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A computational procedure for predicting the long term residual
settlement of a platform induced by repeated traffic loading

Malek Abdelkrim, Guy Bonnet, Patrick de Buhan*

Laboratoire de Materiaux et Structures pour le Génie Civil (LCPC/ENPC/CNRS UMRI13), 6 et 8 av. B. Pascal, Cité Descartes,
77455 Marne-la-Vallée, cedex 2, France

Abstract

A general structural analysis approach is developed in the present paper, allowing the evaluation of the residual settlement of a
platform induced by repeated traffic loading. It notably relies upon the formulation of a cyclic constitutive law, which describes the
progressive accumulation of irreversible (permanent) deformations locally exhibited by the different underlying granular materials
when subjected to long term stress cycling generated by the traflic loading. This constitutive law is incorporated into a step-by-step
numerical scheme where two kinds of elastic calculations are implemented: the first one concerns the determination of the so called
reference stress cycles, while the second one is aimed at calculating the residual displacement and stress fields of the platform
derived from the integration of the permanent non elastic deformations. The whole procedure is illustrated on the simplified model
of a moving strip-load acting upon a homogeneous half-space, adopting a cyclic constitutive law formulated for a particular

unbound granular material used in road pavements.
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1. Introduction

Rational design and maintenance procedures for
transportation infrastructures such as road pavements
or railway track platforms require the elaboration of
predictive methods aimed at assessing the long term
performance of this particular kind of geotechnical
structures. One of the major specific concern is to be
able to determine the residual profile of the infra-
structure (pavement rutting, track geometry defects)
induced by the application of repeated traffic loading.

In order to get a better insight into the rather complex
phenomena involved in this kind of structures, many
experimental devices have for instance been developed
for testing representative sections of road pavements
subject to repeated wheel loading. More recently, an
extensive experimental programme has been undertaken
on reduced scale models reproducing a segment of rail-
way track subject to cyclic loading [1.2]. Although such
experimental approaches are undoubtedly useful for
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obtaining a preliminary global understanding of the
problem, at least from a qualitative point of view, even
making it possible to derive empirical relationships, they
remain rather unsuitable for providing genuinely pre-
dictive design methods for a wide range of parameters.

The development of calculation methods aimed at
predicting the behaviour of geotechnical structures sub-
ject to repeated loading requires the formulation of a
cyclic constitutive law for the constituent soils. Such a
law may be expressed within the framework of (visco)-
plasticity, involving the usual concepts of yield condi-
tion, hardening and flow rules. But the numerical
implementation of such a model through a classical
step-by-step procedure proves unrealistic beyond a few
load cycles. notably because the increment of permanent
strain per cycle is rapidly becoming very small, and thus
fall below the numerical accuracy of the computational
procedure.

Within the general framework proposed by Ponter [3].
alternative simplified approaches have been developed
based on a ““homogenization technique™, taking advan-
tage of the fact that the period of repeated load is small
when compared to the characteristic creeping time of



the structure [4.5]. Although the idea of double time
scale analysis conveyed in such method will be con-
sidered in the following contribution, it should be men-
tioned that its range of application is restricted to the
particular situation of viscoplastic structures under-
going permanent deformations even under constant
applied load. This is obviously not the case of traffic
platforms where the main source of long term per-
manent deformations is to be found in the fact that
the load is applied repeatedly. that is in a cyclic way,
involving a very large number of cycles (up to several
millions).

The method developed in the present paper for
addressing such a question is based on a “structural
analysis™ approach, according to which the global
response of a traffic platform, and notably its residual
surface settlement, may be derived as the solution of a
properly defined boundary value problem, provided
that the local behaviour of the constituent materials has
been previously characterized in terms of stress-strain
relationships. More precisely. considering the particular
kind of loading involved in the analysis, it clearly
appears that such constitutive relationships will refer to
the long term cyclic behaviour of the different con-
stituent materials, which exhibit irreversible permanent
deformations under cyclic solicitations.

The essential parameters governing this cyclic beha-
viour may be identified experimentally, on the basis of
repeated triaxial loading tests performed on homo-
geneous samples of material. Constitutive relationships
have been proposed for instance by Monosmith et al. [6]
or Li and Selig [7], in order to relate the cumulative
permanent strain of cohesive subsoils subject to repe-
ated cyclic loading, to the number of load applications
as well as the characteristics of the stress cycle (ampli-
tude, proximity to the failure line, etc.). Simplified
design procedures, relying on such relationships, have
been proposed for road pavements [8] or railway track
foundations [9]. Similar constitutive laws have been
developed for railroad ballast materials [10.11] or
unbound granular materials in the context of road
pavement design [12-14]. The latter experiments have
required the development of a large triaxial test appa-
ratus. due to the grain size of the granular materials,
able to carry out cyclic loading tests up to several tens
of thousands cycles.

In contrast with the quite significant amount of
experimental data already available for describing the
cumulative permanent deformations of granular mate-
rials subject to cyclic loading, the calculation methods
derived from the incorporation of such data remain
somewhat crude. This is for instance due to the fact
that, in most cases, the cyclic constitutive law is only
referring to the evolution of the axial permanent strain
as a function of the number of load cycles, very few
indications being given as regards the lateral compo-

nent. Yet such an information remains essential for
formulating a fully three-dimensional constitutive law
and thus devising a rational structural analysis proce-
dure. As a matter of fact, the following contribution is
intended to provide the necessary guidelines for defining
a general methodology in the framework of continuum
mechanics, and thus help improve the present design
methods.

2. Settlement of a platform under traffic loading as a
double time scale phenomenon

Fig. 1 gives a typical representation of the global
response of a road pavement or railway structure under
traffic loading, namely the evolution of the vertical set-
tlement § at a particular point, as a function of time
t=NT., where N denotes the number of applied wheel
loads due to the passage of vehicles, and 7 is a typical
time interval between two such successive loads. It
should be emphasized that there is no need to further
specify the latter quantity, since dynamic as well as vis-
coelastic effects will not be considered in the subsequent
analysis, so that the only relevant loading parameter is
the number N of load cycles and not the physical time 7
during which they are applied. According to this figure,
the observed total deflection may be additively decom-
posed as:

8(r) = 80y + 8 (1) (1)

where the first term denotes the rapidly fluctuating
elastic deflection which vanishes as the load is removed
(that is as the vehicle is moving far away from the point
where the settlement is measured), while the second
term represents the residual settlement, which slowly
increases with time. Furthermore, it clearly appears from
such a figure, that the increment of residual settlement
over one period of time (say 1 € [NT, (N + 1)7]). is con-
siderably smaller than the amplitude of the elastic deflec-
tion over the same period (Fig. 1):

SN+ 1DT) = §"(NT) <<
Max|5(1). 1 € [NT.(N + DTT}

so that the settlement could be viewed as a quasi-peri-
odic function of time.

The same kind of observation could be made locally,
that is at any point x of the structure. Indeed. the stress
state at such a point may be written as the superposition
of an elastic (recoverable) component due to the applied
load and a residual stress:

(x.0) =a(x, )+ o'(x. 1) 3)
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Let us then consider the path followed by such a
stress state in the space of stresses, as sketched in Fig. 2.
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Fig. 1. Evolution of the global settlement of a platform subject to repeated traffic loading.

O'k/(!)

Fig. 2. Stress path at any point of the structure.

It may be drawn as a chain of loops which corresponds
to the elastic load cycles slightly drifting as the number
N of applied load cycles increases. The distance between
two such successive loop-cycles appears to be quite
small when compared with the loop size itself. In other
terms, the increment of the residual stress per load-cycle
is negligible in comparison with the amplitude of the
clastic cycle:

||%"<._\: (N+ DT) = o'(x, NT) H <<
(4)
Mux[ ||g"’(1)”.1 e [NT.(N + DT])

Nevertheless, it should be kept in mind that, in spite
of (2). the amount of residual settlement accumulated at
the end of N load-cycles (with N up to several millions)
may become of the same order as or even greater than
the elastic deflection. The same remark applies to the
variation of residual stress as compared to the elastic
stress amplitude.

The two-scale time evolution of the settlement of a
platform observed under repeated traffic loading due to
the passage of a moving load is quite reminiscent of the
liquefaction phenomenon of soil masses subject to seis-
mic or wave loading [15.16]. Indeed. as already pointed
out, this evolution may be described by a quasi-periodic
function of time, in much the same way as, in a quite
different context, the curves representing the evolution
of excess pore pressure progressively building up in a
saturated granular soil sample under deviatoric cyclic
loading, and ultimately leading up to liquefaction when

the effective stress drops to zero. It has been clearly
shown that the physical explanation of such a pro-
gressive accumulation of excess pore pressure is to be
found in the soil’s volume decrease (contraction) gener-
ated by cyclic loading [15].

The fundamental assumption upon which the analysis
and related design method developed in this paper are
based. is that the long term behaviour of a traffic plat-
form observed at both the global (progressive accumu-
lation of residual settlement) and local levels (drift of
residual stresses), is to be attributed to the cyclic beha-
viour of the different granular materials which con-
stitute the platform: ballast. gravel. cohesionless soils.
ete. More precisely., those materials undergo irreversible
(permanent) strains when subjected to repeated loadings,
as shown for instance by Alva-Hurtado [11] and Hor-
nych et al. [12]. who performed repeated triaxial tests on
ballast material and pavement unbounded granular
materials, respectively.

Despite the obvious similarity between the liquefac-
tion and platform settlement prediction problems as
regards the underlying mechanical behaviour of the
constituent materials, there remains some important
differences which are listed below.

e The granular materials which constitute the
platform are generally not liable to liquefaction,
even in the case of saturated subgrade layers.
since the excess pore pressures are almost
immediately dissipated.



e While in the liquefaction problem only the irre-
versible volume change is to be taken into
account in the analysis, all components of the
materials permanent strains should be considered
for predicting the platform residual settlement, as
it will be seen later on.

e The number of load cycles associated with the
traffic loading is far more important than for soil
liquefaction: several millions cycles against a few
hundreds.

e Finally, it seems likely that the physical
mechanisms which prevail at the microscopic
scale for explaining the observed permanent
deformations are different in both cases. Densi-
fication by rearrangement of an initially loose
assembly of grains is the governing mechanism in
the liquefaction problem, whereas if such a
mechanism may explain the observed residual
settlement of a traffic platform in an initial phase
(say a for a few thousands cycles), other phe-
nomena such as the attrition of grains or particle
crushing seem to be the main source of long term
permanent deformations.

3. A general framework for calculating the residual
platform settlement

The starting point for setting up a general design
method for predicting the residual settlement of a plat-
form under repeated traffic loading lies in the formula-
tion of a constitutive law for the different materials
subject to cyclic loading. Such a cyclic constitutive law
may be expressed in the form of a local relationship
between the rate of accumulation of permanent strain at
the N load cycle and the characteristics of the cyclic
loading path, namely:

de” : :
ﬁ(l .\):1"[.\ (}g)(lA\)] (5)

In the above equation:

e &’(x,N) is the permanent strain experienced by

the material located at point x and at the end of

N applied cycles:

. (§g)(l- N) denotes the stress cycle to which the
material located at the same point x is submitted
at the same time 7= NT.

The subsequent developments are based on the two
following assumptions

e The short term reversible behaviour of the dif-
ferent materials is described by a linear elastic
constitutive law.

e The clastic stiffness parameters (that is the
Young modulus and Poisson ratio in the case of
isotropy) remain unaffected by the cyclic loading.
This means that no damage or stiffening is taken
into account.

While the second assumption appears to be reason-
ably well verified once a few load cycles have been
applied. the first one seems more questionable. since
experimental evidence of a strong non linearity has been
given for some granular materials.

As an important consequence of theses hypotheses, it
appears from the superposition principle that the cur-
rent stress cycle actually applied to the material is
obtained in the stress space from translating the so
called reference stress cycle by the residual stress (Fig. 3).

ref
Gg)(x. N)=da'(x. N)+ @g) (x) (6)

It is to be noted that the reference stress cycle is a
function of point x only. It is simply obtained as the
sequence of stress states generated at that point as the
load is moving on the platform surface, which may be
derived from the solution of a simple elastic boundary
value problem.

It appears from this preliminary analysis that the
proposed method for determining the residual state of
the structure and notably the cumulated settlement as a
function of the traffic loading. should therefore combine
three complementary elements:

(a) The formulation of a cyclic constitutive law in
the form of Eq. (5). which has to be derived
from laboratory tests conducted for each type
of material and for various cyclic loading
conditions.

(b) A computational tool for determining the refer-
ence stress cycle at any point of the structure as a
function of the traffic loading characteristics.

(¢) A numerical procedure for calculating the resi-
dual state of the structure, and more particularly
the residual settlement, from the knowledge of
the accumulated permanent strain field.

Procedure (¢) amounts to solving an elastic boundary
value problem relating to the same structure, in the
absence of the load traffic, but with the permanent
strain field acting as a prescribed non-elastic strain field,
in exactly the same way as for thermal or plastic strains.
The existence, and subsequent evolution, of the residual
stress field is thus clearly connected with the geometrical
non-compatibility of this strain field.

Since the cyclic constitutive formulation is given in
the incremental form (5), the implementation of such a
method requires the discretization of the total number
of applied load cycles into a finite number steps:
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Fig. 3. Reference and current stress cycles at point x.

N=kAN, k=0,1,..K, where AN may range between
a few units and several thousands. The principle of the
corresponding numerical algorithm, which is sketched
in Fig. 4. is described as follows:

e A preliminary elastic calculation is first carried
out which provides once and for all the reference
stress cycle at any point of the structure from the
moving load characteristics.

e The algorithm itself is getting started from k=0,
where the residual state of the structure coincides
with its given initial state: the permanent strain
field and associated residual settlement are con-
ventionally taken equal to zero, while the residual
stress field is equal to the initial stress field. which
must be in equilibrium with the gravity loads:

Shk=0)=0,

Lh=0=0. dk=0=0" (7

e Assume now that the permanent strain field
along with the residual state are known up to step
n°k. The local value of the permanent strain field at
step n°k+ 1 is simply computed as the sum of its

value at the previous step and of the increment
given by Eq. (5). where dN is replaced by AN
and de’(N) approximated by
e’ (x. k4 1) —&”(x. k). so that:

ref
X F|:.‘V =kAN: o'(x, k) + ({:g) (i)]
(8)

e The residual stress field at step n°k+1 is then
determined from solving the elastic boundary value
problem with no traffic loading but incorporating
&’(k + 1) as a prescribed non elastic strain field.

e The computing procedure is continued until &
reaches its maximum value K.

4. An illustrative application: platform under moving
strip-load

In order to demonstrate how the proposed method
and related numerical algorithm can be implemented,

Initial state (k = 0)
6'(k=0)=0;eP(k=0)=0
o' (k=0)=c"

Elasticcalculatian b
(trafficloading) ) (P)

e”(x,k +1)=€”(x,k)+ AN x F{N;a’(x,k)+ (Iarr(x)} (a)

k=k+1

Elasticcalculation

G/ith prescribed £ (k +D (c)

0" (k+1); 8" (k + 1) —= 8" (K)

Fig. 4. Principle of the numerical algorithm.



Fig. 5. Simplified model of a traffic platform subject to traffic loading.

the following simplified schematization of a platform
under traffic loading will be adopted. The load which
represents the action of the passing vehicle is acting
upon a homogeneous half-space in the form of a con-
stant downwards pressure P, applied over a strip of
width 2¢ and infinite length, as shown in Fig. 5. and
moving with a velocity V" along the Oy-axis. the carte-
sian Oxy-frame being attached to the moving load.

It is assumed that the constituent material behaves as
an homogencous isotropic lincar eclastic medium (no
creep behaviour is taken into account), and that all
dynamic effects are neglected. It then appears that for
an initially stress-free unloaded structure, the elastic
state of stress created at any point (x, y, z) by the appli-
cation of such a strip-load, is classically obtained from
integrating the elementary Boussinesq’s solution over the
strip’s width. The different stress components are [17]:

v = (Po/7)|6) — 6> + 1/2(sin26, — sin26,)]
0y = (Py/2m)[c0s26h — cos26]

9
oy = (Po/m)[6) — 62 — 1/2(sin26; — sin26)] ©)
0.. = 2u(Py/m)[6; —65] other o5 =0
where angles (61, 6») are defined as (Fig. 5):
oy ta iy —a
#) = tan (—_\_ ) th = tan (—_\_ ) (10)

and v is the Poisson’s ratio. The corresponding expres-
sions of the two first stress invariants defined as:

N 172
p= —lrgfﬁ and ¢ = (3/2“‘;’) (11)
where s = o — plis the deviatoric stress, are:

2P,
p= T"(l +v)[6) — 61
7T

g= TO[(I — 206y — 62 +3sin%(6; — 6)]

so that the contour surfaces of (p, ¢) are formed by the loci
of points such that 6; — 6> remains constant, which is the
family of circular cylindrical surfaces passing through the
lines of equations x =0, y = 4a, and whose axes are
located in the symmetry plane Oxz. Considering then
any fixed point at a depth x below the surface, the
reference stress cycle to which such a point is subjected
as the load is passing by, corresponds to the stress dis-
tribution given by (9) and (10) along the horizontal line
passing through this point and parallel to the Oy-axis

ref
(f};g) (x)= [g(.\'.)')‘)' 4o o — ocl (13)

The associated stress path in the (p,¢)-plane is there-
fore determined from Egs. (12) where the angular para-
meter #;—6, increases from 0 to the maximum value
2tan”!(a/x) as y decreases from + oo to 0 (approaching
load), then goes back to 0 as y tends towards —oo, that
is as the load is moving away. This stress path is located
on the curve of equation

1 > 3np 2
= — 229 —=—
aIho=z [“ 0 (2(1 + \»)Po)

" 172
.9 p

+ 3sin” | ————
(3(| + \’)Po)]

obtained from eliminating 6, — 6, between the para-
metric Eqgs. (12). It connects the origin to the extreme
point whose normalized co-ordinates are

(14)

4
Pret/Po = —(1 + v)tan'(a/x)
3n

1 ) 2
Gret/Po = = [(] —2v)*(2tan ! (a/x)) (15)

12
+3sin?(2tan~! (u/.\'))]
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Fig. 6. Normalised reference stress cycles as a function of x/a and v.

Those reference stress cycles are represented in Fig. 6.
They depend on the Poisson’s ratio v and the relative
depth x/a only. For a given value of v, they are located
on the same curve [Eq. (14)]. their amplitude being a
decreasing function of the relative depth.

5. A cyclic constitutive law for modelling permanent
deformations

The general procedure outlined in section 3 requires
the specification of a constitutive law aimed at relating
the production of permanent deformations exhibited by
the material under repeated loading, to the number of
applied cycles along with some relevant characteristics
of these cycles such as their position or amplitude in the
stress space. The cyclic constitutive law we shall adopt
in the present analysis, is directly inspired from that
formulated by Gidel et al. [14] on the basis of repeated
loading triaxial tests performed on wunbound granular
materials (UGM), such as Poulmarch and Soreze grav-
els. Those triaxial tests were designed in such a way that

both the axial stress and confining pressure could be
varied, thus allowing to explore the material cyclic
behaviour along different radial stress paths such as that
sketched in Fig. 7 in the (p,g)-space.

The cyclic constitutive law proposed by Gidel et
al. [14] for modelling the permanent deformation

\

Qref - -g(pmf,qm, ) T

e
l

¥

pref

Fig. 7. Cyclic constitutive law proposed by Gidel et al. [14] for
unbound granular materials subject to radial load cycles.



behaviour of the Poulmarch gravel may be expressed as
follows:

flll = fﬁ(l - A’ViB) S(Pret s Grer)-g(Pret- Grer)

(15a)
N=1

where &/ is the accumulated axial permanent strain due to
the application of N stress cycles characterised by the
stress peak values. Functions fand g are defined as follows

SPret. gres) = (1/100)" with [ = /p2e + g2y

( ) Pref (16)
2 Pref s f) = —m—m
Z(Pref s ref S+ MPret — Gret

where &), B. n. s and m are material parameters, all
stress quantities involved in the different formulas being
expressed in kPa. Function f represents the influence of
the stress cycle amplitude | on the amount of axial per-
manent strain, while function g quantifies the proximity
of the peak stress point (preg. ¢rer) With respect to a kind
of ““ultimate line”” whose equation is ¢=s+mp (Fig. 7).
More precisely. the contour lines of g are straight lines
intersecting the g-axis at the same point as the “ultimate
line™, so that the value of function g tends to infinity as
the peak stress point approaches this ultimate line.

Although the previous cyclic law has been established
for radial stress cycles only, the following extension to
curve-shaped stress cycles generated by the moving
strip-load problem is now proposed. Fig. 8 shows a
typical current stress cycle obtained from translating the
reference stress cycle determined in Section 4, which starts
from the origin, by the residual state of stress (p”. ¢"). The
cyclic constitutive law (15) may be generalised as:

f—"l’(N) = Fﬁ(l - N 78) SPress (/ref)~g(l’r + Pref - ‘/r + Grer)

(17)

p

E—

r

r

P P+ Prer
Fig. 8. Extension of the cyclic constitutive law to current stress cycles
generated in the moving load problem.

This formula is valid for N load cycles applied
between (p”. ¢") and (p" + prer. ¢" + Grer) considered as

fixed values in the stress space. Now, due to the con-

tinuous evolution of the permanent strain field, the
residual stresses (p”, ¢") generated by the geometric
incompatibility of permanent strains (see following sec-
tion), are progressively varying as N increases. There-
fore. the above cyclic constitutive law should be
formulated in an incremental form, as follows. The
increment of permanent axial strain due to the applica-
tion of AN stress cycles between (p',¢")(N) and
(P"+ prers ¢ + grer)(N) may be written as:

A (N) = &{(N+ AN) — £[(N)
= g{’)(N‘B —(N+ AN)’B) Spret. grer)-g(p"(N)
~+ Prefs (/r(‘v) + ‘Ircf)
(18)

In order to obtain a complete formulation of the cyc-
lic constitutive law which could be incorporated in the
general calculation procedure described in Section 3, it
is necessary to specify the evolution of the other princi-
pal strain components &5 = &;. Actually, referring more
particularly to triaxial tests, it appears that few experi-
mental data are available concerning the /ateral com-
ponents of the permanent deformations experienced by
samples of granular materials subject to repeated load
cycles. However, preliminary investigations seem to
indicate that those lateral components are varying pro-
portionally to the axial one, but with the opposite sign.
This means for instance that a sample of material, sub-
ject to a compressive cyclic test, expands laterally
& = &% = 0. whereas it undergoes an axial contraction
&/ < 0. Therefore, as a first tentative to derive a com-
plete three dimensional formulation for a cyclic con-
stitutive, we shall assume that the following relationship
between the axial and lateral permanent strain compo-
nents applies

gg:é‘g:—p*gl; (19)

where v* is a non-dimensional parameter, which could be
interpreted as a kind of Poisson’s ratio relating to the
permanent (instead of elastic) deformations.

It could be interesting to connect this parameter to
the concept of dilatancy-contractancy classically intro-
duced for describing the plastic volume change of soils.
Let

&) = trg’ = &} + 265 = (1 - 2v")e] (20)

denote the permanent volumetric strain. Since ] < 0, it
clearly appears that the material is contractant when
v' < 1/2, dilatant for v* > 1/2, while exhibiting no
volume change when v* =1/2. Even though some
experimental results [14] tend to show that v* is an
increasing function of the stress ratio ¢"'/p™', meaning



that the material is all the more dilatant (or less con-
tractant) as the slope of the stress path in the (p,q)-
plane is important, it will be assumed here, as a first
approximation, that it is a material constant.

6. Determination of the residual displacement and
stress fields

Let &”(x: N) be the permanent strain tensor accumu-
lated at point x of the traffic platform at the end of N
load cycles. The determination of the residual displace-
ment and stress fields, and notably of the residual sur-
face settlement consists in solving an elastic boundary
value problem without any traffic load. but with ”(N)
acting as a prescribed non-clastic strain field. More
precisely. denoting by §'(N) and a'(N) the residual dis-
placement and stress solutions, the following set of
equations should be satisfied.

Elastic constitutive behaviour:

d(x:N)=d(x :N=0)
+ Atr g( \)—5”(\ N)) I 1)
+ 42 (€ (x 1 N) — £(x :N))
with é’(l CN)=1/2 (led&" + Lmd&")( :N)
where a’(’\/ = 0) is the initial stress field. £ and p are the
Lamé’s constants.
Equilibrium equation:
divg’(._\' N +y=0 (22)
where y is the specific weight of the material.
Boundary condition: stress-free surface.
ad'(x=0:N).e,=0 (23)

The form of the permanent strain tensor can be spe-
cified as follows. Even though. during a load cycle, the
principal directions of the stress at any point rotate as
the load is moving, it may be deduced from obvious
symmetry considerations that the principal directions of
the permanent strain generated from such a cycling load
remain coincident with the vertical and horizontal axes.
Hence necessarily

£"(x. N) = &{(x. N)ey @ e, + €5(x. N)

X (ey®ey+e-®e:) (24)

where the principal vertical &/ and horizontal & = ¢4
Lomponcnls depend on the depth x only. Their evolu-
tion is governed by the cyclic constitutive Egs. (18) and
(19).

The residual displacement field is then searched in the
following form:

§’ =u'(x, N)e, (25)

so that, assuming that the platform is initially stress-free
(g'(x, N=0)=0), Eq. (21) becomes:

d(x :N)= /'-lr(g'(l P N)—el(x s N)) 1
n a . B (26)

+2u (g (x :N)—€lx : N))

. du”
with &(x : N) = i(.\': N)e; ® ex
dx

It thus follows from (24) that the residual stress com-
ponents are

_/.(di—a"’ 6"7) +2u (di—s';)
d dx
, .(du other 03 =0

oy = ot =i e~ - 2) + 2u(~¢))

vy 2z

dx

(27)

Substituting these expressions into the equilibrium

Eq. (22). where the specific weight is taken equal to
zero, yields:

o
d\:‘=0=>aﬁ.=0 (28)

divd’ =0 =

where the boundary condition (23) has been taken into
account. Consequently

du” 2.
_—= é‘" X
ax -~ a0+

v
e(x) = el(x)+ ;s’;(.\-) (29)
o l—v

Since it is reasonable to assume that the permanent
strains are negligible beyond a sufficient depth
H > >2a, so that the residual settlement can be taken
equal to zero at such a depth. Eq. (29) can be inte-
grated into:

x=H
u'(x:N) = —j [FP(X) +—

x=x

F”(X)] (30)

which gives in particular the expression of the residual
surface settlement:

S(N)=u'(x=0:N)

[

:| (31)



Finally substituting (29) into (27) provides the
expressions for the different residual stress components
as a function of the sole lateral permanent strain:
2002+ 37)

A42pn

E
=-3 &h(x: N) (32)
v -

q;‘.(.\': N)=ol(x: N)=—

fg( x; N)

other a‘.", =0

The corresponding residual stress invariants, calcu-
lated from (11), are:

"F
pr(x:N)= —l/3lr(g’(.\': N)) = z(]__fl,)‘c’g(".: N)

,1/2
E
¢(x: N)= |:3/2lr(§'(,\': N)) ] = ) |g”2(.\': N)|

3 r - A
=§|p (x: ;\/)|
(33)

7. Numerical implementation and results

The incremental numerical algorithm described in
general terms in Fig. 4 has been implemented for the
simplified model of traffic platform under repeated
moving load: Fig. 9. All steps of calculations are carried
out in an analytical way for each depth x independently,
the resulting residual surface settlement §(N) being cal-
culated from a classical integration procedure of the
permanent strain distributions down to a maximum
depth H/a = 50 [Eq. (31)]. The following set of data has
been selected for the simulation:

Py =300 kPa, E=100 MPa, v=0.3, v =0.6.
e =—0.02, B=0.03, n=0.588, m=23.38,

s =428 kPa

(34)

where the last five parameters correspond to the values
identified on a particular granular material (Poulmarch
gravel) by Gidel et al. [14] on the basis of repeated
triaxial loading tests.

Fig. 10 displays different curves giving the evolution
of the accumulated vertical permanent strain as the
number of load cycles is increasing up to one million. It
can be seen from this figure that for the selected set of
material and loading parameters (34), the permanent
strain is negative (vertical contraction), the amplitude of
such a contraction being, as could be expected, an
increasing function of N and a decreasing function of
the relative depth x/a. Since the coeflicient v* has
been chosen equal to 0.6, it follows from Eq. (19)
that the horizontal permanent strain is always posi-
tive, corresponding to an extension. Eq. (32) shows
that such a distribution of horizontal permanent

strains  produces compressive horizontal  residual
stresses.

V' E
ol (xi N)=ol.(x: N) = l—e’]’(_\': N)<0 (35)
) zz —v

Fig. 11(a) represents the corresponding residual stress
profiles for increasing values of N, while Fig. 11(b) gives
for different depth levels the associated residual stress
paths in the (p.g)-plane, corresponding to the pro-
gressive drift of the origin of the current stress cycles,
and their position with respect to the “ultimate line’ of
equation ¢=42.8+3.8p which has been plotted in the
same figure. It is to be noted that those paths are
represented by segments placed along the same straight
line of equation ¢ = 3p/2, their amplitude for a given
number of load cycles being a decreasing function of
depth. As a final global result of such calculations. the
non dimensional residual settlement is represented in
Fig. 12 as an increasing function of N.

Starting from the reference set of data given by (34), a
parametric study has been undertaken, in which both

P(XN=1)=€el(x,N=1)=0
pPr(X,N=1)=q"(x,N=1)=0
S'(N=1)=0

E;(1 5)

ey =—v'el

r,"(x,N+AN)=r{’(x,N)¢f5’(N g —(N+AN) B{

2

n N
! ] A/ W

100

N=N+ ANk—{Eq,(as) N (p’(x,N+AN),q’(x.N+AN))|

Eq.(31) = 6"(N)

Fig. 9. Step-by-step procedure for calculating the residual settlement of a platform under repeated traflic loading.
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coeflicients v* and v have been varied independently. in
order to assess their respective influence on the simu-
lation results. The value of the Poisson’s ratio v being
first kept constant equal to 0.3, simulations have been
carried out for different values of v* which governs the
amplitude of lateral permanent strain as a function of
axial permanent strain. Those values are ranging
between 0.2 and 0.7, which appear to be representative
of such a parameter as deduced from preliminary
experimental observations. Fig. 13(a) represents a series

of curves showing the influence of v* on the accumu-
lation of lateral permanent strains at a particular
depth x/a = 1. whereas Fig. 13(b) exhibits the influence
of the same parameter on the global residual settlement
predictions.

As it is quite apparent from the latter figure, the rate
of accumulation of residual settlement is a decreasing
function of v*, so that by way of example, the global
normalized residual settlement resulting from the appli-
cation of one million load cycles, may vary from
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2x 102 for v¥=0.7 to 4x10~2 for v¥*=0.2, thus show-
ing the decisive influence of this parameter.

A possible explanation of such a result may be found
in Eq. (31). where it is to be noted that the axial per-
manent strain F,l' is negative (contraction), while the lat-
eral component F’:' is all the more positive (extension) as

&(xla=1;N)

the value of v* is important, with a correlative reduction
of the residual settlement. More precisely, the residual
surface settlement may be rewritten from Egs. (31) and
(19) as:

i H
§(N) = (1 -2 1l—n) [—j £y(x. .«V)d.\-]
=),

Assuming that v* has a limited influence on the value
of the integral of the vertical permanent strain, so that
the term placed into brackets may be considered as an
approximately constant positive quantity, Eq. (36)
clearly demonstrates that the total residual settlement is
a lincarly decreasing function of v¥.

The same kind of observation can be made as regards
the influence of the Poisson ratio v on the results of the
simulation. Curves giving the evolution of axial and
lateral permanent strains at a particular depth level have
been drawn in Fig. 14 for different values of this ratio. It
appears that the amplitude of those strains reach their
maximum values for v=0, with a significant decrease as
it tends to 0.5. This is mainly to be attributed to the fact
that the reference stress cycles, and hence the rate of
production of permanent strains, are dependent on the
Poisson ratio, as previously shown by Fig. 6.

(36)
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Fig. 13. Influence of v* on the evolutions of the lateral permanent strain and residual settlement as a function of N.
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The influence of the value adopted for the material
Poisson ratio on the residual surface settlement is still
more pronounced, as shown by Fig. 15. It even appears
that for a value comprised between 0.4 and 0.5, the sign
of the settlement is reversed, which means that for
values of v close to 0.5 (material elastic incompressi-
bility). the residual surface displacement of the platform
corresponds to an upheaval phenomenon. Again, this
apparently surprising result could be explained from
examining Eq. (35). Indeed, since the integral term put
into brackets always remains positive, the sign of the
surface settlement is given by that of the expression
placed before, which only depends on v and v¥. It fol-
lows that the condition for which the sign of the residual
surface displacement is becoming negative (ground
upheaval), writes

1
14+ 2v*

V=

Since the Poisson ratio cannot exceed the value 0.5, it
appears that such a situation may only occur for
v = 1/2, that is for a material exhibiting permanent
strain volume dilatancy.

8. Concluding remarks and perspectives

The feasibility of the computational approach pro-
posed for predicting the residual settlement of a pave-
ment or railway platform under traffic loading, has been
demonstrated on a simplified illustrative model. The
following conclusions and perspectives as regards the
future research trends in this field. could be drawn from
this preliminary study.

(a) It should first be reminded that one of the
essential features upon which the proposed
method is based, lies in the possibility of for-
mulating a cyclic constitutive law for the different



(b)

(d)

granular materials making up the traffic plat-
form. Such a constitutive law is primarily aimed
at describing the permanent strains experienced
by the materials subject to various cyclic solici-
tations. Although a quite significant effort has
already been devoted to this question, it appears
that an extensive experimental programme is still
necessary in the forthcoming years for achieving
such a reliable formulation within a consistent
mechanical framework.

In this context, two points deserve more parti-
cular attention. Referring to repeated triaxial
loading tests, there is an urgent need to specify
the respective evolutions of both the axial and
lateral permanent strain components, which has
been temporarily taken into account through the
introduction of a constant ratio v¥. Furthermore,
there remains to be seen how it is possible to
generalize the constitutive formulation to stress
cycles with rotating principal directions from
triaxial compression tests where the principal
stress directions remain fixed. In short, one is
looking for establishing a formulation which is
somewhat reminiscent of the classical “flow rule™
introduced for modelling plastic deformations.
The procedure applied here to a simplified model
of traflic platform is meant to be implemented in
the case of more realistic configurations, namely
for the design and long term settlement predic-
tion of transportation infrastructures such as a
road pavement or a railway platform. This will
obviously require the use of more sophisticated
numerical tools, such as finite element or
boundary element codes, to be incorporated in
the general numerical scheme sketched in Fig. 4,
which has been set up in this contribution. The
adaptation of an existing software package (finite
clement computer code CESAR), aimed at per-
forming the different elastic calculations involved
at each step of the numerical procedure, is cur-
rently under way.

Finally, among the main assumptions made in
this paper, is the fact that the constituent mate-
rials behave as /inear elastic media, resulting in
decisive simplifications, such as the possibility of
performing one single calculation for computing
the reference stress cycles induced by the traffic
loading at ecach point of the structure, indepen-
dently from its residual state. Actually, it appears
that materials such as unbound granular aggre-
gates exhibit a reversible, but highly non linear
behaviour, which can be captured through
models such as that proposed by Boyce [18] on

the basis of experimental data. One of the major
improvement of the secttlement prediction
method proposed here, which could be expected
in the near future, would therefore consist in
integrating this kind of non linear constitutive
law in the different elastic calculations.
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