 1736, 1697, 1674, 1626, 1463, 1252, $1071 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.50-6.70(\mathrm{~m}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-4.20(\mathrm{~m}, 4 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.65-2.85(\mathrm{~m}, 1$ H), $2.50(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~m}, 4 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.40-$ $1.75(\mathrm{~m}, 7 \mathrm{H}), 1.20-1.40(\mathrm{~m}, 2 \mathrm{H}), 0.75-0.90(\mathrm{~m}, 18 \mathrm{H}),-0.01(\mathrm{~d}$, $J=13.0 \mathrm{~Hz}, 12 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=199.7$ ($1 \mathrm{C}, \mathrm{Cq}), 174.1(1 \mathrm{C}, \mathrm{Cq}), 171.0(1 \mathrm{C}, \mathrm{Cq}), 144.5(1 \mathrm{C}, \mathrm{CH}), 131.5$ $(1 \mathrm{C}, \mathrm{CH}), 76.1(1 \mathrm{C}, \mathrm{CH}), 75.4(1 \mathrm{C}, \mathrm{CH}), 63.2\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 53.2$ $(1 \mathrm{C}, \mathrm{CH}), 51.5\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 46.6(1 \mathrm{C}, \mathrm{CH}), 44.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 40.9$ $\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 33.9\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 28.8\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 28.0\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 25.9$ $\left(6 \mathrm{C}, \mathrm{CH}_{3}\right), 24.8\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 23.7\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 21.0\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 18.0$ $(2 \mathrm{C}, \mathrm{Cq}),-4.2\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.6\left(2 \mathrm{C}, \mathrm{CH}_{3}\right),-4.7\left(1 \mathrm{C}, \mathrm{CH}_{3}\right) \mathrm{ppm}$. $\mathrm{MS}\left(\mathrm{ESI}^{+}\right): m / z=541.4\left[\mathrm{M}+\mathrm{H}-\mathrm{OAc}^{+}, 409.3[\mathrm{M}-\mathrm{OTBS}-\right.$ $\mathrm{OAc}]^{+}$. HRMS $\left(\mathrm{ESI}^{+}\right)$: calcd. for $\mathrm{C}_{29} \mathrm{H}_{57} \mathrm{O}_{5} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}-\mathrm{OAc}]^{+}$ 541.3745; found 541.3744.

Methyl (E)-9-[(1S,2R,3R,5S)-2-(2-Acetoxyethyl)-3,5-bis(tert-butyl-dimethylsilyloxy)cyclopentyll-7-(tert-butyldimethylsilyloxy)non-8-enoate (9): $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(71 \mathrm{mg}, 0.191 \mathrm{mmol})$ was added to a solution of the enone $\mathbf{8}(115 \mathrm{mg}, 0.19 \mathrm{mmol})$ in $\mathrm{MeOH}(12 \mathrm{~mL})$. The mixture was cooled to $0^{\circ} \mathrm{C}$ and NaBH_{4} was added $(6.0 \mathrm{mg}$, $0.159 \mathrm{mmol})$. After 10 min , the reaction was quenched with a $\mathrm{Et}_{2} \mathrm{O}$ / $\mathrm{H}_{2} \mathrm{O}$ mixture $(1: 1,20 \mathrm{~mL})$. The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine, dried, and filtered. The solvent was evaporated under reduced pressure. The residue was purified by column chromatography ($7: 3$ pentane $/ \mathrm{Et}_{2} \mathrm{O}$) to afford 109 mg of the allylic alcohol as a colorless oil $(95 \%) . R_{\mathrm{f}}=0.37$ (5:5 cyclohexane/Et $\left.\mathrm{t}_{2} \mathrm{O}\right) .[\alpha]_{\mathrm{D}}^{20}=$ +23.9 $\left(c=1, \mathrm{CHCl}_{3}\right)$. IR: $\tilde{v}=3508,2953,2930,1732,1250$, $1056 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=5.45-5.55(\mathrm{~m}, 1 \mathrm{H})$, $5.25-5.45(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.40(\mathrm{~m}, 0.5 \mathrm{H}), 3.90-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.70-$ $3.90(\mathrm{~m}, 2.5 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.40-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.40(\mathrm{~m}, 3$ H), 2.05-2.20 (m, 1H), $2.00(\mathrm{~s}, 3 \mathrm{H}), 1.00-1.90(\mathrm{~m}, 10 \mathrm{H}), 0.80-$ $0.90(\mathrm{~m}, 18 \mathrm{H}),-0.10-0.10(\mathrm{~m}, 12 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=174.2(1 \mathrm{C}, \mathrm{Cq}), 171.3(1 \mathrm{C}, \mathrm{Cq}), 136.1(1 \mathrm{C}, \mathrm{CH})$, $129.8(1 \mathrm{C}, \mathrm{CH}), 76.4(1 \mathrm{C}, \mathrm{CH}), 72.8(1 \mathrm{C}, \mathrm{CH}), 72.4(1 \mathrm{C}, \mathrm{CH})$, $63.5\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 52.9(1 \mathrm{C}, \mathrm{CH}), 51.5\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 45.8(1 \mathrm{C}, \mathrm{CH})$, $44.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 37.0\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 34.0\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 29.2\left(1 \mathrm{C}, \mathrm{CH}_{2}\right)$, $28.0\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 25.9\left(6 \mathrm{C}, \mathrm{CH}_{3}\right), 25.2\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 25.0\left(1 \mathrm{C}, \mathrm{CH}_{2}\right)$, $21.1\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 18.1(2 \mathrm{C}, \mathrm{Cq}),-4.2\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.5\left(1 \mathrm{C}, \mathrm{CH}_{3}\right)$, $-4.6\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.7\left(1 \mathrm{C}, \mathrm{CH}_{3}\right) \mathrm{ppm} . \mathrm{MS}\left(\mathrm{ESI}^{+}\right): m / z=583.3[\mathrm{M}$ $\left.+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 451.2\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}-\mathrm{OTBS}\right]^{+}, 319.1\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}-\right.$ 2 OTBS $]^{+}$. HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{31} \mathrm{H}_{59} \mathrm{O}_{6} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}-$ $\left.\mathrm{H}_{2} \mathrm{O}\right]^{+} 583.3850$; found 583.3849. Imidazole ($50 \mathrm{mg}, 0.73 \mathrm{mmol}$), DMAP ($10 \mathrm{mg}, 0.076 \mathrm{mmol}$), and $\mathrm{TBSCl}(55 \mathrm{mg}, 0.37 \mathrm{mmol})$ were successively added to a solution of the allylic alcohol $(147 \mathrm{mg}$, $0.25 \mathrm{mmol})$ in DMF $(18 \mathrm{~mL})$. After stirring overnight, the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$, and the combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$ and brine, dried, and filtered. The solvent was evaporated under reduced pressure. The residue was purified by column chromatography ($9: 1$ pentane/ $\mathrm{Et}_{2} \mathrm{O}$) to afford 206 mg of 9 as a colorless oil (quantitative yield). $R_{\mathrm{f}}=$ 0.47 (8:2 cyclohexane/Et $\left.\mathrm{t}_{2} \mathrm{O}\right) .[\alpha]_{\mathrm{D}}^{20}=+24.0\left(c=1, \mathrm{CHCl}_{3}\right) . \mathrm{IR}: \tilde{\mathrm{v}}=$ 2954, 2930, 1732, 1472, 1463, 1251, $1057 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.35-5.50(\mathrm{~m}, 1 \mathrm{H}), 5.20-5.35(\mathrm{~m}, 1 \mathrm{H})$, 3.95-4.15 (m, 3 H), 3.75-3.90 (m, 2 H$), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.40-2.60(\mathrm{~m}$, $1 \mathrm{H}), 2.40(\mathrm{~m}, 4 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.20-1.80(\mathrm{~m}, 11 \mathrm{H}), 0.75-1.00$
$(\mathrm{m}, 27 \mathrm{H}),-0.10-0.10(\mathrm{~m}, 18 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.3(1 \mathrm{C}, \mathrm{Cq}), 171.2(1 \mathrm{C}, \mathrm{Cq}), 136.3(1 \mathrm{C}, \mathrm{CH}), 127.5(1 \mathrm{C}$, CH), 127.2 ($1 \mathrm{C}, \mathrm{CH}$), $76.3(1 \mathrm{C}, \mathrm{CH}), 76.7(1 \mathrm{C}, \mathrm{CH}), 73.1(1 \mathrm{C}$, $\mathrm{CH}), 63.5\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 53.0(1 \mathrm{C}, \mathrm{CH}), 52.8(1 \mathrm{C}, \mathrm{CH}), 51.5(1 \mathrm{C}$, $\left.\mathrm{CH}_{3}\right), 45.6(1 \mathrm{C}, \mathrm{CH}), 44.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 38.4\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 34.2(1 \mathrm{C}$, CH_{2}), $29.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 27.8\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 25.8\left(9 \mathrm{C}, \mathrm{CH}_{3}\right), 25.0(2$ C, CH_{2}), $21.0\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 18.3(1 \mathrm{C}, \mathrm{Cq}), 18.1(2 \mathrm{C}, \mathrm{Cq}),-4.2(1$ $\left.\mathrm{C}, \mathrm{CH}_{3}\right),-4.3\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.5\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.6\left(2 \mathrm{C}, \mathrm{CH}_{3}\right),-4.7$ $\left(1 \mathrm{C}, \mathrm{CH}_{3}\right) \mathrm{ppm}$. MS $\left(\mathrm{ESI}^{+}\right): m / z=715.5[\mathrm{M}+\mathrm{H}]^{+}, 583.4[\mathrm{M}+$ $\mathrm{H}-\mathrm{OTBS}]^{+}, 451.3\left[\mathrm{M}+\mathrm{H}-2 \mathrm{OTBS}^{+}, 319.2[\mathrm{M}+\mathrm{H}-\right.$ 3 OTBS] ${ }^{+}$. HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{37} \mathrm{H}_{75} \mathrm{O}_{7} \mathrm{Si}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 715.4821; found 715.4827.

Methyl (E)-9-[(1S,2R,3R,5S)-2-(2-Acetoxyethyl)-3,5-bis(tert-butyl-dimethylsilyloxy)cyclopentyll-7-(1-ethoxyethyl)non-8-enoate (10): Ethyl vinyl ether ($2 \mathrm{~mL}, 20.9 \mathrm{mmol}$) and PPTS $(10 \mathrm{mg}$, 0.040 mmol) were successively added to a solution of the allylic alcohol derived from enone $8(109 \mathrm{mg}, 0.18 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(7 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was warmed to room temp. overnight. Then 2 mL of a saturated aqueous solution of NaHCO_{3} was added, and the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine, dried, and filtered. The solvent was evaporated under reduced pressure. The residue was purified by column chromatography (1% $\mathrm{Et}_{3} \mathrm{~N}$ deactivated $\mathrm{SiO}_{2}, 8: 2$ pentane $/ \mathrm{Et}_{2} \mathrm{O}$) to afford 109 mg of $\mathbf{1 0}$ as a colorless oil $(89 \%) . R_{\mathrm{f}}=0.65\left(5: 5\right.$ cyclohexane $\left./ \mathrm{Et}_{2} \mathrm{O}\right) \cdot[a]_{\mathrm{D}}^{20}=$ $+25.2\left(c=1, \mathrm{CHCl}_{3}\right) . \mathrm{IR}: \tilde{\mathrm{v}}=2956,2930,2858,1743,1249$, $1056 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.20-5.60(\mathrm{~m}, 2 \mathrm{H})$, $5.55-5.70(\mathrm{~m}, 1 \mathrm{H}), 3.75-4.20(\mathrm{~m}, 4 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.25-3.60(\mathrm{~m}$, $2 \mathrm{H}), 2.45-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~m}, 4 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.50-1.85$ $(\mathrm{m}, 4 \mathrm{H}), 1.00-1.45(\mathrm{~m}, 14 \mathrm{H}), 0.70-1.00(\mathrm{~m}, 18 \mathrm{H}),-0.10-0.10(\mathrm{~m}$, $12 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.2(1 \mathrm{C}, \mathrm{Cq})$, 171.0 ($1 \mathrm{C}, \mathrm{Cq}$), 134.3 ($1 \mathrm{C}, \mathrm{CH}$, diast.), 133.6 ($1 \mathrm{C}, \mathrm{CH}$, diast.), 133.5 ($1 \mathrm{C}, \mathrm{CH}$, diast.), 131.5 ($1 \mathrm{C}, \mathrm{CH}$, diast.), 131.3 ($1 \mathrm{C}, \mathrm{CH}$, diast.), 129.9 ($1 \mathrm{C}, \mathrm{CH}$, diast.), 129.7 ($1 \mathrm{C}, \mathrm{CH}$, diast.), 98.7 (1 C , CH , diast.), 96.8 (1 C, CH, diast.), 96.7 (1 C, CH, diast.), 76.5 (3 C, CH$), 63.5\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 61.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 59.0\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 53.1(1$ C, CH$), 51.5\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 45.7(1 \mathrm{C}, \mathrm{CH}), 44.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 35.9(1$ $\left.\mathrm{C}, \mathrm{CH}_{2}\right), 34.1\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 29.2\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 28.0\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 25.9$ ($6 \mathrm{C}, \mathrm{CH}_{3}$), $25.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 20.0-21.0\left(2 \mathrm{C}, \mathrm{CH}_{3}\right.$, diast.), 18.0 (2 C, Cq), $15.5\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.2\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.6\left(2 \mathrm{C}, \mathrm{CH}_{3}\right),-4.7(1$ $\left.\mathrm{C}, \mathrm{CH}_{3}\right) \mathrm{ppm} . \mathrm{MS}\left(\mathrm{ESI}^{+}\right): m / z=583.4\left[\mathrm{M}+\mathrm{H}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}_{2}\right]^{+}$, $451.3\left[\mathrm{M}+\mathrm{H}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}_{2}-\mathrm{OTBS}\right]^{+}, 319.2\left[\mathrm{M}+\mathrm{H}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}_{2}-\right.$ 2 OTBS ${ }^{+}, 259.2\left[\mathrm{M}+\mathrm{H}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}_{2}-2 \mathrm{OTBS}^{2}-\mathrm{OAc}\right]^{+}$. HRMS (ESI+): calcd. for $\mathrm{C}_{31} \mathrm{H}_{59} \mathrm{O}_{6} \mathrm{Si}_{2}\left[\mathrm{M}+\mathrm{H}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}_{2}\right]^{+} 583.3850$; found 583.3844.

Methyl (E)-9-[(1S,2R,3R,5S)-3,5-Bis(tert-butyldimethylsilyloxy)-2-(2-hydroxyethyl)cyclopentyl]-7-(tert-butyldimethylsilyloxy)non-8-enoate (11): $\mathrm{K}_{2} \mathrm{CO}_{3}(110 \mathrm{mg}, 0.8 \mathrm{mmol})$ was added to a solution of 9 $(144 \mathrm{mg}, 0.20 \mathrm{mmol})$ in $\mathrm{MeOH}(15 \mathrm{~mL})$. After 2 h , a mixture of $\mathrm{Et}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}(1: 1,20 \mathrm{~mL})$ was added and stirred for 15 min . The reaction mixture was extracted with pentane $/ \mathrm{Et}_{2} \mathrm{O}(1: 1,3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine, dried, and filtered. The solvent was evaporated under reduced pressure and the residue purified by column chromatography ($7: 3$ pentane $/ \mathrm{Et}_{2} \mathrm{O}$) to afford 125 mg of $\mathbf{1 1}$ as a colorless oil. $R_{\mathrm{f}}=0.42$ ($5: 5$ cyclohexane/ $\left.\mathrm{Et}_{2} \mathrm{O}\right) \cdot[\alpha]_{D}^{20}=+18.5\left(c=1, \mathrm{CHCl}_{3}\right) . \mathrm{IR}: \tilde{\mathrm{v}}=3462,2953,2929$, 2857, 1741, 1252, $1055 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 5.15-5.60 (m, 2 H), 3.95-4.15 (m, 1 H), 3.75-3.95 (m, 2 H), 3.35$3.75(\mathrm{~m}, 5 \mathrm{H}), 2.45-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.45(\mathrm{~m}, 4 \mathrm{H}), 2.00-2.15$ $(\mathrm{m}, 1 \mathrm{H}), 1.50-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.20-1.50(\mathrm{~m}, 6 \mathrm{H}), 0.70-1.00(\mathrm{~m}, 27$ $\mathrm{H}),-0.2-0.2(\mathrm{~m}, 18 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 174.2 ($1 \mathrm{C}, \mathrm{Cq}$), $136.0(1 \mathrm{C}, \mathrm{CH}), 127.7(1 \mathrm{C}, \mathrm{CH}), 77.1(1 \mathrm{C}, \mathrm{CH})$, $76.3(1 \mathrm{C}, \mathrm{CH}), 73.0(1 \mathrm{C}, \mathrm{CH}), 61.9\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 54.0(1 \mathrm{C}, \mathrm{CH})$,
$53.7(1 \mathrm{C}, \mathrm{CH}), 51.4\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 46.0(1 \mathrm{C}, \mathrm{CH}), 44.4\left(1 \mathrm{C}, \mathrm{CH}_{2}\right)$, $38.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 34.0\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 32.5\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 30.4\left(1 \mathrm{C}, \mathrm{CH}_{2}\right)$, $29.1\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 25.8\left(9 \mathrm{C}, \mathrm{CH}_{3}\right), 24.9\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 18.2(1 \mathrm{C}, \mathrm{Cq})$, $18.0(2 \mathrm{C}, \mathrm{Cq}),-4.1\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.3\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.4\left(1 \mathrm{C}, \mathrm{CH}_{3}\right)$, $-4.6\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.7\left(2 \mathrm{C}, \mathrm{CH}_{3}\right) \mathrm{ppm}$. $\mathrm{MS}\left(\mathrm{ESI}^{+}\right): \mathrm{m} / \mathrm{z}=673.5[\mathrm{M}$ $+\mathrm{H}]^{+}, 541.4\left[\mathrm{M}+\mathrm{H}-\mathrm{OTBS}^{+}, 409.3\left[\mathrm{M}+\mathrm{H}-2 \mathrm{OTBS}^{+}, 277.2\right.\right.$ $\left[\mathrm{M}+\mathrm{H}-3 \mathrm{OTBS}^{+}\right.$. HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{35} \mathrm{H}_{73} \mathrm{O}_{6} \mathrm{Si}_{3}[\mathrm{M}+$ $\mathrm{H}]^{+} 673.4715$; found 673.4720 .

Methyl (E)-9-[(1S,2R,3R,5S)-3,5-Bis(tert-butyldimethylsilyloxy)-2-(2-hydroxyethyl)cyclopentyl]-7-(1-ethoxyethoxy)non-8-enoate (12): $\mathrm{K}_{2} \mathrm{CO}_{3}(78 \mathrm{mg}, 0.56 \mathrm{mmol})$ was added to a solution of $\mathbf{1 0}(109 \mathrm{mg}$, $0.16 \mathrm{mmol})$ in $\mathrm{MeOH}(11 \mathrm{~mL})$. After $2 \mathrm{~h}, \mathrm{Et}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}(1: 1,20 \mathrm{~mL})$ was added, and the mixture was stirred for 15 min . The mixture was then extracted with pentane $/ \mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine, dried, and filtered. The solvent was evaporated under reduced pressure. The residue was purified by column chromatography ($1 \% \mathrm{Et}_{3} \mathrm{~N}$ deactivated $\mathrm{SiO}_{2}, 7: 3$ pentane $/ \mathrm{Et}_{2} \mathrm{O}$) to afford 80 mg of $\mathbf{1 2}$ as a colorless oil $(78 \%) . R_{\mathrm{f}}=$ 0.36 ($5: 5$ cyclohexane $/ \mathrm{Et}_{2} \mathrm{O}$). $[a]_{\mathrm{D}}^{20}=+18.3\left(c=1, \mathrm{CHCl}_{3}\right)$. IR: $\tilde{v}=$ 3484, 2930, 2857, 1739, 1253, $1055 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=5.15-5.60(\mathrm{~m}, 2 \mathrm{H}), 5.55-5.70(\mathrm{~m}, 1 \mathrm{H}), 3.75-4.00(\mathrm{~m}$, $3 \mathrm{H}), 3.30-3.75(\mathrm{~m}, 7 \mathrm{H}), 2.45-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.00-2.45(\mathrm{~m}, 5 \mathrm{H})$, $1.00-1.85(\mathrm{~m}, 16 \mathrm{H}), 0.70-1.00(\mathrm{~m}, 18 \mathrm{H}),-0.10-0.10(\mathrm{~m}, 12 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.3(1 \mathrm{C}, \mathrm{Cq}), 134.2(1$ C, CH , diast.), 133.3 ($1 \mathrm{C}, \mathrm{CH}$, diast.), 131.9 ($1 \mathrm{C}, \mathrm{CH}$, diast.), 130.5 ($1 \mathrm{C}, \mathrm{CH}$, diast.), 130.2 ($1 \mathrm{C}, \mathrm{CH}$, diast.), 98.5 ($1 \mathrm{C}, \mathrm{CH}$, diast.), 96.8 ($1 \mathrm{C}, \mathrm{CH}$, diast.), 96.7 ($1 \mathrm{C}, \mathrm{CH}$, diast.), 76.2-77.0 (3 C, CH$), 61.8\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 61.1\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 59.0\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 54.0(1$ C, CH$), 51.5\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 46.1(1 \mathrm{C}, \mathrm{CH}), 44.9\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 35.2(1$ C, CH_{2}), $34.9\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 34.1\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 29.2\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 26.0$ $\left(6 \mathrm{C}, \mathrm{CH}_{3}\right), 25.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 20.5\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 18.1(2 \mathrm{C}, \mathrm{Cq}), 15.5$ $\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.0\left(2 \mathrm{C}, \mathrm{CH}_{3}\right),-4.5\left(2 \mathrm{C}, \mathrm{CH}_{3}\right) \mathrm{ppm} . \mathrm{MS}\left(\mathrm{ESI}^{+}\right): \mathrm{m} / \mathrm{z}$ $=541.4\left[\mathrm{M}+\mathrm{H}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}_{2}\right]^{+}, 409.3\left[\mathrm{M}+\mathrm{H}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}_{2}-\mathrm{OTBS}\right]^{+}$, $277.2\left[\mathrm{M}+\mathrm{H}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}_{2}-2 \mathrm{OTBS}\right]^{+}$. HRMS $\left(\mathrm{ESI}^{+}\right)$: calcd. for $\mathrm{C}_{29} \mathrm{H}_{57} \mathrm{O}_{5} \mathrm{Si}_{2}\left[\mathrm{M}+\mathrm{H}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}_{2}\right]^{+} 541.3745$; found 541.3738.
Methyl (E)-9-\{(1S,2R,3R,5S)-3,5-Bis(tert-butyldimethylsilyloxy)-2-[(Z)-oct-2-enyl|cyclopentyl\}-7-(tert-butyldimethylsilyloxy)non-8-enoate (14): A Dess-Martin periodinane solution $(600 \mu \mathrm{~L}$ of a 0.47 m solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.28 \mathrm{mmol}$) was added to a solution of $\mathbf{1 1}$ ($110 \mathrm{mg}, 0.16 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(11 \mathrm{~mL})$. After 2 h and completion of the reaction (TLC), a 10% aq. $\mathrm{NaHCO}_{3} / \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution ($1: 1$, 20 mL) was added. After stirring for 1.5 h , the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine, dried, and filtered. The solvent was evaporated under reduced pressure. The material was directly used in the next step without further purification. NaHMDS ($600 \mu \mathrm{~L}, 2 \mathrm{~m}$ in toluene, 1.2 mmol) was added dropwise to a suspension of dried phosphonium salt $13(560 \mathrm{mg}, 1.31 \mathrm{mmol})$ in degassed THF $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 1 h at $0^{\circ} \mathrm{C}$, the aldehyde in degassed THF $(10 \mathrm{~mL})$ was added by cannula to the reaction mixture. The reaction mixture was warmed to room temp. overnight. After 1 h , the reaction was quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ $(10 \mathrm{~mL})$ and the mixture allowed to reach room temp. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine, dried, and filtered. The solvent was evaporated under reduced pressure. The residue was purified by column chromatography ($95: 5$ pentane $/ \mathrm{Et}_{2} \mathrm{O}$) to afford 114 mg of $\mathbf{1 4}$ as a colorless oil (94% over two steps). $R_{\mathrm{f}}=0.79$ ($8: 2$ cyclohexane/ $\left.\mathrm{Et}_{2} \mathrm{O}\right) \cdot[a]_{\mathrm{D}}^{20}=+16.2\left(c=1, \mathrm{CHCl}_{3}\right) . \mathrm{IR}: \tilde{\mathrm{v}}=2954,2928,2856$, $1743,1251,1067 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.25-5.60$ $(\mathrm{m}, 4 \mathrm{H}), 4.00-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.85-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.85(\mathrm{~m}, 1$ $\mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.50-270(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.40(\mathrm{~m}, 3 \mathrm{H}), 1.85-2.15$ $(\mathrm{m}, 4 \mathrm{H}), 1.15-1.70(\mathrm{~m}, 17 \mathrm{H}), 0.70-1.00(\mathrm{~m}, 30 \mathrm{H}),-0.10-0.10(\mathrm{~m}$,
$18 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=174.3$ ($1 \mathrm{C}, \mathrm{Cq}$), 135.8 ($1 \mathrm{C}, \mathrm{CH}$), 130.6 ($1 \mathrm{C}, \mathrm{CH}$), 128.7 ($1 \mathrm{C}, \mathrm{CH}$), 128.0 (1 C , CH), $76.3(2 \mathrm{C}, \mathrm{CH}), 73.3(1 \mathrm{C}, \mathrm{CH}), 52.5(1 \mathrm{C}, \mathrm{CH}), 51.5(1 \mathrm{C}$, $\left.\mathrm{CH}_{3}\right), 50.3(1 \mathrm{C}, \mathrm{CH}), 44.5\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 38.5\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 34.2(1 \mathrm{C}$, $\left.\mathrm{CH}_{2}\right), 31.7\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 29.5\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 29.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 27.5(2$ $\left.\mathrm{C}, \mathrm{CH}_{2}\right), 26.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 26.0\left(9 \mathrm{C}, \mathrm{CH}_{3}\right), 25.1\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 22.7$ $\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 18.4(2 \mathrm{C}, \mathrm{Cq}), 18.2(1 \mathrm{C}, \mathrm{Cq}), 14.2\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.1$ $\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.3\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.4\left(2 \mathrm{C}, \mathrm{CH}_{3}\right),-4.6(2 \mathrm{C}, \mathrm{Cq}) \mathrm{ppm}$.
Methyl (E)-9-\{(1S,2R,3R,5S)-3,5-Bis(tert-butyldimethylsilyloxy)-2-[(Z)-oct-2-enyl|cyclopentyl\}-7-(1-ethoxyethoxy)non-8-enoate (15): A Dess-Martin periodinane solution $(600 \mu \mathrm{~L}$ of a 0.47 m solution in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.28 \mathrm{mmol}\right)$ was added to a solution of alcohol $\mathbf{1 2}(80 \mathrm{mg}$, $0.13 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$. After $2 \mathrm{~h}, \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} / \mathrm{NaHCO}_{3}$ ($20 \mathrm{~mL}, 1: 1, \mathrm{v} / \mathrm{v}, 10 \%$) was added, and the mixture was stirred for 1 h . The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The organic layers were washed with brine (15 mL), dried with MgSO_{4}, filtered, and the solvent was removed under reduced pressure. The resulting aldehyde was used directly in the next step without further purification. NaHMDS ($330 \mu \mathrm{~L}, 2 \mathrm{~m}$ in toluene, 0.66 mmol) was added dropwise to a suspension of dried phosphonium salt $13(296 \mathrm{mg}, 0.69 \mathrm{mmol})$ in degassed THF (5 mL) at $0^{\circ} \mathrm{C}$. After 1 h at $0^{\circ} \mathrm{C}$, the aldehyde in degassed THF (4 mL) was added through a cannula to the ylide. The reaction mixture was warmed to room temp. overnight. Then the reaction was quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ $(10 \mathrm{~mL})$, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine, dried, and filtered. The solvent was evaporated under reduced pressure. The residue was purified by column chromatography $\left(1 \% \mathrm{Et}_{3} \mathrm{~N}\right.$ deactivated $\mathrm{SiO}_{2}, 95: 5$ pentane $/ \mathrm{Et}_{2} \mathrm{O}$) to afford 56 mg of diene $\mathbf{1 5}$ as a colorless oil (63% over two steps). $R_{\mathrm{f}}=0.55$ ($8: 2$ cyclohexane/ $\left.\mathrm{Et}_{2} \mathrm{O}\right) \cdot[a]_{\mathrm{D}}^{20}=+16.9\left(c=1, \mathrm{CHCl}_{3}\right) . \mathrm{IR}: \tilde{\mathrm{v}}=2954,2928,2857$, 1740, 1251, $1059 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.15-5.60$ $(\mathrm{m}, 4 \mathrm{H}), 5.55-5.70(\mathrm{~m}, 1 \mathrm{H}), 4.00-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.90-4.00(\mathrm{~m}, 1$ H), 3.75-3.90 (m, 1 H$), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.30-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.55-3.75$ $(\mathrm{m}, 1 \mathrm{H}), 2.15-2.45(\mathrm{~m}, 3 \mathrm{H}), 1.75-2.15(\mathrm{~m}, 6 \mathrm{H}), 1.00-1.75(\mathrm{~m}, 23$ H), $0.70-1.00(\mathrm{~m}, 18 \mathrm{H}),-0.10-0.10(\mathrm{~m}, 12 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=174.3(1 \mathrm{C}, \mathrm{Cq}), 133.5(1 \mathrm{C}, \mathrm{CH}), 132.4(1$ C, CH), $131.0(1 \mathrm{C}, \mathrm{CH}), 128.0(1 \mathrm{C}, \mathrm{CH}), 97.1(1 \mathrm{C}, \mathrm{CH}), 75.5(3$ C, CH$), 63.7\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 61.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 59.0\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 52.3(1$ $\mathrm{C}, \mathrm{CH}), 51.3\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 50.2(1 \mathrm{C}, \mathrm{CH}), 38.1\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 35.8(1$ C, CH_{2}), $32.5\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 29.6\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 28.6\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 27.1$ $\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 26.0\left(6 \mathrm{C}, \mathrm{CH}_{3}\right), 25.1\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 23.5\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 22.5$ $\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 20.3\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 17.9(2 \mathrm{C}, \mathrm{Cq}), 15.3\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 14.0$ $\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.5\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.6\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.7\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.8$ $\left(1 \mathrm{C}, \mathrm{CH}_{3}\right) \mathrm{ppm}$. MS $\left(\mathrm{ESI}^{+}\right): m / z=607.5\left[\mathrm{M}+\mathrm{H}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}_{2}\right]^{+}$, $475.4\left[\mathrm{M}+\mathrm{H}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}_{2}-\mathrm{OTBS}\right]^{+}$. HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{35} \mathrm{H}_{67} \mathrm{O}_{4} \mathrm{Si}_{2}\left[\mathrm{M}+\mathrm{H}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}_{2}\right]^{+}$607.4578; found 607.4575.
Methyl (E)-9-\{(1S,2R,3R,5S)-3,5-Bis(tert-butyldimethylsilyloxy)-2-[(Z)-non-2-enyl|cyclopentyl\}-7-oxonon-8-enoate (16): PPTS (4 mg , $0.016 \mathrm{mmol})$ was added to a solution of $\mathbf{1 5}(50 \mathrm{mg}, 0.072 \mathrm{mmol})$ in $\mathrm{EtOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(5: 1,4.8 \mathrm{~mL})$. After 17 h at room temp., a saturated aqueous solution of $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ was added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine, dried, and filtered. The solvent was evaporated under reduced pressure. The residue was purified by column chromatography ($7: 3$ pentane $/ \mathrm{Et}_{2} \mathrm{O}$) to afford 35 mg of the allylic alcohol as a colorless oil $(78 \%) . R_{\mathrm{f}}=0.49$ ($7: 3$ cyclohexane/ $\left.\mathrm{Et}_{2} \mathrm{O}\right) .[a]_{\mathrm{D}}^{20}=+10.0\left(c=1, \mathrm{CHCl}_{3}\right)$. IR: $\tilde{\mathrm{v}}=34.82,2954,2928$, 2856, 1739, 1463, 1252, $1069 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.15-5.60(\mathrm{~m}, 4 \mathrm{H}), 4.00-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.75-4.00(\mathrm{~m}, 2 \mathrm{H})$, $3.66(\mathrm{~s}, 3 \mathrm{H}), 3.55-3.75(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.45(\mathrm{~m}, 3 \mathrm{H}), 1.75-2.15(\mathrm{~m}$, $6 \mathrm{H}), 1.00-1.75(\mathrm{~m}, 18 \mathrm{H}), 0.70-1.00(\mathrm{~m}, 18 \mathrm{H}),-0.10-0.10(\mathrm{~m}, 12$
H) ppm. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.9(1 \mathrm{C}, \mathrm{Cq}), 135.4$ (1 C, CH), 130.4-130.7 (1 C, CH, epi), 130.2-130.4 (1 C, CH, epi), 128.3-128.5 ($1 \mathrm{C}, \mathrm{CH}$, epi), $76.3(1 \mathrm{C}, \mathrm{CH}), 76.0(1 \mathrm{C}, \mathrm{CH}), 73.0$ $(1 \mathrm{C}, \mathrm{CH}), 63.9\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 52.5\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 52.4\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 51.6$ $(1 \mathrm{C}, \mathrm{CH}), 44.4\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 37.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 34.4\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 31.6$ ($1 \mathrm{C}, \mathrm{CH}_{2}$), $29.2\left(2 \mathrm{C}, \mathrm{CH}_{2}\right), 27.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 26.0\left(6 \mathrm{C}, \mathrm{CH}_{3}\right), 25.1$ $\left(2 \mathrm{C}, \mathrm{CH}_{2}\right), 22.5\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 17.1(2 \mathrm{C}, \mathrm{Cq}), 14.2\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.53$ $\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.4\left(2 \mathrm{C}, \mathrm{CH}_{3}\right),-4.6\left(1 \mathrm{C}, \mathrm{CH}_{3}\right) \mathrm{ppm}$. MS $\left(\mathrm{ESI}^{+}\right): m / z$ $=625.5[\mathrm{M}+\mathrm{H}]^{+}, 607.5\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 475.4\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}-\right.$ OTBS $]^{+}, 343.3$ [$\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}-2 \mathrm{OTBS}^{+}$. HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{35} \mathrm{H}_{69} \mathrm{O}_{5} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} 625.4684$; found 625.4692. A Dess-Martin periodinane solution $\left(150 \mu \mathrm{~L}\right.$ of a 0.47 m solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, 0.071 mmol) was added to a solution of the previous allylic alcohol ($30 \mathrm{mg}, 0.048 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$. After completion of the reaction (TLC), a 10% aq. $\mathrm{NaHCO} / \mathrm{Ha}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution ($1: 1,5 \mathrm{~mL}$) was added. After stirring for 1.5 h , the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine, dried, and filtered. The solvent was evaporated under reduced pressure and the residue purified by column chromatography ($9: 1$ pentane $/ \mathrm{Et}_{2} \mathrm{O}$) to afford 17 mg of the enone $\mathbf{1 6}$ as a colorless oil $(57 \%) . R_{\mathrm{f}}=0.55$ ($8: 2$ cyclohexane/ $\mathrm{Et}_{2} \mathrm{O}$). $[a]_{\mathrm{D}}^{20}=+0.8$ $\left(c=1, \mathrm{CHCl}_{3}\right)$. IR: $\tilde{v}=2955,2927,2856,1736,1697,1674,1626$, $1463,1252,1071 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.55-6.75$ $(\mathrm{m}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.15-5.50(\mathrm{~m}, 2 \mathrm{H}), 3.75-4.20$ (m, 2 H$), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.70-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.70(\mathrm{~m}, 5 \mathrm{H})$, $1.80-2.20(\mathrm{~m}, 6 \mathrm{H}), 1.50-1.80(\mathrm{~m}, 6 \mathrm{H}), 1.15-1.50(\mathrm{~m}, 9 \mathrm{H}), 0.70-$ $1.00(\mathrm{~m}, 18 \mathrm{H}),-0.10-0.10(\mathrm{~s}, 12 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=200.0(1 \mathrm{C}, \mathrm{Cq}), 174.2(1 \mathrm{C}, \mathrm{Cq}), 145.8(1 \mathrm{C}, \mathrm{CH})$, $131.5(1 \mathrm{C}, \mathrm{CH}), 131.3(1 \mathrm{C}, \mathrm{CH}), 127.8(1 \mathrm{C}, \mathrm{CH}), 75.8(1 \mathrm{C}, \mathrm{CH})$, $75.6(1 \mathrm{C}, \mathrm{CH}), 52.9(1 \mathrm{C}, \mathrm{CH}), 51.6\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 51.1(1 \mathrm{C}, \mathrm{CH})$, $44.5\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 40.6\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 34.0\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 31.7\left(1 \mathrm{C}, \mathrm{CH}_{2}\right)$, $30.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 29.4\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 27.6\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 26.6\left(1 \mathrm{C}, \mathrm{CH}_{2}\right)$, $25.9\left(6 \mathrm{C}, \mathrm{CH}_{3}\right), 24.9\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 23.9\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 22.7\left(1 \mathrm{C}, \mathrm{CH}_{2}\right)$, $18.1(2 \mathrm{C}, \mathrm{Cq}), 14.2\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.3\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.4\left(1 \mathrm{C}, \mathrm{CH}_{3}\right)$, $-4.5\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.6(1 \mathrm{C}, \mathrm{Cq}) \mathrm{ppm}$.

Methyl (S,E)-9-\{(1S,2R,3R,5S)-3,5-Bis(tert-butyldimethylsilyloxy)-2-I(Z)-oct-2-enyl]cyclopentyl\}-7-hydroxynon-8-enoate (17): LiAlH_{4} ($170 \mu \mathrm{~L}, 1 \mathrm{~m}$ in THF, 0.170 mmol) was added dropwise to a solution of dry (S)-binaphthol ($49 \mathrm{mg}, 0.171 \mathrm{mmol}$) in freshly distilled dry THF at room temp. After 5 min , freshly distilled dried EtOH ($170 \mu \mathrm{~L}, 1 \mathrm{~m}$ in THF, $0.170 \mu \mathrm{~L}$) was added dropwise. The reaction mixture was cooled to $-100^{\circ} \mathrm{C}$, and the enone $16(17 \mathrm{mg}$, 0.0273 mmol) was added through a cannula to the reaction mixture. The reaction mixture was slowly warmed to $-30^{\circ} \mathrm{C}$. Then MeOH $(500 \mu \mathrm{~L})$ and $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ were added, and the suspension was filtered through a plug of Celite, which had previously been washed with $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine, dried, and filtered. The solvent was evaporated under reduced pressure. Excess binaphthol was precipitated with hexanes, but traces of binaphthol remained. After concentration, the residue was purified by column chromatography (8:2 heptane/ $\mathrm{Et}_{2} \mathrm{O}$) to afford the alcohol $\mathbf{1 7}$ as a colorless oil ($11 \mathrm{mg}, 64 \%$ yield). $R_{\mathrm{f}}=0.58$ ($5: 5$ cyclohexane $/ \mathrm{Et}_{2} \mathrm{O}$). $[\alpha]_{\mathrm{D}}^{20}=+5.3$ $\left(c=1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.20-5.70(\mathrm{~m}, 4$ H), 3.75-4.20 (m, 3 H), 3.66(s, 3 H), 2.55-2.75 (m, 1 H), 2.15-2.50 $(\mathrm{m}, 4 \mathrm{H}), 1.80-2.15(\mathrm{~m}, 6 \mathrm{H}), 1.10-1.80(\mathrm{~m}, 17 \mathrm{H}), 0.70-1.00(\mathrm{~m}$, $18 \mathrm{H}),-0.10-0.10(\mathrm{~s}, 12 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=174.1(1 \mathrm{C}, \mathrm{Cq}), 135.1(1 \mathrm{C}, \mathrm{CH}), 130.5(1 \mathrm{C}, \mathrm{CH}), 130.0(1 \mathrm{C}$, $\mathrm{CH}), 128.2(1 \mathrm{C}, \mathrm{CH}), 76.0(1 \mathrm{C}, \mathrm{CH}), 75.7(1 \mathrm{C}, \mathrm{CH}), 72.8(1 \mathrm{C}$, $\mathrm{CH}), 52.3(1 \mathrm{C}, \mathrm{CH}), 51.3\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 51.3(1 \mathrm{C}, \mathrm{CH}), 44.2(1 \mathrm{C}$, $\left.\mathrm{CH}_{2}\right), 37.1\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 33.9\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 31.5\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 29.6(1$ $\left.\mathrm{C}, \mathrm{CH}_{2}\right), 29.2\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 27.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 26.1\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 25.8$
($6 \mathrm{C}, \mathrm{CH}_{3}$), $25.0\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 24.8\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 22.5\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 18.0$ $(2 \mathrm{C}, \mathrm{Cq}), 14.0\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.5\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.6\left(2 \mathrm{C}, \mathrm{CH}_{3}\right),-4.8$ $\left(1 \mathrm{C}, \mathrm{CH}_{3}\right) \mathrm{ppm}$.
ent-7-epi-7- $\mathrm{F}_{2 \mathrm{t}}$-Dihomo-IsoP (1): $\mathrm{HCl}(1 \mathrm{~m}$ in THF, 1.0 mL , $1.0 \mathrm{mmol})$ was added to a solution of $\mathbf{1 7}(11 \mathrm{mg}, 0.018 \mathrm{mmol})$ in THF (1 mL). After 2 d at room temp., brine (5 mL) was added, and the mixture was extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine, dried, and filtered, and the solvent was removed under reduced pressure. The residue was purified by column chromatography ($9: 1 \mathrm{EtOAc} / \mathrm{MeOH}$) to afford 2.9 mg of ent-(7S)- $\mathrm{F}_{2 \mathrm{t}}$-dihomo-IsoP (1) as a colorless oil (28% over two steps). $R_{\mathrm{f}}=0.76(9: 1 \mathrm{EtOAc} / \mathrm{MeOH}+1 \% \mathrm{AcOH}) \cdot[a]_{\mathrm{D}}^{20}=+2.4$ $(c=0.166, \mathrm{MeOH})$. IR: $\tilde{\mathrm{v}}=3343,2483,2071,1704,1120 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz},\left[\mathrm{D}_{4}\right] \mathrm{MeOH}$): $\delta=5.20-5.60(\mathrm{~m}, 4 \mathrm{H}), 3.60-4.10$ $(\mathrm{m}, 3 \mathrm{H}), 2.65-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.35(\mathrm{~m}, 3$ $\mathrm{H}), 1.90-2.00(\mathrm{~m}, 4 \mathrm{H}), 1.20-1.70(\mathrm{~m}, 15 \mathrm{H}), 0.80-1.00(\mathrm{~m}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz},\left[\mathrm{D}_{4}\right] \mathrm{MeOH}$): $\delta=136.8(1 \mathrm{C}, \mathrm{CH}), 131.7$ (1 C, CH), $130.6(1 \mathrm{C}, \mathrm{CH}), 129.3(1 \mathrm{C}, \mathrm{CH}), 76.4(1 \mathrm{C}, \mathrm{CH}), 76.3$ $(1 \mathrm{C}, \mathrm{CH}), 76.7(1 \mathrm{C}, \mathrm{CH}), 54.8(1 \mathrm{C}, \mathrm{CH}), 53.8(1 \mathrm{C}, \mathrm{CH}), 51.5(1$ $\left.\mathrm{C}, \mathrm{CH}_{2}\right), 43.6\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 38.4\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 35.4\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 32.7$ $\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 30.5\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 30.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 28.4\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 27.4$ ($1 \mathrm{C}, \mathrm{CH}_{2}$), $26.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 23.7\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 14.4\left(1 \mathrm{C}, \mathrm{CH}_{3}\right) \mathrm{ppm}$. MS (ESI^{+}): $m / z=383.4[\mathrm{M}+\mathrm{H}]^{+}, 365.3\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 347.3$ $\left[\mathrm{M}+\mathrm{H}-2 \mathrm{H}_{2} \mathrm{O}\right]^{+}, 329.3\left[\mathrm{M}+\mathrm{H}-3 \mathrm{H}_{2} \mathrm{O}\right]^{+}$. HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 383.2797$; found 383.2794.
ent-(7RS)-7- $\mathrm{F}_{\mathbf{2 t}}$-dihomo-IsoP [RS-(1)]: $\mathrm{HCl}(1 \mathrm{~m}$ in THF, 1.0 mL , $1.0 \mathrm{mmol})$ was added to a solution of $\mathbf{1 4}(110 \mathrm{mg}, 0.15 \mathrm{mmol})$ in THF (5 mL). After 2 d at room temp., brine (10 mL) was added, and the mixture was extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine, dried, and filtered, and the solvent was removed under reduced. The residue was purified by column chromatography (9:1 EtOAc/MeOH) to afford 33 mg of ent-(7RS)- $\mathrm{F}_{2 \mathrm{t}}$-dihomo-IsoP $[(R S)-1]$ as a colorless oil $(58 \%) . R_{\mathrm{f}}=0.81(9: 1 \mathrm{EtOAc} / \mathrm{MeOH}+1 \% \mathrm{AcOH}) \cdot[a]_{\mathrm{D}}^{20}=+6.7(c$ $\left.=1 \times 10^{-2}, \mathrm{MeOH}\right)$. IR: $\tilde{v}=3343,2483,2071,1704,1120 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz},\left[\mathrm{D}_{4}\right] \mathrm{MeOH}$): $\delta=5.25-5.60(\mathrm{~m}, 4 \mathrm{H}), 3.80-4.15$ $(\mathrm{m}, 3 \mathrm{H}), 2.60-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.90-2.15(\mathrm{~m}, 5 \mathrm{H}), 1.20-1.70(\mathrm{~m}, 15 \mathrm{H}), 0.80-1.00$ (m, 3 H) ppm. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz},\left[\mathrm{D}_{4}\right] \mathrm{MeOH}$): $\delta=177.7$, (1 C , Cq), $136.7(1 \mathrm{C}, \mathrm{CH}), 131.76(1 \mathrm{C}, \mathrm{CH}), 130.6(1 \mathrm{C}, \mathrm{CH}), 129.6(1$ C, CH), $76.3(1 \mathrm{C}, \mathrm{CH}), 73.6(1 \mathrm{C}, \mathrm{CH}), 73.3(1 \mathrm{C}, \mathrm{CH}), 54.6(1$ C, CH), $51.4(1 \mathrm{C}, \mathrm{CH}), 43.6\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 38.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 35.0(1$ $\left.\mathrm{C}, \mathrm{CH}_{2}\right), 32.7\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 30.5\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 30.2\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 28.4$ $\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 27.4-26.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 23.6\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 14.4\left(1 \mathrm{C}, \mathrm{CH}_{3}\right)$ ppm. MS $\left(\mathrm{ESI}^{+}\right): m / z=383.4[\mathrm{M}+\mathrm{H}]^{+}, 365.3\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$, $347.3\left[\mathrm{M}+\mathrm{H}-2 \mathrm{H}_{2} \mathrm{O}\right]^{+}, 329.3\left[\mathrm{M}+\mathrm{H}-3 \mathrm{H}_{2} \mathrm{O}\right]^{+}$. HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$383.2797; found 383.2805.
(7-Ethoxy-7-oxoheptyl)triphenylphosphonium Bromide (23): $\mathrm{Ph}_{3} \mathrm{P}$ $(11.1 \mathrm{~g}, 42.2 \mathrm{~mol})$ and a catalytic amount of $\mathrm{K}_{2} \mathrm{CO}_{3}$ were added to a solution of ethyl 7-bromoheptanoate ($5.0 \mathrm{~g}, 21.1 \mathrm{~mol}$) in $\mathrm{CH}_{3} \mathrm{CN}$ $(100 \mathrm{~mL})$ at room temp. The reaction mixture was heated at reflux overnight, and the solvent was then removed under reduced pressure. The residue was purified by column chromatography (solid SiO_{2} deposit, 9:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$) to afford 21.0 g of $\mathbf{2 3}$ as a white powder (87%). $R_{\mathrm{f}}=0.33(9: 1 \mathrm{EtOAc} / \mathrm{MeOH})$. M.p. $130^{\circ} \mathrm{C}$. IR: \tilde{v} $=3254,2875,1706,1471,1253,1051 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=4.40(\mathrm{q}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.80(\mathrm{~m}$, $3 \mathrm{H}), 3.20(\mathrm{~s}, 1 \mathrm{H}), 1.80-2.25(\mathrm{~m}, 3 \mathrm{H}), 1.30-1.80(\mathrm{~m}, 5 \mathrm{H}), 0.89$ (d, $J=2.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.08(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=135.0$ ($3 \mathrm{C}, \mathrm{CH}$), 134.0 ($3 \mathrm{C}, \mathrm{Cq}$), 133.3 (6 C, CH), 130.4 ($6 \mathrm{C}, \mathrm{CH}$), 124.9 ($1 \mathrm{C}, \mathrm{CH}$), 124.7 ($1 \mathrm{C}, \mathrm{CH}$), $116.9-$ $118.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=1.14 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{CH}_{2}\right), 23.4-22.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=0.65 \mathrm{~Hz}\right.$,
$\left.1 \mathrm{C}, \mathrm{CH}_{2}\right), 20.3-19.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=0.4 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{CH}_{2}\right), 13.7\left(1 \mathrm{C}, \mathrm{CH}_{3}\right)$ $\mathrm{ppm} .{ }^{31} \mathrm{P}$ NMR $\left(120 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=24.5 \mathrm{ppm}$.

2-\{(1S,2R,3R,5S)-3,5-Bis(tert-butyldimethylsilyloxy)-2-I(E)-3-oxooct-1-enyllcyclopentyl\}ethyl acetate (19): A Dess-Martin periodinane solution (1.5 mL of a 0.47 m solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $0.61 \mathrm{mmol})$ was added to a solution of alcohol $5(225 \mathrm{mg}$, $0.51 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. After completion of the reaction (TLC), 10% aq. $\mathrm{NaHCO}_{3} / \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1: 1,50 \mathrm{~mL})$ was added. After stirring for 1.5 h , the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times$ 30 mL). The combined organic layers were washed with brine, dried, and filtered. The solvent was evaporated under reduced pressure. The material was directly used in the next step without further purification. β-Keto phosphonate $18(440 \mathrm{mg}, 1.11 \mathrm{mmol})$ was added dropwise to a suspension of dry $\mathrm{Ba}(\mathrm{OH})_{2}(70 \mathrm{mg}$, 0.41 mmol) in THF (10 mL). After 1 h , the aldehyde in THF $(20 \mathrm{~mL})$ was added through a cannula to the reaction mixture and stirred overnight. Then the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ $(25 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with brine, dried, and filtered. The solvent was evaporated under reduced pressure. The residue was purified by column chromatography ($9: 1$ pentane $/ \mathrm{Et}_{2} \mathrm{O}$) to afford 155 mg of enone 19 as a colorless oil (57% over two steps). $R_{\mathrm{f}}=0.50\left(8: 2\right.$ cyclohexane $\left./ \mathrm{Et}_{2} \mathrm{O}\right) .[a]_{\mathrm{D}}^{20}=+23.4(c$ $\left.=1, \mathrm{CHCl}_{3}\right)$. IR: $\tilde{v}=2955,2930,2857,1741,1248,1056 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.50(\mathrm{dd}, J=10.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), $6.20(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-4.15(\mathrm{~m}, 4 \mathrm{H}), 2.65-2.90(\mathrm{~m}, 1 \mathrm{H})$, $2.50(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.15-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.45-$ $1.80(\mathrm{~m}, 7 \mathrm{H}), 1.15-1.45(\mathrm{~m}, 5 \mathrm{H}), 0.70-1.00(\mathrm{~m}, 18 \mathrm{H}),-0.10-0.10$ (m, 12 H$) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=200.2(1 \mathrm{C}, \mathrm{Cq})$, $171.0(1 \mathrm{C}, \mathrm{Cq}), 144.4(1 \mathrm{C}, \mathrm{CH}), 131.6(1 \mathrm{C}, \mathrm{CH}), 76.2(1 \mathrm{C}, \mathrm{CH})$, $75.4(1 \mathrm{C}, \mathrm{CH}), 63.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 53.1(1 \mathrm{C}, \mathrm{CH}), 46.4(1 \mathrm{C}, \mathrm{CH})$, $44.4\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 41.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 31.6\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 28.0\left(1 \mathrm{C}, \mathrm{CH}_{2}\right)$, $25.9\left(6 \mathrm{C}, \mathrm{CH}_{3}\right), 24.0\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 22.6\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 21.0\left(1 \mathrm{C}, \mathrm{CH}_{3}\right)$, $18.0(2 \mathrm{C}, \mathrm{Cq}), 14.0\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.2\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.5\left(2 \mathrm{C}, \mathrm{CH}_{3}\right)$, $-4.7\left(1 \mathrm{C}, \mathrm{CH}_{3}\right) \mathrm{ppm} . \mathrm{MS}\left(\mathrm{ESI}^{+}\right): m / z=599.4[\mathrm{M}+\mathrm{H}]^{+}, 467.3$ [M - OTBS] ${ }^{+}$. HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{31} \mathrm{H}_{59} \mathrm{O}_{7} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 599.3799; found 599.3791.

2-\{(1S,2R,3R,5S)-3,5-Bis(tert-butyldimethylsilyloxy)-2-I(E)-3-hydroxyoct-1-enyl|cyclopentyl $\}$ ethyl acetate (20): $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ $(240 \mathrm{mg}, 0.64 \mathrm{mmol})$ in $\mathrm{MeOH}(30 \mathrm{~mL})$ was added to a solution of enone 19 ($350 \mathrm{mg}, 0.65 \mathrm{mmol}$). The mixture was cooled to $0^{\circ} \mathrm{C}$, and then NaBH_{4} was added ($22.0 \mathrm{mg}, 0.582 \mathrm{mmol}$). After 10 min , the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(12 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$. The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine, dried, and filtered. The solvent was evaporated under reduced pressure. The residue was purified by column chromatography ($8: 2$ pentane $/ \mathrm{Et}_{2} \mathrm{O}$) to afford 326 mg of $\mathbf{2 0}$ as a colorless oil (98%). $R_{\mathrm{f}}=0.66$ ($5: 5$ cyclohexane/ $\left.\mathrm{Et}_{2} \mathrm{O}\right) .[\alpha]_{\mathrm{D}}^{20}=+25.9\left(c=1, \mathrm{CHCl}_{3}\right)$. IR: $\tilde{\mathrm{v}}=3509,2955$, 2929, 2857, 1732, 1250, $1056 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.20-5.60(\mathrm{~m}, 2 \mathrm{H}), 3.60-4.35(\mathrm{~m}, 5 \mathrm{H}), 2.40-2.55(\mathrm{~m} 1 \mathrm{H})$, $1.85-2.40(\mathrm{~m}, 7 \mathrm{H}), 1.00-1.90(\mathrm{~m}, 12 \mathrm{H}), 0.70-1.00(\mathrm{~m}, 18 \mathrm{H})$, $-0.10-0.10(\mathrm{~m}, 12 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.3$ ($1 \mathrm{C}, \mathrm{Cq}$), $136.2(1 \mathrm{C}, \mathrm{CH}), 129.2(1 \mathrm{C}, \mathrm{CH}), 76.4(1 \mathrm{C}, \mathrm{CH}), 73.0$ $(1 \mathrm{C}, \mathrm{CH}), 72.6(1 \mathrm{C}, \mathrm{CH}), 63.6\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 52.9(1 \mathrm{C}, \mathrm{CH}), 45.8$ $(1 \mathrm{C}, \mathrm{CH}), 44.4\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 37.4\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 37.2\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 31.9$ $\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 28.0\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 25.9\left(6 \mathrm{C}, \mathrm{CH}_{3}\right), 25.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 21.1$ $\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 18.1(2 \mathrm{C}, \mathrm{Cq}), 14.1\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.2\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.5$ $\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.6\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.7\left(1 \mathrm{C}, \mathrm{CH}_{3}\right) \mathrm{ppm} . \mathrm{MS}\left(\mathrm{ESI}^{+}\right): \mathrm{m} / \mathrm{z}$ $=543.4[\mathrm{M}+\mathrm{H}]^{+}, 525.4\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 393.3\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}-\right.$ OTBS $]^{+}, 261.2\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}-2 \mathrm{OTBS}^{+}\right.$. HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{29} \mathrm{H}_{59} \mathrm{O}_{5} \mathrm{Si}_{2}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+} 543.3901$; found 543.3910.

2-\{($1 S, 2 R, 3 R, 5 S)-3,5-B i s($ tert-butyldimethylsilyloxy)-2-I(E)-3-(1-ethoxyethoxy)oct-1-enyl|cyclopentyl\}ethyl acetate (21): Ethyl vinyl ether ($2 \mathrm{~mL}, 20.9 \mathrm{mmol}$) and PPTS ($10 \mathrm{mg}, 0.053 \mathrm{mmol}$) were successively added to a solution of $\mathbf{2 0}(140 \mathrm{mg}, 0.27 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(7 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temp. overnight. Then a saturated aqueous solution of NaHCO_{3} $(2 \mathrm{~mL})$ was added, and the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine, dried, and filtered. The solvent was evaporated under reduced pressure. The residue was purified by column chromatography $\left(1 \% \mathrm{Et}_{3} \mathrm{~N}\right.$ deactivated $\mathrm{SiO}_{2}, 8: 2$ pentane/ $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ to afford 145 mg of 21 as a colorless oil (91%). $R_{\mathrm{f}}=0.61$ ($5: 5$ cyclohexane/ $\left.\mathrm{Et}_{2} \mathrm{O}\right) \cdot[a]_{\mathrm{D}}^{20}=+26.4\left(c=1, \mathrm{CHCl}_{3}\right) . \mathrm{IR}: \tilde{\mathrm{v}}=2953,2930,2858$, $1741,1248,1056 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.20-5.40$ $(\mathrm{m}, 2 \mathrm{H}), 4.55-4.80(\mathrm{~m}, 1 \mathrm{H}), 3.75-4.20(\mathrm{~m}, 6 \mathrm{H}), 3.25-3.75(\mathrm{~m}, 4$ H), 2.50-2.70 (m, 1 H$), 2.50(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.40-1.90(\mathrm{~m}$, $7 \mathrm{H}), 1.05-1.40(\mathrm{~m}, 14 \mathrm{H}), 0.70-1.00(\mathrm{~m}, 18 \mathrm{H}), 0.02(\mathrm{~m}, 12 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.0(1 \mathrm{C}, \mathrm{Cq}), 134.1$ (1 C, CH), $130.5(1 \mathrm{C}, \mathrm{CH}), 97.5(1 \mathrm{C}, \mathrm{CH}), 76.5(3 \mathrm{C}, \mathrm{CH}), 63.7(1$ C, $\left.\mathrm{CH}_{2}\right), 61.5\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 58.8\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 53.1(1 \mathrm{C}, \mathrm{CH}), 45.7(1$ $\mathrm{C}, \mathrm{CH}), 43.5\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 36.2\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 32.5\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 27.7(1$ $\left.\mathrm{C}, \mathrm{CH}_{2}\right), 25.9\left(6 \mathrm{C}, \mathrm{CH}_{3}\right), 25.2\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 22.5\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 20.4-$ $20.9\left(2 \mathrm{C}, \mathrm{CH}_{3}\right), 18.0(2 \mathrm{C}, \mathrm{Cq}), 15.5\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 14.0\left(1 \mathrm{C}, \mathrm{CH}_{3}\right)$, $-4.2\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.6\left(2 \mathrm{C}, \mathrm{CH}_{3}\right),-4.7\left(1 \mathrm{C}, \mathrm{CH}_{3}\right) \mathrm{ppm}$. MS $\left(\mathrm{ESI}^{+}\right)$: $m / z=525.4\left[\mathrm{M}+\mathrm{H}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}_{2}\right]^{+}, 393.3\left[\mathrm{M}+\mathrm{H}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}_{2}-\right.$ $\mathrm{OTBS}^{+}, 261.2\left[\mathrm{M}+\mathrm{H}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}_{2}-2 \mathrm{OTBS}^{+}, 201.2[\mathrm{M}+\mathrm{H}-\right.$ $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}_{2}-2$ OTBS -OAc$]^{+}$. HRMS (ESI^{+}): calcd. for $\mathrm{C}_{29} \mathrm{H}_{57} \mathrm{O}_{4} \mathrm{Si}_{2}$ $\left[\mathrm{M}+\mathrm{H}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}_{2}\right]^{+}$525.3795; found 525.3798.

2-\{($1 S, 2 R, 3 R, 5 S)-3,5-B i s($ tert-butyldimethylsilyloxy)-2-[(3S,E)-3-(1-ethoxyethoxy)oct-1-enyl|cyclopentyl\}ethanol [(17S)-22] and 2$\{(1 S, 2 R, 3 R, 5 S)-3,5-B i s($ tert-butyldimethylsilyloxy)-2-[(3R,E)-3-(1-ethoxyethoxy)oct-1-enyllcyclopentyl\}ethanol [(17R)-22]: $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($85 \mathrm{mg}, 0.62 \mathrm{mmol}$) was added to a solution of $21(140 \mathrm{mg}$, $0.23 \mathrm{mmol})$ in $\mathrm{MeOH}(15 \mathrm{~mL})$. After 2 h , the reaction was quenched with a solution of $\mathrm{H}_{2} \mathrm{O} / \mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The mixture was extracted with a mixture of $\mathrm{Et}_{2} \mathrm{O} /$ pentane $(3 \times 20 \mathrm{~mL})$, washed with brine, dried, and filtered. The solvent was evaporated under reduced pressure. The residue was purified by flash chromatography $\left(1 \% \mathrm{Et}_{3} \mathrm{~N}\right.$ deactivated $\mathrm{SiO}_{2}, 8: 2$ pentane $/ \mathrm{Et}_{2} \mathrm{O}$) to afford 61 mg of (17S)-22 and 63 mg of ($17 R$)-22 as colorless oils. ($\mathbf{1 7 S}$)-22: $R_{\mathrm{f}}=$ 0.56 (5:5 cyclohexane/Et $\left.{ }_{2} \mathrm{O}\right) .[a]_{\mathrm{D}}^{20}=-2.2\left(c=1, \mathrm{CHCl}_{3}\right)$. IR: $\tilde{v}=$ 3470, 2955, 2929, 2857, 1252, $1055 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=5.15-5.60(\mathrm{~m}, 2 \mathrm{H}), 4.60-4.90(\mathrm{~m}, 1 \mathrm{H}), 3.80-4.00(\mathrm{~m}$, $3 \mathrm{H}), 3.75-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.25-3.75(\mathrm{~m}, 4 \mathrm{H}), 2.45-2.65(\mathrm{~m}, 1 \mathrm{H})$, $2.00-2.45(\mathrm{~m}, 3 \mathrm{H}), 1.50-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.00-1.50(\mathrm{~m}, 13 \mathrm{H}), 0.60-$ $1.00(\mathrm{~m}, 18 \mathrm{H}),-0.20-0.20(\mathrm{~m}, 12 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=134.0(1 \mathrm{C}, \mathrm{CH}), 130.5(1 \mathrm{C}, \mathrm{CH}), 97.0(1 \mathrm{C}, \mathrm{CH})$, $76.5(3 \mathrm{C}, \mathrm{CH}), 61.9\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 60.9\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 59.0(1 \mathrm{C}, \mathrm{CH})$, $46.1(1 \mathrm{C}, \mathrm{CH}), 44.6\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 36.1\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 32.7\left(1 \mathrm{C}, \mathrm{CH}_{2}\right)$, $31.9\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 26.0\left(6 \mathrm{C}, \mathrm{CH}_{3}\right), 25.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 22.7\left(1 \mathrm{C}, \mathrm{CH}_{2}\right)$, $20.7\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 18.2(2 \mathrm{C}, \mathrm{Cq}), 15.5\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 14.2\left(1 \mathrm{C}, \mathrm{CH}_{3}\right)$, $-3.9\left(2 \mathrm{C}, \mathrm{CH}_{3}\right),-4.5\left(2 \mathrm{C}, \mathrm{CH}_{3}\right) \mathrm{ppm}$. $\mathrm{MS}\left(\mathrm{ESI}^{+}\right): m / z=483.4[\mathrm{M}$ $\left.+\mathrm{H}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}_{2}\right]^{+}, 351.3\left[\mathrm{M}+\mathrm{H}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}_{2}-\mathrm{OTBS}\right]^{+}, 219.2[\mathrm{M}+$ $\left.\mathrm{H}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}_{2}-2 \mathrm{OTBS}\right]^{+}$. HRMS (ESI+): calcd. for $\mathrm{C}_{27} \mathrm{H}_{55} \mathrm{O}_{3} \mathrm{Si}_{2}$ $\left[\mathrm{M}+\mathrm{H}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}_{2}\right]^{+} 483.3683$; found 483.3690. (17R)-22: $R_{\mathrm{f}}=0.46$ ($5: 5$ cyclohexane/ $\mathrm{Et}_{2} \mathrm{O}$). $[a]_{\mathrm{D}}^{20}=+37.9\left(c=1, \mathrm{CHCl}_{3}\right) . \mathrm{IR}: \tilde{v}=3470$, 2955, 2929, 2857, 1252, $1055 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.15-5.60(\mathrm{~m}, 2 \mathrm{H}), 4.60-4.90(\mathrm{~m}, 1 \mathrm{H}), 3.80-4.00(\mathrm{~m}, 3 \mathrm{H})$, $3.75-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.25-3.75(\mathrm{~m}, 4 \mathrm{H}), 2.45-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.00-$ $2.45(\mathrm{~m}, 3 \mathrm{H}), 1.50-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.00-1.50(\mathrm{~m}, 13 \mathrm{H}), 0.60-1.00$ (m, 18 H$),-0.20-0.20(\mathrm{~m}, 12 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=134.0(1 \mathrm{C}, \mathrm{CH}), 130.5(1 \mathrm{C}, \mathrm{CH}), 97.7(1 \mathrm{C}, \mathrm{CH}), 76.8(3 \mathrm{C}$, $\mathrm{CH}), 61.9\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 61.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 58.8(1 \mathrm{C}, \mathrm{CH}), 46.2(1 \mathrm{C}$,
$\left.\mathrm{CH}_{2}\right), 44.5\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 36.1\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 32.8\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 31.9(1$ $\left.\mathrm{C}, \mathrm{CH}_{2}\right), 25.8\left(6 \mathrm{C}, \mathrm{CH}_{3}\right), 25.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 22.7\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 20.7$ $\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 18.1(2 \mathrm{C}, \mathrm{Cq}), 15.5\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 14.2\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-3.9$ $\left(2 \mathrm{C}, \mathrm{CH}_{3}\right),-4.5\left(2 \mathrm{C}, \mathrm{CH}_{3}\right) \mathrm{ppm}$. MS $\left(\mathrm{ESI}^{+}\right): \mathrm{m} / \mathrm{z}=483.4[\mathrm{M}+$ $\left.\mathrm{H}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}_{2}\right]^{+}, 351.3\left[\mathrm{M}+\mathrm{H}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}_{2}-\mathrm{OTBS}\right]^{+}, 219.2[\mathrm{M}+\mathrm{H}-$ $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}_{2}-2 \mathrm{OTBS}^{+}$. HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{27} \mathrm{H}_{55} \mathrm{O}_{3} \mathrm{Si}_{2}[\mathrm{M}+$ $\left.\mathrm{H}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}_{2}\right]^{+} 483.3683$; found 483.3690 .
Ethyl (Z)-9-\{(1S,2R,3R,5S)-3,5-Bis(tert-butyldimethylsilyloxy)-2-[(3R,E)-3-(1-ethoxyethoxy)oct-1-enyl]cyclopentyl\}non-7-enoate [$\mathbf{(1 7 2 R} \mathbf{)} \mathbf{- 2 4]}$: A Dess-Martin periodinane solution ($400 \mu \mathrm{~L}$ of a 0.47 m solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) was added to a solution of (17R)-22 ($62 \mathrm{mg}, 0.11 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$. After completion of the reaction (TLC), 10% aq. $\mathrm{NaHCO}_{3} / \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1: 1,15 \mathrm{~mL})$ was added. After stirring for 1.5 h , the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times$ 20 mL). The combined organic layers were washed with brine, dried, and filtered. The solvent was evaporated under reduced pressure. The material was directly used in the next step without further purification. NaHMDS ($400 \mu \mathrm{~L}, 2 \mathrm{~m}$ THF, 0.8 mmol) was added dropwise to a suspension of dried phosphonium salt 23 (433 mg , $0.87 \mathrm{mmol})$ in degassed THF (10 mL) at $-50^{\circ} \mathrm{C}$. After 1 h , the mixture was added through a cannula to the aldehyde in degassed THF $(7 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After 3 h at $-50^{\circ} \mathrm{C}$, the reaction mixture was allowed to warm to room temp. overnight. The reaction was quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine, dried, and filtered. The solvent was evaporated under reduced pressure and the residue purified by column chromatography ($1 \% \mathrm{Et}_{3} \mathrm{~N}$ deactivated $\mathrm{SiO}_{2}, 95: 5$ pentane $/ \mathrm{Et}_{2} \mathrm{O}$) to afford 54 mg of $(17 R)-24$ as a colorless oil $(81 \%$ over two steps). $R_{\mathrm{f}}=0.51$ (9:1 cyclohexane/Et O). $[\alpha]_{\mathrm{D}}^{20}=+35.2(c$ $\left.=1, \mathrm{CHCl}_{3}\right)$. IR: $\tilde{\mathrm{v}}=2955,2929,2857,1736,1251,1060 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.15-5.60(\mathrm{~m}, 4 \mathrm{H}), 4.55-4.80(\mathrm{~m}, 1$ H), 4.00-4.15 (m, 2 H), 3.75-4.00 (m, 2 H), 3.25-3.55 (m, 2 H$)$, 2.50-2.75 (m, 1 H), 2.15-2.40 (m, 3 H), 1.90-2.15 (m, 4 H), 1.45$1.90(\mathrm{~m}, 6 \mathrm{H}), 1.00-1.45(\mathrm{~m}, 21 \mathrm{H}), 0.70-1.00(\mathrm{~m}, 20 \mathrm{H}),-0.10-$ $0.10(\mathrm{~m}, 12 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.8(1 \mathrm{C}$, Cq), $133.6(1 \mathrm{C}, \mathrm{CH}), 132.3(1 \mathrm{C}, \mathrm{CH}), 130.6(1 \mathrm{C}, \mathrm{CH}), 128.6(1$ C, CH), 97.6 ($1 \mathrm{C}, \mathrm{CH}$), 77.1 ($1 \mathrm{C}, \mathrm{CH}$), 76.0 ($1 \mathrm{C}, \mathrm{CH}$), 76.3 (1 C, CH), $61.4\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 60.2\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 59.1\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 52.5(1$ C, CH$), 50.4(1 \mathrm{C}, \mathrm{CH}), 44.5\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 36.1\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 34.4(1$ C, CH_{2}), $32.0\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 29.4\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 29.0\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 27.3$ $\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 26.4\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 25.9\left(6 \mathrm{C}, \mathrm{CH}_{3}\right), 25.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 25.0$ ($1 \mathrm{C}, \mathrm{CH}_{2}$), $22.7\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 20.6\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 18.1(2 \mathrm{C}, \mathrm{Cq}), 15.5$ $\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 14.2\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.3\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.4\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.5$ $\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.6\left(1 \mathrm{C}, \mathrm{CH}_{3}\right) \mathrm{ppm}$. $\mathrm{MS}\left(\mathrm{ESI}^{+}\right): m / z=621.6[\mathrm{M}+$ $\left.\mathrm{H}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}_{2}\right]^{+}$. HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{36} \mathrm{H}_{69} \mathrm{O}_{4} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}-$ $\left.\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}_{2}\right]^{+}$621.4734; found 621.4730.
Ethyl (Z)-9-\{(1S,2R,3R,5S)-3,5-Bis(tert-butyldimethylsilyloxy)-2-[(3S,E)-3-(1-ethoxyethoxy)oct-1-enyl]cyclopentyl\}non-7-enoate [(17S)-24]: The same procedure as described for the synthesis of ($17 R$)-24 was applied to 35 mg of ($17 S$)-22 to give 11 mg of ($17 S$)$24\left(25 \%\right.$ over two steps, non-optimized). $R_{\mathrm{f}}=0.55$ ($8: 2$ cyclohexane $\left./ \mathrm{Et}_{2} \mathrm{O}\right) \cdot[\alpha]_{\mathrm{D}}^{20}=+25.0\left(c=1, \mathrm{CHCl}_{3}\right) . \mathrm{IR}: \tilde{\mathrm{v}}=2954,2928,2856$, $1738,1251,1060 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.15-5.60$ $(\mathrm{m}, 4 \mathrm{H}), 4.55-4.80(\mathrm{~m}, 1 \mathrm{H}), 4.00-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.75-4.00(\mathrm{~m}, 2$ H), $3.25-3.55(\mathrm{~m}, 2 \mathrm{H}), 2.50-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.40(\mathrm{~m}, 3 \mathrm{H})$, $1.90-2.15(\mathrm{~m}, 4 \mathrm{H}), 1.45-1.90(\mathrm{~m}, 6 \mathrm{H}), 1.00-1.45(\mathrm{~m}, 21 \mathrm{H}), 0.70-$ $1.00(\mathrm{~m}, 20 \mathrm{H}),-0.10-0.10(\mathrm{~m}, 12 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=173.8(1 \mathrm{C}, \mathrm{Cq}), 133.6(1 \mathrm{C}, \mathrm{CH}), 132.1(1 \mathrm{C}, \mathrm{CH})$, $130.5(1 \mathrm{C}, \mathrm{CH}), 128.6(1 \mathrm{C}, \mathrm{CH}), 97.5(1 \mathrm{C}, \mathrm{CH}), 77.0(1 \mathrm{C}, \mathrm{CH})$, $76.3(1 \mathrm{C}, \mathrm{CH}), 76.0(1 \mathrm{C}, \mathrm{CH}), 61.4\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 60.2\left(1 \mathrm{C}, \mathrm{CH}_{2}\right)$, $58.9\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 52.5(1 \mathrm{C}, \mathrm{CH}), 50.3(1 \mathrm{C}, \mathrm{CH}), 44.5\left(1 \mathrm{C}, \mathrm{CH}_{2}\right)$, $36.1\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 34.4\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 31.9\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 29.4\left(1 \mathrm{C}, \mathrm{CH}_{2}\right)$,
$29.0\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 27.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 26.4\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 25.9\left(6 \mathrm{C}, \mathrm{CH}_{3}\right)$, $25.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 25.0\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 22.7\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 20.6\left(1 \mathrm{C}, \mathrm{CH}_{3}\right)$, $18.1(2 \mathrm{C}, \mathrm{Cq}), 15.4-15.6\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 14.1-14.4\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.3$ $\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.4\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.5\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.6\left(1 \mathrm{C}, \mathrm{CH}_{3}\right) \mathrm{ppm}$. MS (ESI^{+}): $m / z=621.6\left[\mathrm{M}+\mathrm{H}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}_{2}\right]^{+}$. HRMS $\left(\mathrm{ESI}^{+}\right)$: calcd. for $\mathrm{C}_{36} \mathrm{H}_{69} \mathrm{O}_{4} \mathrm{Si}_{2}\left[\mathrm{M}+\mathrm{H}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}_{2}\right]^{+} 621.4734$; found 621.4725 .
Ethyl (Z)-9-\{(1S,2R,3R,5S)-3,5-Bis(tert-butyldimethylsilyloxy)-2-[(E)-3-oxooct-1-enyl]cyclopentyl\}non-7-enoate (25): PPTS (5 mg , 0.02 mmol) was added to a solution of racemic $24(142 \mathrm{mg}$, 0.2 mmol) in $\mathrm{EtOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(5: 1,12 \mathrm{~mL})$. After 24 h at room temp., the reaction was quenched with a saturated aqueous solution of $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times$ 10 mL). The combined organic layers were washed with brine, dried, and filtered. The solvent was evaporated under reduced pressure. The residue was purified by column chromatography (7:3 pentane $/ \mathrm{Et}_{2} \mathrm{O}$) to afford 90 mg of the corresponding allylic alcohol as a colorless oil $(80 \%) . R_{\mathrm{f}}=0.78$ ($5: 5$ cyclohexane $/ E t_{2} \mathrm{O}$). $[\alpha]_{\mathrm{D}}^{20}=$ $+10.0\left(c=1, \mathrm{CHCl}_{3}\right)$. IR: $\tilde{\mathrm{v}}=3458,2954,2929,2856,1738,1251$, $1066 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.20-5.70(\mathrm{~m}, 4 \mathrm{H})$, $4.00-4.20(\mathrm{~m}, 3 \mathrm{H}), 3.70-4.00(\mathrm{~m}, 2 \mathrm{H}), 2.50-3.80(\mathrm{~m}, 1 \mathrm{H}), 2.20-$ $2.40(\mathrm{~m}, 3 \mathrm{H}), 1.80-2.15(\mathrm{~m}, 5 \mathrm{H}), 1.00-1.75(\mathrm{~m}, 21 \mathrm{H}), 0.70-1.00$ $(\mathrm{m}, 18 \mathrm{H}),-0.10-0.10(\mathrm{~m}, 12 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.9(1 \mathrm{C}, \mathrm{Cq}), 135.5(1 \mathrm{C}, \mathrm{CH}), 130.2(1 \mathrm{C}, \mathrm{CH}), 129.8(1 \mathrm{C}$, $\mathrm{CH}), 128.7(1 \mathrm{C}, \mathrm{CH}), 76.2(1 \mathrm{C}, \mathrm{CH}), 76.0(1 \mathrm{C}, \mathrm{CH}), 73.0(1 \mathrm{C}$, $\mathrm{CH}), 60.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 52.4(1 \mathrm{C}, \mathrm{CH}), 50.4(1 \mathrm{C}, \mathrm{CH}), 44.4(1 \mathrm{C}$, CH_{2}), $37.5\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 34.4\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 29.8\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 29.4(1$ C, CH_{2}), $28.9\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 27.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 26.4\left(2 \mathrm{C}, \mathrm{CH}_{2}\right), 25.9$ ($6 \mathrm{C}, \mathrm{CH}_{3}$), $25.9\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 25.4\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 22.7\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 18.3$ $(2 \mathrm{C}, \mathrm{Cq}), 14.2\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.3\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.4\left(2 \mathrm{C}, \mathrm{CH}_{3}\right),-4.6$ $\left(1 \mathrm{C}, \mathrm{CH}_{3}\right) \mathrm{ppm}$. MS $\left(\mathrm{ESI}^{+}\right): m / z=621.6\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 489.5$ [$\mathrm{M}+\mathrm{H}-\mathrm{OTBS}]^{+}, 357.4$ [M + H - 2 OTBS] ${ }^{+}$. HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{36} \mathrm{H}_{69} \mathrm{O}_{4} \mathrm{Si}_{2}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+} 621.4734$; found 621.4738. A Dess-Martin periodinane solution ($500 \mu \mathrm{~L}$ of a 0.47 m solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.24 \mathrm{mmol}$) was added to a solution of the alcohol ($89 \mathrm{mg}, 0.14 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. After completion of the reaction (TLC), 10% aq. $\mathrm{NaHCO}_{3} / \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1: 1,15 \mathrm{~mL})$ was added. After stirring for 1.5 h , the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine, dried, and filtered. The solvent was evaporated under reduced pressure. The residue was purified by column chromatography ($9: 1$ pentane $/ \mathrm{Et}_{2} \mathrm{O}$) to afford 86 mg of the enone $\mathbf{2 5}$ as a colorless oil $(97 \%) . R_{\mathrm{f}}=0.78$ ($5: 5$ cyclohexane/ $\mathrm{Et}_{2} \mathrm{O}$). $[a]_{\mathrm{D}}^{20}=+0.5$ $\left(c=1, \mathrm{CHCl}_{3}\right) . \mathrm{IR}: \tilde{v}=2954,2929,2857,1736,1697,1674,1626$, $1251,1067 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.65(\mathrm{dd}, J=$ 9.8, 5.7 Hz 1 H), 6.13 (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.15-5.45(\mathrm{~m}, 2 \mathrm{H})$, $4.10(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.90-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.90(\mathrm{~m}, 1 \mathrm{H})$, $2.70-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.30-2.40(\mathrm{~m}, 1 \mathrm{H})$, $2.26(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.80-2.20(\mathrm{~m}, 5 \mathrm{H}), 1.50-1.80(\mathrm{~m}, 5 \mathrm{H})$, $1.15-1.50(\mathrm{~m}, 14 \mathrm{H}), 0.70-1.00(\mathrm{~m}, 18 \mathrm{H}),-0.10-0.10(\mathrm{~m}, 12 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=200.3(1 \mathrm{C}, \mathrm{Cq})$, $173.8(1$ C, Cq), $145.5(1 \mathrm{C}, \mathrm{CH}), 131.5(1 \mathrm{C}, \mathrm{CH}), 130.8(1 \mathrm{C}, \mathrm{CH}), 128.1$ ($1 \mathrm{C}, \mathrm{CH}$), $75.8(1 \mathrm{C}, \mathrm{CH}), 75.5(1 \mathrm{C}, \mathrm{CH}), 60.2\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 52.9$ $(1 \mathrm{C}, \mathrm{CH}), 51.0(1 \mathrm{C}, \mathrm{CH}), 44.5\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 40.9\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 34.4$ ($1 \mathrm{C}, \mathrm{CH}_{2}$), $31.6\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 29.4\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 29.0\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 27.4$ $\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 26.6\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 25.9\left(6 \mathrm{C}, \mathrm{CH}_{3}\right), 25.0\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 24.1$ $\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 22.6\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 18.1(2 \mathrm{C}, \mathrm{Cq}), 14.4\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 14.0$ $\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.3\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.5\left(2 \mathrm{C}, \mathrm{CH}_{3}\right),-4.6(1 \mathrm{C}, \mathrm{Cq}) \mathrm{ppm}$. MS (ESI ${ }^{+}$): $m / z=637.6[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{36} \mathrm{H}_{69} \mathrm{O}_{5} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+}$637.4684; found 637.4692.
Ethyl (Z)-9-\{($1 S, 2 R, 3 R, 5 S)-3,5-B i s(t e r t-b u t y l d i m e t h y l s i l y l o x y)-2-~$ [(E)-3-hydroxyoct-1-enyl]cyclopentyl\}non-7-enoate [(17S)-26]: Li$\mathrm{AlH}_{4}(820 \mu \mathrm{~L}, 1 \mathrm{~m}$ in THF, 0.82 mmol$)$ was added dropwise to a solution of dry (S)-binaphthol $(235 \mathrm{mg}, 0.83 \mathrm{mmol})$ in freshly dis-
tilled THF at room temp. After 5 min , a solution of freshly distilled dried $\mathrm{EtOH}(820 \mu \mathrm{~L}, 1 \mathrm{~m}$ in THF, 0.820 mmol) was added dropwise. The reaction mixture was cooled to $-100^{\circ} \mathrm{C}$, and enone $\mathbf{2 5}$ $(85 \mathrm{mg}, 0.134 \mathrm{mmol}$) was added through a cannula to the reaction mixture. Then $\mathrm{MeOH}(1 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2.5 \mathrm{~mL})$ were added, and the suspension was filtered through a plug of Celite that had been previously washed with $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was washed with $\mathrm{H}_{2} \mathrm{O}$ $(10 \mathrm{~mL})$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine, dried, and filtered. The solvent was evaporated under reduced pressure. Excess binaphthol was precipitated with hexanes. The crude residue was purified by column chromatography $\left(9: 1\right.$ heptane $\left./ \mathrm{Et}_{2} \mathrm{O}\right)$ to afford 69 mg of $(17 S)-26$ as a colorless oil $(81 \%) . R_{\mathrm{f}}=0.60(7: 3$ cyclohexane/ $\left.\mathrm{Et}_{2} \mathrm{O}\right) \cdot[a]_{\mathrm{D}}^{20}=+15.0\left(c=1, \mathrm{CHCl}_{3}\right)$. IR: $\tilde{v}=3485,2954,2928$, 2856, 1738, 1251, $1065 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $5.25-5.70(\mathrm{~m}, 4 \mathrm{H}), 4.00-4.20(\mathrm{~m}, 3 \mathrm{H}), 3.70-4.00(\mathrm{~m}, 2 \mathrm{H}), 2.50$ $2.80(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.40(\mathrm{~m}, 3 \mathrm{H}), 1.80-2.15(\mathrm{~m}, 5 \mathrm{H}), 1.10-1.75$ (m, 20 H$), 0.70-1.00(\mathrm{~m}, 18 \mathrm{H}),-0.10-0.10(\mathrm{~m}, 12 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.9(1 \mathrm{C}, \mathrm{Cq}), 135.5(1 \mathrm{C}, \mathrm{CH})$, $130.2(1 \mathrm{C}, \mathrm{CH}), 129.9(1 \mathrm{C}, \mathrm{CH}), 128.8(1 \mathrm{C}, \mathrm{CH}), 76.2(1 \mathrm{C}, \mathrm{CH})$, $76.0(1 \mathrm{C}, \mathrm{CH}), 73.0(1 \mathrm{C}, \mathrm{CH}), 60.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 52.6(1 \mathrm{C}, \mathrm{CH})$, $50.4(1 \mathrm{C}, \mathrm{CH}), 44.4\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 37.6\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 34.5\left(1 \mathrm{C}, \mathrm{CH}_{2}\right)$, $31.9\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 29.4\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 29.0\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 27.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right)$, $26.4\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 26.0\left(6 \mathrm{C}, \mathrm{CH}_{3}\right), 25.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 25.0\left(1 \mathrm{C}, \mathrm{CH}_{2}\right)$, $22.7\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 18.1(2 \mathrm{C}, \mathrm{Cq}), 14.4\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 14.1\left(1 \mathrm{C}, \mathrm{CH}_{3}\right)$, $-4.3\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.4\left(2 \mathrm{C}, \mathrm{CH}_{3}\right),-4.6\left(1 \mathrm{C}, \mathrm{CH}_{3}\right) \mathrm{ppm} . \mathrm{MS}\left(\mathrm{ESI}^{+}\right)$: $m / z=639.5[\mathrm{M}+\mathrm{H}]^{+}, 621.6\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 489.5[\mathrm{M}+\mathrm{H}-$ $\mathrm{OTBS}^{+}, 357.4$ [$\mathrm{M}+\mathrm{H}-2 \mathrm{OTBS}^{+}$. HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{36} \mathrm{H}_{71} \mathrm{O}_{5} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} 639.4840$; found 639.4840 .
17- $\mathbf{F}_{\mathbf{2 t}}$-Dihomo-IsoP (2): $\mathrm{HCl}(500 \mu \mathrm{~L}, 1 \mathrm{~m}$ in THF, 0.50 mmol$)$ was added to a solution of ($17 S$)-24 (11 mg, 0.015 mmol$)$ in THF $(1 \mathrm{~mL})$. After stirring at room temp. overnight, brine (5 mL) was added and the mixture extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine, dried, and filtered, and the solvent was removed under reduced pressure. The residue was directly used in the next step without further purification. $\mathrm{LiOH}(1.5 \mathrm{mg}, 0.05 \mathrm{mmol})$ was added to a solution of the previous material in THF/ $\mathrm{H}_{2} \mathrm{O}(1: 1,1 \mathrm{~mL})$. After stirring overnight at room temp., the mixture was cooled to $0^{\circ} \mathrm{C}$, and a solution of $\mathrm{HCl}(1 \mathrm{~m})$ was added until $\mathrm{pH}=1$. The mixture was extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine, dried, and filtered, the solvent was removed under reduced pressure, and the residue purified by flash chromatography (9:1 EtOAc/MeOH) to afford 3.5 mg of $17-\mathrm{F}_{2 \mathrm{t}}$-dihomo-IsoP (2) as a yellow oil (58% over two steps). $R_{\mathrm{f}}=0.64$ ($9: 1 \mathrm{EtOAc} / \mathrm{MeOH}+$ $1 \% \mathrm{AcOH}) .[a]_{\mathrm{D}}^{20}=+12.0(c=1, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\left[\mathrm{D}_{4}\right] \mathrm{MeOH}\right): \delta=5.25-5.65(\mathrm{~m}, 4 \mathrm{H}), 3.80-4.10(\mathrm{~m}, 3 \mathrm{H}), 2.55-2.80$ (m, 1 H), 2.40-2.55 (m, 1 H), 2.27 (t, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.90-2.20$ (m, 5 H$), 1.20-1.80(\mathrm{~m}, 17 \mathrm{H}), 0.80-1.00(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz},\left[\mathrm{D}_{4}\right] \mathrm{MeOH}\right): \delta=177.9(1 \mathrm{C}, \mathrm{Cq}), 136.9(1 \mathrm{C}, \mathrm{CH}), 131.3$ ($1 \mathrm{C}, \mathrm{CH}$), $130.6(1 \mathrm{C}, \mathrm{CH}), 129.5(1 \mathrm{C}, \mathrm{CH}), 76.4(1 \mathrm{C}, \mathrm{CH}), 76.3$ ($1 \mathrm{C}, \mathrm{CH}$), $73.8(1 \mathrm{C}, \mathrm{CH}), 53.8(1 \mathrm{C}, \mathrm{CH}), 51.4(1 \mathrm{C}, \mathrm{CH}), 43.5(1$ $\left.\mathrm{C}, \mathrm{CH}_{2}\right), 38.4\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 35.2\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 33.0\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 30.4$ $\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 29.9\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 28.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 27.4\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 26.3$ $\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 26.1\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 23.7\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 14.4\left(1 \mathrm{C}, \mathrm{CH}_{3}\right) \mathrm{ppm}$. $\mathrm{MS}\left(\mathrm{ESI}^{+}\right): m / z=365.3\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 347.3[\mathrm{M}+\mathrm{H}-$ $\left.2 \mathrm{H}_{2} \mathrm{O}\right]^{+}, 329.3\left[\mathrm{M}+\mathrm{H}-3 \mathrm{H}_{2} \mathrm{O}\right]^{+}$. HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{O}_{4}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$365.2692; found 365.2684.
$\mathbf{1 7 - e p i - 1 7 - \mathrm { F } _ { \mathbf { 2 t } }}$-Dihomo-IsoP [(17R)-2]: The previous procedure as described for the synthesis of $17-\mathrm{F}_{2 \mathrm{t}}$-dihomo-IsoP (2) was applied to 54 mg of $(17 R)-24$ to give 17 mg of 17 -epi-17- $\mathrm{F}_{2 \mathrm{t}}$-dihomo-IsoP $[(17 R)-2](58 \%$ over two steps $) . R_{\mathrm{f}}=0.71(9: 1 \mathrm{EtOAc} / \mathrm{MeOH}+1 \%$ $\mathrm{AcOH}) \cdot[a]_{\mathrm{D}}^{20}=+4.4(c=1, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz},\left[\mathrm{D}_{4}\right]-\right.$
$\mathrm{MeOH}): \delta=5.25-5.65(\mathrm{~m}, 4 \mathrm{H}), 3.80-4.20(\mathrm{~m}, 3 \mathrm{H}), 2.60-2.80(\mathrm{~m}$, $1 \mathrm{H}), 2.40-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.90-2.20(\mathrm{~m}$, $5 \mathrm{H}), 1.20-1.80(\mathrm{~m}, 16 \mathrm{H}), 0.80-1.00(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz},\left[\mathrm{D}_{4}\right] \mathrm{MeOH}$): $\delta=177.0(1 \mathrm{C}, \mathrm{Cq}), 136.6(1 \mathrm{C}, \mathrm{CH}), 131.4$ ($1 \mathrm{C}, \mathrm{CH}$), $129.8(1 \mathrm{C}, \mathrm{CH}), 129.6(1 \mathrm{C}, \mathrm{CH}), 76.2(2 \mathrm{C}, \mathrm{CH}), 73.4$ $(1 \mathrm{C}, \mathrm{CH}), 53.4(1 \mathrm{C}, \mathrm{CH}), 51.4(1 \mathrm{C}, \mathrm{CH}), 43.6\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 38.5$ ($1 \mathrm{C}, \mathrm{CH}_{2}$), $35.2\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 33.0\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 30.5\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 29.9$ ($1 \mathrm{C}, \mathrm{CH}_{2}$), $28.2\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 27.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 26.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 26.1$ ($1 \mathrm{C}, \mathrm{CH}_{2}$), $23.7\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 14.4\left(1 \mathrm{C}, \mathrm{CH}_{3}\right) \mathrm{ppm} . \mathrm{MS}\left(\mathrm{ESI}^{+}\right): \mathrm{m} / \mathrm{z}$ $=365.3\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 347.3\left[\mathrm{M}+\mathrm{H}-2 \mathrm{H}_{2} \mathrm{O}\right]^{+}, 329.3[\mathrm{M}+$ $\left.\mathrm{H}-3 \mathrm{H}_{2} \mathrm{O}\right]^{+}$. HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}-$ $\left.\mathrm{H}_{2} \mathrm{O}\right]^{+} 365.2692$; found 365.2700 .

17- $\mathrm{F}_{2 \mathrm{t}}$-Dihomo-IsoP (2) Derived from (17S)-26: The same procedure described for the synthesis of (17S)- $\mathrm{F}_{2 \mathrm{t}}$-dihomo-IsoP (2) was applied to 69 mg of alcohol ($17 S$)-26 to give 32 mg of $17-\mathrm{F}_{2 \mathrm{t}}$-dihomoIsoP (2;77\% over two steps) with similar spectral data.
(Z)-Hex-3-enyltriphenylphosphonium Iodide (31): A solution of 3-hexyn-1-ol ($6.0 \mathrm{~mL}, 50.9 \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added through a cannula to a solution of $\mathrm{Ph}_{3} \mathrm{P}(19.8 \mathrm{~g}, 75.5 \mathrm{~mol})$, imidazole ($10.2 \mathrm{~g}, 150 \mathrm{~mol}$), and iodine ($19.0 \mathrm{~g}, 74.8 \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(200 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was warmed to room temp. over 2.5 h , and a solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(25 \%, 300 \mathrm{~mL})$ was added. After stirring for 15 min , the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed with brine, dried, and filtered. The solvent was evaporated under reduced pressure. The residue was purified by column chromatography (100% pentane) to afford 10.7 g of the iodide as a colorless oil (100%). $R_{\mathrm{f}}=0.90\left(5: 5\right.$ cyclohexane/Et $\left.\mathrm{t}_{2} \mathrm{O}\right)$. IR: $\tilde{\mathrm{v}}=2961,1454$, $1238,1168 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.40-5.65(\mathrm{~m}$, $1 \mathrm{H}), 5.15-5.35(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.90-2.20(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=134.3(1 \mathrm{C}, \mathrm{CH}), 127.2(1 \mathrm{C}, \mathrm{CH})$, $31.5\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 20.8\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 14.3\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 5.8\left(1 \mathrm{C}, \mathrm{CH}_{2}\right)$ $\mathrm{ppm} . \mathrm{Ph}_{3} \mathrm{P}(20.0 \mathrm{~g}, 76.3 \mathrm{~mol})$ and a catalytic amount of $\mathrm{K}_{2} \mathrm{CO}_{3}$ were added to a solution of this iodide ($10.7 \mathrm{~g}, 50.9 \mathrm{~mol}$) in $\mathrm{CH}_{3} \mathrm{CN}$ $(300 \mathrm{~mL})$. The reaction mixture was heated at reflux overnight, then cooled, and the solvent was removed under reduced pressure. The residue was purified by column chromatography (solid SiO_{2} deposit, $9: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$) to afford 21.0 g of the phosphonium salt 31 as a white powder (87% yield over two steps). $R_{\mathrm{f}}=0.30$ (9:1 EtOAc/MeOH). M.p. $120^{\circ} \mathrm{C}$. IR: $\tilde{v}=3254,2875,1706,1471$, 1253, $1051 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.55-7.90(\mathrm{~m}$, $15 \mathrm{H}), 5.20-5.50(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.75(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.55(\mathrm{~m}, 2 \mathrm{H})$, $1.75-1.90(\mathrm{~m}, 2 \mathrm{H}), 0.80(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=135.0(3 \mathrm{C}, \mathrm{CH})$, 134.1 ($3 \mathrm{C}, \mathrm{Cq}$), 133.2 (6 C, CH), 130.3 ($6 \mathrm{C}, \mathrm{CH}$), 124.9 ($1 \mathrm{C}, \mathrm{CH}$), 124.7 ($1 \mathrm{C}, \mathrm{CH}$), 117.5 (d, $\left.J_{\mathrm{C}-\mathrm{P}}=85.4 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{CH}_{2}\right), 22.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=48.5 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{CH}_{2}\right)$, $20.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=30.0 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{CH}_{2}\right), 13.7\left(1 \mathrm{C}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{31} \mathrm{P} \mathrm{NMR}$ $\left(120 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=24.5 \mathrm{ppm}$.

Methyl (E)-7-I($1 S, 2 R, 3 R, 5 S$)-2-(2-Acetoxyethyl)-3,5-bis(tert-butyl-dimethylsilyloxy)cyclopentyl]-5-oxohept-6-enoate (28): A DessMartin periodinane solution (5.0 mL of a 0.47 m solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.35 \mathrm{mmol}$) was added dropwise to a solution of ent -5 ($305 \mathrm{mg}, 0.68 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. After completion of the reaction (TLC), 10% aq. $\mathrm{NaHCO}_{3} / \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1: 1,40 \mathrm{~mL})$ was added. After stirring for 1.5 h , the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine, dried, and filtered. The solvent was evaporated under reduced pressure. The material was directly used in the next step without further purification. NaHMDS ($2.0 \mathrm{~mL}, 2 \mathrm{~m}$ in THF, 4.0 mmol) was added dropwise to a solution of the β-keto phosphonate $27(1.15 \mathrm{~g}, 4.11 \mathrm{mmol})$ in THF $(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After 1 h
at $0^{\circ} \mathrm{C}$, the reaction mixture was added through a cannula to the aldehyde THF $(15 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temp. overnight. Then the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 40 \mathrm{~mL})$. The combined organic layers were washed with brine, dried, and filtered. The solvent was evaporated under reduced pressure. The residue was purified by column chromatography ($7: 3$ pentane $/ \mathrm{Et}_{2} \mathrm{O}$) to afford 286 mg of the enone 28 as a colorless oil (73% over two steps). $R_{\mathrm{f}}=0.48$ ($5: 5$ cyclohexane/Et $\left.{ }_{2} \mathrm{O}\right) \cdot[a]_{\mathrm{D}}^{20}=-23.0\left(c=1, \mathrm{CHCl}_{3}\right)$. IR: $\tilde{v}=2929,1737,1247$, $1055 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.60(\mathrm{dd}, J=10.4$, $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-4.10(\mathrm{~m}, 2 \mathrm{H}), 3.75-$ $3.95(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.65-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 2.30-2.45(\mathrm{~m}, 3 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.80-2.00$ $(\mathrm{m}, 2 \mathrm{H}), 1.35-1.75(\mathrm{~m}, 3 \mathrm{H}), 0.83(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 18 \mathrm{H}),-0.01(\mathrm{~d}$, $J=12.0 \mathrm{~Hz}, 12 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=199.0$ ($1 \mathrm{C}, \mathrm{Cq}$), 173.7 ($1 \mathrm{C}, \mathrm{Cq}$), 171.1 ($1 \mathrm{C}, \mathrm{Cq}$), 144.9 ($1 \mathrm{C}, \mathrm{CH}$), 131.4 ($1 \mathrm{C}, \mathrm{CH}$), 76.1 ($1 \mathrm{C}, \mathrm{CH}$), $75.3(1 \mathrm{C}, \mathrm{CH}), 63.2\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 53.2$ $(1 \mathrm{C}, \mathrm{CH}), 51.6\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 46.4(1 \mathrm{C}, \mathrm{CH}), 44.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 39.8$ $\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 33.1\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 28.0\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 25.8\left(6 \mathrm{C}, \mathrm{CH}_{3}\right), 21.1$ $\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 19.2\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 18.0(2 \mathrm{C}, \mathrm{Cq}),-4.3\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.3$ $\left(2 \mathrm{C}, \mathrm{CH}_{3}\right),-4.8\left(1 \mathrm{C}, \mathrm{CH}_{3}\right) \mathrm{ppm}$. MS $\left(\mathrm{ESI}^{+}\right): \mathrm{m} / z=571.4[\mathrm{M}+$ $\mathrm{H}]^{+}, 439.3[\mathrm{M}-\mathrm{OTBS}]^{+}, 307.2[\mathrm{M}-2 \mathrm{OTBS}]^{+}$. HRMS $\left(\mathrm{ESI}^{+}\right):$ calcd. for $\mathrm{C}_{29} \mathrm{H}_{55} \mathrm{O}_{7} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+}$571.3486; found 571.3486.

Methyl (E)-7-I($1 S, 2 R, 3 R, 5 S$)-2-(2-Acetoxyethyl)-3,5-bis(tert-butyl-dimethylsilyloxy)cyclopentyl]-5-(tert-butyldimethylsilyloxy)hept-6enoate [(5RS)-29]: $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(98 \mathrm{mg}, 0.26 \mathrm{mmol})$ was added to a solution of enone $28(150 \mathrm{mg}, 0.26 \mathrm{mmol})$ in $\mathrm{MeOH}(15 \mathrm{~mL})$. The mixture was cooled to $0^{\circ} \mathrm{C}$, and NaBH_{4} was added (7.6 mg , 0.20 mmol). After 10 min , the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ $(12 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$. The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine, dried, and filtered. The solvent was evaporated under reduced pressure. The residue was purified by column chromatography ($8: 2$ pentane $/ \mathrm{Et}_{2} \mathrm{O}$) to afford 145 mg of the allylic alcohol $(96 \%) . R_{\mathrm{f}}=0.22\left(5: 5\right.$ cyclohexane $\left./ \mathrm{Et}_{2} \mathrm{O}\right) .[\alpha]_{\mathrm{D}}^{20}=-27.2(c=1$, $\left.\mathrm{CHCl}_{3}\right)$. IR: $\tilde{v}=3480,2929,1738,1248,1056 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.45-5.60(\mathrm{~m}, 1 \mathrm{H}), 5.25-5.45(\mathrm{~m}, 1 \mathrm{H})$, 4.15-4.35 (m, 1 H), 3.90-4.15 (m, 2 H$), 3.70-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.64$ (s, 3 H), 2.40-2.65 (m, 1 H), 2.20-2.40 (m, 3 H), 2.05-2.20 (m, 1 H), $2.00(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~s}, 1 \mathrm{H}), 1.60-1.80(\mathrm{~m}, 3 \mathrm{H}), 1.45-1.60(\mathrm{~m}$, $4 \mathrm{H}), 0.85(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 18 \mathrm{H}),-0.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 12 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.2(1 \mathrm{C}, \mathrm{Cq}), 171.5(1 \mathrm{C}, \mathrm{Cq})$, 135.7 ($1 \mathrm{C}, \mathrm{CH}$), 130.0 ($1 \mathrm{C}, \mathrm{CH}$), 76.2 ($1 \mathrm{C}, \mathrm{CH}$), 72.6 ($1 \mathrm{C}, \mathrm{CH}$), $72.0(1 \mathrm{C}, \mathrm{CH}), 63.5\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 52.8(1 \mathrm{C}, \mathrm{CH}), 51.6\left(1 \mathrm{C}, \mathrm{CH}_{3}\right)$, $45.7(1 \mathrm{C}, \mathrm{CH}), 44.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 36.6\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 33.9\left(1 \mathrm{C}, \mathrm{CH}_{2}\right)$, $28.0\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 25.9\left(6 \mathrm{C}, \mathrm{CH}_{3}\right), 21.2\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 21.0\left(1 \mathrm{C}, \mathrm{CH}_{2}\right)$, $18.1(2 \mathrm{C}, \mathrm{Cq}),-4.2\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.5\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.6\left(1 \mathrm{C}, \mathrm{CH}_{3}\right)$, $-4.7\left(1 \mathrm{C}, \mathrm{CH}_{3}\right) \mathrm{ppm}$. $\mathrm{MS}\left(\mathrm{ESI}^{+}\right): m / z=555.4\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$, $423.2\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}-\mathrm{OTBS}^{+}, 291.2\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}-\right.\right.$ 2 OTBS] ${ }^{+}$. HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{29} \mathrm{H}_{55} \mathrm{O}_{6} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}-$ $\left.\mathrm{H}_{2} \mathrm{O}\right]^{+} 555.3537$; found 555.3534. Imidazole ($70 \mathrm{mg}, 1.0 \mathrm{mmol}$), DMAP ($10 \mathrm{mg}, 0.08 \mathrm{mmol}$), and $\mathrm{TBSCl}(78 \mathrm{mg}, 0.52 \mathrm{mmol})$ were successively added to a solution of the allylic alcohol (197 mg , $0.34 \mathrm{mmol})$ in DMF (15 mL). After stirring overnight, the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, and the combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$ and brine, dried, and filtered. The solvent was evaporated under reduced pressure. The residue was purified by column chromatography ($9: 1$ pentane/ $\mathrm{Et}_{2} \mathrm{O}$) to afford 235 mg of 29 as a colorless oil $(100 \%) . R_{\mathrm{f}}=0.77(5: 5$ cyclohexane/Et $\left.{ }_{2} \mathrm{O}\right) .[a]_{\mathrm{D}}^{20}=-29.4\left(c=1, \mathrm{CHCl}_{3}\right) . \mathrm{IR}: \tilde{\mathrm{v}}=2952$, 2928, 2856, 1741, 1248, $1055 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
$\delta=5.47(\mathrm{dd}, J=10.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.20-5.40(\mathrm{~m}, 1 \mathrm{H}), 3.95-4.20$ $(\mathrm{m}, 3 \mathrm{H}), 3.75-3.95(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.45-2.60(\mathrm{~m}, 1 \mathrm{H})$, 2.25-2.40 (m, 3H), $2.20(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.30-1.85(\mathrm{~m}, 7$ $\mathrm{H}), 0.70-1.00(\mathrm{~m}, 27 \mathrm{H}), 0.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 18 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.1(1 \mathrm{C}, \mathrm{Cq}), 171.2(1 \mathrm{C}, \mathrm{Cq}), 135.8(1$ C, CH), 127.9. ($1 \mathrm{C}, \mathrm{CH}$), 127.5. ($1 \mathrm{C}, \mathrm{CH}$), $76.6(1 \mathrm{C}, \mathrm{CH}), 76.3$ ($1 \mathrm{C}, \mathrm{CH}$), $72.8(1 \mathrm{C}, \mathrm{CH}), 63.5\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 53.0(1 \mathrm{C}, \mathrm{CH}), 52.8$ $(1 \mathrm{C}, \mathrm{CH}), 51.6\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 45.5(1 \mathrm{C}, \mathrm{CH}), 44.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 37.8$ $\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 34.0\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 27.7\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 25.9\left(9 \mathrm{C}, \mathrm{CH}_{3}\right), 21.1$ $\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 20.8\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 18.3(2 \mathrm{C}, \mathrm{Cq}), 18.1(1 \mathrm{C}, \mathrm{Cq}),-4.2$ $\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.3\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.4\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.5\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.6$ $\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.7\left(1 \mathrm{C}, \mathrm{CH}_{3}\right) \mathrm{ppm}$. MS $\left(\mathrm{ESI}^{+}\right): m / z=788.6[\mathrm{M}+$ $\left.\mathrm{H}+\mathrm{Et}_{3} \mathrm{~N}\right]^{+}, 555.4$ [$\mathrm{M}-\mathrm{OTBS}^{+},\left[\mathrm{M}-2 \mathrm{OTBS}^{+}, 291.2[\mathrm{M}-3\right.$ OTBS] ${ }^{+}$. HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{41} \mathrm{H}_{86} \mathrm{NO}_{7} \mathrm{Si}_{3}[\mathrm{M}+\mathrm{H}+$ $\left.\mathrm{Et}_{3} \mathrm{~N}\right]^{+} 788.5712$; found 788.5732 .

Methyl (S,E)-7-[(1S,2R,3R,5S)-3,5-Bis(tert-butyldimethylsilyloxy)-2-(2-hydroxyethyl)cyclopentyl]-5-(tert-butyldimethylsilyloxy)hept-6-enoate [(5S)-30] and Methyl (R, E)-7-[(1S,2R,3R,5S)-3,5-Bis(tert-butyldimethylsilyloxy)-2-(2-hydroxyethyl)cyclopentyl]-5-(tert-butyl-dimethylsilyloxy)hept-6-enoate [(5R)-30]: $\mathrm{K}_{2} \mathrm{CO}_{3}(47 \mathrm{mg}$, 0.36 mmol) was added to a solution of acetate 29 (66 mg , 0.096 mmol) in $\mathrm{MeOH}(5 \mathrm{~mL})$. After 2 h , the reaction was quenched with a solution of $\mathrm{H}_{2} \mathrm{O} / \mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$. The mixture was extracted with pentane $/ \mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$, washed with brine, dried, and filtered. The solvent was evaporated under reduced pressure. The residue was purified by flash chromatography (7:3 pentane/ $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ to afford 25 mg of $(S) \mathbf{- 3 0}$ and 12 mg of $(R) \mathbf{- 3 0}$ as colorless oils, together with 22 mg of racemic 30. (5S)-30: $R_{\mathrm{f}}=0.45(5: 5$ cyclohexane $\left./ \mathrm{Et}_{2} \mathrm{O}\right) .[a]_{\mathrm{D}}^{20}=-14.8\left(c=1, \mathrm{CHCl}_{3}\right)$. IR: $\tilde{\mathrm{v}}=3289$, 2954, 2930, 2857, 1742, 1472, 1253, $1062 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.20-5.65(\mathrm{~m}, 2 \mathrm{H}), 4.00-4.20(\mathrm{~m}, 1 \mathrm{H})$, $3.75-3.95(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.75(\mathrm{~m}, 5 \mathrm{H}), 2.60(\mathrm{~m}, 6 \mathrm{H}), 1.30-1.75$ $(\mathrm{m}, 7 \mathrm{H}), 0.70-1.00(\mathrm{~m}, 27 \mathrm{H}),-0.20-0.20(\mathrm{~m}, 18 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.2(1 \mathrm{C}, \mathrm{Cq}), 135.2(1 \mathrm{C}, \mathrm{CH})$, $128.0(1 \mathrm{C}, \mathrm{CH}), 76.8(1 \mathrm{C}, \mathrm{CH}), 76.2(1 \mathrm{C}, \mathrm{CH}), 72.2(1 \mathrm{C}, \mathrm{CH})$, $61.7\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 53.6(1 \mathrm{C}, \mathrm{CH}), 51.5\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 45.9(1 \mathrm{C}, \mathrm{CH})$, $44.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 37.4\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 33.9\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 32.4\left(1 \mathrm{C}, \mathrm{CH}_{2}\right)$, $25.8\left(9 \mathrm{C}, \mathrm{CH}_{3}\right), 20.4\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 18.1(1 \mathrm{C}, \mathrm{Cq}), 18.0(1 \mathrm{C}, \mathrm{Cq})$, $17.9(1 \mathrm{C}, \mathrm{Cq}),-4.2\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.6\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.7\left(1 \mathrm{C}, \mathrm{CH}_{3}\right)$, $-4.8\left(2 \mathrm{C}, \mathrm{CH}_{3}\right),-4.9\left(1 \mathrm{C}, \mathrm{CH}_{3}\right) \mathrm{ppm}$. $\mathrm{MS}\left(\mathrm{ESI}^{+}\right): \mathrm{m} / \mathrm{z}=645.3[\mathrm{M}$ $+\mathrm{H}]^{+}, 513.2\left[\mathrm{M}+\mathrm{H}-\mathrm{OTBS}^{+}, 381.3\left[\mathrm{M}+\mathrm{H}-2 \mathrm{OTBS}^{+}, 249.2\right.\right.$ $\left[\mathrm{M}+\mathrm{H}-3\right.$ OTBS] ${ }^{+}$. HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{33} \mathrm{H}_{69} \mathrm{O}_{6} \mathrm{Si}_{3}[\mathrm{M}+$ $\mathrm{H}]^{+} 645.4402$; found 645.4408. (5R)-30: $R_{\mathrm{f}}=0.49$ ($5: 5$ cyclohexane/ $\left.\mathrm{Et}_{2} \mathrm{O}\right) \cdot[a]_{\mathrm{D}}^{20}=-15.5\left(c=1, \mathrm{CHCl}_{3}\right) \cdot \mathrm{IR}: \tilde{\mathrm{v}}=3289,2954,2930,2857$, 1742, 1472, 1253, $1062 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $5.35-5.50(\mathrm{~m}, 1 \mathrm{H}), 5.15-5.35(\mathrm{~m}, 1 \mathrm{H}), 4.00-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.80-$ $3.95(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.80(\mathrm{~m}, 5 \mathrm{H}), 2.60(\mathrm{~m}, 6 \mathrm{H}), 1.45-1.65(\mathrm{~m}, 7$ $\mathrm{H}), 0.70-1.00(\mathrm{~m}, 27 \mathrm{H}),-0.20-0.20(\mathrm{~m}, 18 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.4$ ($1 \mathrm{C}, \mathrm{Cq}$), 135.7 ($1 \mathrm{C}, \mathrm{CH}$), 128.3 (1 C, CH), $76.2(2 \mathrm{C}, \mathrm{CH}), 73.1(1 \mathrm{C}, \mathrm{CH}), 61.9\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 54.1(1$ C, CH), $51.7\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 46.0(1 \mathrm{C}, \mathrm{CH}), 44.5\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 37.8(1$ $\left.\mathrm{C}, \mathrm{CH}_{2}\right), 34.0\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 32.7\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 26.0\left(9 \mathrm{C}, \mathrm{CH}_{3}\right), 20.8$ $\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 18.3(1 \mathrm{C}, \mathrm{Cq}), 18.1(2 \mathrm{C}, \mathrm{Cq}),-4.0\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.1$ $\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.6\left(4 \mathrm{C}, \mathrm{CH}_{3}\right) \mathrm{ppm}$. $\mathrm{MS}\left(\mathrm{ESI}^{+}\right): m / z=645.3[\mathrm{M}+$ $\mathrm{H}]^{+}, 513.2\left[\mathrm{M}+\mathrm{H}-\mathrm{OTBS}^{+}, 381.3\left[\mathrm{M}+\mathrm{H}-2 \mathrm{OTBS}^{+}, 249.2\right.\right.$ $\left[\mathrm{M}+\mathrm{H}-3\right.$ OTBS] ${ }^{+}$. HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{33} \mathrm{H}_{69} \mathrm{O}_{6} \mathrm{Si}_{3}[\mathrm{M}+$ $\mathrm{H}]^{+}$645.4402; found 645.4398.

5- $\mathrm{F}_{3 \mathrm{t}}$ - $\mathbf{- s} \mathbf{I s P}$ (3): A Dess-Martin periodinane solution (1.0 mL of a 0.47 m solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.47 \mathrm{mmol}$) was added to a solution of alcohol $(5 S)-30(102 \mathrm{mg}, 0.158 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. After completion of the reaction (TLC), a 10% aq. $\mathrm{NaHCO}_{3} / \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution ($1: 1,20 \mathrm{~mL}$) was added. After stirring for 1.5 h , the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined or-
ganic layers were washed with brine, dried, and filtered. The solvent was evaporated under reduced pressure. The material was directly used in the next step without further purification. KHMDS (1 mL , 0.5 m in toluene, 0.50 mmol) was added dropwise to a suspension of the dried phosphonium salt $17(238 \mathrm{mg}, 0.51 \mathrm{mmol})$ in THF $(8 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After 1 h , the mixture was added through a cannula to the aldehyde $(0.158 \mathrm{mmol})$ in THF $(8 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temp. overnight. The reaction was then quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$ and the mixture warmed to room temp. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine, dried, and filtered. The solvent was evaporated under reduced pressure. The residue was purified by flash chromatography ($95: 5$ cyclohexane/ $\mathrm{Et}_{2} \mathrm{O}$) to afford 66.3 mg of the triene as a colorless oil (59% over two steps). HCl $(370 \mu \mathrm{~L}, 1 \mathrm{~m}, 0.37 \mathrm{mmol})$ was added to a solution of the triene $(60 \mathrm{mg}, 0.084 \mathrm{mmol})$ in THF $(4 \mathrm{~mL})$. After 2.5 d at room temp., brine $(10 \mathrm{~mL})$ was added, and the mixture was extracted with EtOAc $(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine, dried, and filtered. The solvent was evaporated under reduced pressure. The residue was purified by flash chromatography (92:8 EtOAc/MeOH) to afford 8.5 mg of $5-\mathrm{F}_{3 \mathrm{t}}-\mathrm{IsoP}(\mathbf{3})$ as a colorless oil (29%). $R_{\mathrm{f}}=0.55(8: 2 \mathrm{AcOEt} / \mathrm{MeOH}+1 \% \mathrm{AcOH}) .[a]_{\mathrm{D}}^{20}=$ $-6.8(c=0.5, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz},\left[\mathrm{D}_{4}\right] \mathrm{MeOH}$): $\delta=5.50-$ $5.70(\mathrm{~m}, 2 \mathrm{H}), 5.15-5.70(\mathrm{~m}, 4 \mathrm{H}), 3.80-4.10(\mathrm{~m}, 3 \mathrm{H}), 2.60-2.90$ $(\mathrm{m}, 3 \mathrm{H}), 2.40-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.35(\mathrm{~m}, 2 \mathrm{H}), 1.90-2.20(\mathrm{~m}, 5$ H), $1.45-1.85(\mathrm{~m}, 5 \mathrm{H}), 0.97(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz},\left[\mathrm{D}_{4}\right] \mathrm{MeOH}\right): \delta=177.5(1 \mathrm{C}, \mathrm{Cq}), 136.5(1 \mathrm{C}, \mathrm{CH}), 132.7$ ($1 \mathrm{C}, \mathrm{CH}$), 130.1 ($1 \mathrm{C}, \mathrm{CH}$), 129.9 ($1 \mathrm{C}, \mathrm{CH}$), 129.6 ($1 \mathrm{C}, \mathrm{CH}$), $128.4(1 \mathrm{C}, \mathrm{CH}), 76.2(1 \mathrm{C}, \mathrm{CH}), 76.1(1 \mathrm{C}, \mathrm{CH}), 73.0(1 \mathrm{C}, \mathrm{CH})$, $53.5(1 \mathrm{C}, \mathrm{CH}), 51.3(1 \mathrm{C}, \mathrm{CH}), 43.6\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 37.8\left(1 \mathrm{C}, \mathrm{CH}_{2}\right)$, $34.8\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 27.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 26.6\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 22.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right)$, $21.5\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 14.7\left(1 \mathrm{C}, \mathrm{CH}_{3}\right) \mathrm{ppm}$. HRMS (ESI+$)$: calcd. for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{O}_{4}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$335.2222; found 335.2213 .

5-epi-5-F $\mathbf{F}_{\mathbf{3}}-\mathrm{IsoP} \mathbf{5 R - (3) : ~ T h e ~ s a m e ~ p r o c e d u r e ~ a s ~ d e s c r i b e d ~ f o r ~ t h e ~}$ synthesis of $5-\mathrm{F}_{3 \mathrm{t}}-\mathrm{IsoP}(\mathbf{3})$ was applied to 47 mg of alcohol ($5 R$)-30 to give 7.4 mg of 5 -epi- $5-\mathrm{F}_{3 \mathrm{t}}$-IsoP $[(5 R)-3]$ (25% over three steps). $R_{\mathrm{f}}=0.50(8: 2 \mathrm{EtOAc} / \mathrm{MeOH}+1 \% \mathrm{AcOH}) \cdot[a]_{\mathrm{D}}^{20}=-7.4(c=0.4$, MeOH). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz},\left[\mathrm{D}_{4}\right] \mathrm{MeOH}$): $\delta=5.50-5.70(\mathrm{~m}, 2 \mathrm{H})$, $5.15-5.70(\mathrm{~m}, 4 \mathrm{H}), 3.80-4.10(\mathrm{~m}, 3 \mathrm{H}), 2.60-2.90(\mathrm{~m}, 3 \mathrm{H}), 2.40-$ $2.60(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.35(\mathrm{~m}, 2 \mathrm{H}), 1.90-2.20(\mathrm{~m}, 5 \mathrm{H}), 1.45-1.85$ (m, 5 H), $0.97(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz},\left[\mathrm{D}_{4}\right]-$ $\mathrm{MeOH}): \delta=177.5(1 \mathrm{C}, \mathrm{Cq}), 136.6(1 \mathrm{C}, \mathrm{CH}), 132.7(1 \mathrm{C}, \mathrm{CH})$, 130.6 ($1 \mathrm{C}, \mathrm{CH}$), 129.9 ($1 \mathrm{C}, \mathrm{CH}$), 129.6 ($1 \mathrm{C}, \mathrm{CH}$), 128.3 (1 C , CH), 76.3 ($1 \mathrm{C}, \mathrm{CH}$), 76.2 ($1 \mathrm{C}, \mathrm{CH}$), 73.3 ($1 \mathrm{C}, \mathrm{CH}$), 53.8 (1 C , $\mathrm{CH}), 51.4(1 \mathrm{C}, \mathrm{CH}), 43.5\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 37.8\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 34.9(1 \mathrm{C}$, $\left.\mathrm{CH}_{2}\right), 27.4\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 26.6\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 22.2\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 21.5(1$ $\mathrm{C}, \mathrm{CH}_{2}$), $14.7\left(1 \mathrm{C}, \mathrm{CH}_{3}\right) \mathrm{ppm}$. HRMS $\left(\mathrm{ESI}^{+}\right)$: calcd. for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{O}_{4}$ $\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+} 335.2222$; found 335.2216 .
$\{(1 R, 2 R, 3 R, 5 S)-3,5-B i s($ tert-butyldimethylsilyloxy $)$-2-[(2Z,5Z)-octa-2,5-dienyllcyclopentyl $\}$ methanol (33): $t \mathrm{BuOK}$ (68 mg , 0.606 mmol) was added to a suspension of the dried phosphonium salt $31(313 \mathrm{mg}, 0.663 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After 1 h at $-78^{\circ} \mathrm{C}$, the mixture was added through a cannula to the lactol $32(40 \mathrm{mg}, 0.0995 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After 2.5 h at $-78^{\circ} \mathrm{C}$, the reaction mixture was allowed to warm to room temp. overnight. The reaction was then quenched with a $10 \% \mathrm{NH}_{4} \mathrm{Cl}$ solution (20 mL) and the mixture stirred for 15 min . The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine, dried, and filtered. The solvent was evaporated under reduced pressure. The residue was purified by column chromatography ($9: 1$ cyclohexane $/ \mathrm{Et}_{2} \mathrm{O}$) to afford 30 mg of $\mathbf{3 3}$ $(64 \%) . R_{\mathrm{f}}=0.38\left(8: 2\right.$ cyclohexane $\left./ \mathrm{Et}_{2} \mathrm{O}\right) .[\alpha]_{\mathrm{D}}^{20}=-1.4(c=1$,
CHCl_{3}). IR: $\tilde{v}=3495,2957,2930,2857,1472,1253,1069 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.20-5.60(\mathrm{~m}, 4 \mathrm{H}), 3.90-4.20(\mathrm{~m}, 1$ H), $3.60-3.80(\mathrm{~m}, 3 \mathrm{H}), 2.70-2.90(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.45(\mathrm{~m}, 2 \mathrm{H})$, $1.90-2.20(\mathrm{~m}, 5 \mathrm{H}), 1.70-2.00(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$, $0.88(\mathrm{~s}, 18 \mathrm{H}), 0.08(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 12 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=132.2(1 \mathrm{C}, \mathrm{CH}), 130.1(1 \mathrm{C}, \mathrm{CH}), 129.3(1 \mathrm{C}, \mathrm{CH})$, $127.0(1 \mathrm{C}, \mathrm{CH}), 75.7(1 \mathrm{C}, \mathrm{CH}), 75.2(1 \mathrm{C}, \mathrm{CH}), 62.8\left(1 \mathrm{C}, \mathrm{CH}_{2}\right)$, $50.2\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 48.2(1 \mathrm{C}, \mathrm{CH}), 44.6(1 \mathrm{C}, \mathrm{CH}), 30.4\left(1 \mathrm{C}, \mathrm{CH}_{2}\right)$, $25.9\left(6 \mathrm{C}, \mathrm{CH}_{3}\right), 25.8\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 20.7\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 18.0(2 \mathrm{C}, \mathrm{Cq})$, $14.4\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.1\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.3\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.6\left(1 \mathrm{C}, \mathrm{CH}_{3}\right)$, $-4.7\left(1 \mathrm{C}, \mathrm{CH}_{3}\right) \mathrm{ppm}$. MS $\left(\mathrm{ESI}^{+}\right): m / z=469.4[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI^{+}): calcd. for $\mathrm{C}_{26} \mathrm{H}_{53} \mathrm{O}_{3} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} 469.3533$; found 469.3538 .
Methyl (E)-7-\{(1S,2R,3R,5S)-3,5-Bis(tert-butyldimethylsilyloxy)-2-[(2Z,5Z)-octa-2,5-dienyl]cyclopentyl $\}$-5-oxohept-6-enoate (34): A Dess-Martin periodinane solution ($600 \mu \mathrm{~L}$ of a 0.47 m solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.28 \mathrm{mmol}$) was added dropwise to a solution of 33 ($30 \mathrm{mg}, 0.066 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. After completion of the reaction (TLC), 10% aq. $\mathrm{NaHCO}_{3} / \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1: 1,10 \mathrm{~mL})$ was added. After stirring for 1.5 h , the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine, dried, and filtered. The solvent was evaporated under reduced pressure. The material was directly used in the next step without further purification. NaHMDS ($200 \mu \mathrm{~L}, 2 \mathrm{~m}$ in THF, 0.40 mmol) was added dropwise to a solution of the β-keto phosphonate $27(200 \mathrm{mg}, 0.71 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After 1 h at $0^{\circ} \mathrm{C}$, the mixture was added through a cannula to the aldehyde in THF $(5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. Then the reaction mixture was allowed to warm to room temp. overnight. The reaction was then quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine, dried, and filtered. The solvent was evaporated under reduced pressure. The residue was purified by column chromatography ($9: 1$ pentane $/ \mathrm{Et}_{2} \mathrm{O}$) to afford 31.7 mg of enone $34(83.5 \%$ over two steps). $R_{\mathrm{f}}=0.40$ ($8: 2$ cyclohexane/ $\left.\mathrm{Et}_{2} \mathrm{O}\right) .[a]_{\mathrm{D}}^{20}=-1.0(c=$ 1, CHCl_{3}). IR: $\tilde{\mathrm{v}}=2955,2930,2857,1738,1253,1064 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.60-6.80(\mathrm{~m}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.15-5.50(\mathrm{~m}, 4 \mathrm{H}), 3.95-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.95$ $(\mathrm{m}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.65-2.90(\mathrm{~m}, 3 \mathrm{H}), 2.58(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2$ H), $1.80-2.25(\mathrm{~m}, 8 \mathrm{H}), 1.50-1.80(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3$ $\mathrm{H}), 0.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 18 \mathrm{H}),-0.10-0.10(\mathrm{~m}, 12 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=199.1(1 \mathrm{C}, \mathrm{Cq}), 173.8(1 \mathrm{C}, \mathrm{Cq})$, $146.1(1 \mathrm{C}, \mathrm{CH}), 132.2(1 \mathrm{C}, \mathrm{CH}), 131.4(1 \mathrm{C}, \mathrm{CH}), 129.3(1 \mathrm{C}$, $\mathrm{CH}), 128.1(1 \mathrm{C}, \mathrm{CH}), 127.0(1 \mathrm{C}, \mathrm{CH}), 75.7(1 \mathrm{C}, \mathrm{CH}), 75.4(1 \mathrm{C}$, $\mathrm{CH}), 52.9(1 \mathrm{C}, \mathrm{CH}), 51.7\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 50.9(1 \mathrm{C}, \mathrm{CH}), 44.5(1 \mathrm{C}$, CH_{2}), $39.6\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 33.2\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 26.6\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 25.9(6$ C, CH_{3}), $25.8\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 19.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 18.1(2 \mathrm{C}, \mathrm{Cq}), 14.4(1$ $\left.\mathrm{C}, \mathrm{CH}_{3}\right),-4.3\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.4\left(1 \mathrm{C}, \mathrm{CH}_{3}\right),-4.5\left(2 \mathrm{C}, \mathrm{CH}_{3}\right),-4.6$ $\left(1 \mathrm{C}, \mathrm{CH}_{3}\right) \mathrm{ppm}$. MS $\left(\mathrm{ESI}^{+}\right): m / z=593.4[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{HRMS}\left(\mathrm{ESI}^{+}\right)$: calcd. for $\mathrm{C}_{33} \mathrm{H}_{61} \mathrm{O}_{5} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} 593.4058$; found 593.4060.
5-F $\mathbf{F}_{3 \text { t }}$-IsoP (3): $\mathrm{LiAlH}_{4}(330 \mu \mathrm{~L}, 1 \mathrm{~m} / \mathrm{THF}, 0.330 \mathrm{mmol})$ was added dropwise to a solution of dry (S)-binaphthol ($96 \mathrm{mg}, 0.335 \mathrm{mmol}$) in freshly distilled dry THF $(1.4 \mathrm{~mL})$ at room temp. After 5 min , freshly distilled dry EtOH ($330 \mu \mathrm{~L}, 1 \mathrm{~m}$ in THF, $0.330 \mu \mathrm{~L}$) was added dropwise. The reaction mixture was cooled to $-100^{\circ} \mathrm{C}$, and the enone $34(31.7 \mathrm{mg}, 0.054 \mathrm{mmol})$ was added through a cannula. The reaction mixture was slowly warmed to $-30^{\circ} \mathrm{C} . \mathrm{MeOH}$ $(500 \mu \mathrm{~L})$ and $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ were added, and the suspension was filtered through a plug of Celite, which had previously been washed with $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine, dried, and filtered. The solvent was evaporated under reduced pressure. The excess of binaphthol was precipitated with hexanes, but traces of binaphthol remained. After con-
centration, the residue was purified by column chromatograpny (8:2 heptane/ $\mathrm{Et}_{2} \mathrm{O}$). Unfortunately, the excess binaphthol could not be completely removed. Therefore, the mixture of allylic alcohol 35, lactone 36, and binaphthol was used directly in the next step. $\mathrm{HCl}(1 \mathrm{~m}, 140 \mu \mathrm{~L}, 0.14 \mathrm{mmol})$ was added to a solution of the previous material in THF (2 mL). After 2 d at room temp., brine $(10 \mathrm{~mL})$ was added. The mixture was extracted with EtOAc ($3 \times$ 15 mL). The combined organic layers were washed with brine, dried, and filtered. The solvent was evaporated under reduced pressure. The residue was directly used in the next step without further purification. $\mathrm{LiOH}(5 \mathrm{mg})$ was added to a solution of the previous material in THF/ $\mathrm{H}_{2} \mathrm{O}(1: 1 ; 5 \mathrm{~mL})$. After 4 h , a solution of HCl ($1 \mathrm{~m}, 5 \mathrm{~mL}$) was added until an acidic pH was obtained. The mixture was extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine, dried, and filtered. The solvent was evaporated under reduced pressure, and the residue was purified by column chromatography ($9: 1 \mathrm{EtOAc} / \mathrm{MeOH}$) to afford 1.2 mg of 5$\mathrm{F}_{3 \mathrm{t}}$-IsoP ($\mathbf{3} ; 6.4 \%$ over three steps). The ${ }^{13} \mathrm{C}$ NMR spectrum shows characteristic peaks at $\delta=130.1,76.2,73.0$, and 53.5 ppm , similar to the data obtained above for compound 3 .
Supporting Information (see footnote on the first page of this article): ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of all new products.

Acknowledgments

We thank the Ministère de l'Education Nationale et de la Recherche for a doctoral fellowship (C. O.). We are deeply grateful to Prof. Jean-Yves Lallemand and the Institut de Chimie des Substances Naturelles (ICSN) for generous funding. A part of this work was also financially supported by the Université Montpellier I (grants BQR-2008 and 2011), the Centre National de la Recherche Scientifique (CNRS) for PEPII INSB-INC, and the Fédération pour la Recherche Médicale (FRM) (DCM20111223047). We also thank Prof. Françoise Michel for her help in GC-MS experiments.
[1] a) J. Morrow, K. Hill, R. Burk, T. Nammour, K. Badr, L. J. Roberts II, Proc. Natl. Acad. Sci. USA 1990, 87, 9383-9387; b) L. J. Roberts II, J. D. Morrow, Free Radical Biol. Med. 2000, 28, 505-513.
[2] M. B. Kadiiska, B. C. Gladen, D. D. Baird, D. Germolec, L. B. Graham, C. E. Parker, A. Nyska, J. T. Wachsman, B. N. Ames, S. Basu, N. Brot, G. A. Fitzgerald, R. A. Floyd, M. George, J. W. Heinecke, G. E. Hatch, K. Hensley, J. A. Lawson, L. J. Marnett, J. D. Morrow, D. M. Murray, J. Plastaras, L. J. Roberts II, J. Rokach, M. K. Shigenaga, R. S. Sohal, J. Sun, R. R. Tice, D. H. Van Thiel, D. Wellner, P. B. Walter, K. B. Tomer, R. P. Mason, J. C. Barrett, Free Radical Biol. Med. 2005, 38 , 698-710.
[3] For general reviews, see: a) Chem. Phys. Lipids 2004, 128, 1193; b) U. Jahn, J. M. Galano, T. Durand, Angew. Chem. 2008, 120, 5978; Angew. Chem. Int. Ed. 2008, 47, 5894-5955.
[4] J. Nourooz-Zadeh, E. H. Liu, E. Anggard, B. Halliwell, Biochem. Biophys. Res. Commun. 1998, 242, 338-344.
[5] L. J. Roberts II, T. J. Montine, W. R. Markesbery, A. R. Tapper, P. Hardy, S. Chemtob, W. D. Dettbarn, J. D. Morrow, J. Biol. Chem. 1998, 273, 13605-13612.
[6] P. S. Sastry, Prog. Lipid Res. 1985, 24, 69-176.
[7] E. S. Musiek, J. K. Cha, H. Yin, W. E. Zackert, E. S. Terry, N. A. Porter, T. J. Montine, J. D. Morrow, J. Chromatogr. B 2004, 799, 95-102.
[8] J. Nourooz-Zadeh, E. H. Liu, B. Yhlen, E. E. Anggard, B. Halliwell, J. Neurochem. 1999, 72, 734-740.
[9] C. Signorini, C. De Felice, S. Leoncini, A. Giardini, M. D'Esposito, S. Filosa, F. Della Ragione, M. Rossi, A. Pecorelli, G. Valacchi, L. Ciccoli, J. Hayek, Clin. Chim. Acta 2011, 412, 1399-1406.
[10] a) J. Nourooz-Zadeh, B. Halliwell, E. E. Änggård, Biochem. Biophys. Res. Commun. 1997, 236, 467-472; b) L. Gao, H. Yin, G. L. Milne, N. A. Porter, J. D. Morrow, J. Biol. Chem. 2006, 281, 14092-14099.
[11] J. A. Lawson, S. Kim, W. S. Powell, G. A. FitzGerald, J. Rokach, J. Lipid Res. 2006, 47, 2515-2524.
[12] M. VanRollins, R. L. Woltjer, H. Yin, J. D. Morrow, T. J. Montine, J. Lipid Res. 2008, 49, 995-1005.
[13] C. Oger, V. Bultel-Poncé, A. Guy, L. Balas, J. C. Rossi, T. Durand, J. M. Galano, Chem. Eur. J. 2010, 16, 13976-13980.
[14] C. Oger, Y. Brinkmann, S. Bouazzaoui, T. Durand, J. M. Galano, Org. Lett. 2008, 10, 5087-5090.
[15] Y. Brinkmann, C. Oger, A. Guy, T. Durand, J. M. Galano, J. Org. Chem. 2010, 75, 2411-2414.
[16] C. Oger, Z. Marton, Y. Brinkmann, V. Bultel-Ponce, T. Durand, M. Graber, J. M. Galano, J. Org. Chem. 2010, 75, 18921897.
[17] a) D. B. Dess, J. C. Martin, J. Am. Chem. Soc. 1991, 113, 72777287; b) D. B. Dess, J. C. Martin, J. Org. Chem. 1983, 48, 41554156; c) S. D. Meyer, S. L. Schreiber, J. Org. Chem. 1994, 59, 7549-7552.
[18] a) J.-L. Luche, J. Am. Chem. Soc. 1978, 100, 2226-2227; b) A. L. Gemal, J.-L. Luche, J. Am. Chem. Soc. 1981, 103, 5454 5459.
[19] G. Wittig, G. Geissler, Justus Liebigs Ann. Chem. 1953, 580, 44-57.
[20] a) R. Noyori, I. Tomino, M. Y. Tanimoto, J. Am. Chem. Soc. 1979, 101, 3129-3131; b) R. Noyori, I. Tomino, M. Yamada, M. Nishizawa, J. Am. Chem. Soc. 1984, 106, 6709-6716; c) R. Noyori, I. Tomino, M. Yamada, M. Nishizawa, J. Am. Chem. Soc. 1984, 106, 6717-6725.
[21] T. Durand, J. L. Cracowski, A. Guy, J. C. Rossi, Bioorg. Med. Chem. Lett. 2001, 11, 2495-2498.

[^0]: [a] Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, Universités Montpellier $1 \& 2$, Faculté de Pharmacie,
 15 avenue Charles Flahault, Bâtiment D, 34093 Montpellier Cedex 05, France
 Fax: +33-4-11759553
 E-mail: jgalano@univ-montp1.fr

