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Abstract—This work is devoted to the prediction of the constitutive steady-state creep behavior of matrix
inclusion composites. Both phases are characterized by power-law constitutive equations. The three phase
model is extended to viscoplastic equations. If both phases have the same strain rate sensitivity, the
effective behavior of the composite is characterized by an effective prefactor. If not, an effective strain rate
sensitivity is defined, which is a function of the applied strain rate and of the volume fraction of the phases.
All the results are compared with the classical self-consistent ones. A limit case which may be related to
the grain boundary sliding accommodated by intragranular power-law creep is also studied.

Résumé—Ce travail est consacré 3 la prédiction du comportement en fluage stationnaire de matériaux
composites de type inclusion/matrice pour lesquels chacune des phases est caractérisée par une loi
puissance. A cet effet, une extension du modeéle “trois phases” d des comportements viscoplastiques est
présentée. Si les phases ont le méme exposant (sensibilité a4 la vitesse de déformation), on définit un
préfacteur effectif. Sinon, on définit un exposant effectif qui dépend de la vitesse de déformation appliquée
et des concentrations des phases. Un cas limite est ¢galement abordé, qui peut étre comparé a de précédents

modéles de glissement aux joints accommodé par du fluage intragranulaire.

1. INTRODUCTION

High temperature deformation of engineering
materials is often described by a Norton-Hoff law
relating stress state to strain rate via a power-law
expression. Most of these materials are multiphase
materials, where individual phases may have different
behavior. A question that often arises in such ma-
terials is: if individual phases have different constitu-
tive relations, what is the constitutive relation of the
composite material?

This study is interested in predicting such effective
behaviors. The focus is mainly on composite ma-
terials for which it is possible to distinguish a phase
(which will be called “inclusion™) embedded in a
continuous phase (which will be called “matrix’’). It
is particularly interesting to explore the conditions (in
terms of phase volume fraction or applied strain rate)
for which the strain rates are more pronounced in one
or the other phase and consequently, to determine the
respective influences of each phase on the effective
behavior.

Theories for determining the overall linear-elastic
properties of two-phase composites by means of

tTo whom all correspondence should be addressed.

rigorous bounds or estimates are well-developed.
Many investigations have also been performed for
materials with a plastically deforming matrix contain-
ing elastic or rigid reinforcements. Fewer studies have
focused on composites in which both phases deform
inelastically. In this field, steady-state creep is often
described by a Norton-Hoff law relating stress state
to strain rate via a power-law expression. When a
composite includes two phases, both characterized by
power-law constitutive equations, different types of
approach may be used to describe the effective behav-
ior. One can first distinguish numerical predictions
based on finite element computations [1] and analyti-
cal ones. Concerning the latter, if the field is restricted
to random materiais, bounds (2, 3] or seif-consistent
estimates may be obtained (2, 4]. On the one hand,
first order bounds (analogous to “Reuss” and
“Voigt” bounds in elasticity) are far apart whenever
the moduli of the constituent phases are quite differ-
ent. The use of second order bounds (analogous to
““Hashin & Shtrikman” bounds in elasticity) leads to
a limited improvement [5]. On the other hand, self-
consistent estimates are implicitly related to perfectly
disordered materials. This excludes a realistic descrip-
tion of “inclusion-matrix” type composites where the
specific morphology (i.e. separate zones embedded in
a continuous phase) must be taken into account. The



use of the three-phase model [6] allowed the study of
such materials for elastic behaviors. This model was
extended to elastoplastic behaviors [7], opening the
way to the study of non-linear materials.

The aim of this paper is to derive an extension of
the “three-phase” model for power-law constitutive
equations. The new formulation is presented in Sec-
tion 2. The different levels of approximation are
described. A general tensorial description is first
presented. A simplified scalar notation is then
adopted, which does not restrict the validity of the
study. Section 3 is devoted to the results of the
simulations. Different cases are successively studied.
Section 3.1 (respectively Section 3.2) corresponds to
the case of identical (respectively different) strain
rate sensitivity for both phases. Analytical results
for the case of very small and very high strain rates
are presented. An analogy is made with a ductile
matrix containing respectively rigid inclusions or very
soft ones. In the general case, numerical results are
given for the effective strain rate sensitivity and the
effective prefactor of the overall power law ex-
pression. All these results are discussed by compari-
son with the classical self-consistent results. Finally,
Section 3.3 is devoted to the study of the special
configuration of very low concentration of matrix,
which may be compared to previous results concern-
ing the deformation occurring by grain-boundary
sliding accommodated by intragranular power-law
creep.

2. DESCRIPTION AND FORMULATION OF
THE MODEL

2.1. Constitutive relations

Let us consider a two-phase composite constituted
of two isotropic incompressible phases creeping ac-
cording to a power law. Constitutive equations for
phase a (x = 1, 2) have the form

5(x) = 24, [€ ()™ ~'é(x) M

s(x) and é(x) are respectively the stress and strain rate
deviators at current position x within phase «. 4, and
m, are measured constant. £ (x) is the equivalent
strain rate at x, defined by

€eg(¥) = Gé(x):6(x))'". 2
The constitutive relation (1) may be written
8(x) = 2u(x)é(x) 3
where the secant modulus u(x) is equal to
p(x) = Aféq ()", xea @

Denoting < /), the spatial average over phase a of
any function f, the average value of f over a represen-
tative elementary volume of the composite is

= lfnh+ el ®)

¢, and ¢, are the phase concentrations with
¢, + ¢, = 1. Spatial averaging of (1) over phase « gives

{8De = 24,K€% 7€), (6)
Let us define the secant moduli /i, and i so that
(8)a=201,{é), and {8 =2{é). Y

If the phases are arranged in a manner that is
statistically uniform and isotropic, the so-defined
secant moduli g, and j can be assumed to be
respectively scalar functions of the equivalent strain
rates ({€),). and ({€)),, (though this way, the poss-
ible role of the third invariant in the overall behavior
is then neglected). The homogenization problem con-
sists then in finding the function j or alternatively in
determining the variation of {s) as a function of {¢).

2.2. The three phase model

Consider now a two-phase composite of “matrix
inclusion” type: one phase is continuous throughout
the composite whereas the other is constituted of
discrete inclusion. In the following, phase 1 denotes
the matrix and phase 2 denotes the inclusions. The
inclusions are assumed randomly distributed within
the matrix. Perfect bonding is assumed at the inter-
faces. In order to derive the effective characteristics of
such a medium, let us refer to the scheme of the three
phase model [7]. We consider a composite sphere
constituted of a spherical core with the characteristics
of the phase 2 and of a concentric shell with the
characteristics of the phase 1 (Fig. 1). This composite
sphere is embedded in a continuum subjected to
uniform stress s, or strain rate ¢, at infinity, This
continuum represents the homogeneous equivalent
medium, whose unknown characteristics define the
effective behavior of the composite.

Strictly speaking, the three phase model cannot be
applied at this stage, because the secant moduli
defined in equation (4) are varying even when the
prefactors A, are constant in the corresponding part
of the composite inclusion. A further approximation
will be therefore to assume that the secant moduli are
approximately constant within each homogeneous
part of the composite sphere and equal to the moduli
i, defined in equation (7).

Moreover, the three phase formulation requires an
explicit expression of these moduli. With ¢, denoting
the equivalent average strain rate ({€),)e , the follow-
ing expression is chosen

ux) =g, x A, )", xea ®8)

It must be stressed at this point that the approxi-
mation (€2 ~1(x)) & {€q(x)>™ ~ ! is implicitly made.
This approximation leads to an overestimation of f,
because m, is lower than 1. As a consequence, the
effective modulus 7 will be overestimated by the
procedure and the overestimation will be alt the more
crude since the non-linearities will be important.



Following the extension of Hervé and Zaoui [7] to
non-linear materials, it is now assumed that the
average stress tensor and the average strain rate
tensor within phase « are obtained by the classical
three phase equations applied to an elastic composite
sphere [see equations (A1)-(A4) of the Appendix]

(&), =a,(¢)=aé and {5),=b,{(s)=0b,5.
)

a, and b, are functions of i, i, i, ¢,, ¢,. Equations
(9) combined with average conditions and approxi-
mate expressions of f, lead to a second order
equation for the ratio ji/y, and hence to the solution
of the homogenization problem. a,, b, and the co-
efficients of this second order equation are given in
the Appendix [equations (A1), (A2) and (A6-8)).

2.3. Simplified formulation

The deviatoric stress corresponding to prescribed
uniform strain rate conditions ¢, may be easily de-
duced from equation (7)

80 = 21€y- (10)

Without restricting the generality of the study, it is
worth using the following equivalent stress and strain
rate

Oy = (%-503‘!0)”2-

X Y g

‘o=(§603€o)1‘2=—?- (11)
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Using the linearity of equations (9), the equivalent
stress and strain rate in phase o« may be expressed
as

0y

[<€>]eq = ‘:z =a, —3—,2-

[<§>:]cq =0,= quO'

(12)

Moreover, combining relations (7), (9) and (10) leads
to the following relation

(13)

b:ﬁ = aﬁm'

Fig. 1. The three phase model. 0: Homogeneous equivalent
medium; 1: matrix and 2: inclusion.

It is then possible to write from equation (12) the
constitutive scalar equation for each phase

0, = 3f,E,. (14)

It follows easily from the following equations (cf.
Appendix)

and ¢, b, +c,b,=1 (15

e a, +ca,=1

that
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where h(c,, ¢,, i,/i;) = fi/f, denotes the positive root
of the second order equation (AS5) given in the
Appendix.

€, being given, the resolution of equation (16) leads
to the equivalent strain rate in each phase ¢, and &,
and then leads to the homogenization problem sol-
ution ﬁ(éo).

The solution is characteristic of the three phase
configuration through the solution h(c, ¢,, f/f,)).
Replacing /4 by the solution of the following second
order equation

-\ 2 -~
3(#) + [? e, — 3¢,)
Hy Hy

+(zcz—3c.)](5)—z‘§=o (an
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gives the viscoplastic extension of the classical self-
consistent scheme [4].

3. EFFECTIVE BEHAVIOR

The two phases of the composite material are
characterized by

0, =34,

xtx

x=12 (18)

Various cases are now considered depending on the
values of the prefactors A,, of the strain rate sensi-
tivities m, and of the phase volume fractions.

3.1. Equal strain rate sensitivities

The constitutive laws of the two phases differ only
in the prefactor. The hard phase refers to the highest
value of A4, and the soft phase refers to the lowest
value of 4,. The constitutive law of the composite is
characterized by the exponent m = m, = m, and by an
effective prefactor 4

0o =3A4E7.

(19)

With the notations ¢ = ¢,, x =€, /é,and y = ¢, /é,, the
system in equation (16) may be written

m-—1
cAx"+ (1 —=c)A, y"=A,y" 'h(c,ﬁ(f) )
A \y
ex+(1—-cy=1

(20)
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Fig. 2. The normalized effective prefactor 4/A4, vs the hard
phase concentration (m =m,=m,=0.5). Self-consistent
and three phase model.

x and y are derived from the resolution of equation
(20). 4 is then given by

_ A (x\"!
)
L

The ratio 4/A,,, is plotted on Fig. 2 as a function of
the hard phase concentration for m = 0.5 and for
different values of the ratio 4,/4,. Both situations
with a matrix stiffer or softer than the inclusions are
considered. Classical self-consistent values obtained
from equation (17) are also reported. Self-consistent
and three phase models give similar results for a
relatively high concentration of matrix (depending on
the ratio 4,/4,). However, it may be seen that taking
into account the connectedness of phase 1 gives very
strong differences out of this range. These differences
are all the more important since the ratio 4,/4, is
large. Recent works [5, 8, 9] have shown that the use
of adequate variational principles lead to the determi-
nation of a second order upper bound (Hashin and
Shtrikman type) for 4/A4,,. Results are not reported
here but they indicate clearly that this bound is
violated by our present approach for concentrations
exceeding a certain value ¢ (depending on m and on
the ratio A,/A4,). Further investigations have to be
carried out in our next work, particularly in order to

@n

verify if our present overestimations lead to accept-
able (or not) differences with experimental data.

3.2. Different strain rate sensitivities

e Normalization—m, and m, are now different
with, for example, m; > m,. m, # m, ensures that the
curves representing g,(¢,) display a common point
(€., 0.) such that ¢, = ¢, = €, and ¢, = 0, = o, (Fig. 3),

where
. AZ 1fm) —m3)
()
and
1 mymy[(m) —~my)
(3'4:);};
o= | —7 (22)
(34,)—
m,

It is therefore possible to write the constitutive re-
lations of equation (18) using the normalized vari-
ables a,/0, and ¢,/é. so that

o €\ o € \™
=)=(= and (—=)=(2]) .

o, €. a. €.
e Asymptotic solutions—numerical calculation is
generally needed to derive solutions. However, sol-
utions at €, ~ co and at ¢, ~ 0 are readily obtainable

*é ~ oo: if the strain rates in each phase are of the
same order of magnitude

23)

ém-lye¢m-' 5o that 4, > i, and 0, > 0.
Under these conditions, the asymptotic solution for
ji corresponds to the solution for the effective modu-
lus of a viscoplastic matrix containing very soft
inclusions with a concentration ¢. Elimination of /g,
in equations (16) and (Al) leads to the effective
constitutive law

(24)

(ﬁ) —(—c) ""[hw«)]m(i‘!)"’.
0',.. 6c

£
a
Fig. 3. Evidence of a common point for strain rate/stress

constitutive equations if m, # m,.



h_(c) is the solution of the second order equation
(AS5) when f, > ji,. It is worth noticing that the
assumption ¢, > ¢, leads to the same result, whereas
the assumption ¢, < ¢, would lead to a non-physical
solution.
*¢, ~ 0: the stresses are assumed of the same order
of magnitude in each phase so that
&> € and ﬁ|<[12.
The asymptotic solution for j corresponds to the case
of a viscoplastic matrix containing very hard in-
clusions with a concentration c. ¢, is then given by
€&~ (1 —c)é and I by = A hy(c)éT " where hy(c)
is the solution of the second order equation {AS5)
when f, < fi,. The effective constitutive law is then

(ﬁ) —(1 -0 -"'ho(c)(ff)"'.
oC ec

The two macroscopic constitutive laws of equations
(24) and (25) show respectively that when the macro-
scopic strain rate becomes very large (respectively
very low), the effective creep behavior of the two-
phase composite becomes analogous to the behavior
of an incompressible viscoplastic matrix containing
very soft (respectively rigid) inclusions. The range
of validity of this analogy depends of course on
the values of m,, m,, 4, and A,. As indicated by
equations (24) and (25), this behavior is always
described by a power law characterized by the strain
rate sensitivity of the matrix phase and by a prefactor
which is a function of the solution of the second order
equation (AS5) in the two respective limits. Moreover,
it is possible to show that the opposite choice m, > m,
does not affect this conclusion.

These results may be compared to those given by
the classical self-consistent model, which leads to
quite different behaviors [4]. In this latter case, the
overall creep behavior is governed by one or the other
phase, depending on the phase volume fraction. More
precisely, the value of the exponent of the macro-
scopic power law is related to the two “quasi perco-
lation thresholds” ¢ =0.4 and ¢ =0.6 which are
inherent to the classical self-consistent scheme. In the
case of rigid inclusions for example, the effective
exponent is equal to m, if ¢, < 0.4 and is equal to m,
if ¢;>04.

The normalized reference stress appearing in
equation (25) is plotted on Fig. 4 vs the inclusion
volume fraction for different values of m,. It corre-
sponds to the case of rigid inclusions embedded in
a viscoplastic matrix. A comparison with the
classical self-consistent results [4] is possible in the
range 0 <c <0.4. The deformation resistance de-
rived from the three phase model is shown to be lower
than the one derived from the self-consistent scheme.
It confirms that the three phase model takes
into account the connecfedness of the viscoplastic
matrix.
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Fig. 4. Normalized reference stress vs inclusion concen-

tration. Rigid inclusions embedded in a viscoplastic matrix.

Self-consistent results (dashed rule) and three phase ones
(solid rule).

Note that the curves of Fig. 4 are comparable (at
least for values of ¢ which are not too large) with
previous results derived by a differential self-consist-
ent scheme [10, 11]. However, it is more difficult to
give a well defined topological signification to this
differential scheme.

o General solutions—Fig. 5 shows a typical curve
(0o/0., €y/é.) obtained by solving the system of
equation (16) for different values of (¢,/¢.). When the
level of the macroscopic strain rate varies between the
two limits studied above, the behavior goes through
a transition which can be better quantified by defining
an effective strain rate sensitivity for the overall creep
of the composite

(26)

A specific example of the variation of m with the
normalized strain rate (/é,) for m;=0.2 and
m, = 0.1 is shown in Fig. 6. Figure 6(a) corresponds
to the classical self-consistent scheme. Figure 6(b)
corresponds to the three phase model where the
matrix phase is characterized by m, = 0.2 and where
the inclusion phase is characterized by m,=0.1. It
may be seen that except for an amount of inclusions
lower than 20%, the two schemes lead to quite
different behaviors. In particular, as already noticed,
the asymptotic behaviors are totally different for the
two models. For the self-consistent model, the tran-
sition region governed by the percolation thresholds
¢ =40 and 60% appears clearly. For the three phase
model the effective strain rate sensitivity tends to m,
in a certain range but it always returns to m, at very
high and very low macroscopic strain rates even for
high concentrations of inclusions (although it is not
clear in Fig. 6 for ¢ =95%).

“Self-consistent™ curves and ‘“‘three phase” ones
have a common point at a same concentration for
(é/é.)=1: the two secant moduli are the same
for both phases. m is always higher for the three
phase model than for the self-consistent one for any
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Fig. 5. Three phase model: o,/0, = f(é,/é.) in log/log scale.
my=0.5, m,=0.2 and ¢ =80%.

other value of the normalized macroscopic strain
rate.

The evolution of m displays a local minimum for
very high concentrations of inclusions (¢ > 90%).
This feature is studied in the next section.

3.3. “Intergranular™ localization of the deformation

This section deals with an interesting configuration
of the three phase model for which the volume
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Fig. 6. The effective strain rate sensitivity vs the normalized
applied strain rate. Three phase and self-consistent results
for a varying inclusion volume fraction ¢. m, = 0.2, m, =0.1.

fraction of the matrix phase becomes very small
whereas the behavior of this matrix phase becomes
very soft. This configuration may be of physical
interest for materials where the deformation is mainly
localized in very thin areas along grains (grain bound-
aries, viscous films). Previous works have focused on
this configuration with the help of finite-element
computational methods [12, 13]. In particular, creep
of a polycrystalline solid was modeled by attributing
a Newtonian viscosity to the grain boundaries and a
power-law creep viscosity to the grain interior. The
finite-element calculations gave the flow field within
the polycrystal and the macroscopic stress/strain rate
behavior. At high strain rates, it was shown that the
polycrystal flows according to the power-law of the
grains. At low strain rates, it again flows according to
this power-law, accelerated somewhat by grain
boundary sliding. The transition from power-law to
accelerated-power-law behavior occurs at a transi-
tional strain rate. This transitional strain rate was
calculated as well as the corresponding stress en-
hancement factor. It is now verified that the three
phase model can predict such behaviors. Analytical
results are derived for the transitional strain rate and
the stress enhancement factor.

To do this, equation (AS5) is evaluated when simul-
taneously the concentration ¢ tends to 1 and the ratio
i,/ tends to infinity. The linear case is first studied.
As recalled in the Appendix, the effective modulus /i
is of the same order of magnitude as ,. A Taylor
expansion with respect to /i,/g, and ¢’ =1 — ¢ trans-
forms the second order equation (A5) into equation
(A9). The solution j/j, is a function only of the
product p = (ji,/i,)c’. Variations of /1/a, as a func-
tion p are plotted in Fig. 7. The effective modulus
is always located in the range [0.4754;; fi,]. The value
0.47541, corresponds to the limit p —co: the boundary
region is very soft compared with the inclusion or its
volume fraction is “large” enough. It is interesting to
notice that this value constitutes the lowest value
which may be attainable if one considers the mechan-
ical effect of a soft boundary region within a grained
material.

A usual configuration for non-linear behaviors is as
follows: the grains have a strain rate sensitivity m,
ranging from 0.2 to 0.5 and boundaries obey a
Newtonian flow characterized by m, = 1. In such a case
*[,/f, becomes very large for very low strain rates.
/i, tends towards 0.475 for a given ¢’. The effective
constitutive law is therefore

(ﬁ) = 0475 x 3, (9)
aC eC

*i1,/4i, becomes very low for very large strain rates.
/i3, becomes equal to 1 for a given ¢’. The effective
constitutive law is therefore

()

@7

(28)
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The value p ~ 1 may be considered as characterizing
a transition from equations (27) to (28). Furthermore,
p ~ | may be written 2, /i1, ~ 1/(1 — ¢). The transition
region corresponds then to the following strain rate

1 \Uem-1 T\ 1A - m)
R 6 R L~(32 é (29)
1-c R

where T, is the thickness of the boundary region and
R is the radius of the grain. Similar results were
obtained by Crossman and Ashby [11] and Ghare-
mani [12] by 2D finite-element simulations. These
authors had defined a stress enhancement factor f
which quantify the transition from equations (27) to
(28). Our 3D analytical model leads to
f=1/0.475~2.11 which is clearly higher than the
values ranging from 1.2 to 1.3 given by 2D finite-
element simulations. This difference can be explained
by different reasons:

(a) finite-element computations were performed in
a finite range of strain rates and asymptotic
behaviors were not always obtained

(b) the present model is a 3D one, whereas the
previous results were obtained by 2D simu-
lations.

In order to evaluate the order of approximation
involved in the asymptotic constitutive laws of
equations (27) and (28), numerical simulations were
performed too. Results are reported in Fig. 8 for
¢ =095 ¢=097 and ¢ =0.99, corresponding to
3(T,/R) =0.05, 0.03 and 0.01. The strain rate sensi-
tivity for the grains was chosen equal to m, = 0.33.
The part of the curves for ¢, > €. is reported but is not
realistic, because it corresponds to a boundary which
would be stiffer than the matrix. The curves display
a local maximum which is clearly related to the
transition region analytically predicted. The value of
this maximum is governed by equation (29). The
values of m; tend again towards m, =1 when very
low strain rates are applied. The previous analytical
derivations are then justified only around the tran-
sition region.

4. CONCLUSION

The study was devoted to the prediction of the
constitutive behavior of matrix-inclusion composites.
Both phases were characterized by power-law consti-
tutive equations. The specific morphology was taken
into account by using a three phase model. The
power-law constitutive equations were linearized.
The so-defined moduli are not constant but are
functions of the average strain rate in each phase. It
is then possible to use the classical linear solution of
the three phase model. If both phases have the same
strain rate sensitivity (the same power-law exponent),
the effective behavior of the composite is character-
ized by an effective prefactor. If not, the effective
behavior is characterized by an effective strain rate
sensitivity which is a function of the macroscopic
strain rate and of the volume fraction of the phases.

The results are quite different in both cases, com-
pared to other models which do not refer to the
matrix inclusion type morphology, like the self-
consistent model. The self-consistent model is mainly
characterized by “quasi-percolation thresholds”. The
present three phase model shows that the behavior of
the composite is mainly governed by the behavior of
the matrix. In particular, the effective power-law
exponent is always one of the matrix for very low and
very high applied strain rates. However, the effective
strain rate sensitivity is affected by the presence of the
inclusion phase for intermediate applied strain rates.
If the volume fraction of the inclusion phase becomes
very large, the effective strain rate sensitivity tends to
the one of the inclusion in a certain range of applied
rates. A special transition behavior occurs in this
range, which can be related to previous numerical
studies concerning the accommodation of power-law
creep by grain-boundary sliding. A stress enhance-
ment factor has been analytically calculated. It ap-
pears as quite different than the previous ones
obtained from finite element calculations.

It is worth noticing that assumptions were made in
this study. In particular, the effective moduli in each
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Fig. 8. Grain boundary configuration: the effective strain
rate sensitivity vs the normalized applied strain rate.
m,=m,=0.33.



phase depend on the strain rate but they are after all
assumed constant to apply the linear solution of the
three phase model. It is expected that this assumption
is not too crude for strain rate sensitivity values
ranging from 1 to 0.1. Recent developments, such as
the representative inclusion [14, 15], the “N-layered”
extension of the three phase model [16] or the intro-
duction of adequate variational principles [8] may
appear as alternative schemes to better take into
account the inhomogeneity of stresses and strains
within each phase of non-linear composites.

REFERENCES

1. G. A. Henshall and M. J. Strum, Scripta metall. 30, 845
(1994).

2. P. Ponte-Castaneda and J. R. Willis, Proc. R. Soc. Lond.
A 416, 217 (1988).

3. P. Ponte-Castaneda, J. Mech. Phys. Solids 39,45 (1991).

4. 1. W.Chen and A. S. Argon, Acta metall. 27, 785 (1979).

5. R. Dendievel, G. Bonnet and J. R. Willis, in Inelastic
Deformation of Composite Materials (edited by G. J.
Dvorak), p, 177. Springer, New York (1990).

6. R. M. Christensen and K. H. Lo, J. Mech. Phys. Solids
27, 315 (1979).

7. E. Hervé and A. Zaoui, Eur. J. Mech. A9, 505 (1990).

8. P. M. Suquet, Mecamat 93, International Seminar on
Micromechanics for Materials, p. 361. Moret-sur-
Loing, France (1993).

9. P. Gilormini, C.-R. Acad. Sci. Paris. 320, 115 (1995).

10. J. M. Duva, J. Engng Mater. Technol. 106, 317 (1984).

11. 1. W. Chen, International Conference on Superplastic-
ity, Grenoble. Editions du CNRS, Paris (1985).

12. F. W. Crossman and M. F. Ashby, Acta metall. 23, 425
(1975).

13. F. Ghahremani, Int. J. Solids Struct. 16, 847 (1980).

14. R. Dendievel, Ph.D. Thesis, INP Grenoble (1992).

15. M. Bornert, E. Hervé, C. Stolz and A. Zaoui, Appl.
Mech. Rev. 47, 66 (1994).

16. E. Hervé and A. Zaoui, Int. J. Engng Sci. 31, 1 (1993).

APPENDIX

The Elastic Equations of the Three Phase Model

The problem of an infinite medium constituted of a
two-layered isotropic spherical inclusion embedded in a
homogeneous continuum subjected to uniform conditions at
infinity was first studied by Christensen and Lo [6] and later
reformulated by Hervé and Zaoui [7]. The core and the shell
of the two-layered inclusion represent respectively the in-
clusion phase and the matrix phase of the composite. The
continuum represents the homogeneous equivalent medium.
If 3, /3, and j denote respectively the shear moduli of the
shell, of the core and of the continuum, the average devia-
toric strain tensors {¢), (in the “matrix phase”) and {¢), (in
the “inclusion phase™) may be expressed as

<€>1 Z_C—)(ﬂ—)«) a.(‘) (AI)
<‘>2‘c(i, Ll O =ao (A2)

¢ denotes the volume fraction of the core. {¢) is the average
deviatoric strain tensor over the two-layered inclusion. If
= ¢, ' x denotes the prescribed displacement field at infin-
ity, <€) =&
Similar relations are given for the deviatoric stress tensors
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It is worth noticing that ca,+(1—c)ay=1 and

chy+(1—=c)b, = 1.
Finally, ji/a, appears as the positive root of a second

order equation
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If the volume fraction of the inclusion phase ¢ =1—¢’
tends towards one and when its shear modulus tends
towards infinity, the ratio /i, and j, /4, are of the same

order of magnitude. The parameter A defined by
ji/ii, = A(j1,/i3,) is the positive root of the following equation

(A5)

with

(336+560c"")12 (63 266¢” f)a 399=0. (A9)
Jri



