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Abstract

Background: Chloroplast ATP/ADP transporters are essential to energy homeostasis in plant cells. However, their molecular
mechanism remains poorly understood, primarily due to the difficulty of producing and purifying functional recombinant
forms of these transporters.

Methodology/Principal Findings: In this work, we describe an expression and purification protocol providing good yields
and efficient solubilization of NTT1 protein from Arabidopsis thaliana. By biochemical and biophysical analyses, we identified
the best detergent for solubilization and purification of functional proteins, LAPAO. Purified NTT1 was found to accumulate
as two independent pools of well folded, stable monomers and dimers. ATP and ADP binding properties were determined,
and Pi, a co-substrate of ADP, was confirmed to be essential for nucleotide steady-state transport. Nucleotide binding
studies and analysis of NTT1 mutants lead us to suggest the existence of two distinct and probably inter-dependent binding
sites. Finally, fusion and deletion experiments demonstrated that the C-terminus of NTT1 is not essential for multimerization,
but probably plays a regulatory role, controlling the nucleotide exchange rate.

Conclusions/Significance: Taken together, these data provide a comprehensive molecular characterization of a chloroplast
ATP/ADP transporter.
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Introduction

Membrane nucleotide transporters play a crucial role in

chloroplasts, allowing energy in the form of ATP to be imported

when it cannot be directly produced by photophosphorylation (i.e.

at night). These transporters have also been proposed to play a key

role in supplying ATP-dependent reactions (such as starch and

fatty acid biosynthesis) in non-photosynthetic plastids, with

cytosolic ATP [1]. However these transporters still remain poorly

characterized at the molecular level. The first bottleneck limiting

biochemical characterization of membrane transporters remains

their production in heterologous systems. To enhance the success

rate for production of recombinant membrane proteins, a

parallelized approach was set-up using six different expression

systems. One of the aims of this project was to produce the

Chloroplast ATP/ADP transporter 1 (NTT1), a 60 kDa trans-

porter from Arabidopsis thaliana, located in the inner membrane of

the chloroplast envelope. NTT1 contains between eleven and

twelve predicted trans-membrane helices and exchanges ATP for

ADP [2,3]. This transporter is completely different from the

mitochondrial ATP/ADP carrier which has only six transmem-

brane helices and exchanges ADP to ATP in an electrogenic way,

as reviewed in [4]. During import into the chloroplast envelope,

the N-terminus of NTT1 (containing the chloroplast targeting

sequence) needs to be cleaved to release the functional, folded

mature form of the transporter [2,5]. Producing an active form of

NTT1 in heterologous systems thus requires expression of the

corresponding mature protein. In the specific case of NTT1 from

Arabidopsis thaliana, three expression systems allowed the produc-

tion of functional NTT1: E. coli [6], L. lactis [7] and A. thaliana.

The production of functional plastid NTT1 in E. coli was

originally reported by Neuhaus and co-workers [2]. Several

charged residues of NTT1 were identified to be essential for

steady-state ATP/ADP exchange [8]. Similar studies have more
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recently focused on the characterization of bacterial NTT1

homologues [3,9]. A general model for transport of both bacterial

and plastidial NTT1-type ATP/ADP transporters has emerged,

suggesting that these proteins perform a counter-exchange of

ADP+Pi for ATP [3]. These recent reports also provided the first

descriptions of purification procedures for recombinant NTT1

proteins produced in bacteria [3,9]. Using recombinant NTT1

produced either as a mature form of the protein or fused with

Mistic [6], we recently got first insights into the oligomeric status of

this transporter. In this study, the biochemical properties of this

transporter were further characterized. NTT1 was expressed in E.

coli, purified and studied in a detergent solution. A combination of

biophysical and biochemical approaches were used to study the

protein at the molecular level.

Materials and Methods

Materials
Detergents were obtained from Anatrace, all other chemicals

from Sigma.

Molecular cloning and DNA manipulation
The main construct used in this study is described in detail in

[6] and corresponds to Uniprot sequence number Q39002 lacking

the first 79 residues corresponding to the N-terminal transit

peptide, but containing an N-terminal His-tag and a C-terminal

StreptagII. Mutants K155E, K155R, E245K, K527E, K527R and

the C-terminal deletion were generated with the primers listed in

table S1, using the Quick Change Site Directed Mutagenesis kit

(Agilent Technologies). The C-terminal Mistic and GFP fusions

were introduced in a two-step PCR [10]. The first PCR step was

performed with Pfu polymerase (New England Biolabs) to amplify

Mistic- or GFP-coding cDNA using primers MisticCterfor,

MisticCterrev, GFPfor and GFPrev (Table S1). The purified

PCR products were then used as primers in a Quick Change PCR

(Agilent), in order to insert Mistic or GFP coding sequences into

the pDEST-NTT1 template vector.

Expression and purification
The different proteins used in this study were expressed and

purified using the approach described in [6]. Briefly, the

purification procedure consisted in a solubilization step with 1%

laurylamidodimethylpropylaminoxyde (LAPAO) followed by an

Immobilized-Metal Affinity Chromatography (IMAC) using Ni-

NTA resin (Qiagen). After desalting, IMAC-purified proteins were

incubated overnight with Strep-Tactin beads (IBA). After washing,

proteins were eluted in 20 mM Tris pH 8, 100 mM NaCl, 0.1%

(w:v) LAPAO, 3 mM desthiobiotin. The peak fraction was used

without any prior buffer exchange for analytical ultracentrifuga-

tion analyses. For tryptophan fluorescence measurements, buffer

was exchanged just before use for 20 mM Tris pH 8, 10 mM

NaCl, 0.1% (w:v) LAPAO using a PD10 desalting column (GE-

Healthcare). Size exclusion chromatography (SEC) experiments

were performed on a 20 mL analytical superdex-200 column

equilibrated with 20 mM Tris pH 8, 100 mM NaCl, 0.1% (w:v)

LAPAO, at a flow rate of 0.4 mL/min.

When necessary, pure proteins were concentrated on an

Amicon concentrator with a 50 kDa cut-off.

For detergent to amphipol exchange, 5 g of amphipols were

added per g of pure NTT1. The mixture was incubated for 1 to

2 hours at 4uC. BioBeads (Biorad) were then added four times to

remove detergents, with each addition corresponding to a 10-fold

weight-excess of the detergent initially present in solution.

Activity measurements
Radioactive ATP transport was measured on whole E. coli cells

as described previously [6]. ADP/ATP exchange was followed by

luminescence on whole E. coli cells. After protein overexpression,

cells were washed and resuspended in 50 mM Hepes buffer

pH 7.5 at 50 mg/mL. Experiments were performed in 96-well

plates. Cells (10 mL) were added to 90 mL of Hepes buffer

containing 40 mM luciferin (Sigma) and 40 mg/mL luciferase

(Sigma). Luminescence signal was continuously monitored in a

luminometer with injectors. After 15 s of baseline recording, i)

10 mL of ADP stock solution are injected and the signal is still

recorded for 60 s or, ii) 10 mL of Pi or buffer are injected 20 s after

ADP and the signal is still acquired for 60 s. A reference curve

corresponding to the addition of the same ADP concentration in

buffer is subtracted to the curve obtained with the cells

overexpressing the transporter. Comparison of transport rates in

different conditions corresponds to the increase of luminescence

signal during 20 s after ADP or Pi addition.

For all activity experiments, NTT1 forms were quantified using

whole cell proteins separated by SDS-PAGE and transferred onto

nitrocellulose membrane. NTT1 constructs were then detected

with anti-His-tag peroxidase or Strep-Tactin peroxidase conjugates,

depending on the construct used. Western-blots were revealed on

a Kodak 4000 MM image station and densitometry quantification

was performed with Molecular Imaging Software (Kodak).

Different concentrations of pure NTT1 were used as standards.

VM and KM were determined by fitting the experimental data to

the Michaelis-Menten equation.

Analytical ultracentrifugation
A Beckman XL-I analytical ultracentrifuge and an An-60Ti

rotor (Beckman Coulter) with 12 mm or 3 mm optical path length

cell equipped with sapphire windows were used for analytical

ultracentrifugation. Absorbance at 280 nm and interference

profiles were measured for 16 hours at 42,000 rpm and 10uC.

Analysis was done in terms of continuous size-distribution (c(s))

with the Sedfit program [11], considering 200 particles with

sedimentation coefficients, s, between 0.1 and 20 S, with a

frictional ratio of 1.25 and a partial specific volume intermediate

between that of NTT1 and that of the detergent used. The

parameters used were: 132,000 L.mol21.cm21 for the e of NTT1;

0.74, 1.002, 0.94, 0.87 (w9) and 0.82 for the partial specific

volumes of NTT1 (Sednterp), LAPAO [12], foscholine-12 (FC12)

(Anatrace data), amphipols [13] and b-dodecylmaltoside (b-DDM)

[14], respectively; and 0.187, 0.134, 0.14, 0.15 and 0.143 for the

refractive index increment of NTT1, LAPAO [12], FC12

(Anatrace data), amphipols [13] and b-DDM [14], respectively.

A regularization procedure was also applied with a confidence

level of 0.68. Sample density and viscosity were 1.004 g/mL and

1.32 mPa.s, respectively, as determined with Sednterp.

Electron microscopy
NTT1 SEC peak fractions were used for electron microscopy.

Four microliters of protein sample, at approximately 0.05–0.1 mg/

mL, were adsorbed onto the clean face of a carbon film on a mica

sheet (carbon/mica interface) and negatively stained with 2% (w/v)

neutral sodium silicotungstate. Micrographs were taken under low-

dose conditions with a CM12 LaB6 electron microscope working at

120 kV and with a nominal magnification of 45,0006.

Tryptophan fluorescence measurements
Tryptophan fluorescence emission spectra were measured at

25uC on a PTI quanta master 4 (Photon Technology Internation-

Mechanism of the Chloroplast ATP/ADP Transporter
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al, London, ON, Canada). Emission spectra were recorded from

310 to 370 nm using an excitation wavelength of 295 nm, with a

2 nm excitation and a 4 nm emission band pass. The cuvette

contained 1 mL of 0.2 mM NTT1, and increasing concentrations

of ADP, ATP or ADP+ATP were added. Values were corrected

for dilution and for the inner-filter effect of nucleotides using

another cuvette containing 2.2 mM N-acetyltryptophanamide

(NATA), as previously described [15]. Experimental data were

fitted to the following equation:

FNTT1

FNATA

~Fmax{ (pzLzK){

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(pzLzK)2{4pL

q� �

FNTT1
FNATA

� �
max

{
FNTT1
FNATA

� �
min

2p

where F corresponds to the intensities of the various spectra

analyzed, p is the concentration of NTT1 in the cuvette, L is the

concentration of nucleotides added and K is the dissociation

constant.

Results and Discussion

Purification and oligomeric status of NTT1 in surfactant
solutions

During import into the chloroplast, NTT1 becomes folded and

functional only after cleavage of its N-terminal transit peptide.

NTT1 was thus expressed in E. coli as a matured form (i.e. lacking

this N-terminal part). The overexpressed protein inserted into the

bacterial plasma membrane in a functional state, as previously

shown using radioactive ATP import into bacteria [6] and ATP

export measured by luminescence [6]. To further purify NTT1, a

two-step affinity chromatography protocol was set up. The protein

was first solubilized in the presence of LAPAO (Figure 1).

Solubilized proteins were then loaded onto a Ni-NTA matrix,

which is compatible with high detergent concentrations. Proteins

eluted from the Ni-NTA matrix were further purified on a Strep-

Tactin chromatography column (Figure 1). Using this protocol,

highly pure NTT1 was obtained in sub-milligram amounts per

liter of E. coli culture. The yield and purity of the purified NTT1

protein was markedly better than in previous studies using a

different purification procedure [3]. The good purification yield is

mainly due to the high expression levels reached using our

combination of bacterial strain and constructs. In addition,

LAPAO appears to solubilize NTT1 more efficiently from the

bacterial membrane than b-DDM [6], which was the detergent

used in other studies [3,6].

We previously reported that NTT1 is present as a mixture of

oligomers in LAPAO solution [6]. Herein, the oligomeric status of

purified NTT1 was further assessed by size exclusion chromatog-

raphy (SEC) and analytical ultracentrifugation (AUC) in order to

identify the type of oligomers. Purified protein solubilized in

LAPAO was recovered in two main peaks at around 10 mL and

12 mL on an analytical superdex-200 column (Figure 2A). These

two peaks correspond to species with Stokes radii of 6.9 and

5.2 nm, respectively. Other species were also present in the

solution at higher molecular weights, as observed by the

broadening of the dimer peak and by the presence of a small

peak around the void volume of the column (Figure 2A and C).

These peaks were variable between protein batches in terms of

intensity and broadening.

NTT1 was further characterized by analytical ultracentrifuga-

tion, which allows the oligomeric status of a protein to be

determined, as well as the amount of detergent bound to any

species present in a complex sample [16]. Analysis of the data

revealed that NTT1 in LAPAO was mainly present in two

oligomeric forms sedimenting at 1.9 S and 2.9 S (Figure 2B and

Table 1). Interference data enabled the quantification of bound

LAPAO at 1.9 g/g of NTT1, for both forms (Table 1). The

combination of these ratios, the S values (Table 1) and the Stokes

radii indicated that these two forms were compact globular

monomers and dimers of NTT1, respectively. Higher oligomers

present in solution could be trimers and/or tetramers, but analysis

of data for these species was less accurate due to broader peaks.

Complementary analyses using Multiple Angle Laser Light

Scattering indicated that the main higher oligomer is a tetramer

(not shown). Taken together, data from SEC and AUC analysis of

NTT1 solubilized in LAPAO were consistent, indicating that the

protein is mainly present as monomers and dimers in solution with

some higher oligomers.

The co-existence of monomers and dimers might result from an

equilibrium between the two species. Therefore we assayed

monomer-dimer interconversion by reinjecting each species

(SEC peak fraction) onto the same analytical superdex-200. Both

samples eluted at the same elution volume (Figure 2A), indicating

that these two forms are not in equilibrium but form two stable

NTT1 oligomers. The effect of nucleotides on the oligomeric

status of NTT1 was also assayed by SEC. Adding a mixture of

ADP, ATP and Pi did not change the monomer-dimer ratio for

NTT1 in LAPAO (Figure 2A).

The oligomeric status of NTT1 in other detergents was also

assayed by SEC (Figure 2C). Detergents were either directly

exchanged on-column or in-solution for amphipols, as described in

the material and methods section. In foscholine-12 (FC12), NTT1

displayed similar behavior to that described in LAPAO. The

monomer-dimer ratio was similar in the two detergents, but a

lower proportion of large oligomers was detected in FC12

(Figure 2C). In b-dodecylmaltoside (b-DDM), NTT1 tended to

dissociate into monomers (Figure 2C). In amphipols, peak

resolution was poor, leading to one main peak eluting at a volume

between the typical NTT1 monomer and dimer peaks (Figure 2C).

Figure 1. Purification of NTT1. SDS-PAGE analysis of the NTT1
purification procedure. MM, Molecular weight markers. FT, flow-through.
doi:10.1371/journal.pone.0032325.g001

Mechanism of the Chloroplast ATP/ADP Transporter
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Figure 2. Analysis of the oligomeric status of NTT1 in various detergents. A, SEC elution profiles of NTT1 in LAPAO. Pure NTT1 first run
(black line), second SEC run of elution peak 1 from the first run (10 mL, blue line), second SEC run of elution peak 2 from the first run (12 mL, green
line) and pure NTT1 mixed with ADP, ATP and Pi (red line). Stokes radii of the standard proteins used to calibrate the column are indicated on top of
the graph. B, analysis of sedimentation velocity of pure NTT1 in LAPAO. The upper part shows several time-points during sedimentation velocity
experiments with the experimental points as markers and the fits of the data as lines. The central part highlights the residuals between experimental
points and fits. The lower part presents the absorbance and interference c(S) distributions of NTT1 in LAPAO. C, SEC elution profile of pure NTT1 in
different detergents: NTT1 in C6FTac (purple line), NTT1 in FC12 (black line), NTT1 in LAPAO (green line), NTT1 in amphipols (red line) and NTT1 in b-
DDM (blue line). D, sedimentation velocity of NTT1 in different detergents. Absorbance c(S) distributions of NTT1 in amphipols (red line), NTT1 in b-
DDM (blue line) and NTT1 in FC12 (black line).
doi:10.1371/journal.pone.0032325.g002

Table 1. AUC data analysis.

Surfactant (Ū)

Monomer (% of the three species)

(Sexp-106C)

Dimer (% of the three species)

(Sexp-106C)
Tetramer (% of the three
species)

Ratio detergent/protein
(g/g)

LAPAO (1.002) 4264 (1.9) 3562 (2.9) 2364 1.960.4

FC12 (0.975) 4765 (2.7) 3562 (4.1) 1864 1.660.1

Amphipol (0.87) 4461 (3.5) 3360 (5.0) 2361 1.660.2

DDM (0.82) 46614 (3.7) 29612 (5.6) n.d. n.d.

Proportion of the three main species of NTT1 in different surfactants and average weight ratio of detergent to protein in the different surfactants. The experimental
sedimentation coefficient at 10uC for monomers and dimers is indicated between brackets (n.d.: not determined due to poor data quality).
doi:10.1371/journal.pone.0032325.t001

Mechanism of the Chloroplast ATP/ADP Transporter

PLoS ONE | www.plosone.org 4 March 2012 | Volume 7 | Issue 3 | e32325



Finally, the fluorinated surfactant C6FTac decreased the amount

of NTT1 monomers and increased the number of dimers and

higher oligomers, as shown by the broadening of the dimer peak

(Figure 2C).

It is well known that detergent exchange on a SEC never leads

to complete removal of the initial detergent. Therefore, to be sure

of the relevance of differences in NTT1 oligomeric behavior, the

whole purification procedure, including the step solubilizing

protein from the bacterial membranes, was also performed in

FC12 and b-DDM. The oligomeric status of NTT1 in these

preparations was analyzed by AUC. As observed for SEC-

detergent exchange analysis, NTT1 originally solubilized in FC12

was mainly recovered as monomers and dimers (Figure 2D and

Table 1). AUC analysis showed that NTT1 in amphipols was also

mainly present in monomeric and dimeric forms (Figure 2D and

Table 1), but well-defined larger oligomers were also detected.

When NTT1 was directly solubilized in b-DDM, the AUC

analysis revealed more features than the SEC detergent exchange

analysis. Indeed, the protein behaved poorly in b-DDM, forming a

large variety of oligomeric forms from monomers to aggregates

(Figure 2D and Table 1). Moreover, an additional species

sedimenting at 2.7 S was hypothetically attributed to an unfolded

monomer form. Interference analysis revealed that, in FC12 and

amphipols, approximately 1.6 g of amphiphiles were bound per g

of NTT1. Thus, the shift in the distribution of sedimentation

coefficient between the different surfactants can be attributed to

the difference in their partial specific volume.

Altogether, the results of these biochemical and biophysical

characterizations demonstrate that the purified transporter is quite

stable in both LAPAO and FC12 (with well defined oligomeric

forms and few aggregates). However, protein binding to Strep-

Tactin beads is weaker in FC12 solution. Thus, LAPAO is the

most appropriate detergent for study of NTT1 in solution.

Low resolution structural analysis by electron microscopy
The SEC peak fractions of NTT1 monomers and dimers in

LAPAO were harvested and subjected to negative staining

electron microscopy. Both species displayed a well-defined shape

(Figure 3A–B). Monomers formed very homogenous round

particles of 5 to 10 nm diameter (Figure 3A), consistent with

results from SEC and AUC experiments. Dimers were less

homogenous and appeared as various particle shapes, including

fully extended dimers, U/V shaped particles and densely packed

dimers (Figure 3B). This could be the result of two monomers

interacting through the base. The disparity of shape may be due to

the extensive conformational changes that are possible in solution,

and probably does not reflect behavior in lipid bilayers where

lateral pressure would constrain the protein. Thus, electron

microscopy indicates that both monomers and dimers formed

stable and quite homogenous particles, with dimers exhibiting

different conformations.

Nucleotide binding to purified NTT1
When a tryptophan residue is located near to the ligand binding

site of an enzyme or transporter, ligand binding can induce

conformational changes resulting in measurable tryptophan

fluorescence variations. The NTT1 construct used in this study

contains 11 tryptophans; therefore, we explored this type of

measurement to follow ADP and ATP binding to NTT1 in

LAPAO solution.

Titration of the purified NTT1 in LAPAO by either ADP or

ATP resulted in tryptophan fluorescence quenching, with

saturation at around 100 to 200 mM of ADP or ATP

(Figure 4A). Fitting the experimental values with a single binding

site equation led to the determination of 4 and 9 mM affinities for

ATP and ADP, respectively (Table 2). These data are in good

agreement with the previously published KM values for NTT1

present in bacterial membranes [6,17], suggesting that purified

NTT1 in LAPAO is stable in these conditions, and that the

binding site and probably also the protein as a whole are correctly

folded. NTT1 tryptophan fluorescence was also titrated with an

equimolar mixture of ADP and ATP. Data from this assay could

be fitted with a monophasic equation, but not with a biphasic

equation. The affinity was determined to be approximately 2 mM

for the 1 to 1 ADP:ATP mixture (Table 2). These data therefore

suggest that co-binding of ADP and ATP induces a slight

cooperative effect indicative of two concerted binding-sites.

To gain more insight into the nucleotide binding sites and the

translocation mechanism, fluorescence measurements were per-

formed in different conditions. The influence of Mg2+ on ATP or

ADP binding was analyzed in two ways. Adding 1 mM Mg2+

before the nucleotides prevented fluorescence quenching, suggest-

ing that it inhibited nucleotide binding to the protein (Table 2). In

contrast, when Mg2+ was added after complete nucleotide

titration, only half of the initial fluorescence was restored

(Table 2), to a level equivalent to the addition of 5–10 mM

ATP/ADP. This clearly indicates that nucleotides strongly bind to

NTT1 and confirms that Mg2+-complexed nucleotides are not

recognized by the transporter.

Figure 3. Electron microscopy analysis of NTT1. A, electron
micrograph of NTT1 SEC monomer fraction (peak 2). The scale bar
corresponds to 20 nm. B, electron micrograph of NTT1 SEC dimer
fraction (peak 1). * indicates a typical fully extended dimer. . indicates
U/V shaped particles. u indicates densely packed dimers. The scale bar
corresponds to 20 nm.
doi:10.1371/journal.pone.0032325.g003

Mechanism of the Chloroplast ATP/ADP Transporter
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The influence of Pi in various conditions was also assayed as Pi

has been described as a co-transported substrate of ADP [3].

Binding of equimolar amounts of ADP:Pi or ATP:Pi gave rise to

calculated affinities of 3 and 9 mM, respectively (Table 2). Thus, Pi

improved the affinity for ADP but decreased that for ATP. These

results can be interpreted if we consider that there are two binding

pockets on NTT1, one for ADP and Pi, the other for ATP. The

presence of Pi could lock the ADP binding site in a more favorable

position, as shown by the increased affinity, thus confirming the

hypothesis that Pi is a co-substrate. The second site could strictly

accommodate ATP, thus Pi binding would compete with one or

several of the three phosphates, thereby decreasing affinity for

ATP.

To further understand the effect of Pi, NTT1 was titrated with a

1 to 1 mixture of ADP:ATP in the presence of 1 mM Pi. In these

conditions, the protein behavior was drastically changed. The

titration still took place but the tryptophan fluorescence, rather

than being quenched, increased to saturation (Figure 4B).

Moreover, the amplitude of the fluorescence variation was far

more important than in the case of the quenching in the absence

of Pi. Fitting the data from this titration indicated to an affinity for

ADP:ATP close to 120 mM (Table 2). A possible explanation for

this change in fluorescence variation could be that, when Pi is

added at the same time as ADP+ATP, it enables nucleotide

transport. This means that nucleotides would not remain bound to

NTT1, and NTT1 would undergo conformational changes during

which the relative positions and orientations of tryptophans

towards nucleotides would vary significantly as indicated by the

very different behavior of their intrinsic fluorescence.

Influence of Pi on nucleotide transport
Until further knowledge on the structure of the binding sites and

the relative tryptophan locations has been acquired any explana-

tion of these tryptophan fluorescence variations will remain

speculative. Nevertheless, the very peculiar effect of Pi and its

role in nucleotide transport were further studied through

additional experiments. We measured transport rates using a

luminescence assay recently developed in our laboratory [6]. The

main advantage of this assay over measurement of radioactive

ATP uptake, which is the current method [2,6,7,17,18], is that it

makes it possible to follow the transport kinetics in real-time, with

very good temporal resolution. It also allows sequential addition of

compounds and direct observation of their effects.

Generally, ATP/ADP exchange assays were performed in

phosphate buffer, which provides extensive amounts of Pi

(50 mM). In these conditions, the luminescence signal increased

constantly at a significant rate, indicating that transport was fast

and efficient [6]. To deprive ADP of its co-substrate, bacterial

cultures were resuspended in Hepes buffer instead of phosphate

buffer. In this condition, the luminescence signal continuously

increased over time, demonstrating that ATP/ADP exchange still

occurs without Pi (Figure 4C, ADP curve). Simultaneous addition

of ADP and Pi at 5 mM in Hepes buffer led to slightly faster

transport (24+/210% increase, average of 10 measurements) than

after addition of ADP alone (Figure 4C, ADP+Pi curve). Similarly,

when ATP/ADP exchange was already initiated in Hepes buffer,

the subsequent addition of 5 mM Pi also increased the transport

rate (Figure 4C, ADP then Pi curve). In order, to further

characterize the effect of Pi, the transport rates were compared at

different Pi/ADP ratio. The higher rate is obtained at a 1 to 1 Pi/

Figure 4. Nucleotide binding and Pi effect on NTT1. A, NTT1
tryptophan fluorescence quenching by ADP and ATP. For both
experiments, points are represented with markers and fits with lines.
Full line: ADP titration, dashed line: ATP titration. A typical experiment is
presented. B, NTT1 tryptophan fluorescence upon titration with an
equimolar ADP/ATP mixture in the presence of 1 mM Pi. Markers are
experimental points and the continuous line corresponds to the fit. A
typical experiment is presented. C, NTT1 transport activity followed by
luminescence on whole E. coli cells expressing NTT1. ‘‘ADP’’: ATP/ADP
exchange in Hepes buffer, where 5 mM ADP was added at time t1 (ADP
arrow). ‘‘ADP then Pi’’: ATP/ADP exchange in Hepes buffer with
sequential addition of 5 mM ADP at time t1 (ADP arrow) and 5 mM Pi at
time t2 (Pi arrow). ‘‘ADP+Pi’’: ATP/ADP exchange in Hepes buffer with
simultaneous addition of 5 mM ADP and 5 mM Pi at time t1 (ADP arrow).
D, Comparison of the transport rate at different Pi/ADP ratio (r) at 5 mM

ADP. Transport rate without Pi is the reference and set to 1. For the
panel A and B, the experiments have been performed three to five
times with independent protein batches.
doi:10.1371/journal.pone.0032325.g004
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ADP ratio, while at ratio higher than 10, the transport is even

slower than in ADP only condition.

In conclusion, Pi was confirmed to be co-transported with ADP

in equimolar amounts, but a high Pi concentration is also able to

inhibit the transport suggesting a regulating role for this molecule

in the chloroplast. Thus, NTT1 probably takes up one ATP

molecule in exchange of one molecule of ADP and one molecule

of Pi per translocation cycle. Therefore, the influence of Pi on

fluorescence and transport experiments also suggests that the

transporter’s translocation cycle is triggered by the simultaneous

presence of Pi, ADP and ATP.

ADP/ATP binding to NTT1 mutants with altered activity
Several NTT1 mutants have been described with impaired

transport activity [8]. Of these, we produced K155E, K155R,

E245K, K527E and K527R in E. coli, and assessed their activities

by radioactive ATP uptake (Figure S1). The different mutants

were then purified and ADP/ATP binding was monitored by

tryptophan fluorescence variation measurements (Table 3). K155E

was no longer able to bind either ADP or ATP (Table 3). K155R

was not able to bind ADP and had a very low affinity (around

100 mM) for ATP (Table 3). These results were in good agreement

with the low residual transport rate of all the K155 mutants

(Figure S1) and indicate that lysine 155 is probably involved in

ADP binding. K155E was also the only mutant which was mainly

recovered as a dimer in solution (Table 3, AUC). Thus, this

mutation might also induce more extensive structural changes.

In contrast, E245K was almost incapable of ATP/ADP

exchange across the bacterial membrane (Figure S1) but

maintained an affinity for ADP of around 14 mM (Table 3).

NTT1-E245K was also clearly able to bind ATP, but the

fluorescence variations were difficult to fit reliably. The curve

appeared to indicate a biphasic binding mode with an affinity of

2 mM for the high affinity ‘‘site’’. Altogether, these data suggest

that glutamate 245 is involved in the translocation mechanism

rather than in nucleotide binding.

ADP binding was similar for both K527E and K527R mutants,

with affinities of about 20–35 mM, which is about three times

lower than the affinity of the wild-type protein. In contrast, K527E

was unable to bind ATP and K527R only had a very low ATP

affinity (above 1 mM) [Table 3]. Thus, lysine 527 is probably

involved in ATP binding. K527E exhibited only a low transport

activity (Figure S1), while K527R retained some ATP import

activity (Figure S1). This contrasts with results obtained in previous

studies [8]. ATP import by NTT1-K527R is probably due to the

presence of mM concentrations of ADP in E. coli cells that force or

enhance transport, while K527E, which has no affinity for ATP, is

Table 2. Affinities of wild-type NTT1 for different nucleotide mixtures and effect of Mg2+ based on tryptophan fluorescence
variations.

Nucleotide(s) Affinity (mM)
Number of independent
binding sites Second site affinity (mM) Mg2+ effect

ADP 8.661.5 1 Before titration: no ADP binding
After titration: partial signal
dequenching

ATP 4.260.7 1 Before titration: no ADP binding
After titration: partial signal
dequenching

ADP+ATP (equimolar) 2.360.15 (1.15 mM of each
nucleotide)

1

ADP+Pi (equimolar) 3.460.8 2 22.5617.9

ATP+Pi (equimolar) 8.761.0 1

ADP+ATP (equimolar in the
presence of 1 mM Pi)

117.2630.0 1

. Mg2+ effect was assessed by adding 1 mM MgCl2 before or after the complete titration of NTT1 with ADP or ATP. All the affinities were determined using the procedure
described for the figure 4A.
doi:10.1371/journal.pone.0032325.t002

Table 3. Characteristics of NTT1 mutants purified in LAPAO. Affinities for ADP and ATP, protein stability and oligomeric status.

Mutant Affinity for ADP (mM) Affinity for ATP (mM) Protein properties Oligomeric status

K155E n.b. n.b. More dimer

K155R n.b. 91.2658.8 Similar to WT

E245K 14.065.1 1.961.7 Similar to WT

K527E* 19.0624.1 n.b. Similar to WT

K527R* 33.5622.3 .1 mM Less stable Similar to WT

NTT1DC Site 1: 0.660.7 Site 2: 31.1628.2 0.760.5 25.1613.1 Limited protein stability Many large oligomers and/or aggregates

n.b.: no binding. The affinities were determined by tryptophan fluorescence variation measurements as described for the figure 4A. The oligomeric status was assessed
by AUC experiments using the purified mutants in LAPAO.
*these mutants are equivalent to the K446 mutants used in [3].
doi:10.1371/journal.pone.0032325.t003

Mechanism of the Chloroplast ATP/ADP Transporter

PLoS ONE | www.plosone.org 7 March 2012 | Volume 7 | Issue 3 | e32325



blocked in an ADP bound form. These results confirm the

conclusion that NTT1 functions in a counter exchange transport

mode, in good agreement with the ADP/ATP/Pi binding

properties measured on the wild-type protein. The importance of

Pi was also indicated by transport measurements.

Altogether, nucleotide binding studies allowed us to decipher

two different surfaces of the transporter with two distinct, but

probably not independent, binding sites. Thus, K155 would be

located in the ADP binding site, while K527 would be part of the

ATP binding site. However, allosteric effects influence both

binding sites since mutations of both these sites abolished not only

the interaction with the respective nucleotide, but also affected the

affinity of NTT1 for the other nucleotide. Finally, the conforma-

tional changes required to switch between the different transport-

ing states of NTT1 involve charged residues such as E245.

C-terminal fusion and deletion: impact on activity,
oligomeric state and nucleotide binding

We recently observed that an N-terminal Mistic fusion to NTT1

(misNTT1) altered its transport activity [6] (Table 4). Thus, to gain

further insight into NTT1 transport properties, a C-terminal

Mistic fusion to NTT1 (termed NTT1mis) was also designed

during the present work. The activity of this fusion protein was

strikingly different to that of the native protein and of misNTT1,

with a specific activity, at 50 mM ATP, which is almost 100-fold

that of NTT1 (Table 4). To further characterize the transport rate

of this NTT1mis C-terminal fusion protein, VM and KM values

were determined using radioactive ATP uptake and luciferase

assays (Table 4). The KM values measured for ADP and ATP were

12 mM and 13 mM, respectively (Table 4 and Figure S2), thus in

the same range for ADP, and around three times lower for ATP

compared to the values obtained for NTT1. In contrast, the VM

value was 40 times higher for the C-terminal fusion than for

NTT1 (Table 4). Thus, fusion proteins with Mistic placed at either

the N- or C-terminal of NTT1 have opposing effects on NTT1

transport activity. A possible hypothesis explaining the effect of

Mistic located at the C-terminus, could be that fusion induced

oligomerization, as was observed for the N-terminal Mistic fusion

protein [6]. To determine whether NTT1 activity was enhanced

by C-terminal-triggered oligomerization, a C-terminal GFP fusion

protein was also designed. Indeed, GFP is a soluble protein known

to dimerize [19]. The activity of this C-terminal GFP fusion was

only two-fold that of the unfused protein (Table 4), which is

significantly less impressive than the C-terminal Mistic fusion

protein. Thus, inducing close contact of transporter molecules due

to modifications near the C-terminus increases the transport rate,

but is perhaps not the main cause of this effect.

N-terminal sequencing of purified NTT1 solution after limited

proteolysis previously showed that the N-terminus can be cleaved-

off [6]. Furthermore, N-terminal sequencing of the proteolyzed

solution led to the identification of a C-terminal product

corresponding to the 41 last residues of NTT1. Another interesting

feature of this C-terminal domain is that it is predicted to be

unstructured (Figure 5A, part after the second arrow) and is

located at the end of the helical domain following the last

predicted transmembrane helix (Figure 5A first arrow and [8]).

Because of these observations, we deleted the last 41 NTT1

amino-acids to generate the corresponding construct (named

NTT1DC). This protein was used to assess the effect of a C-

terminal deletion on transporter activity. The specific activity of

this construct was more than 10-fold that of the full-length NTT1

(Table 4). The construct was well expressed in E. coli and could be

purified for study of its oligomerization behavior and nucleotide

binding properties. However, the purified transporter had an

unexpected tendency to aggregate (Figure 5B). Despite this, the

correctly folded fraction of the protein was found to be composed

predominantly of monomer and dimer species. ADP and ATP

binding properties were investigated by tryptophan fluorescence

variation. Both nucleotides bound NTT1DC with a biphasic curve

(the ATP titration curve is presented in Figure 5C). After initial

fluorescence quenching in the low micromolar range for

substrates, fluorescence then increased up to nucleotide concen-

trations in the hundreds of micromolar range. The binding curves

were fitted with a two-independent binding site equation and gave

affinities for both ADP and ATP of about 0.6–0.7 mM and 25–

30 mM for the first and second sites, respectively (Table 3). Thus,

deleting the C-terminus of NTT1 has a significant impact on

transport rate, but also affects the stability/oligomerization state of

the protein, as well as its nucleotide binding abilities.

To conclude, C-terminal fusions or deletions of NTT1 increased

its transport activity. Thus, it is possible that the flexible NTT1 C-

terminus is an internal regulator domain of the nucleotide

exchange rate. Furthermore, this domain also influenced the

stability of the protein in solution probably via intramolecular

interactions.

Conclusions - Perspectives
In this work, we performed a detailed molecular characteriza-

tion of the chloroplast envelope ATP/ADP transporter from A.

thaliana. We used various biophysical methods to determine the

oligomeric status of NTT1 and the affinities of the purified

transporter for its substrates. This information provided us with

some insights into the transport mechanism.

Table 4. Comparison of transport activities for different NTT1 fusions and deletion.

Construct Relative NTT1 activity (%) VM-ATP (nmol ATP/min/mg NTT1) KM-ATP (mM) KM-ADP (mM)

NTT1 from [6] 100 10.162.5 3266.0 6.762.4

NTT1mis 9300 408.2674 13.265.3 12.065.2

NTT1GFP 200.2 - - -

NTT1DC 1236.2 - - -

misNTT1 from [6] 16.4 1.260.7 40.2616.7 19.268.6

Relative NTT1-WT activities were determined from specific radioactive ATP uptake (using 50 mM ATP) performed during 5 minutes for wild type (WT) NTT1 and for
mutants NTT1-K155E, NTT1-K155R, NTT1-E245K, NTT1-K527E and NTT1-K527R. The activity of WT is defined as 100% activity. The VM and KM values for ATP and the KM

value for ADP were determined as described in [6] using the radioactive ATP uptake method for ATP and the luminescence approach for ADP. Each measurement is the
mean of three independent experiments.
doi:10.1371/journal.pone.0032325.t004
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Through different approaches, we confirmed that NTT1

counter exchanges ADP+Pi against ATP as initially shown by

Trentmann and co-workers [3]. Indeed, we have shown that Pi is

strictly required to achieve steady-state transport rates.

However, in contrast to this study, our data conduct to an

alternative model for NTT1 nucleotide transport. Indeed,

nucleotide binding to NTT1 highlighted the presence of two

distinct binding sites for ADP+Pi and for ATP, respectively, which

were shown to be allosterically coupled. Based on these results, the

functional unit of NTT1 could either be a monomer with

concerted motion for nucleotide translocation, or a dimer (or

higher oligomers such as a tetramer) that achieves translocation

through a concerted-protomer motion producing a cooperative

transport mechanism. This hypothesis is consistent with the results

obtained on transport activity for NTT1 constructs N-terminally

fused to Mistic [6]. Indeed, fusion of Mistic to NTT1’s N-terminus

induces the formation of large oligomers with low ATP/ADP

exchange rates. Formation of these large oligomers is driven by

Mistic boundaries and is probably incompatible with NTT1’s

coordinated transport [6]. In support of this, a high propensity to

form small sized-oligomers was shown to favor high transport rates

[6]. Furthermore, in the present study we assessed, for the first

time, the oligomeric status of NTT1 in different amphiphiles. On

one hand, fluorinated surfactants are known to favor physiological

oligomeric status [20] and induce the conversion of NTT1

monomers to dimers and higher oligomers. On the other hand,

detergents are well known to dissociate membrane protein

complexes and oligomers and mainly lead to monomers and

dimers. Thus, it is likely that the dimers of NTT1 are partly

dissociated upon solubilization.

Finally, we showed that in vitro this transporter is negatively

regulated by its flexible C-terminal end.

Altogether these data support the presence of an active,

functional NTT1 dimer providing concerted ADP-Pi/ATP

exchange. These first insights on the oligomeric status and the

function of NTT1 are a first breakthrough towards complete

functional and molecular characterization of this transporter.

Supporting Information

Figure S1 Transport activity of NTT1 mutants. Specific

radioactive ATP uptake (using 50 mM ATP) was measured at

5 minutes for wild type (WT) NTT1 and for mutants NTT1-

K155E, NTT1-K155R, NTT1-E245K, NTT1-K527E and

NTT1-K527R. The activity of WT is defined as 100% activity.

Each measurement is the mean of three independent experiments.

(TIF)

Figure S2 Determination of KM of NTT1 for ADP by
luminescence. Typical Michaelis-Menten curve allowing the

determination of KM of NTT1 for ADP, based on a luminescence

experiment. Experimental points are shown as dots and the

continuous line corresponds to the fit. The experiments have been

performed three times with independent cell batches.

(TIF)

Figure 5. Properties of C-terminal deleted NTT1 (NTT1DC). A, sequence and secondary structure prediction of NTT1 C-terminus. The
secondary structure prediction was obtained using the Jpred server [21]. Jnet is the predicted secondary structure. Jhmm is the predicted Jnet hmm
profile. Jpssm is the predicted Jnet PSIBLAST pssm profile. The first arrow indicates the predicted end of the last NTT1 transmembrane helix (TMHMM
pred). The second arrow indicates the end of the NTT1 C-terminal deletion construct, which also corresponds to the cleavage point during limited
proteolysis treatment. B, sedimentation velocity analysis for NTT1DC. The upper part shows experimental points (markers) and fits (lines) of the
sedimentation velocity experiments. The lower part corresponds to the absorbance c(S) distribution for NTT1DC. C, typical tryptophan fluorescence
titration by ATP for NTT1DC. Markers show the experimental points and the continuous line is the fit with a two binding-sites equation.
doi:10.1371/journal.pone.0032325.g005
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Table S1 Oligonucleotide sequences of the different
primers used for cloning.
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