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A GENERAL METHOD FOR CALCULATING THE TRAFFIC LOAD-INDUCED
RESIDUAL SETTLEMENT OF A PLATFORM, BASED ON A
STRUCTURAL ANALYSIS APPROACH

M. ABDELKRIM", P. DE BuHAN and G. BONNET!)

ABSTRACT

A general computational procedure is developed in this paper for calculating the long term response, and more
specifically the evolution with time of the accumulated residual settlement of a traffic platform under the action of
repeated vehicle loading. It is based on a structural analysis approach, which incorporates as an essential feature,
the use of a cyclic constitutive law for the constituent materials, formulated on the basis of cyclic triaxial tests.
A numerical tool has been set up with the help of a finite element code, in order to simulate experimental tests
performed on reduced scale models of a railway track platform. A first comparison is being made between the
numerical simulations and the experimental results, as regards the long term evolution of the residual settlement.
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INTRODUCTION

Appropriate design and maintenance procedures for
transportation infrastructures, such as road pavements or
railway track platforms, should rely on computational
methods allowing to predict the long term performance
of this kind of structures, and notably the residual
surface settlement of the infrastructure (pavement
rutting, track geometry defects) due to the application
of repeated traffic loading. The somewhat complex
phenomena involved in this kind of geotechnical struc-
tures could be analyzed by resorting to experiments.
Specific experimental devices have for instance been set
up for testing representative sections of road pavements
subject to repeated wheel loading. More recently, in the
field of railway technology, an extensive experimental
program has been carried out on reduced scale models
simulating a representative section of ballast railway
track platform subject to cyclic loading (Guérin, 1996;
Bodin, 2001; Indraratna and Salim, 2003). Such
experimental approaches are undoubtedly useful for
obtaining a preliminary global understanding of the
problem, at least from a qualitative point of view, even
making it possible to derive empirical relationships giving
for instance the amount of residual settlement as a
function of the number of applied load cycles (up to
several millions). However, they remain inadequate for
providing really predictive design methods over a wide
range of parameters.

i)

i)

i)

The general method and related numerical tool devel-
oped in this paper are based on a “‘structural analysis’’
point of view. According to this point of view, the
response of a traffic platform, and more specifically its
residual surface settlement, may be derived as the solu-
tion of a boundary value problem, provided that the local
constitutive behaviour of the materials has been previous-
ly characterised in terms of stress-strain relationships.
More precisely, considering the particular kind of loading
involved in the analysis, it clearly appears that such
constitutive relationships will refer to the long term cyclic
behaviour of the different constituent materials, which
exhibit irreversible permanent deformations under cyclic
solicitations.

As recently pointed out by Niemunis et al. (2004) or
Wichtmann et al. (2005), two different approaches may
be considered for formulating such a cyclic constitutive
behaviour. The first one, which may be called ‘“implicit”’,
would consist in implementing a conventional step-by-
step elastoplastic procedure, requiring the discretisation
of each individual load cycle into sufficiently small incre-
ments. It is clear that such a numerical strategy, which
may prove valid for a relatively small number of cycles
(say a few tens), will quite rapidly lead to considerable
computational time and complete loss of numerical
accuracy as the number of cycles increases. The alterna-
tive “‘explicit’’ or ““N-type’’ approach advocated in the
present paper, is aimed at establishing a direct relation-
ship between the amount of permanent deformations
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exhibited by the materials subject to cyclic loading, and
the number N of applied cycles, as well as the characteris-
tics of the latter, such as its amplitude, position with
repect to the failure line, etc.

Such an explicit cyclic constitutive law is to be identi-
fied experimentally, by means of repeated load triaxial
tests performed on homogeneous specimens of materials.
Monosmith et al. (1975) for instance, or Li and Selig
(1996), have proposed such formulations relating the
accumulated permanent strain of cohesive subsoils sub-
ject to repeated loading, to the number of load cycles, as
well as some relevant characteristics of the stress cycle.
Simplified methods, making use of such formulations,
have been set up for predicting the residual response of
road pavements (Chai and Miura, 2002) or railway track
platforms (Li and Selig, 1998). Similar cyclic constitutive
laws have also been proposed for granular cohesionless
materials, such as railroad ballast (Raymond and
Williams, 1978; Alva-Hurtado, 1980), or unbound
granular materials in the context of road pavement
construction (Hornych et al., 1993; Lekarp and Dawson,
1998; Gidel et al., 2001). Quite recently, an intensive
experimental research program has been undertaken with
the objective of formulating an explicit cyclic law for a
sand subject to more or less complex cyclic stress paths
(Wichtmann et al., 2004; Niemunis et al., 2005).

The principle of a structural analysis-based methodolo-
gy has been outlined in a previous paper (Abdelkrim et
al., 2003), resulting from the incorporation of such a
cyclic constitutive law into a calculation procedure. The
whole methodology was illustrated on the simplified
configuration of a moving strip-load acting upon a
half-space, where an analytical treatment was possible.
The present paper proposes further improvements of the
initial procedure on the two following points. First, the
tensorial formulation of the cyclic constitutive law, which
makes it possible to integrate the numerical procedure
into a finite element computer code. Second, the possibil-
ity to account for the elastoplastic (and not only the
elastic) properties of the materials in the analysis.

The paper is decomposed into three main successive
parts:
< The principles of the general computational procedure

aimed at predicting the long term behaviour of a traffic

platform under repeated vehicle loads, is first recalled,
starting from a preliminary analysis of the platform
settlement as a double time-scale phenomenon (sec-

tions 2 and 3).
<O A detailed description of a cyclic constitutive law for

unbound granular materials, from its initial formula-

tion identified from radial stress cycles, to its extension
to more complex three-dimensional loading paths is

then presented (section 4).
< Finally, the application to the simulation of experimen-

tal tests performed on a reduced scale model of a

ballast track platform is carried out, first by resorting

to a simplified analytical model, then by making use of

a numerical tool specifically developed in the frame-

work of an existing finite element code (sections 5
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Fig. 1. Evolution of the global settlement of a platform subject to
repeated traffic loading, as a double time scale phenomenon

and 6).

PRELIMINARY ANALYSIS

Settlement of a Platform Infrastructure

Figure 1 represents the typical response of a road
pavement or railway structure under traffic loading,
namely the evolution of the vertical settlement J at a
particular point, as a function of time /, comprised
between NT and (N+1)7, where N is the number of
applied wheel loads due to the passage of vehicles, and T
is the period between two such successive loads. It should
be noted that there is no need to further specify the latter
quantity, since visco-elastic effects will not be considered
in the subsequent analysis, hence the only relevant
loading parameter is the number N of load cycles, and
not the actual time 7 during which they are applied. More
precisely, the following additive decomposition may be
postulated; :

o(1)=8%(t) +0"(1) (&)

where the first term denotes the rapidly fluctuating elastic
deflection which vanishes as the load is removed (that is
as the vehicle is moving far away from the point where
the settlement is measured), while the second term
represents. the residual settlement, which is slowly in-
creasing with time. It is clearly apparent from such a
figure, that the increment of residual settlement over one
period of time (say & | NT, (N+1)T']), is considerably
smaller than the maximum amplitude of the elastic
deflection over the same period:

S'((N+1)T)—&8'(NT)
«Max {8°(), tE[NT, (N+1)T1} )

so that the settlement could be viewed as a quasi-periodic
function of time. But it should also be emphasised that,
despite its slow variation, the accumulated residual settle-
ment over a very large number of load cycles (up to sever-
al millions cycles), may be of the same order, or even
greater, than the elastic deflection. '

Local Response of Materials

The same kind of analysis could be performed locally,
that is at any point x of the structure. Indeed, the stress
state at such a point may be written as the superposition
of an elastic (recoverable) component due to the applied
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Fig. 2. Stress path at any point of the structure

load and a residual stress:
ax, )=g(x, 1) +a'(x, 1) 6)

Let us then consider the path followed by such a stress
state in the space of stresses, as sketched in Fig. 2. It may
be drawn as a continuous chain of loops corresponding to
the elastic load cycle slowly drifting in the stress space as
the number N of applied load cycles increases. The
distance between two such successive loop-cycles appears
to be quite small when compared with the loop size itself.
In other terms, the increment of the residual stress per
load-cycle is negligible in comparison with the maximum
amplitude of the elastic cycle:

lg'Cx, (N+1)T)—g’(x, NT)]
«Max {llg?(t)ll, t€[NT, N+ 1)T]} )

Again, it should be kept in mind that the total amount of
residual settlement accumulated at the end of a very large
number of load-cycles may result in the same order as the
elastic stress amplitude.

Mechanical Background

The above described two time-scale evolution of the
settlement of a traffic-platform under repeated loading, is
somewhat reminiscent of the liquefaction phenomenon
of soil masses subject to seismic or wave loading (see for
instance Dormieux et al., 1993, or Pecker et al., 2001).
Indeed, as already pointed out, this evolution may be
described by a quasi-periodic function of time, in much
the same way as, in a quite different context, the curves
representing the evolution of excess pore pressure
progressively building up in a saturated granular soil
sample subject to deviatoric cyclic loading, ultimately
triggering liquefaction when the effective stress drops to
zero. It has been clearly shown that the underlying
physical explanation of such a progressive accumulation
of excess pore pressure and subsequent liquefaction, is to
be found in the soil’s volume decrease (contraction)
generated by cyclic loading (Dormieux et al., 1993).

The fundamental assumption upon which the analysis
and related design method developed in this paper are
based, is that the long term behaviour of a traffic
platform, observed at both the global (progressive
accumulation of residual settlement) and local levels
(drift of residual stresses), is to be attributed to the cyclic
behaviour of the different constituent granular materials
(ballast, gravel, cohesionless soils, etc.). More precisely,

it turns out that those materials undergo irreversible
deformations, called permanent deformations, when
subjected to repeated loadings, as shown for instance by
Alva-Hurtado (1980) and Hornych et al. (1993), who
performed repeated triaxial tests on ballast material and
pavement unbound granular materials, respectively.

SETTING UP A GENERAL CALCULATION
PROCEDURE (Abdelkrim et al., 2003)

The fundamental starting point for setting up a general
calculation procedure aimed at predicting the residual
settlement of a platform under repeated traffic loading,
lies in the formulation of a constitutive law for the
different materials subject to cyclic loading. Such a cyclic
constitutive law may be expressed in the form of a local
relationship between the rate of accumulation of
permanent strain at the N load cycle and the character-
istics of the cyclic loading path, namely:

de* _ )
_—dN (x, N)—F[N, {@g}(}g, N)} (5)
where:

O&(x, N) is the permanent strain experienced by the
material located at point x at the end of N applied
cycles;

<¢and {{g}(x, N) denotes the stress cycle to which the
material located at the same point x is submitted at the
same time /= NT.

The method developed hereafter is based on two main
assumptions:

a) The short term reversible behaviour of the different
materials is described by a linear elastic constitutive law.

b) The elastic stiffness parameters (that is the Young
modulus and Poisson ratio in the case of isotropic
materials) remain unaffected by the cyclic loading. This
means that neither damage nor stiffening is taken into
account in the analysis.

While the second assumption appears to be reasonably
well verified, at least after small number of load cycles
has been applied, the first assumption however, seems
more questionable, since experimental evidence of a
strong non linearity has been given for some granular
materials (Boyce, 1980). More importantly, as it will be
seen later on, plastic, and not only elastic properties,
should be incorporated in the materials short term
response.

As an important consequence of theses hypotheses, it
appears from the application of the superposition
principle, that the current stress cycle actually applied to
the material is obtained in the stress space from translat-
ing a so called reference stress cycle by the residual stress
(Fig. 3), which may be written as:

ref
{&g}(&N)=g’(&N)+{<§g} ) )

It is to be noted that the reference stress cycle is a func-
tion of point x only. It is simply obtained as the continu-
ous sequence of stress states generated at that same point



Fig. 3. Reference and current stress cycles at point x

as the load is moving on the platform surface, which may
be derived from the solution of a simple elastic boundary
value problem. The latter problem can be solved under
cither quasistatic or dynamic conditions, depending on
the velocity of the moving load (case of high speed trains
in railway traffic).

It appears from this preliminary analysis that the
proposed method should combine three complementary
elements:

(i) The formulation of a cyclic constitutive law in the

form of Eq. (5), which has to be derived from laboratory

tests conducted for each type of material and for various
cyclic loading conditions.

(ii) A computational tool for determining the reference

stress cycle at any point of the structure as a function of

the traffic loading characteristics.

(iii) A numerical procedure for calculating the residual

state of the structure, and more particularly the residual

settlement, from the knowledge of the accumulated
distribution of permanent strains.

Procedure (iii) amounts to solving an elastic boundary
value problem relating to the same structure, in the
absence of the traffic load, but with the permanent strain
distribution acting as a prescribed non-elastic strain field,
in exactly the same way as for thermal or plastic strains.
The existence, and subsequent evolution, of the residual
stress field is thus clearly connected with the geometrical
non-compatibility of this strain field.

Due to the rate-type or incremental formulation (5) of
the cyclic constitutive law, the implementation of such a
method requires the discretisation of the total number of
applied load cycles into a finite number of increments.
The principle of the corresponding numerical algorithm,
which is sketched in Fig. 4, may therefore be described as
follows:

O A first loading-unloading cycle is applied to the struc-
ture, taking into account the elastoplastic properties of
the materials, leading to an updated initial state (N=1)
from the initial one (N=0), with the objective to
obtain a first quasi elastic cycle upon reloading from
the updated initial state.

© The step-by-step algorithm is getting started from N=
1, where the permanent strain field and associated
residual settlement are conventionally taken equal to
zero, while the residual stress field is equal to the
updated initial stress field, which must be in equilibri-

initial state (N =0)

elastoplastic
loading | unloading
K quasi static | dynamic \,
Updated initial || elastic calculation
state (N =1) (traffic loading)

g'ENEVNFg'&,N + o]

ANxF N0 (x,N)

;%N+ANy51N+ANﬂ

Fig. 4. Step-by-step calculation procedure for determining the
lution of the residual platform settl

um with the gravity loads.

© Assuming now that the permanent strain field, along
with the residual state, are being known up to N cycles.
The local value of the permanent strain field for N+ AN
cycles is simply computed as the sum of its value at the
previous step and of the increment, given by Eq. (5), so
that:

e*(x, N+ AN)=¢g*(x, N)+ 4N
ref
xF | N; o’Qc,N)+{<§>g} @]

& The values of the residual stresses, strains and settle-
ments are then updated for N+ AN cycles from an
elastic residual calculation.

Adopting a cyclic constitutive law, such as that which
will now be presented in detail, the implementation of
such a calculation procedure has been illustrated in
Abdelkrim et al. (2003) on the example of a moving strip-
load acting on a homogeneous half-space, where all
calculations may be carried out analytically.

FORMULATION OF AN EXPLICIT CONSTITUTIVE
CYCLIC LAW :

The implementation of the above-described general
method requires the use of a cyclic constitutive law,
connecting the amount of permanent deformations
exhibited by the materials under repeated loading, to the
number of loading cycles, as well as to somebcycle’s
characteristics, such as its position and amplitude in the
stress-space. Such a model will first be presented in its
initial version, then generalized. )

Description of the Initial Model

The cyclic constitutive law we shall adopt in the present
analysis, is straightforwardly derived from that formu-
lated by Hornych et al. (1993) and more recently Gidel
et al. (2001), on the basis of triaxial tests performed on
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number of applied stress cycles (experimental results from Hornych
et al. (1993)) and (b) Influence of the stress cycle characteristics on
the amount of permanent strain accumulated between 100 and
20000 cycles (experimental results from Gidel et al. (2001))

samples of unbound granular materials (UGM), used for
instance in the construction of pavements, which were
submitted to radial stress cycles. Figure 5(a) for example
displays a series of experimental results obtained by Hor-
nych et al. (1993) giving the evolution of the permanent
axial or vertical strain &} accumulated between 100 cycles
and N cycles for different stress levels. The solid lines in
the same figure correspond to the curves drawn by the

same authors according to a power law variation of the
form:

ef(N)=A(1 - (N/100)"5) ®8)

which turned out to best fit the experimental points.

A few comments deserve to be made with regards to
such a proposed cyclic constitutive law. One of the main
issues to be raised when proposing such a formulation,
concerns the way the axial permanent deformation is
increasing as a function of the number N of cycles. For
particular triaxial loading paths conducted on ballast
materials, where the confining pressure is kept constant,
Alva-Hurtado (1980) for instance, proposes a variation
of the form @+ bLnN, while Li and Selig (1996) suggest a
power-law variation of the form aN®. Unlike the above
formulation (8), which is also adopted by Lekarp and
Dawson (1998), the latter formulas implicitly assume that
there is no stabilization of the accumulated permanent
deformations. Actually, this remains an open question
which could only be settled by performing repeated load

Fig. 6. Representation of the cyclic constitutive law proposed by Gidel
et al. (2001) in the (p, g)-plane for radial stress paths

triaxial tests up to several millions cycles, whereas in most
experiments the number of applied stress cycles does not
exceed a few hundreds of thousands. Referring to the
proposed law (8), the coefficient 4 represents the asymp-
totic value of the axial permanent deformation obtained
when N tends to infinity. In the case when the exponent
B is small with respect to unity (say less than 0.1), such an
asymptotic value may be never reached in practice.

Furthermore, performing an extensive experimental
programme on the same unbound granular materials,
Gidel et al. (2001) have investigated the dependence of the
accumulated permanent strain amplitude for a given
number of applied cycles on the stress path characteris-
tics, namely their maximum loading point (p™', ¢™") in
the (p, g)-plane (see Fig. 6), with:

p=~1/3trg and g=(3/2 5:5)'”* where s=g+pl (9)

Figure 5(b) illustrates for instance the different values of
the axial permanent strain experienced by a same material
between N=200 and 20000 cycles, as a function of the
maximum mean stress p™, as well as of the inclination
g™ /p™ of the radial stress path. As a result of this
parametric experimental study, Gidel et al. (2001) have
finally proposed the following expression;

eFf(N)=¢g[1 —(N/100)"%) f(p", g"Ne(p™, ¢ (10)
where

f(pref’ qref): (lmx/loo)n with /™ = (pref)z + (qre )

g(pref’ qre{)= p"r

S+mpref_qref (11)

&', B, n, s and m being material parameters, while all the
stress quantities are expressed in kPa.

Function f represents the influence of the stress cycle
amplitude on the amount of permanent strain, while
function g quantifies the proximity of the maximum
loading point with respect to a ‘‘reference line’’> of
equation g =s-+mp. More precisely, the contour lines of
g are straight lines intersecting the g-axis at the same
point as the “‘reference line”’, with a slope equaltom—1/
g, as shown in Fig. 6, so that the value of function g tends
to infinity as the peak stress point approaches this
reference line.

Since the interest of Gidel et al. (2001) was primarily



focused on the measurement of axial permanent defor-
mations £(N), they did not propose a specific cyclic
constitutive law expressing the evolution of /lateral
permanent deformations. However, the analysis of
available experimental data tends to suggest that the
evolution of these lateral components is similar to that of
the axial one. More precisely, it is convenient to introduce
the following non-dimensional coefficient;

w_ _E(WNN)

ef(N)

which could be interpreted as the equivalent of a

Poisson’s ratio, classically introduced for isotropic elastic

materials. Experimental results show that such a

coefficient increases with the slope of the stress path, so

that, as a first approach, a linear relationship can be
proposed in the form;

(12)

ref ref
v"(z—)=—l+xz—,x>0 (13)

ref ref
thus taking into account the fact that the lateral and axial
permanent strains are equal (i.e. v¥= —1) for an purely
isotropic cyclic loading (¢™'/p™'=0). For the Poulmarch
gravel for instance, the cyclic behaviour of which is de-
scribed in Gidel et al. (2001), the value of parameter x
was found close to 2/3.

Coefficient v* may be connected with the notions of
dilatancy and contractancy usually introduced in soil
mechanics for assessing the volume changes of soils sub-
ject to cyclic loading. Indeed, the permanent volumetric
strain is defined as:

EAN) =tr(g*)=¢f +2e =(1-2v*)ef (14)

so that, on account of the fact that &f <0, it appears
that the material is dilatant (¢¥>0) for v*>1/2 or g™/
p™'>3/(2K), while it is contractant (e¥<0) in the other
case.

Generalizations of the Initial Law

Extension to the Case of Non-radial Cyclic Paths

Although the cyclic constitutive law (8) has been identi-
fied on the particular situation of radial stress paths, it is
necessary to propose its generalisation to non-radial
stress-paths. Indeed, due to the accumulation of perma-
nent deformations in materials and the corresponding
development of residual stresses, the stress cycle doesn’t
start from the origin anymore. Furthermore, its shape
may be significantly different, as shown in Fig. 6. In the
absence of any further experimental evidence, it seems
reasonable to propose the following extension of the
cyclic constitutive law. We can first define the maximum
loading point on the current stress cycle, as that corre-
sponding to the maximum value of function g, as sketch-
ed in Fig. 6, and the amplitude of the stress cycle could be
defined as:

™ =" -p)Y+(q"=qy (5

where (p”, g") are the co-ordinates of the maximum
loading point. The initial cyclic law can thus be changed

Fig. 7. Ex
cycle

of the

ive cyclic law to a non-radial stress

into:

e(N)=et(1-N"5f(p"=p", q"—qeW@", q™) (16)

and the increment of axial permanent deformation due to
the application of AN stress cycles between N and
N+ AN is then given by

AeH(N)=¢ef(N+AN)—&e¥(N)
=e}(N"P—(N+AN) ?) f.g. an

in which functions f and g are calculated for. N, that is
neglecting the drift of the stress cycle due to the variation
of the residual stress between N and N+ AN.

This kind of extension of the initial cyclic law is for
instance readily applicable to a structure subjected to a
load having a fixed orientation, the amplitude of which
being cyclically varied between two extreme values.
Indeed, in such a situation the maximum loading point
corresponds to the application of the maximum load
intensity. This is the case of the experiments conducted
on reduced scale models of railway track platforms, such
as the BETTER test, which will be simulated later on
(section 5).

Extension to Non-triaxial Stress Paths

The constitutive cyclic law, given by Egs. (10) and (12),
being formulated for axisymmetrical triaxial solicitations
only (o,=03=07), is also necessary for proposing its
extension to the case of fully three-dimensional stréss
cycles, where the three principal stresses may be different.

Considering a radial stress cycle of the form:
g = ”grel

18)

where # is cyclically varied between 0 and 1, g™ may be
written as:

g*'=age,®e,tor'e®e+ o e; ®e; 19)
where ¢, i=1, 2, 3 are the principal stresses:
oi'<of'<aoy! (20

and o' the maximum compressive stress. Splitting g'e‘
into its deviatoric and spherical parts:
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Fig. 8. Decomposition of reference stress and permanent strain
tensors into deviatoric and isotropic parts
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and introducing the same decomposition for the perma-
nent strain tensor:
1 .
g =¢* +? &1 with ef=tr(e*) (22)
the proposed three-dimensional extension relies upon the
assumption that ¢* and g™’ are located in the same plane
passing through the axis of isotropic tensors as shown in
Fig. 8, which provides a representation of such tensors as
vectors in a six dimensional space, so that the following
decomposition can be introduced:
Srel‘
g =al+po 23)
- q
&* and a™ have therefore the same principal directions
(Fig. 9):

e*=cfe®e +efeRe +ele;®e; (24)

Coeflicients « and £ are then determined by considering
the case when both stress and permanent strain tensors
are axisymmetric:

& =efzef, o' =af =0l (25)
Indeed, in such a situation we get:
£"'=@ Ce®e-e®ea—e®e) (26)
q'=05 —agi 27
hence from (22):
§*=°‘l+%(‘2§l®§1+§2®€2+_€3®€3) (28)
Identifying the latter equation with (24) yields:
er(N; p™, q”‘)=a-%ﬁ, ef = —v*ef=a+g (29)
and finally:
a=g;;Q8T,ﬂ=—(1+v*)e? (30)

Fig. 9. Maxi and iated per strains

Substituting the values of @ and f given by Eq. (30) into
Eq. (23), provides the following tensorial expression for
the permanent deformation;

1-2v* 5"
e =l (N; p™; g™ Tl—(1+V')F (€2))

APPLICATION TO THE SIMULATION OF AN
EXPERIMENTAL TEST ON A BALLAST RAILWAY
PLATFORM

Description of the Test and Plane Strain Model

Figure 10(a) provides a simplified description of the
device used to perform a series of tests carried out by
Bodin (2001) (see also Bodin et al., 2004). The objective
of this experiment was to simulate the response of a
ballast railway track subject to the action of traffic
loading, by applying to a reduced-scale model of such a
railway platform (the dimensions of the model were
equal to one third those of the in-situ platform), a cycli-
cally varying force exerted through a pair of concrete
sleepers lying on top of the ballast layer. The entire
experimental set up was placed into a parallelepipedic
box. Referring to an orthonormal frame Ox;xx;,
Fig. 10(a) represents a cross section of the experimental
set up in the Ox;x;-plane. The grain size of the ballast
material used in the model was scaled down to one third
that of the ballast employed in-situ. The effect of the
underlying soil is reproduced by incorporating an
elastomeric layer placed at the base of the container. Its
properties were chosen such as to reproduce the stiffness
of the underlying soil. The force applied to the sleepers
could be inclined with respect to the vertical, in order to
reproduce lateral loading associated with the passage of
trains around bends in railway tracks, while sensors were
placed on each sleeper in order to measure vertical as well
as lateral displacements. Only the case of vertical loading
will be considered in the sequel. The evolution of both the
elastic deflection and the accumulated residual settlement
of the sleepers is then measured as a function of the
number of applied load cycles (up to one million).

In order to simulate such a three dimensional structure
by means of the finite element code CESAR-LCPC, the
problem is first simplified as a plane strain problem,
taking into account the fact that the sleeper is three times
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Fig. 10. (a) Schematic transverse cross section of the reduced-scale model of railway track platform (Bodin, 2001) and (b) Longitudinal plane

strain calculation model

longer along the Ox;-axis than along the Ox,-axis. This
plane strain problem is pictured in Fig. 10(b), which gives
a cross-sectional view of the reduced scale railway
platform in the Oxx,-plane. Exploiting the symmetry of
this problem with respect to the plane Oxix; containing
the sleeper, only one half of the structure is shown in this
figure, with the appropriate boundary conditions. Since
the maximum load applied to the initial structure is F=3
kN, such a loading is simulated in the plane strain
problem by applying a uniform pressure of 88 kPa,
obtained by dividing the total load F by twice the area
S of the sleeper’s upper section. A permanent additional
pressure of 10 kPa is applied in order to account for the
weight of the rail.

A Simplified Analytical Model

An extremely simplified description of the above
described test, named ‘‘two-block’> model, has been
adopted with the main objective to provide an analytical
solution in order to validate the numerical simulation to
be carried out. According to this model, only the ballast
layer of thickness H located under the sleeper is consid-
ered. A uniform pressure varying between 0 and P”
(corresponding to the sleeper’s action) is applied on top
of it over a width D. This layer is decomposed into two
rectangular blocks of respective widths D and L= AD as
shown in Fig. 11. The contact between those two blocks is
smooth, so that, taking into account the boundary
conditions, the stress and deformation states are

TS eI

%
block No.1
smooth block NO.IZ H = Q
: contact A ¥ A
FD ' L=AD
Fig. 11. The “‘two-block’’ model

homogenous in each block separately. Moreover, for the
sake of simplicity, we assume that permanent deforma-
tions are occurring in block No.1 only. The: calculation
procedure described in Fig. 4 is then applied to this two-
block model.

Application of a Preliminary Loading-Unloading Cycle
Starting at N=0 from an initial stress-free state, a first
loading cycle is applied: the pressure P is increased from 0
to the maximum value P", then brought back to zero (see
Fig. 4). The different notations used in the following
analytical developments are defined in Fig. 12.
During the elastic phase, the solution reads:

S_ Pl _»_ Yy 1
H E[(l g 1+/1]
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where d, is vertical settlement of block No. 1 and d, the
horizontal displacement at the interface between the two
adjacent blocks.

Assuming that the ballast material is governed by a
Mohr-Coulomb perfectly plastic criterion, with a cohe-
sion C and friction angle ¢, the elastic limit P¢ is calcu-
lated as follows. Since A is positive and the Poisson’s
ration v is comprised between 0 and 0.5, the principal
stresses in block No. 1 are such that:

,ofP==P, g{’=v(-P+o?) (33)

oﬁ"=—Psa$"soS"=—(lf“ (liv) (34)
and the yield condition may be written as:
(02— 01)+ (024 0y) sinp—2Ccos <0 (395)
and consequently
e e
provided that the following condition be fulfilled:
(A+1=vA)(1=sing)—2v>0 37

The elastoplastic phase is obtained when P is increased
beyond the elastic limit P¢ up to the maximum value P".
It is followed by an elastic unloading phase when P is
decreased to zero. The corresponding residual stresses in
block No. 1 produced by this first loading/unloading
cycle (N=1) are:

agi(N=1)=0,

GAN=D=(P'=P") (T )

1+sing (1+A)(1-v)

2y v
gi(N=1)=(P*— ——y[1+
i ( Pm)[l—smw V( (1+).)(1—v))]
(38
This residual state is considered as the updated initial
state for the step-by-step calculation procedure (Fig. 4).

Residual State Calculation (Fig. 12)
Let Ag*(N) be the permanent strain increment in block

Ao 0 T
—)

b
fAn;"’ l

L=AD

Fig. 13. Resid

I stress inc
ments in the ‘‘two-block”” system

t strain incre-

ts due to per

No. 1 generated by the application of AN loading cycles
between N and N+ AN:

Ag*(N)=3, A} (N)ei®e, (39)
the corresponding residual stress increments are:
k=1,2 Ag™®=g™(N+AN)—-a"™®(N) (40)
and the residual strains:
1+v v
A Al — ¥1 - A r(l)__[ 1)
gV =4g"+ = Ag" — H tr(dg™)]
1+
agW =" Ag" ~— tr(ag™)] @1

Combining all those equations together with the
different displacement and stress boundary conditions,
finally yields:

A6 A

D 1+1 (Ae7 +vAey),

467 . v * *

2% _ _ +(1+1-

% Valh RESIES) [AeF +(1+A—Av)4el] (42)

where A48, and AJ) are the residual settlement and
horizontal displacement increments, respectively, and:

E

A= 0T DA =)

[Aed +vAed], Ao @ =vAo}
E

4 ) P —

A0 =0 -

the increments (A4p’, 4¢") of the residual stress invariants
being calculated from Eq. (43).

[vAeF +(1+A—Av)Aed] (43)

Semi-Analytical Simulation

The step-by-step calculation procedure described in
Fig. 4, may be implemented in a semi-analytical way,
making use of the cyclic constitutive law developed in
section 4. The simulation of the structure behaviour is
carried out, adopting the following selection of
parameters.
& Geometry and loading:

D=0.05m, L=AD=0.35m, P"=61kPa (44)

with P"=F[2S’, where S’ is the area of the sleeper’s
lower section.

¢ Material elastic parameters
E=250MPa, v=0.3 (45)

& Cyclic constitutive parameters (Poulmarch’s gravel):
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As a result of such a simulation, Fig. 14 represents the
evolution of the different permanent strain components
in block No. 1 located beneath the applied loading
pressure, as functions of the number N of cycles. We can
observe that the axial permanent strain is negative (con-
traction), while the lateral permanent strain is positive
(extension), and the third transversal component being
slightly positive. The integration of those (non-elastic)
strains leads to the calculation of the non-dimensional
residual settlement which may be expressed in analytical
form as:
r

6,__ « _ v
w WM Ta5a

X [eF(N)+(1+A(1—v)ed(N)] “n

The curve drawn in Fig. 15 represents the evolution of
this residual settlement as a function of N. The settlement
increases rapidly in a first stage, then more slowly without
any stabilization.

A Necessary Elastoplastic Correction of the Procedure
Analytical as well as numerical simulations performed
when following the procedure displayed in Fig. 4, induce
a progressive drift of the stress cycle, due to the variation
of the residual stress state, which may lead, under certain
circumstances, to violate the material yield criterion, or
even worse, step over the ‘‘reference line’’, which is
clearly physically unrealistic, since it could lead to infinite
values of the permanent strains when the maximum
loading point is approaching this line. Such a difficulty

Fig. 16. Cyclic stress paths for the oedometric test

can be overcome by means of an elastoplastic correction
of the residual state calculation, in which the initially
elastic constitutive law should be changed into:

(48

where g7 is the material plastic strain, which is classically
calculated by means of its yield (Mohr-Coulomb)
criterion, along with the plastic flow rule:

., s 08 :
<0 gr=2_—, 0
flo=0 ¢ a0 Az

o' =Ci(g — " —¢”), C: clastic stiffness tensor

49)

where g denotes the plastic potential (g=f in the case of
an associated flow rule). )

Such a correction of the initial procedure can be illus-
trated on the example of the cyclic oedometric test, in
which a homogeneous sample of material placed in a rigid
container, is vertically loaded by a uniform pressure
varying cyclically between P~ and P*. Without going
into detailed calculations, which may be found in
Abdelkrim (2004), the most important results will de
commented.

The residual stress being of the form;
g'(N)=~P e®e,—k(N)P~(e:®e;+e3®e;)  (50)

the elastic cycle is represented in the (p, g)-plane by a
segment connecting the residual point of co-ordinates:

2 V*E* 1+2kl
M ——— + -
A N pu 3y P
* LK
q'=‘l'_£vE+(1—k.)P- 1)
with the maximum loading point
. 1+v (P*=P")
p =p 3(1—v) s
1-2v
m=—a’4 + _p-
q"=q (l—v)(P P7) (52)
where ki=k=(N=1), while &*(N) (respectively

—v*¢*(N)) is the vertical (respectively lateral) permanent
strain. ’
Assuming that ¢*<0 and v*<0, the stress cycle
represented by this segment is progressively moving
towards the straight line D associated with the material
Mohr-Coulomb yield condition, as sketched in Fig. 16. It
follows for instance that in the case when the slope of D is
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Fig. 17. Finite element modelling of the ‘‘two-block’’ structure

steeper than that of the stress cycle, the residual stress
point will first intersect D. The coordinates of the inter-
secting point are

(3—sin )P~ —4C cos ¢ 3
= :=_ ~ Pe, 3
30 +sin 0) » 4e= (P~ =p) (53)

Further calculation of the residual state, incorporating
material plastic behaviour, assumes that the stress cycle
comes to a stop. A ‘thermo’’ elastic plastic calculation is
then carried out, in which the thermal strains are replaced
by the permanent strains. It can be shown that, in such a
plastic phase, the increment of relative residual settle-
ment as a function of the increment of permanent strain
simply writes:

40
H

r
e

(54)

= —Ag*|1 -2yt L2500
1+sin @

Finite Element Simulation of the ‘““Two-Block” Model

A general numerical tool, incorporating the use of the
CESAR-LCPC software as a subroutine for performing
the different finite element calculations, has been devel-
oped for implementing the algorithm described in Fig. 4,
where both the traffic loading and residual calculations
have been extended to plasticity (Abdelkrim, 2004). In
order to get a first validation of the whole procedure, the
previously described ‘‘two-block’’ system has been
modelled as indicated in Fig. 17.

Block No. 1 of height A and width L* is discretized
into two three-node triangular elements (T3), while the
action of block No.2 is simulated through an equivalent
system made of two horizontal arrays of springs applied
to the upper and lower right nodes of the mesh. More
precisely, denoting by X the spring individual stiffness, /
its length and d the space between two springs in the
direction normal to the plane of the figure, it can be easily
proved that such a spring system behaves in the same way
as block No. 2, of height A and length L, provided the
following relation be satisfied:

wK__EH
dl 2L(1—v?)
For the selected values of the material characteristics and

structure geometry, the calculated value of the spring
stiffness is k=35.7 MN/m? for d=/=1m.

(55)

NUMERICAL SIMULATION OF THE
EXPERIMENTAL TEST: PRELIMINARY RESULTS

Our objective is now to apply the previously elaborated
computational tool to the simulation of the test described
in Fig. 10(a) and modelled as a plane strain problem
(Fig. 10(b)), more specifically trying to reproduce the
experimental curves plotting the measured residual
settlement of the sleeper as a function of the number of
load cycles. Such a calculation is carried out following the
general algorithm of Fig. 4, incorporating the material
plastic behaviour as indicated in A Necessary Elastoplas-
tic Correction of the Procedure. More precisely, assum-
ing that the residual state of the structure due to the appli-
cation of N load cycles is being known, the determination
of this residual state for N+ AN cycles is based on the
following procedure:

Oelastoplastic residual calculation aimed at integrat-
ing the increment of permanent strain field generated
by the application of AN cycles, no load being
applied to the structure;

Ostarting from the thus obtained residual state,
elastoplastic loading up to the maximum load is
carried out, followed by elastic unloading;

Othe extreme states associated with the last elastic
unloading sequence constitute the updated residual
and maximum loading states.

Since no direct characterization of the constitutive
parameters of the ballast material used in the experi-
ments, by means of triaxial tests for instance, was
available, the following indirect procedure has been
followed. As regards the determination of the ballast
elastic properties, a calibration of these parameters has
been made in order to get through the finite element
simulation the same elastic deflection as the one obtained
experimentally by Bodin (2001). The value of E has for
instance been taken equal to 50 MPa.

Likewise, the determination of the yield strength
characteristics (cohesion C and friction angle ¢) has been
based on values found in the literature, notably on the
experimental results obtained by Indraratna et al. (1998)
from large-scale triaxial tests performed on ballast
materials. Despite the fact that the intrinsic curve plotted
in the Mohr-plane by the authors displays a strong non-
linearity, which means that the friction angle is a decreas-
ing function of the mean stress, and that the material
does not resist to tensile stresses, the values finally
adopted in the simulations were C=10 kPa and ¢ =60°.

The most important parameters to be introduced in the
simulation are those concerning the cyclic behaviour of
the ballast. Due to the lack of substantial experimental
data relative to the ballast actually used in the experi-
ments, it is proposed, to adapt the constitutive formula-
tion of Gidel et al. (2001) developed for unbound granu-
lar materials, the behaviour of which is probably not very
different, at least qualitatively, from that of a ballast
material. The idea is to «calibrate some relevant
parameters of this law in order to reproduce by simula-
tion the same results, in terms of residual settlement



evolution, as the ones obtained experimentally.

The difficulty of such an identification procedure lies in
the fact that, according to the interpretation of the
experimental results made by the authors who performed
the experiments (Bodin, 2001; Bodin et al., 2004), the
residual settlement is assumed to vary almost linearly
beyond a first stage of cycles, that is:

r
v

dN

where J; is the vertical residual settlement of the sleeper,
whereas the adopted formulation will result in simulated
curves displaying the same trend as the local behaviour,
that is a variation in [1—(N/100)"?], so that the rate of
residual settlement dd;/dN will progressively decrease.
Since we are primarily interested in the evolution of the
long term residual settlement, the adjustment is made on
the second part of the experimental curves, where it is
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Fig. 18. Calibration of the cyclic law parameters & and B on the
experimental results

scale of displacements

supposed to vary linearly. Having kept all the other
parameters of the cyclic law equal to those identified on
the Poulmarch gravel (Gidel et al., 2001), the values of &
and B for which the simulated curve best fits the
experimental one, relative to a particular test (referred to
as ““Df12d”’ in Bodin (2001)), are: &5 = —0.205, B=0.03
(see Fig. 18). A constant value of v* =0.4 was also select-
ed in the calculations.

Figure 19 illustrates several aspects of the finite element
simulation which has been carried out. The structure is
discretized into 226 15-node triangular elements resulting
in a mesh of 1893 nodes. Such 15-node triangles prove to
be very accurate 2D elements making it possible to
produce high quality stress results in spite of the relatively
low number of elements. Figures 19(a) and 19(b) represent
the residual configurations of the structure after the
application of N=100 and 100000 load cycles, respec-
tively (the scale of residual displacements has been
magnified for clarity purposes). These pictures clearly
show that, as could be expected, the maximum residual
settlement (which is denoted by J7) is obtained in the cen-
tral part of the structure where the loading is applied,
whereas a significant upheaval seems to appear in the
vicinity of the lateral boundaries. The residual stress field
corresponding to the configuration of Fig. 19(b) is shown
in Fig. 19(c), where the principal stresses are reported
along with the principal directions of the stress tensor.
This stress field corresponds to the sum of the stresses
induced by the non-elastic deformations and of the
permarnient stresses due to the weight of the rail. The
maximum stress values are obtained in the vicinity of the
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Fig. 19. Residual configuration of the railway track model due to the application of (a) 100 cyles and (b) 100000 cycles: (c) Residual stress distribu-
tion associated with the latter configuration and (d) horizontal residual stress profile in the ballast layer underneath the sleeper
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sleeper’s right hand corner, as well as in the lower central
part of the ballast layer, just above the elastomeric layer.
As it is clearly apparent from Fig. 19(d), which displays
the profile of the horizontal stress component along the
vertical segment connecting the sleeper to the elastomeric
layer, such residual stresses are predominantly compres-
sive, up to several hundreds of kPa.

As can be seen in Fig. 20, which displays the finite
element simulation of the ‘‘two-block’’ model, together
with that obtained through the semi-analytical procedure
described in section 5, both simulations being carried out
with the previously calibrated parameters, the corre-
sponding curves are almost coincident, thereby providing
a validation of the numerical tool. Furthermore, com-
parison of curves displayed in Figs. 18 and 20 show that,
in spite of its extreme simplicity, the two-block model
produces a rough estimate for the non-dimensional
residual settlement, namely 0.0018, instead of 0.003 for 1
million applied load cycles.

The influence of the subgrade soil stiffness, represented
by the elastomeric layer, on the evolution of the residual
settlement is represented in Fig. 21. It clearly appears that
increasing the elastomer Young’s modulus results in a

reduction of the residual settlement, although such an’

influence is not so important, since the relative residual
settlement obtained for 1 million applied load cycles is
about 0.003 for a 50 MPa elastomer, instead of 0.004 for
a much softer elastomer (1.5 MPa).

Retaining the previously identified set of constitutive
parameters, a further comparison has been made between
the results of the numerical simulation and other ex-
perimental tests performed by Bodin (2001). The com-
parison was more specifically focused on the slope of the
different curves in their second stage of evolution, which
represents the rate of residual settlement per cycle dd;/
dN, expressed in mm per cycle.

The results of this comparison are reported in Fig. 22,
in the form of points representing the values of the
calculated or measured rates of settlement as functions of
the maximum applied vertical load. Two groups of points
corresponding to two different series of tests have been
plotted. In the first group of three tests, which includes
the calibration test (superposed simulated and experimen-
tal points located in the lower left corner of the figure),
the maximum applied load was about 2-3 kN, while the
second group of points corresponds to the application of
a significantly higher load level (7-12 kN).
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load: comparison between simulated and experi I results

Such a comparison suggests the following comments.

< In the first series of tests, one may observe a considera-
ble scattering of experimental points, which is not the
case of numerical simulations, even though a certain
numerical instability appears, which may probably be
attributed to a problem of convergence of elastoplastic
calculations, due to the very high friction angle
adopted for the ballast material.

< The second group of points, located on the right-hand
side of the graphics, confirms the experimental trends
according to which the rate of residual settlement is an
increasing function of the applied load, although the
numerical predictions seem to significantly underesti-
mate the experimental results.

CONCLUDING REMARKS

This contribution has presented a general procedure,
based on structural analysis, for predicting the long term
settlement of a railway platform or road pavement sub-
ject to traffic loading. The feasibility of such a method
has been shown both on illustrative analytical examples
and on more realistic configurations, such as in the simu-
lation of a reduced scale experimental bench test, even
though in the latter case it does not represent a complete
validation of the method, since it was necessary to
calibrate some of the relevant parameters of the cyclic
constitutive law used in the numerical simulation. In
order to improve its predictability, this procedure and



related computational tool, remain to be upgraded on
several points.

[t should first be extended to the treatment of really
three dimensional problems, which was the case of the
experiments conducted on reduced or full scale models,
such as the experiments which have been simulated in the
paper by resorting to a simplified plane strain description.
This would require the use of adequate finite element or
boundary element computer codes.

The whole procedure has been carried out within the
framework of quasi-static evolutions, that is neglecting
all dynamic effects. While this certainly proves a valid
assumption when the cyclic loading is applied at a
relatively low frequency, such dynamic effects should be
taken into account for higher frequencies, which may be
associated for instance in the situation of very high speed
trains. Having neglected such dynamic effects might be
one important factor which could explain the observed
discrepancy between numerical (quasi-static) simulations
and experimental results in which the loading frequency
was relatively high (1 to 10 Hz). Those dynamic effects
are likely to induce significant modifications of the stress
cycles generated by the moving load, both in terms of
amplitude and position in the stress space, which could
be incorporated in the general procedure described in
Fig. 4 by performing elastodynamic, instead of
elastostatic calculations for determining, the traffic load-
induced solicitations in the platform, while the other
components of this procedure (cyclic constitutive law,
residual calculation) would remain unchanged.

More importantly, since one of the key ingredients of
the computational procedure, is the formulation of a
cyclic constitutive law relating the production of perma-
nent strains in the materials to the characteristics of the
stress cycles, a quite significant effort should be devoted
in the future to the achievement of such a reliable
formulation on the basis of an extensive experimental
program, as it has been done for instance by Wichtmann
et al. (2004) in the case of sands. One of the important
elements of such a cyclic constitutive formulation would
be its ability to account for cyclic loadings where the
principal directions of the stress rotate, which is obvious-
ly a characteristic feature of moving loads (see the simpli-
fied model treated in Abdelkrim et al., 2003). As regards
more specifically the cyclic behaviour of ballast materials,
such experiments should involve the use of large triaxial
test facilities, in order to avoid possible scale effects due
to the typical grain size of this kind of granular materials.
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