
HAL Id: hal-00691119
https://hal.science/hal-00691119v1

Submitted on 25 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Energy Consumption and Throughput for
Workflow Applications on Distributed Architectures.

Abdellah Ben Othman, Jean-Marc Nicod, Laurent Philippe, Veronika
Rehn-Sonigo

To cite this version:
Abdellah Ben Othman, Jean-Marc Nicod, Laurent Philippe, Veronika Rehn-Sonigo. Optimal Energy
Consumption and Throughput for Workflow Applications on Distributed Architectures.. 2012. �hal-
00691119�

https://hal.science/hal-00691119v1
https://hal.archives-ouvertes.fr

FEMTO-ST INSTITUTE

UMR CNRS 6174

Optimal Energy Consumption and Throughput for
Workflow Applications on Distributed Architectures

Version 1.0

Abdallah Ben Othman — Jean-Marc Nicod — Laurent Philippe — Veronika Rehn-Sonigo

Rapport de Recherche no RR 2012–01
DÉPARTEMENT AS2M – April 2012

Optimal Energy Consumption and Throughput for Workflow Applications
on Distributed Architectures

Version 1.0

Abdallah Ben Othman , Jean-Marc Nicod , Laurent Philippe , Veronika Rehn-Sonigo

Département AS2M

PHM

April 2012

Abstract: In this research report we study both the throughput and the energy optimization problem
for a distributed system subject to failures that executes a workflow at different speed levels. The
application is modeled as a directed acyclic graph composed of typed tasks linked by dependency
constraints. A continuous flow, or a great number of application instances has to be processed
optimizing the collaborative system performance which implies to increase the throughput – the
number of application instances processed by time unit – or to decrease the period – the time needed
to output one instance of the system. The system is designed as a collaborative platform of distributed
machines. Each machine collaborates with others by performing all the instances of at least one task
of the DAG. The problem we tackle is to optimize the configuration of the platform. In this report
we propose two polynomial algorithms that optimize the two objectives of period (i.e., throughput)
and energy minimization and we prove that the proposed algorithms give optimal results. Our
optimization approach is hierarchic in the sens that we either minimize the energy consumption for
an optimal period or minimize the period for the optimal energy consumption.

Key-words: Scheduling, workflow applications, energy minimization, fault tolerance, throughput,
polynomial complexity

FEMTO-ST Institute, AS2M research department
TEMIS, 24 rue Alain Savary, F-25000 BESANÇON FRANCE

Tél : (33 3) 81 40 28 01 – Fax : (33 3) 81 40 28 09 – e-mail : isabelle.gabet@ens2m.fr

Consommation énergétique et débit optimal pour les applications de flux
sur architecture distribuée

Version 1.0

Résumé : Dans ce rapport, nous étudions à la fois le problème de l’optimisation du débit et de la
consommation énergétique sur une plate-forme distribuée sujette à des fautes lors de l’exécution d’une
application de type flux, à différentes vitesses. L’application est modélisée sous la forme d’un graphe
orienté sans cycle, ou DAG, composé de tâches typées reliées par des contraintes de dépendance. Un
très grand nombre d’instances de cette application doit être traité en optimisant les performances de
ce système collaboratif. Ceci est se traduit par une augmentation du débit – nombre de d’instances
de l’application traitées par unité de temps – ou par un diminution de la période du système – temps
entre deux sorties du système. Le système est conçu comme une plate-forme collaborative de ma-
chines distribuées. Chaque machine collabore avec les autres en traitant toutes les instances d’au
moins une des tâches du DAG. Le problème auquel nous répondons dans ce rapport est l’optimisation
de la configuration de la plate-forme. Nous proposons à cet effet deux algorithmes de complexité
polynomiale qui optimisent le double objectif de la minimisation de la période (c’est à dire la max-
imisation du débit) et de la consommation énergétique et nous prouvons que les algorithmes proposés
trouvent les solutions optimales. Notre optimisation bi-critères est hiérarchique dans le sens où nous
minimisons soit la consommation énergétique pour une période optimale ou soit la période pour une
consommation énergétique optimale.

Mots-clés : Ordonnancement, application de flux, minimisation énergétique, tolérance aux
pannes, débit, complexité polynomiale

FEMTO-ST Institute, AS2M research department
TEMIS, 24 rue Alain Savary, F-25000 BESANÇON FRANCE

Tél : (33 3) 81 40 28 01 – Fax : (33 3) 81 40 28 09 – e-mail : isabelle.gabet@ens2m.fr

Energy Consumption and Throughput for Workflow Applications 7

Optimal Energy Consumption and Throughput
for Workflow Applications on Distributed

Architectures

Abdallah Ben Othman, Jean-Marc Nicod,
Laurent Philippe and Veronika Rehn-Sonigo

FEMTO-ST Institute,
CNRS / UFC / ENSMM / UTBM, Besançon, France

[Jean-Marc.Nicod]@femto-st.fr

April 25, 2012

Abstract

In this research report we study both the throughput and the en-
ergy optimization problem for a distributed system subject to failures
that executes a workflow at different speed levels. The application is
modeled as a directed acyclic graph composed of typed tasks linked
by dependency constraints. A continuous flow, or a great number of
application instances has to be processed optimizing the collaborative
system performance which implies to increase the throughput – the
number of application instances processed by time unit – or to de-
crease the period – the time needed to output one instance of the sys-
tem. The system is designed as a collaborative platform of distributed
machines. Each machine collaborates with others by performing all the
instances of at least one task of the DAG. The problem we tackle is to
optimize the configuration of the platform. In this report we propose
two polynomial algorithms that optimize the two objectives of period
(i.e., throughput) and energy minimization and we prove that the pro-
posed algorithms give optimal results. Our optimization approach is
hierarchic in the sens that we either minimize the energy consumption
for an optimal period or minimize the period for the optimal energy
consumption.

Keywords
Scheduling, workflow applications, energy minimization, fault tolerance, through-
put maximization, polynomial complexity

RR 2012–01

8 A. Ben Othman et al

1 Introduction

In this paper we focus on workflow applications described as Directed Acyclic
Graphs (DAGs). An application is mapped on a set of distributed machines
and a flow of instances has to be processed. This is the case of systems
that continuously input raw data to which several processing stages or tasks
must be applied to obtain a final result [14] or configurable production sys-
tems [15, 9]. Illustrations of these contexts are a flow of images generated by
cameras that must be processed in several stages or a production flow with
several succeeding tasks. The considered tasks are of different types that
represent the different processing procedures (e.g., filters, analysis, assembly
and so on). When the data processing in the application is substantial sev-
eral computers or production cells must be used to be able to process the
whole input flow and the problem of scheduling the tasks on the resources
becomes complex due to the heterogeneity of the processing times on the re-
sources [13]. The complexity of the problem may be lowered by considering
that each machine only executes one task type thus avoiding costly context
changes and cases where a machine executes parts of several tasks [10]. Then
the initial problem becomes a mapping problem where task types must be
mapped onto machines and the objective function is to find the best possible
throughput, i.e., to maximize the number of instances processed per time
unit [4]. Note that the objective function used in this paper is period min-
imization, the inverse of the throughput, which amounts to the same but is
more widely used in workflow system optimization.

In this article we tackle the problem of using a dedicated system that
continuously executes the same DAG of tasks on different instances with
transient failures that sometimes destroy one instance. In this context the
objective is to provide the lowest period for the system output. The paper is
organized as follows: Section 2 discusses some related work. In Section 3 we
give a formal definition of the problem. In section 4 we present and prove
several lemmas that are used in section 5 to define the proposed algorithms.
We conclude the article in section 6.

2 Related Work

Nowadays more and more attention is being payed to energy consumption for
financial and environmental reasons. This tendency has also reached the dis-
tributed computing domain [7, 12, 2]. In the case of flow applications where
the global throughput is directed by the lower throughput of the graph, it is
not always necessary that all machines run at maximum speed [3]. Several
papers define an energy model based on power consumption modes where the
processing capabilities depend on the supplied voltage [1, 6]. Then voltage
scaling is used to slow down some of the machines – and as a consequence en-

FEMTO-ST Institute

Energy Consumption and Throughput for Workflow Applications 9

ergy spared – without affecting the global throughput [5]. It is thus worth to
find the lowest possible speed for each machine for a given throughput or, on
the opposite, the best throughput reachable for a given energy consumption.

On the other hand in distributed environments such as GRIDs or micro-
factories, the risk of task failures cannot be ignored, in particular for long
running and communication intense applications as flow applications. The
failures may append for numerous reasons as network or computing errors,
network contention, task complexity and so on. Numerous works on relia-
bility and energy focus on the problem of Dynamic Voltage and Frequency
Scaling that leads to more errors when the frequency is scaled down [8].
Defining a global error model for all distributed systems is however not con-
ceivable as they are composed of so much elements each with their own failure
model. Indeed, increasing the speed of computation or processing can also
lead to more contention in buses or networks and less reliable tasks. It can
thus affect the reliability of the system. In this paper, we assume that opti-
mizing the energy consumption of the system by decreasing its speed leads
to decrease the fault rate in addition to period minimization. We propose
two algorithms that minimize either the energy consumption for an optimal
period or find the lowest period for a minimal energy consumption.

3 Framework

In this section we formally define the application, platform and energy mod-
els and our optimization objective.

3.1 Application Model

We consider a workflow application that is running during infinite or long
time. The application is modeled as a directed acyclic graph (DAG) G(T,D),
with T = {T1, . . . , Tn} the tasks of the application and D ⊂ T × T the
dependencies between the tasks (see Figure 1). So a data set enters the
graph at the source task and traverses the graph from one task to another
before producing a final result at the sink task. A weight wi is associated to
each task Ti.

61

2

3

4

5

Figure 1: Illustrating task graph

RR 2012–01

10 A. Ben Othman et al

f l44 = 2
6

xl22 = 3 xl44 = 1, 5 xout = 1

1 2 3 4

f l33 = 3
8

f l22 = 1
5

f l11 = 1
6

xl11 = 3, 6 xl33 = 2, 4

Figure 2: Example for the backward computation of the necessary amount
of data sets for each task in a linear application, taking into account the
failure rates.

3.2 Platform and Execution Model

The platform is modeled as a set M = {M1, . . . ,Mp} of p machines fully
interconnected. Each machine has input and output communication buffers
to store temporary data. We assume that the communication times are
shorter than the computation times so that, thank to the data buffering, the
former are covered by computations and thus can be neglected.

The tasks are statically allocated to the machines according to an alloca-
tion function a such that a(i) = u, i.e., all data instances that enter task Ti
are performed by machine Mu. Note that in this work we assume that the
mapping is already defined thanks to mapping algorithms as defined in [4]
and we concentrate on period and energy optimization on a given mapping.

A machineMu can run at different speed levels lu (lu ∈ {0, 1, 2, . . . ,max(lu)})
with an associated slow down factor αluu ∈ [1,+∞). Note that Mu runs at
its highest speed, noted su, for level lu = 0. The system configuration L is
given by vector L = (l1, l2, . . . , lu, . . . , lp) that describes the speed level of
each machine.

Tasks are subject to transient failures. In case of failure, the current
data is lost and the task starts to process the next data. The failure rate is
defined for each task as the percentage of failures. For a task Ti, allocated
to machine Mu, we assume that the failure rate f lui depends on the task and
on the machine speed level lu. We also assume that the failure rate increases
with the machine speed: f luu < f

l′u
u if lu > l′u. It comes that if machine Mu

performs xlui input data sets with task Ti, it outputs (1 − f lui)xlui data sets
due to the failures. Considering L, the configuration of the platform, it is
possible to compute xlui backwards for each data output of the application. If

task Ti has only one outgoing edge (Ti, Tj) within the DAG, xlui =
xluj

1−f lui
(see

Figure 2 for an example). If the task Ti has several outgoing edges (Ti, Tj)

within the DAG, xlui =
∑

(Ti,Tj)∈D
xluj

1−f lui
. Thus xlui is the average number of

data sets that machine Mu has to perform with task Ti so as to output at
least one result data set out of the system.

FEMTO-ST Institute

Energy Consumption and Throughput for Workflow Applications 11

f l44 = 2
6

xout = 1

1

xl11 = 4, 8

3 4

f l33 = 3
8

f l11 = 1
6

f
l′2
2 = 2

5

2

x
l′2
2 = 4 xl33 = 2, 4 xl44 = 1, 5

Figure 3: The acceleration of machine M2 implies a higher number of input
data sets at the application entry.

3.3 Example of the Platform and Execution Model

To clarify the above stated platform and execution model, we consider the
application in Figure 2. To keep the example simple, we suppose that task Ti
is mapped onto machine Mi and each machine runs at is lowest speed level.
Hence task T1 is mapped onto machine M1 which is running at a level l1.
The failure rate of task T1 accordingly depends on l1 and we have f l11 = 1/6.
For the other tasks holds the same.

We suppose to have the failure rates indicated in Figure 2. We can now
compute the necessary amount of data sets that each task needs as input to
be able to produce at least one result (xout = 1). As indicated earlier, the
computation is done backwards and we get xl44 = 1

1−f l44
xout = 1, 5.

We now suppose that machine M2 has two possible speed levels l2 and
l′2, where l′2 is the accelerated level (l′2 < l2). The associated failure rate for
level l′2 is f l

′
2
2 = 2/5. If machine M2 switches to level l′2, the x

lu
i values have

to be recomputed in consequence and you can see the new configuration in
Figure 3.

3.4 Throughput/Period Model

We define the platform throughput as the the number of data outputs per
time unit. We define the period of the platform as the inverse of the through-
put: the period defines the maximum duration between the output of two
consecutive data outputs. As we already know both the number of tasks
that have to be performed to output at least one data set and the mapping
of tasks to machines, we can compute the period of each machine of the
platform. The task period plui is the time to perform xlui instances of each
task Ti mapped onto machine Mu: plui = xlui ×

wi×αlu
u

su
. Then the machine

period pluu on Mu is:

pluu =
∑

Ti|a(i)=u

plui =
∑

Ti|a(i)=u

xlui ×
wi × αluu

su

The application period on the platform is the longest period over all machines
in configuration L:

P (L) = max
Mu∈M

(pluu)

RR 2012–01

12 A. Ben Othman et al

We define the critical machine Mc as the machine with the longest period
that determines the application period, i.e., P (L) = plcc . We denote Mc(L)
one critical machine of the configuration L.

3.5 Energy Model

The energy consumption E(L) of the platform in configuration L is the sum
of the energy consumptions EL(u) of each machine Mu that performs at
least one task of the graph. The energy EL(u) = ELstat(u) + ELdyn(u) is the
sum of ELstat(u), the static part of energy consumed when machine Mu is
in service, and ELdyn(u), the dynamic part of energy consumed when the
machine performs its tasks [2].

ELstat(u) only depends on the duration of the platform usage. So the static
energy needed to output one data out of the system is ELstat(u) = εu×P (L)
where εu is the static energy consumption per time unit, P (L) is the period
of the application (or the duration between two consecutive outputs) and L
is the configuration of the system.

On the other hand, the dynamic part of the energy depends on the ma-
chine speed when it performs a task. Considering one task Ti, the dynamic
part of the energy consumption is about sβi where βi > 1 an arbitrary ratio-
nal number [11]. We introduce the following positive constants λi and Ci to
garantee the dimensional homogeneity of the equation 1. The dynamic en-
ergy consumed during one period by the machine Mu is the sum the energy
consumed to perform all the tasks needed for that period:

ELdyn(u) =
∑

Ti|u=a(i)

(
λi

(
Ci × su
αluu

)βi
× plui

)
(1)

3.6 Optimization Objectives

In this paper, we are interested in two objectives. First, we aim at mini-
mizing the period and minimizing the energy consumption for the optimal
period. Second, we optimize the energy consumption of our platform while
minimizing the period for the optimal energy consumption.

4 System Properties

In this section we state some important properties for the changing of the
system configuration L and we first exhibit the relation between two system
configurations L and L′. The period of a machineMu in system configuration
L′ can be expressed through the task periods in system configuration L.
Based on the platform model, we know that a machine period is the sum of

FEMTO-ST Institute

Energy Consumption and Throughput for Workflow Applications 13

all its task periods, and we can deduce the following relation:

pl
′
u
u =

∑
Ti|a(i)=u

x
l′u
i ·

wiα
l′u
u

su
=

∑
Ti|a(i)=u

x
l′u
i α

l′u
u

xlui α
lu
u

· plui (2)

We now consider the influence of slowing down or accelerating machines or
groups of machines.

Lemma 1. When a group of machines is accelerated, the amount of work to
output one data set increases.

Proof. Let L and L′ be two system configurations with l′u ≤ lu for each
machine Mu ∈ M , i.e., L′ has some accelerated machines in comparison to
configuration L. We aim at proving that ∀Ti ∈ T, xlui ≤ x

l′u
i with a(i) = u.

That means the amount of input data sets for task Ti is more important in
configuration L′.

Let Mu ∈M be an accelerated machine whose configuration is set to l′u.
As l′u < lu, by definition of our model, f lui < f

l′u
i for all tasks Ti ∈ T with

a(i) = u and so
1

1− f lui
<

1

1− f l
′
u
i

. From the definition of the computation

of xlui , the previous expression implies that the value of xl′ui increases on
Mu. Moreover since these values are computed backwards (Cf. Figure 2 in
Section 3.3), this incrementation recursively modifies the xlvj by following
backwards the dependency constraints in the group of machines. So the
global workload of each machine Mv where a(j) = v increases.

Lemma 2. When a group of machines is accelerated, it cannot decrease the
period of the other machines.

Proof. Let L and L′ be two system configurations with l′v ≤ lv,∀Mv ∈ M ,
i.e., L′ has some accelerated machines compared to L. Let Mu be a machine
with lu = l′u. We aim at proving that pluu ≤ p

l′u
u .

First, with Lemma 1, we know that for all tasks the amount of work is
more important in L′ than in L: xlui ≤ x

l′u
i ,∀ti ∈ T . Next, we know that if

lu = l′u, the acceleration coefficient α is also the same: αluu = α
l′u
u . Hence we

have:
∀ti ∈ T s.t. u = a(i) : αluu x

lu
i ≤ α

l′u
u x

l′u
i

and we get:

∀ti ∈ T s.t. u = a(i) : plui ≤
α
l′u
u x

lu
i

αluu x
lu
i

× plui

This holds true for all task periods and we can deduce the machine period
by summing up over all task periods of a machine Mu and with Eq. 2, we

RR 2012–01

14 A. Ben Othman et al

prove that the machine period of Mu is smaller in configuration L than in
L′:

pluu =
∑

Ti∈T |a(i)=u

plui ≤
∑

Ti∈T |a(i)=u

α
l′u
u x

l′u
i

αluu x
lu
i

× plui = pl
′
u
u

Corollary 1. The acceleration of another machine than the critical machine
cannot decrease the application period.

Proof. Let L and L′ be two system configurations with l′v ≤ lv,∀Mv ∈ M ,
i.e., L′ has some accelerated machines. Let Mc be the critical machine such
that plcc = P (L) and lc = l′c. With Lemma 2, we know that the machine
period of machine Mc is lower (or equal) in L than in L′: plcc ≤ p

l′c
c . By

definition, we deduce that the period of configuration L is lower than the
maximum period in L′:

P (L) ≤ pl′cc = max
Mu∈M

(pl
′
u
u) = P (L′)

Lemma 3. The acceleration of a machine cannot decrease the dynamic en-
ergy of any machine.

Proof. Let L and L′ be two system configurations with l′u ≤ lu, ∀Mu ∈ M ,
i.e., L′ has some accelerated machines. We aim at proving that for all ma-
chines the dynamic energy is smaller in L than in L′: ∀Mu ∈M,ELdyn(u) ≤
EL

′
dyn(u).

By definition we have 1 ≤ αluu ≤ α
l′u
u and βi > 1 so ∀Ti ∈ T we can write:

1

(αluu)βi−1
≤ 1

(α
l′u
u)βi−1

By using the four positive constants Ci, wi, λi and su and by using Lemma 1,
0 < xlui ≤ x

l′u
i , ∀Ti ∈ T with a(i) = u, we obtain:

λi

(
Ci × su
αluu

)βi
xlui

wiα
lu
u

su
≤ λi

(
Ci × su
α
l′u
u

)βi
x
l′u
i

wiα
l′u
u

su

λi

(
Ci × su
αluu

)βi
plui ≤ λi

(
Ci × su
α
l′u
u

)βi
p
l′u
i

∑
Ti|a(i)=u

λi

(
Ci × su
αluu

)βi
plui ≤

∑
Ti|a(i)=u

λi

(
Ci × su
α
l′u
u

)βi
p
l′u
i

With Equation 1 we have ELdyn(u) ≤ EL
′

dyn(u).

FEMTO-ST Institute

Energy Consumption and Throughput for Workflow Applications 15

Lemma 4. If the application period does not decrease, machine acceleration
always increases the energy consumption of the application.

Proof. Let L and L′ be two system configurations with l′v ≤ lv,∀Mv ∈ M ,
i.e., L′ has some accelerated machines. Let Mu be a machine with l′u < lu.
So P (L) ≤ P (L′) and the following inequality on the static energy of the two
system configurations holds: ∀Mu ∈M : εu ×P (L) ≤ εu ×P (L′). Moreover
with Lemma 3 we know that for all machines the sum of the task energy
consumptions is smaller in L than in L′:

∀Mu ∈M : ELdyn(u) ≤ EL
′

dyn(u)

Thus we deduce that the total energy consumption of a machineMu behaves
the same way as both the static and the dynamic part hold the inequality:

∀Mu ∈M : εu × P (L) + ELdyn(u) ≤ εu × P (L′) + EL
′

dyn(u)

EL(u) ≤ EL′
(u)

Hence we conclude that E(L) ≤ E(L′).

5 Algorithms

In this section, we present two algorithms. The first algorithm OptPer(L)
finds a system configuration with the optimal period and the minimal energy-
consumption for this period. The second one, OptEner(L), finds a system
configuration with the optimal energy-consumption and the minimal period
for this consumption.

5.1 Algorithm OptPer

The algorithm OptPer(L) (see Algorithm 1) returns the optimal system
configuration resulting from a given system configuration, i.e., the system
configuration with the optimal period and the minimal energy consumption
for the optimal period. The algorithm starts from an initial configuration L
where each machine is set at its maximal slow down level. Then, at each step,
the algorithm speeds up the machine Mc(L) by reducing its level lc by one.
The new configuration is noted L̂. If the new system configuration period
P (L̂) is better than the current best period, it is stored in L as the new best
system configuration. Then a new critical machine Mc(L̂) is identified and
the algorithm passes to the next step. Otherwise or if the slow down level of
Mc(L̂) is null (l̂c = 0) the algorithm finishes. The number of steps needed
to finish this algorithm takes a polynomial time. Indeed, in the worth case,
the algorithm iterates p × LMAX times, with LMAX = maxu(max(lu))
a constant which does not depend on the problem size. At each step, the

RR 2012–01

16 A. Ben Othman et al

Algorithm 1: OptPer(L)
Mc ← critical machine of L1

L̂← L2

l̂c = l̂c − 13

M̂c ← critical machine of L̂4

while (l̂c ≥ 0) do5

if
(
P (L̂) < P (L)

)
then6

L← L̂7

Mc ← M̂c8

l̂c = l̂c − 19

M̂c ← critical machine of L̂10

return L11

computation of the necessary amount of the data sets for all of the tasks
takes O(n) operations. So the complexity of the algorithm 1 is O(p× n).

To prove the optimality of the period returned by this algorithm we first
set Lemma 5 and its corollary 2. For that we first define A(L) as the set of
system configurations resulting from all possible machine accelerations from
the system configuration L. Let L and L′ be two system configurations.

∀L,L′ : L′ ∈ A(L)⇔ ∀u : l′u ≤ lu (3)

For example, if L = (2, 1):

A(L) = {(2, 1), (1, 1), (0, 1), (2, 0), (1, 0), (0, 0)}

We recall that Mc(L) is one of the critical machines of the configuration
L, i.e., one of the slowest machines of the configuration L.

Lemma 5. Let us consider a configuration L and a subset of system config-
urations L′ in A(L) where l′c = lc with Mc a critical machine of the configu-
ration L. Then the period P (L) is smaller than any period P (L′):

∀L′ ∈ A(L) | lc = l′c ⇒ P (L) ≤ P (L′) (4)

Proof. From the definition of function A(L) in equation 3 we know that:

∀L′ ∈ A(L)⇒ l′u ≤ lu

And from Corollary 1 we know that if the critical machine is not accelerated,
the period cannot decrease. By association we get that for all system con-
figurations L′ in A(L) with l′c = lc the period of configuration L′ is higher
than the period of the configuration L.

FEMTO-ST Institute

Energy Consumption and Throughput for Workflow Applications 17

As a consequence of the Lemma 5, only the configurations in A(L) that
increase the speed level of a critical machine Mc(L̂) can provide a better
period for the system. We formalize this property in the following corollary:

Corollary 2. The only configuration that is able to decrease the period of
the system from a configuration L is to accelerate a critical machine.

Note that speeding up the critical machine by one level does not always
leads to a better period for two reasons. First because speeding up a critical
machine does not always leads to improve its own period. This acceleration
is however an imposed condition to improve the application period in some
cases. Second because their may be several critical machines at the same
time, i.e., machines that have the same period, and we must speed all of
them up before improving the application period.

Theorem 1. OptPer(L) finds the optimal system configuration L∗ with the
optimal period in A(L), i.e.:

L∗ = OptPer(L), ∀L′ ∈ A(L)⇒ P (L∗) ≤ P (L′).

Proof. First we note that, based on the definition of the system period P (L)
given in Section 3, the order in which the machines are accelerated to reach a
configuration L′ from a configuration L does not impact P (L′). The period
P (L′) only depends on the configuration L′, so on the (l′1, l

′
2, . . . , l

′
p) values.

Now we consider a sequence of configurations S = 〈L1, L2, . . . , Lk〉 with
k = |A(L)| such that L1 = L is the initial configuration of the algorithm
where all of the machines are set to their lowest speed level and L2, . . . , Lk ∈
A(L1). The optimal configuration L∗ can be defined as:

L∗ = argmin
Lf∈S

(P (Lf))

Let La and Lb two system configurations such that the configuration La
is obtained by speeding up one machine from the configuration Lb. From
Lemma 5 we know that having P (La) < P (Lb) implies that the critical
machine Mc(Lb) has necessary been speeded up to obtain La.

As the order in which each machine is accelerated to reach a given con-
figuration Lf from the initial configuration L does not impact the period
value P (Lf), we can reorder the sequence S in a new sequence S′. S′ is
reorganized such that L1 = L is the first configuration of the sequence and
then each configuration Lx is obtained from configuration Lx−1 by acceler-
ating one of its critical machines Mc(Lx−1) is placed just after Lx. All other
configurations are placed after. This reordering of the sequence does not
change the optimal value L∗.

Let La be the last configuration of the sequence S′ that is obtained by
accelerating a critical machine. Then:

∀Lb ∈ S′ s.t. b > a⇒ P (La) ≤ P (Lb)

RR 2012–01

18 A. Ben Othman et al

and
La = argmin

Lf∈{La,...,Lk}
(P (Lf)) (5)

Indeed only non critical machines are accelerated after step a and from
Lemma 2 we know that this will not decrease the system period.

Here 〈L1, . . . , La〉 is the sequence obtained by OptPer(L) step by step.
Thanks to the condition on line 6 in Algorithm 1 , OptPer(L) takes the best
configuration from this sequence. As a consequence:

OptPer(L) = argmin
Lf∈{L1,...,La}

(P (Lf)) (6)

Then, from Equations 5 and 6, we deduce:

OptPer(L) = argmin
Lf∈{L1,...,Lk}

(P (Lf)) = L∗

Additionally to the optimal period algorithm OptPer(L) also finds the
configuration that is the less energy consuming.

Theorem 2. OptPer(L) finds the system configuration with the minimal
energy-consumption E∗ for the optimal period.

Proof. First we can remark that the static energy consumption of the ma-
chines only depends on the system configuration period P (L) and thus is the
same as long as the system keeps the same period. This is in particular true
for the optimal period L∗ so that the proof can be limited to the study of
the optimality of dynamic energy consumption.

Then, as for the period computation, we can note that the energy con-
sumption definition does not depend on the order in which the configurations
are used to reach a target configuration. We can arrange the configuration
sequence in any order.

We consider again the sequence S′ of configurations where the configu-
rations are ordered in such a way that we accelerate the critical machines
first until L∗ and then we put the other configurations after. As defined
within the proof of the previous theorem, let La be the last configuration
of the sequence S′ that is obtained by accelerating a critical machine. So
S′ = 〈L1, . . . , La, . . . , Lk〉 with k = |A(L)| and L = L1 the initial config-
uration where each machine configuration is set at its maximal slowdown
level. Now each configuration in the sub-sequence 〈La+1, . . . , Lk〉 is a sub-
optimal configuration so it is not considered in the following as we are just
concerned by configurations which are potentially optimal. In 〈L1, . . . , L

∗〉
we also have sub-optimal configurations that are not considered either. So
we just have to look at configurations L′′ in 〈L∗, . . . , La〉 whose period is
optimal (P (L∗) = P (L′′)).

FEMTO-ST Institute

Energy Consumption and Throughput for Workflow Applications 19

By definition L∗ is the first configuration that reaches an optimal period
in S′. So an other configuration L′′ in S′ with an optimal period is such that
∀u : l′′u ≤ l∗u. So by using Lemma 3 we deduce that the energy consumed
by each configuration L′′ with P (L∗) = P (L′′) is at least as high as the
consumption E∗ = E(L∗) ≤ E(L′′) and then that E(OptPer(L)) = E(L∗)
is optimal.

5.2 Algorithm OptEner

From the previous algorithm, it is possible to define another greedy algo-
rithm, OptEner(L) (see algorithm 2), based on the same approach that
finds a configuration L∗ with an optimal (lowest) energy consumption and
with a minimal period for this energy consumption. Note that the energy
consumption, as defined in the framework model, is composed of a static
part and a dynamic part. In some cases where the period is too large, the
speed of the machines is thus so low that the static part of the energy con-
sumption becomes predominant. It is then possible to increase the speed of
the machine while decreasing the energy consumption. On the other hand,
if we increase too much the speed of the machines, above the optimal value,
the energy starts increasing. So the OptEner(L) algorithm finds a system
configuration whose energy consumption is optimal. As the speed of the ma-
chines is increased accordingly, OptEner(L) is also a configuration with the
minimal associated period. Note that this algorithm also works to compute
the minimal energy consumption for a given period. We assume that the
complexity of the algorithm 2 is O(p × n) considering the same arguments
used to compute the complexity of the algorithm 1.

Algorithm 2: OptEner(L)
Mc ← critical machine1

L̂← L2

l̂c ← l̂c − 13

M̂c ← critical machine4

while (l̂c ≥ 0) do5

if
((
E(L̂) < E(L)

)
∨6 (

(E(L̂) = E(L)) ∧ (P (L̂) ≤ P (L))
))

then7

L← L̂8

Mc ← M̂c9

l̂c ← l̂c − 110

M̂c ← critical machine of L̂11

return L12

RR 2012–01

20 A. Ben Othman et al

The algorithm starts from L, the initial configuration where each ma-
chine is set at its lowest speed level. Step by step, the algorithm looks for
configurations where the energy is decreased compared to the current config-
uration or if the energy is not decreased at least the period is. The algorithm
iterates until the critical machine cannot be accelerated anymore, i.e., when
the critical machine has reached its highest speed level.

To prove the optimality of the algorithm we prove first that OptEner(L)
finds the system configuration with the optimal energy consumption and then
we prove that OptEner(L) finds the minimal period. Before these proofs,
we set Lemma 6:

Lemma 6. Let L′ be a configuration in A(L) and Mc be a critical machine
of configuration L such that the slowdown level for Mc is same in L as in
L′, then the energy consumption of L is lower than the energy consumption
of L′:

∀L′ ∈ A(L) : l′c = lc ⇒ E(L) ≤ E(L′)

Proof. We know, from the definition of function A(L), that each machine
slowdown level lu of a machine Mu in L is lower or equal than in L′ with
L′ ∈ A(L). And, considering Corollary 1, we know that the application
period with the system configuration L is lower or equal than any other
system configuration L′ in A(L) where l′c = lc (Mc = Mc(L)). Thus, by
association, we show:

∀L′ ∈ A(L) :Mc =Mc(L) and l′c = lc ⇒ P (L) ≤ P (L′)

Moreover, from Lemma 4, if the slowest machine is not accelerated then the
energy consumption of the system cannot decrease:

∀L,L′ : (∀u|1 ≤ u ≤ p, lu ≤ l′u ∧ P (L) ≤ P (L′))
⇒ E(L) ≤ E(L′)

Thus we find that the energy consumption in L is lower than in every system
configuration L′ in A(L) and with l′c = lc.

Theorem 3. OptEner(L) finds the system configuration L∗ with the optimal
energy consumption E∗ = E(L∗) in A(L):

L∗ = OptEner(L), ∀L′ ∈ A(L)⇒ E(L∗) ≤ E(L′)

Proof. Let L be a system configuration and let Mc be a critical machine of
configuration L. By using Lemma 6 we assess that the only way to lower the
energy consumption is to accelerate the critical machine.

The remainder of the proof is very similar to the proof of the OptPer(L)
optimality. First we state that the order in which the machines are accel-
erated to reach a configuration L′ from a configuration L does not impact

FEMTO-ST Institute

Energy Consumption and Throughput for Workflow Applications 21

the energy value. Indeed the energy consumed by a machine only depends
on energy constants (λi, Ci and βi), on its speed level (αluu) and its period
(plui).

Then we consider the sequence of configurations S = 〈L1, L2, . . . , Lk〉
such that k = |A(L)| and L = L1 is the initial configuration where each
machine configuration is set at its maximal slowdown level. So we assume
that L2, . . . , Lk ∈ A(L1). We sort these configurations in a new sequence
S′ where critical machines are accelerated first. S′ is reorganized as men-
tioned before, i.e., L1 = L is the first configuration of the sequence and then
each configuration Lx is obtained from configuration Lx−1 by accelerating
one of its critical machines. Mc(Lx−1) is placed just after Lx. All other
configurations are placed after. So 〈L1, . . . , La〉 is the sequence obtained by
OptEner(L) step by step. As La is the last configuration where the critical
machine is accelerated, we have lc = 0 in La. Obviously all configurations
that are sorted after La are configurations where the critical machines have
not been accelerated. So these machines cannot have a better period. From
Lemma 4 we deduce that these configurations are more energy consuming
than configuration La:

∀f, a ≤ f ≤ k : E(La) ≤ E(Lf)

We recall that the configuration sequence 〈L1, . . . , La〉 is explored by the
OptEner algorithm. Thanks to the condition on line 6 the algorithm only
records the best of the covered configurations and thus finds the configuration
with the lowest optimal energy consumption.

Theorem 4. OptEner finds the system configuration with the minimal pe-
riod for the optimal energy consumption.

Proof. We have already shown, in the proof of Theorem 1, that the order
in which we consider the machine acceleration does not impact the period
value of a given configuration. We also know, from Lemma 3 that a machine
acceleration can only decrease the energy consumption of the application if
its period is lowered. Let E∗ be the optimal energy consumption.

As for Theorem 2 we consider the sequence S′ where the configurations
that accelerate the critical machines come first in the same order as explored
by the algorithm (until lc = 0). The other configurations are placed at the
end of the sequence. The shape of the sequence is:

S′ = 〈L1, . . . , L
∗, . . . , La, . . . , Lk〉

From the previous proof (Theorem 3) we know that the optimal energy
consumption is reached in this sequence at first for L∗ and that configurations
after La do not have an optimal energy consumption. So we just have to
consider the cases between L∗ and La. These cases are examined by the

RR 2012–01

22 A. Ben Othman et al

algorithm OptEner step by step. The algorithm does not finish when it
finds the optimal energy consumption with L∗ but continues until it reaches
the maximum speed level for a critical machine for the first time. This
case occurs with La. Thanks to the condition on line 6 of Algorithm 2 we
guarantee that, in this interval, if a period improvement is possible then it
returns this best configuration.

6 Conclusion

In this paper we tackle the problem of energy saving in the case of DAG
shaped workflow applications executed on distributed unreliable platforms.
We assume that the energy consumption and the fault rate decreases when
the machines are slowed down. Given an initial mapping of the tasks on
the machines we propose two algorithms and prove their optimality. The
first algorithm minimizes the application period and finds the lowest global
energy consumption for that period. The second algorithm optimizes the
energy consumption of the system and finds the lowest period for that energy
consumption. As these algorithms give optimal results there is no need to
simulate them and assess their performance.

In practical systems these two criteria are however often opposed and
reducing one of them usually leads to increase the other one. So that there is
a need to find configurations that balance these criteria and we will consider
as future work the tri-criteria problem with energy, failures and throughput.
We plan to use multicriteria techniques to find good configurations and to
develop heuristics that give efficient results in practical cases.

References

[1] Hakan Aydin and Qi Yang. Energy-aware partitioning for multiprocessor
real-time systems. In IPDPS’03. IEEE, 2003.

[2] A. Benoit, P. Renaud-Goud, and Y. Robert. Performance and energy
optimization of concurrent pipelined applications. In IPDPS’10, pages
1–12, Atlanta, USA, 2010. IEEE.

[3] A. Benoit, P. Renaud-Goud, Y. Robert, and R. Melhem. Energy-aware
mappings of series-parallel workflows onto chip multiprocessors. In
ICPP’11, pages 472–481. IEEE, 2011.

[4] Anne Benoit, Alexandru Dobrila, Jean-Marc Nicod, and Laurent
Philippe. Mapping workflow applications with types on heterogeneous
specialized platforms. Parallel Computing, Special Issue ISPDC’09,
37(8):410–427, 2011.

FEMTO-ST Institute

Energy Consumption and Throughput for Workflow Applications 23

[5] Anne Benoit, Paul Renaud-Goud, and Yves Robert. Power-aware replica
placement and update strategies in tree networks. In IPDPS’11, pages
2–13, Anchorage, USA, 2011. IEEE.

[6] Jian-Jia Chen. Multiprocessor energy-efficient scheduling for real-time
tasks with different power characteristics. In ICPP’05, pages 13–20,
Oslo, Norway, 2005. IEEE.

[7] Georges Da Costa, Jean-Patrick Gelas, Yiannis Georgiou, Laurent
Lefevre, Anne-Cecile Orgerie, Jean-Marc Pierson, Olivier Richard, and
Kamal Sharma. The green-net framework: Energy efficiency in large
scale distributed systems. In IPDPS’09, pages 1–8. IEEE, 2009.

[8] Vijay Degalahal, Lin Li, Vijaykrishnan Narayanan, Mahmut Kandemir,
and Mary Jane Irwin. Soft errors issues in low-power caches. IEEE
Trans. on VLSI, 13:1157–1166, oct 2005.

[9] Eric Descourvières, Stéphane Debricon, Dominique Gendreau, Philippe
Lutz, Laurent Philippe, and Fabrice Bouquet. Towards automatic con-
trol for microfactories. In Proceedings of IAIA’2007, 2007.

[10] Sékou Diakité, Jean-Marc Nicod, Laurent Philippe, and Lamiel Toch.
Assessing new approaches to schedule a batch of identical intree-shaped
workflows on a heterogeneous platform. IJPEDS, 27(1):79–107, 2012.

[11] Tohru Ishihara and Hiroto Yasuura. Voltage scheduling problem for
dynamically variable voltage processors. In Symposium on Low Power
Electronics and Design, pages 197–202. IEEE, 1998.

[12] Tapio Niemi, Jukka Kommeri, Kalle Happonen, Jukka Klem, and Ari-
Pekka Hameri. Improving energy-efficiency of grid computing clusters.
In GPC’09, pages 110–118. Springer-Verlag, 2009.

[13] Veronika Rehn-Sonigo. Multi-criteria Mapping and Scheduling of Work-
flow Applications onto Heterogeneous Platforms. Phd thesis, ENS
LYON, July 2009.

[14] Jaspal Subhlok and Gary Vondran. Optimal mapping of sequences of
data parallel tasks. SIGPLAN Not., 30:134–143, August 1995.

[15] Makoto Tanaka. Development of desktop machining microfactory. Jour-
nal RIKEN Rev, 34:46–49, April 2001.

RR 2012–01

24 A. Ben Othman et al

FEMTO-ST Institute

FEMTO-ST INSTITUTE, headquarters
32 avenue de l’Observatoire - F-25044 BESANÇON Cedex FRANCE

Tél : (33 3) 81 85 39 99 – Fax : (33 3) 81 85 39 68 – e-mail : contact@femto-st.fr

FEMTO-ST - AS2M : TEMIS, 24 rue Alain Savary, F-25000 Besançon
FEMTO-ST - DISC : UFR Sciences - Route de Gray - F-25030 Besançon cedex France

FEMTO-ST - ENERGIE : Parc Technologique, 2 Av. Jean Moulin, Rue des entrepreneurs, F-90000 Belfort France
FEMTO-ST - MEC’APPLI : 24, chemin de l’épitaphe - F-25000 Besançon France
FEMTO-ST - MN2S : 32, rue de l’Observatoire - F-25044 Besançon cedex France

FEMTO-ST - OPTIQUE : UFR Sciences - Route de Gray - F-25030 Besançon cedex France
FEMTO-ST - TEMPS-FREQUENCE : 26, Chemin de l’Epitaphe - F-25030 Besançon cedex France

http://femto-st.fr

