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Abstract

In univariate settings, we prove a strong reinforcement of the energy image density
criterion for local Dirichlet forms admitting square field operators. This criterion en-
ables us to redemonstrate classical results of Dirichlet forms theory [1]. Besides, when
X = (Xi,...,X,) belongs to the D domain of the Dirichlet form, and when its square
field operator matrix I'[ X, * X7 is almost surely definite, we prove that £x is Rajchman.
This is the first result in full generality in the direction of Bouleau-Hirsch conjecture.
Moreover, in multivariate settings, we study the particular case of Sobolev spaces: we
show that a convergence for the Sobolev norm W'?(R? RP) toward a non-degenerate
limit entails convergence of push-forward measures in the total variation topology. [7].

Keywords: Dirichlet forms, energy image density, Sobolev spaces, Malliavin calculus,
geometric measure theory
2010 MSC: 31C25, 31C99, 46E35, 28A75, 60HO7

1. Introduction

In the two past decades, the theory of Dirichlet forms has been extensively studied
in the direction of improving regularity results of Malliavin calculus (cf.[14],[13],[8]).
Usually, Malliavin calculus enables integrating by parts in order to prove, for any test
functions, inequalities of the form |E(¢(p> (X))| < C||¢||co, from which smoothness es-
timates on the law of X may be derived. Nevertheless, when one only wants to prove the
absolute continuity with respect to Lebesgue measure (without quantitative estimates),
a more efficient tool exists: the energy image density criterion. More precisely, in the
particular setting of local Dirichlet forms admitting square field operators, the energy
image density E.ID. asserts that a random variable X = (X3, --- , X,) in the D”? domain
of the Dirichlet form, which square field operator matrix I'[X] = (I'[X}, X|])1<i j<p 18
almost surely definite (det I'[.X] > 0), possesses a density with respect to the Lebesgue
measure on R". Concretely, with respect to Malliavin calculus approach, this criterion
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enables to weaken the assumptions of smoothness, but all the more to relax the non
degeneracy conditions from m € L9N) (Q > 1) to detT[X] # 0. Always true
for real valued variables (p = 1), this criterion is still a conjecture in the general con-
text since 1986 (cf. [7]). Nevertheless, this criterion has been established in almost
all practically encountered Dirichlet forms such as the Ornstein-Uhlenbeck form on the
Wiener space (cf. [7]), or Dirichlet forms on the Poisson space (cf. [10]). Besides, very
recently, a new method called "the lent particle" uses E.I.D. to provide with a power-
ful tool enabling to study the regularity of the laws of Levy processes or solutions of
stochastic differential equations driven by Levy processes (cf. [4],[5],[6]). In the above
cases, the energy image density criterion is established, using some rather involved argu-
ments of geometric measure theory around the coarea formula for mappings belonging
to Sobolev spaces W12(R%). Since theses arguments use the particular topology of R?
(local compactness), they cannot be transposed to the general case of a local Dirichlet
form £ acting on a sub-domain of an abstract L?(P) (instead of L?(k(z)dA\s()) space,
which concerns most of infinite dimensional contexts. Until now, the univariate case
is the only result enabling to prove tha absolute continuity in full generality (cf. [5],
chap.5).

In this article, we set a new property, namely the strong energy image density
S.E.L.D., which is a kind of quantitative version of E.I.D.. More precisely, in univariate
cases and for general Dirichlet forms, we prove that if X, converge toward X in the D
domain of a Dirichlet structure, then X,,, (]l{p[ X}>o}dP) converges in total variation to-
ward X, (]].{1“[ X]>0}dP). As a corollary, we redemonstrate the fact that convergence for
the Dirichlet topology is preserved by Lipschitz mappings in the univariate case, which
has been established in [1]. Besides, in the multivariate case, we prove that the distribu-
tion of X € D” whose square field operator matrix is almost surely definite, is a Rajch-
man measure. To our knowledge, this is the first result in full generality in the direction
of Bouleau-Hirsch conjecture. Finally, we study multivariate cases for the W7 (Q)
Sobolev structures (€2 open subset or R?) and establish a weaker form of S.E.LD. but
with rather precise estimates. Indeed, we need some additional assumptions in order
to ensure that the Jacobian of the mappings is integrable, which enables us to prove an
integration by parts formula. Let us mention that our proof (Lemma 4.3) provides with
a generalization of a recent result from H.Brezis and H.M.Nguyen (c.f. [9] Theorem1).
Besides, theses results are extended to the case of the Ornstein-Uhlenbeck form in the
Wiener space giving a generalization (by a purely algebraic method and avoiding every
coarea type arguments) of classical results from Bouleau-Hirsch [8]. Every results of
this article are heavily inspired by the seminal paper [7], where functional calculus and
completeness of [ are combined, in order to prove E.I.D.. As explained in 2.4, our proof
has a common structure with [7]. Roughly speaking, in [7], the preponderant argument
is the completeness of D whereas in ours proofs we use the infinitesimal generator A (in-
ducing the Dirichlet form £[-, -]). Although theses two facts are totally equivalent (c.f.



[11]), we highlight that using the generator is a more powerful approach of E.ILD.. We
are grateful to Vlad Bally and Damien Lamberton for their advices notably in concern
with the proof of 4.1.

After having precised the notations and stated the main results, we focus on the
univariate case for a general structure. Next, we end by studying the particular case of
Sobolev spaces W' (Q).

2. Notations and results

2.1. Definitions and notations

Originally introduced by Beurling and Deny (c.f. [2]), a Dirichlet form is a sym-
metric non-negative bilinear form £|-, -] acting on a dense subdomain D(€) of an Hilbert
space H, such that D(€) endowed with the norm /< X, X >4 +€[X, X] is complete.
We refer to [12, 11, 8, 3] for an exhaustive introduction to this theory. In the sequel we
only focus on the particular case of local Dirichlet forms admitting square field oper-
ators. In order to avoid unessential difficulties, we restrict our attention to the case of
probability spaces (€2, F,P) instead of measured spaces (2, F, m). The next definition
is central.

Definition 2.1. Following the terminology of [8], in this paper, a Dirichlet structure will
denote a term (Q, F, P, D, T") such that:

(a) (92, F,P) is a probability space.
(b) D is a dense subdomain of L*(P).
(c) T[-,-] : D x D — LY(PP) is bilinear, symmetric, non-negative.

(d) Forallm > 1, forall X = (Xy,---,X,,) € D™, and for all F € C'(R™ R) and
K-Lipschitz:

o F(X)eD,
o T[F(X),F(X)] = i i 0,F (X)d,F (X)X, X;].

(e) Setting E[X, X] = E(I'[X, X]), the domain D endowed with the norm:

IX1lp = VE(X?) + €[X, X],
is complete. Thus, £ is a Dirichlet form with domain D on the Hilbert space L*(PP).

Let us recall briefly, that there exists an operator A defined on a D(A) dense subdo-
main of L?(P) such that:



1.

2.

3.

U € D(A) if and only if there exists C; > 0 satisfying:
VX €D, [E{T[X,U]}| < Cu VE{X?},

forall U € D(A), forall X € Dandall Z € DN L*(P), we have:

E{T[X,U)|Z} = —-E{XZA[U]} + E{XT[Z,U]},

D(A) is dense in D for the norm ||-|,.

Let us enumerate the notations adopted in the present paper:

for X € D, weset I'[X]| =T'[X, X]| and £[X] = £[X, X],
for X = (Xy,---,X,,) e D™

X, X)) TX, Xa] oo DX, X

[[Xs, X1] T[Xo,Xs] -~ D[[Xo, X,]
T[X] = T[X,'X] = : : : ,

X, X)) DX, Xo] oo T[X,, X,

for ¢ € C1(R4, R), we set Vo(z) = (016(2), .. ., 8a0(z)),

in a topological space (E,T), =, T oz naturally means that x,, converges

n—o0

toward z in the topology 7T,

for a random variable X taking values in R?, L is the ditribution of X and £y (&)
its characteristic function,

for a Radon measure p, we set ||u||rv = sup < ¢, > the total variation of
{lléllco<1}

1,

finally, in the spaces R?, || - || will be the Euclidean norm.

The following definition is preponderant in this work.

Definition 2.2. Let S = (2, F,P,D,T") be a Dirichlet structure. We say that S sat-
isfies the energy image density criterion, if and only if, for all p > 1, for all X =

(X1,

, X,) € DP:
Xo(Tgget rix)>0ydP) << dA,.

Conjecture. (Bouleau-Hirsch)
Every Dirichlet structure (in the sense of 2.1) satisfies the criterion E.I.D..
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As already mentioned, we refer to [7, 10, 5] for examples and sufficient conditions
entailing E.ILD.. The most illustrative example of this kind of structure is the Sobolev
space H'(£2, \;) where Q is a bounded open subset of R¢, and )\, the d-dimensional
Lebesgue measure In this case:

o (Q,F,P) = (2,B(2), 52%)

1 L
o &g = m/gw Ve dhg.

2.2. Results in general Dirichlet structures
Theorem 2.1. Let S = (0, F,P, D, T") be a Dirichlet structure. Let (X,,),en and X be
in the domain D. We assume that X, BN ‘e , then for any Z € L*(P) supported in
(T[X] > 0}: A

sup E{(¢(Xy) — ¢(X)) Z} — 0. (D

[#llco<1 nee

For instance, if almost surely I'[X| > 0, then ||Lx, — Lx||lrv —— 0.
n—oo

Corollary 2.1. Let S = (2, F,P,D, ") be a Dirichlet structure and let (X,,),en and X
beinD. If X, HLEN ‘e then for any Lipschitz map F, F(X,,) LN F(X).
n—oo n—oo

Theorem 2.2. Let S = (2, F,IP, D, I") a Dirichlet structure and let X,, = (Xy(ll), e ,Xy(lp))
and X = (XU, ... | X®) be in DP. Besides, we assume that almost surely det T[X] >

0 and that X, 2" X. Then:

n—oo

~ ~

sup [Lx, (§) — Lx (&) —— 0. 2)
£€RP ll€]|—00

Farticularly, we get that L x(&) W 0, that is to say Lx is a Rajchman measure.
—00

2.3. Results in Sobolev structures

Theorem 2.3. Let d > p be two integers, and ) be an open subset of R%. (F),)
be a sequence in W'P(Q,RP) converging to F in W'P(Q,RP) and K in L'(Q,R) a
measurable map supported in {det I'|F| # 0}, where I'[F| = VF -'VF. Then

(F,)(Kd)\) — F(Kd\)

n—-+0o00



Corollary 2.2. We endow RN with the Gaussian probability P = N(0,1)Y Let p an
integer; (F,,) a sequence in WP (P) converging to F in W'P(P). Let I a finite subset
of N with cardinal p and K in L'(P) supported in {detT'(F) # 0} where ['[F| =
VF -'VF. Then
(F,).(KdP) % F.(KdP)

Remark 2.1. Previous corollary ensures that if X, = (Xf"), e ,X;(,n)) converges to
X = (X1, -+, X,) in D" and if det T[X] > 0 then Ly, converges toward Lx in the
total variation topology. Here D is the analogue of the space WP for the Malliavin
gradient operator D, and I is the square field operator associated to the Ornstein-
Uhlenbeck form in the Wiener space (c.f. [14]). This can be applied easily to the
case of diffusions on RP with C! coefficients, where dependence theorems on the initial

.. . DL.P . . .
conditions will ensure that X7 —— X}. For instance, applying Proposition 3.1, we
Ty

redemonstrate the classical result of Bouleau-Hirsch in [7].

In the same way as Corollary 2.1, we can deduce from Theorem 2.3 that the con-
vergence in W'P(Q) is preserved by Lipschitz mappings. But in this case contrarly to
Corollary 2.1, a non-degenerescence of the limit is required.

Corollary 2.3. Let d > p be two integers, ) be an open set of R% and (F),), I belong
1o WP (Q, RP) such that

wlp
F, —— F

n—-+40o

det T[F] = det (6F : tﬁF) > 0ae.
Then for any Lipschitz mapping ® : RP — R:

wtp
boF, ——> PoF.

n—-+o0o

2.4. Scheme of the proofs
Our proofs of Theorem 2.1 and 2.3 have a similar structure, constituted of three
steps. Roughly speaking:

e We give us a bounded continuous function ¢ and we set ®(z) = [“(t)dt a
primitive. (If ¢ € C(R%,R) with d>1) we only integrate with respect to the one
variable).

e Using an integration by parts formula (involving ® and functional calculus (c.f.
(d) 2.1), we obtain for I/ "smooth" an inequality on the form :

[Elp(Xn) JnW] = Elp(X)JW]| < C(W)|[@llcol| Xn — X|Le

where J,, (resp. J) are playing the role of I'[X,,] (resp. I'[X]) in the univariate
case and the role of det I'[X] (resp. det I'[.X,,]) in the multivariate setting.
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e Assumptions will ensure that when n tend to +oo, J, will be close to J, so
that choosing W =~ %, we will obtain the smallness of the quantity E[p(X,,)] —
E[¢(X)], uniformly in ||¢]|o-

Let us mention that in the multivariate setting, our integration by parts relies on Schwartz
property (0,0, = 0,0,), and we failed in finding an analogue in the general context.

3. Strong energy image density in the general setting

Lemma 3.1. Forall M > 0, let Eyy = {¢ € CO([—M, M])| ||¢llco < 1}. Then for any
sequence ¢, in Eyy, forany U € D(A) and any W € L*(P)ND :

Tim E{(6,(X,) — 6,(X)) T[X, U)W} = 0.

Proof. Let us be placed under the assumptions of the lemma. Using functional calculus
we have:

F[q)n(Xn) - q)n<X)a U} = ¢n<Xn)F[Xnv U] - an(X)F[Xv U]~ 3)

Cauchy-Schwarz inequality entails:

E{|T[X,,U] - T[X,U][} < VE[X, — X]\/E[U]. 4)
Functional calculus (3) and inequality (4) ensure that:

[EAT[®n(Xo) — Pn(X), UIW} = E{(¢n(Xn) — & (X)) T[X, UW}]
< Wl vV ELX — XV EIU. (5)

Moreover, the usual integration by parts leads to:

EAT[®5(X5) — @n(X), UIW} = E{(Pn(Xn) — u (X)) (U[U, W] = A[UIW))} ©
Finally using both (5) and (6), we get:

[EA{(6n(Xn) = on(X)) CIX, UIWE - < EA{|@,(X5) — @, (X)] [TV, W] = A[UIW) |}
< E{|X, - X|A@2M)[TU, W] = AlUIW)[}

HIW oo v/ E[Xn — X]V/EU].

(7

Since, |T[U, W] — A[UIW)| € L*(P), inequality (7) ensures that:
[



Proof. (Theorem 2.1)

Let M be a positive constant and let us fix a sequence ¢,, in E; such that:

sup E{(9(X,) ~ 6(X)) Z} ~ B {(6(X,) — 6u(X)) 2} | <

IS Vs

Up to extracting a subsequence, we assume that (¢, (X,,) — ¢,(X)) converges weakly
in L>°(P) toward Y € L*°(P). In particular, for all U € D(A) and all W € DN L>®(P):

Using Lemma 3.1, we deduce E {YT'[X, U]W} = 0. Besides, D(A) is dense in D for
the norm || - ||p and D N L>(P) is dense in L'(P) so that YT'[X] = 0 a.s. and hence
Y Z = 0 a.s., and in consequence,

lim sup E{(¢(X,) — (X)) 2} =E{YZ} = 0.

n—o0 oEE Ny

In the general case, let us notice that:

sup B {(¢(X,) = 6(X)) Lirpxpsnp 2} — sup E{(6(Xn) — (X)) Lyrx»0pZ

PEE N llollco<1

<E{(Tyx,sm + Lxpsan) Y} —— 0.

M—o0

O

Remark 3.1. Let us notice that the conclusion of Theorem 2.1 remains if we replace the
: D .
assumption X,, —— X by the weaker assumption
n—oo

X, Prob. X

n—oo

YU € D(A), T[X,., U] 2% rx,u]

n—00

Now let us prove Corollary 2.1:
Proof. (Corollary 2.1)

Let us be placed under the assumptions of Corollary 2.1, let f be a Borel representation
of F” and let K be the Lipschitz constant of F'. First, as the mapping F' is K-Lipschitz,

it is straightforward that:
20 pix.

n—-+4o0o

F(Xn)
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For real valued variables of I, the E.I.D. criterion enables Lipschitz functional cal-
culus. Thus, we have:

L[F(X,) = F(X)] = [(Xa)T[Xa] + f(X)’TIX] = 2/ (Xa) f (X)T[Xn, X],
= (f(X) = f(X))TIX] + Ry,

with

E{|R,|} < K’E{|I'[X,] - T[X]|} + 2K*/E[X,, — X]/E[X] —— 0.

n—oo

Moreover,

E{(f(X) = f(Xa))’TIX]} = E{(f(Xa)* = f(X)?) TIX]} + 2B { f(X)T[X] (f(X) = f(X))}
= A, + B..

By Theorem 2.1, we know that for every bounded Borelian mapping ¢ : R — R and
every Z in L*(P) supported in {T'[X] # 0},

E{(o(Xn) = 0(X)) 2} — 0

n—o0

In particular:

e For Z =T'[X] and ¢ = f?, we obtain that lim A, = 0.

n—oo

e For Z = f(X)I'[X] and ¢ = f, we obtain that lim B,, = 0.

n—oo

In conclusion:
lim E{I'[F(X,) - F(X)]} =0

n—o0

and the corollary is proven. O]

Now we come to the proof of Theorem (2.2), it is the first result in full generality
in the direction of proving the conjecture of Bouleau-Hirsch. In order to exploit the
uniformity provided by Theorem (2.1), we will use linear combinations of the variables
(X1, X,)and (X5, - X)),

Proof. Theorem 2.2

Let us be placed under the assumptions of the Theorem (2.2), and let &, be in R” such

that:
sup E {ez’<Xn,£> _ €i<X,§>} _E {€i<Xn,£n> _ e’i<X7En>} < l (8)
¢ERp n



Now, we rewrite the right term:
E {e<Xnin> — <X} — | {ei”gn‘kxn o> _ gillenl<Xoqity >} 9)

By compactness of the Euclidean p-sphere, up to extracting a subsequence, we may
assume that 52 — &, where ||€|| = 1. We then deduce that:

T1énll
n > < X, &>

(€]l ~ noo

< X, 7o

Besides, I'l< X, § >] = {T'[X]’¢ > 0. We are under the assumptions of Theorem 2.1 by
choosing ¢, (z) = €l and thanks to (9) we get lim E {e’<¥%n> — <=1 —
n—oo

Using inequality (8):
— 0.

n—o0

sup |Lx, (&) — Lx(€)

€ERP

In order to prove that Lx is Rajchman, it is enough to make a convolution. More pre-
cisely, letY,, = X + %(Ul, -+, Up,) where U; are i.i.d. with common law 1 3j(z)dz. In
fact, the variables U; may be thought as the coordinates of the usual D1r1chlet structure:

([07 1]7 B([()? 1])7 ]1[0,1]<‘T)dx7 Hl([()? 1])7 F[Qﬂ = (¢/)2)p'

In addition, Y, —2 5 X where D is the domain of the product structure:

S x ([0, 1], B([0, 1]), Lo,y (x)dz, 7' ([0, 1]), T[] = (¢)*)".

Being absolutely continuous, ﬁyn (&) W 0. We may use the first part of the Theo-
—00

rem which ensures that:

sup /an(f) - ﬁx(f) —0

{e]Rp n—oo
to complete the proof. O

Remark 3.2. The aforementioned Rajchman property is consequence on some" unifor-
mity" on the linear combinations of the coordinates of X,, and X. Without this unifor-
mity and using only E.I.D. we may only prove that:

v¢ € R7/{0}, lim E {e"=t*>1 =0

We guess that we could use a wider class of functions than linear ones, in order to
operate on the coordinates of X,, and X, the operating class of functions needing to
be finite dimensional so that the same compactness argument holds. For instance we
could have chosen the class of polynomial maps with degree less than N, in order to
get a stronger property than the Rajchman one. Unfortunately, we failed in using this
argument.
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Theorem 2.1 suggests to introduce the following definition which is a generalization
to the multivariate case.

Definition 3.1. Ler S = (0, F,P,D, ") a Dirichlet structure. We will say that S satis-
fies the "strong" energy image density E.ID., if for any X = (Xy,--- , X,) and any se-

quence X, = (XT(LI), e ,Xr(Lp)) in D with || X,,— X ||p» — 0and forany Z € L*(P):
n—oo

sup E {(¢(Xn) — (X)) ]l{detr[x]>0}Z} — 0. (10)

H(b”CU(RP?R)Sl
The terminology of E.I.D. is justified by the next proposition.

Proposition 3.1. Let S = (0, F,P,D, ") be a Dirichlet structure satisfying S.E.LD.,
then it satisfies the criterion E.I.D..

Proof. Let A be a Borel subset of R" negligible with respect to the Lebesgue measure
and let X = (Xy,---,X,) bein D". Let us be given U = (Uy,--- ,U,) n random
variables i.i.d. with common law 1} j(«)dz and defined on an independent probability

space (Q), F,P). Let us take Z = 1 and let us apply E.LD.:

n—oo

R 1.
lim E {E { (XA(X + HU) — XA(X)) ]l{detF[X]>O}}} = 0. (11)

But Fubini theorem entails:

. 1. A 1.
o) -ofefoar- 0}
Finally, (11) ensures that E {x 4(X)1{getr[x]>0} } = 0. O

In the next section, we prove a weaker version of E.LD. criterion in the Sobolev
spaces W/ (RP). Our result is weaker because we need stronger moments on the vari-
ables I'[ X]. Fortunately, in every practically encountered cases, this assumption is ful-
filled. Besides, in the particular setting of standard Sobolev spaces, we are able to prove
several generalisations of the S.E.L.D. criterion.

4. Strong energy image density in the Sobolev spaces

In this section, we will prove Theorem 2.3. Let us be placed under the assumptions
of the theorem. If I = {iy,...,i,} is a subset of {1,...,d}, for f in WHP(Q2,R) we
denote V;f = (8;,f, ... ,0; f), and for F = (fy,..., f,) in WH(Q,RP), we denote
Ji(F) = det(ﬁ]fl, . ,ﬁlfd). With these notations, we have

detT[F] = > |J(F)]



Thus, up to replacing K by K17, (r).0}, we will assume that K is supported in {7 (F') #
0} from some subset [ = {i1,...,%,}.

The integration by part formula used in this section is the following:

Lemma 4.1. For fy,..., f, in W (Q,R) and w in C1(Q, R):

/ wdet(ﬁjfl, ﬁ]fg, e ,ﬁ[fp)d)\ = —/ f1 det(ﬁlw, ﬁ[fg, ceey ﬁjfp)d/\
Q Q

Proof. Without loss of generality, we can assume that / = {1,...,p}. Besides, since
C*(Q,R) is dense in W'?(Q,R) and (f1,..., f,) — det(Vfi,...,V1f,) is continu-
ous from WH?(Q, R?) into L' (2, R), we can also assume that fi, ..., f, are C? on Q.

Noticing that
wdet(Vif1,Vifa, -, Vif)+fidet(Viw, Vifa, ..., Vif,) = det(Vi(wfi), Vifa -, Vify),
and that

/Qdet(ﬁ[(wfl)ﬁ]fg,...,%fp)dx :/ > e(@)0oy f1 Onp) fy | AN

& o€Sy

B _/wal > e(0)0s1) (Do) fo -+ Do fy) | dA,

o€Sp

it is sufficient to prove the algebraic relation

Z £(0)051)(Os(2) f2 - Ou(p) fp) = 0.

o€Sy

The left term equals ) »_, hj, where

hk‘ = Z €<U)ao(l)aa(k)f1 Hag(])f]

o€Sp J#k

Denoting by 7 the transposition (1, k) we have

hk = Z 5(0' o T)aUOT(l)aO'OT(k)fl H 8U(J)f.7

oES) JF#k
== Z €(0)9o(k) O (1) J1 Haa(j)fj
oES) Jj#k
=
so that Ay, is null, which completes the proof. ]
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Using this integration by parts, we will establish this new one more general, relating
integral of ¢ o F" and 0, o F' against some weights.

Lemma 4.2. For F = (f1,..., f,) in WH(Q,R?), v in C*(RP,R) and w in C}(Q, R):
/(81<p o F)ij(F)d)‘ = _/ @ o Fdet(ﬁlu% 6If27 s 761fp>d)"
Q Q

Proof. Let ® = (¢,qs,...,qp,), where gy is the k-th canonical projection on R?. Then
boF = (pokF, fo...,f,),and Lemma 4.1 applied to p o F, fo, ..., f, leads to

/ wJr (P o F)d\ = —/ Yo fdet(ﬁ;w, Vifo,... ,ﬁfp)d)\.
Q 0
Noticing that J;(®) = 0, we have

Ti(®o F) = (Ji(®) o F)Ji(F) = (O1p o F)Ti(F),

which completes the proof.
]

Lemma 4.3. For F = (f1,...,[f,) and G = (q1,...,g,) in W'P(Q,RP), for ¢ in
C(R?,R) with ||{p||co < 1, for w in C1(Q,R) and for r,s positive numbers with + +

p=1l _ 1.
- :

/Qw o F)J1(F)wd\ — /(w o G)Ji(G)wd\| < C||F - G

Q

Lr(Q)

where

C

LS(Q))piluvleoo-

IV 1 felley + 1V gx

= sup
1<k<p
Remark 4.1. For ¢ = 1, it gives Brezis estimate [9]

Proof. Letus denote H, = (fi1,..., fk, Gkt1, .- gp) for k=0, ..., p. Since

—_

(Yo P)IJI(F) = (¢ oG)IT(G) =) (Yo Hy1)Tr(Hisa) — (¥ o Hy) J1(Hy),

0

bS]

i

up to replacing (F, G) by (Hy, Hy1), we may assume that F' and G differ from only
one coordinate, namely j. Besides, up to a permutation, we may assume j = 1, so that
fr = gx for k # 1. We set

(p(qzl,...,xp):/ Y(t, xa, ..., x,)dl.
0
13



Then by Lemma 4.2,

/(1/1 o FywJ(F)d\ = / @o Fdet(Viw,Vifa,...,Vif,)dA
[9]

/w o G)wJr(G)d\ = /ng o Gdet(Viw,Vifa, ..., Vif,)dA

Q Q

)

and hence

[womamuar- [we G)jI(G)wd)\’ -
Q2 Q
\/g;|cpoF—gDOG| |det(§1w,61f2,...,ﬁffp)|d)\,

Since |01¢| = || < 1, we have

oo F(z) —poGla)| = < [fi(@) = g1(2)|

g1(x)
/ Ot fol@), .., f(a))dt
fi(z)

and Lemma 4.3 is then as a consequence of the Holder inequality. O]

Proof. (Theorem 2.3)

Let p, = (F,)«(Kd\), p = F.(Kd)\). We fix w in C}(Q2,R) supported on some
bounded open set €', and we write:

/@dﬂ—/ odpn, =11 + I + I3
RP RP

( ]1:/l(<poF)wj1(F)dA—/ (po F)wJ(F,)dA

with
L= [ (0o Fu(Ti(F,) = Ti(F)ax
Is = f(gp oF —po ) (K —wJ(F))dA.

Since (F},) is bounded in W1P(£'), using Lemma 4.3 with r = s = p we can bound I;
by C||F,, — F||z»(ay where C does not depend on n. Besides, integrals /, and /5 are
respectively less than 2||J;(F,) — Jr(F)|| 11 (o and ||wJ;(F) — K||11(q). This leads to

[t — pllrv < CIE, = Fllory + 2(1T1(Fn) — Ti(F) vy + lwTi(F) — Kz
Letting n tend to 400, we get

limsup ||y — pllrv < [[wJr(F) — K| 1)

n—-+00

14



Since % € LY(Q,|Jr(F)|d\) and since C} (2, R) is dense in L*(Q, | J;(F)|d)), we

may choose w such that [[wJ;(F) — K| 1) is as small as wished. We deduce:

limsup ||y — pl|7v = 0.

n—-+o0o

O
Remark 4.2. The conclusion of Theorem 2.3 would remain true replacing the assump-

. WhP(Q)

tion F,, —— F' by
n—-+00
P Prob. o
n——+00

sup ||61Fn||Lpf1(Q) < 400 .
LY(Q)

Ji(F) % Jy(F)
n—-+oo

This is a consequence of the following estimate: for v in C°(RP,R) supported in
[—M, M? such that ||¢||co < 1,

/Q (v o Fo) T (Fp)wdA — /Q (1 o F)Ji(F)wd\| <

/Q(HFn(x) — F(2)|| A2M)|det(Vyw,Vifa, ..., Vify)|dA.

(The proof is similar of Lemma 4.3)
The right term tends to 0 under above assumptions, which next allows to conclude as in
Theorem 2.3 proof.

Proof. Corollary 2.2
We fix an integer d larger than max I. For y in RN and = in R? we denote i, (z) = (z, y).
Up to extracting a subsequence of (F},), we can assume that for almost every y in RY,

whp(REN(0,1)9)

F, o1y > F oy,

n—-+o0o

Thus, for almost every y in RY, and every 1 in C°(RN, R) satisfying ||¢]|co < 1,
L e (Broila) = b o (Foi,) (o)) (K o) d =
/|<M (Vo (Fuoiy)(w) =t o (Foiy)(z)) (K oiy(w))e " de

+ /I o (%U o (Fn o 2y>($) —o (F o Zy)(x)) (K o iy(x))e_‘f”'de_
= A, + B,.

15



Using a Markov inequality, for all € > 0 there exist M > 0 such that sup,, ,, B, < €.
Besides, A, tends to 0 as n tends to +oco uniformly in ¢ by Theorem 2.3. Integrating
on y, we deduce that:

| woRivorykab= [ [ wo(Foi)@) = vo (Foi,)w) (Ko a))e " dudB(y)

tends to 0 uniformly in 1) as n tends to +oo. ]

Proof. (Corollary 2.3) Since @ is Lipchitz it is straightforward that

doF, 2 sdoF
n—-+0o

Next, fixing k in {1, ...,d}, we have
p
Ou(®oF,—®oF) =Y 0f"(@:PoF,) — 0ufi(0:D 0 F)
=1

p
= 0fid:@ o F, ~ 9,20 F) + R,
1=1

L@ .

n—-+00
Now we fix 7 in {1,...,d}, and we want to prove that O f;(0;® o F,, — 0;® o F)
converges to 0 in LP(£2) Since this sequence is clearly bounded in LP(£2), it is sufficient
to prove the convergence in L (), and hence we can assume that A(Q)) < +oo. We

will follow the same strategy that in proof of corollary 2.1. First, we write that

where R,

10,00 F, — 0,00 F |22 = /(&cban)Zd)\—Q/
Q

Q

Q

By Theorem 2.3, we know that for any bounded borelian map ¢ : R? — R and any
mapping K in L'(Q),
n——+00

lim [ (po F,)Kd\= /((p o I,)KdA.
Q 0

In particular:

e For K = 1 and ¢ = 9;%? we obtain

lim [ (0;® 0 F,)%d)\ = /(ai@ o F)2d).

n—-+00 Q Q

16



e For K = 0;® o F and ¢ = 0;P, we obtain

n—-4o00 Q Q

Thus, we deduce that 9;® o F;, converges toward 9;® o F' in L*(2), and hence in L?()
by Holder inequality since 0;® is bounded.

Finally, writing that

|0k fi(p o Fyy — @ o F)|re) < 2|0k filqia, fi>mll ) + M|l@ o Fyy — @ o F| oo

where M is arbitrarily large, we deduce that Jy f; (¢ o F},) converges toward Oy, f;(p o F)
in LP(2). O
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