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Analyses of Heated Concrete Spalling due to Restrained
Thermal Dilation: Application to the “Chunnel” Fire

Y. Msaad' and G. Bonnet®

Abstract: Two spalling mechanisms are generally quoted in the literature. The first one is due to pore pressure buildup. The second one,
which is analyzed in this paper, is generated by restrained thermal dilation. We seek to model the channel tunnel fire by a thermochemo-
plastic constitutive model. A simplified analytical approach allows us to express mechanical variables as stresses and strains near the
heated surface (the concrete wall). This study leads to introducing a “plastification™ temperature and to deduce a plastification depth that
can be useful for determining the spalling localization. A comparison between different cases (with and without chemical softening or
decohesion) shows that thermal spalling is due to chemical decohesion (strength degradation) and not to chemical softening (rigidity

reduction).

CE Database subject headings: Concrete: Thermal factors: Spalling.

Introduction

The material and structural behavior of concrete at high tempera-
ture is well described in the literature (Anderberg 1997; Bazant
1997). The channel tunnel fire revealed, however, the lack of
understanding of the mechanisms that lead to concrete member
spalling, which beside logistic questions concerning safety, gen-
erates economic losses at the reparation moment.

This study seeks to evaluate the effects of thermal softening
E and thermal decohesion f,. (due to dehydration) upon the com-
pressive stresses generated by the restrained thermal dilation. In a
first step, the principle of the dehydration effects on the concrete
mechanical properties is presented. Next, equations for the ther-
moelastoplastic model (Ulm et al. 1999b) are given. Then, a
model application for the “Chunnel™ fire is present, based on an
analytical approach using some simplifications that are justified
and validated later on by the numerical complete model (without
approximations). The simplified mechanical model obtained is
very advantageous since its properties are related to a purely
thermal problem. Finally, the ability of the simplified model to
forecast the spalling formation is discussed while examining the
combination of the two main phenomena: thermal softening and
thermal decohesion.

'Professor, Institut Navier, Univ. de Marne la Vallée, 6, 8 ave. Blaise
Pascal, Marne-la-Vallée, 77455 France (corresponding author). E-mail:
y.msaad @cerib.com

’Institut Navier, Univ. de Marne la Vallée, 5, blvd. Descartes,
Marne-la-Vallée, 77455 Cedex 2, France. E-mail: guy.bonnet@
univ-mlv.fr

Note. Associate Editor: Christian Hellmich. Discussion open until
March 1, 2007. Separate discussions must be submitted for individual
papers. To extend the closing date by one month, a written request must
be filed with the ASCE Managing Editor. The manuscript for this paper
was submitted for review and possible publication on December 30,
2004; approved on October 24, 2005. This paper is part of the Journal of
Engineering Mechanics, Vol. 132, No. 10, October 1, 2006. ©ASCE,
ISSN 0733-9399/2006/10-1124-1132/$25.00.

Chemoplastic Model

In this model, two chemical dehydration effects are considered.

Chemical Softening

Young’s modulus of degradation is due to the decomposition
of the cement connections. It can be supposed that rigidity is
proportional to the remaining mass of hydrates. The proportion-
ality has been found to constitute an intrinsic material property of
concrete. Thus, the dehydration degree &=m/myo=relative ratio
of rigidity after heating

E=¢E, (1)
This dehydration degree describes a chemical reaction that has a

chemical kinetic with a characteristic time 7 and an asymptotic
limit £.(7) (Fasseu 1997), leading to

. 1
E=-—[£-£&4(D] (2)
Te

Chemical Decohesion

The dehydration also has an influence on the elastic limit strength
that is again supposed to be proportional to the dehydration
degree. Thus, the isotropic elastic limit criterion of William—
Warnke (William and Warnke 1975) takes into account this
chemical decohesion as follows:

flo.§) =1+3(0)(o - pt) (3)
where the three invariants are T=\1/2s:s, o=(1/3) tr(a),
and cos(®) =(20}" - 0¥ —a%)/\127; and where s=stress deviator;
po=cohesion pressure before dehydration; and 3(®)=friction
angle, which depends on Lode angle ®, defined above as follows:

u+v

3(0) = W

where



u=28.(5> - 8%)cos(h)

v =528, - 8.)V4(3% - 82)cos?(6) + 55, — 45,5,

w = 4(3% - 82)cos(6) + (5, - 28,)°

Finally, the friction coefficients 8. and &, and the cohesion
pressure py are related to the standard properties (ultimate com-
pressive strength f,., ultimate tensile strength f,, and ultimate
bicompressive strength f.) by

395, 35, 3%,

f.=F P fi=—F P Soc="T P
V3-o, O T \Bas, T V3-8,

c

Comparison between Thermal and Chemical
Characteristic Times

Neglecting both elastic deformation latent heat and energy dissi-
pation, the heat balance equation reads (in an unidirectional case
with Fourier’s law)

CT-kVT=0 4)

where C and k=volumic heat capacity and conductivity of
concrete. The characteristic time of heat conduction [described
in Eq. (4)] is then related to the characteristic length L by
Tr=(kL?)/C.

The characteristic time T¢ of dehydration [described in Eq. (2)]
can be roughly estimated by considering the microdiffusion be-
tween the micropores and the capillary pores, which occurs faster
when temperature is higher [because of the activation Arrhenius
term exp(E,/RT)] and then 7(T) swg(To) ~30s.

Neglecting 7¢ with respect to 77 is possible when
L> V’1§(T0)K/C%5 mm, which is always verified. Then, it can be
supposed that Tg<Tr.

Thus, the dehydration degree & given in Eq. (2) can be sup-
posed equal to its asymptotic value [§=§eq(T) at each time]. Thus,
and according to Eq. (1), Young's modulus E(§) reads E(T).

Thermoelastoplastic Deformation

The total strain is the sum of elastic, plastic, and thermal strains

glot= em+ sel + epl (5)

Thermal Strain

The thermal dilation is characterized by a thermal strain tensor a.
It is assumed in the following that the medium is isotropic so that
a=al and then

de" = adT| (6)

Elastic Strain
The elastic strain tensor is related to the stress tensor via the
four-order elastic stiffness tensor C as follows:

da = Cdse"!

where C=£C, is assumed to depend on the dehydration degree.
This assumption is a generalized form of the result in Eq. (1).

Substratum

Fig. 1. Geometry of the channel tunnel

In the isotropic case, the elastic stiffness tensor of the last
equation reads

N A1
é=Kmie1+26n|i-5101]
and then

2
3

do = [K(T) - G(T)] tr(de) + 2G(T)de® (7)

where  K(T)=[E(T)/3(1-2v)]=bulk  modulus and G(T)
=[E(T)/2(1+v)]=shear modulus, assuming that the Poisson’s
ratio is constant.

Plastic Strain and Flow Rule

We suppose that the plasticity rule is associated. The plastic flow
is, therefore, given by the relation

daf

de? = d\—
do

(®)
where d\=plastic multiplier, which is null only when the evolu-
tion is purely elastic (f<0 or f<0) and positive when there is a
plastic flow (f=£=0).

“Chunnel” Fire

In this section, the thermochemomechanical behavior of the
cylindrical channel tunnel heated during a fire (Ulm et al. 1999a)
will be studied.

Geometry

Fig. 1 presents the geometry of the channel tunnel. Due to the
axisymmeltric geomeltry, the geometric problem variable reduces
to the radius r from the tunnel center. The substratum external
radius is large enough so that the boundary conditions on extrados
do not influence the thermal and mechanical fields on intrados
(concrete wall).

This axisymmetric geometry allows us to write the following
helpful relations:

8r9=£r:=86:=£::=0 (9)



Table 1. Thermal and Mechanical Properties Used in Numerical
Analysis

Property Concrete Chalk
Elastic Young’s modulus E, 42 GPa 4 GPa
Poisson’s ratio v 0.2 0.25
Ultimate compressive 80 MPa —
strength f,

Ultimate tensile strength f,

Ultimate biaxial compressive
strength fy,

6.4 MPa (=0.08-£.) _
88 MPa (=1.1-f,) -

Thermal dilation coefficient « 1075 K-! 10 K-!
Volumic heat capacity C 25%10°Tm™' K™ 2x10° Jm™'K!
Conductivity k 222Im' K's7! 1.94Tm ' K s!
Convective heat exchange & 4.16 Jm2K™'s™! —

Note: Yield criterion is completely defined by f., f;, and f.

du u

€,=—, Ep=— 10
= Ee=T (10)
and then
gy
g,=r——+¢& 11
=+ egg ()

The balance equation div(e)=0 simply reads in this case

do,,
Tgg=r——+0 12
w=r_ " +o, (12)

The heat conduction equation reads

ar 1 a( aT)
C———K—(r—)=0 (13)
at r ar\ dr)

Material Properties

The tunnel concrete wall is modeled in thermochemoplasticity
and the chalk substratum is treated in thermoelasticity. The mate-
rial properties of the different constituents are given in Table 1.

Boundary Conditions

For this unidimensional model, two boundary conditions are

needed to be fixed at r=ryy and r=rey.

+ Convection at intrados: g=-N(@T/dr)=h [T-Tu (1] at
r=riy.  Where  Typp(1)=To+1,280 [1-0.325 exp(-0.1671)
—0.675 exp(-2.5¢t)]=temperature increase given by the
Highway Capacity Manual curve (typical for tunnels) and
where r=time in minutes;

* Adiabatic exchange at extrados: g=0 at r=rey:

¢ Intrados free of any radial stress: o,,=0 at r=ry,:

¢ Restrained radial displacement on extrados: u,=0 at r=rey
[£49=0 according to Eq. (10)].

Thermoelastic Phase
This phase is characterized by de? =0, so that Eq. (7) reads, using
Eq. (5)

do = Cde® = C(de — de™)

In our cylindrical case, it reads according to Egs. (6) and (9)

(4G 2G
do,, = ( T+K)de,,+ (K— T)deee - 3KadT

o

G

(4G
dogg= (T + K)dsee + (K— Y )ds,,— 3KadT

2G
do_.= (K i )(de,, +degy) — 3KadT

We are especially interested in studying concrete layer behavior.
Thus, a dimensionless radius—thickness ratio p=(r—Rg)/e is
introduced where Ry and e=internal radius and the thickness
of the concrete wall. This dimensionless number allows us to
neglect g9 with respect to g,, and o, with respect to ogg. Indeed,
according to Eq. (11), |egg/e,,|=|ego/[ee9+(Ro/ e+p)degg/ dp]|
<1 because Ry/e>>>1.

In the same way, and according to Eq. (12), |o,,/0g
=lo, /[0, +(Ry/e+p)do, [dp]|<< 1.

Then, in the following, it can be supposed that

g,~0 and gg=0 (14)

This approximation is foreseeable because when Ry/e>>1, the
problem tends locally toward a Cartesian geometry (in which
o,.,=0and g,=0).

As a consequence of approximation (14), the radial strain
variation can be expressed analytically as

9K I +v
de, =———adT = ——adT
4G +3K I-v

and then axial and orthoradial stress variations read

18GK

Ey
3G+ k4T T o k(DT

dU:: = dUOO =~

The two last differential equations can be integrated on
temperature

1
e”=ﬁa(T—To) (15)
l-v
E, (7
0. Oy — l—ot §eq(T)dT (16)
-v g

However, the last equalities (15) and (16) are valid if there is no
plastic flow:
¢ flo.£)<0: elastic domain;
¢ f=0and df<0: elastic unloading.

In the following, the conditions to reach the plastic criterion
are studied. In our case, the stress tensor can be replaced by a
vector

(0,,.040.0..) =(0,0...0..)

Then, the invariants of William—Warnke criterion (3) are

0.'..'. 20:2
T=-"", o=
V3 3
and
cos(@)=1=253(0)=35(0)=3,
Then



1 ~
df == (3 - 28 )da..~ Bpde

[(\ 3-20) 3 k(D) - a,po%“ dT=0

z(l
which means that there is no elastic unloading when temperature
increases. Thus, the only case in the elastic phase is when the
loading stays in the elastic domain (f<0), which is verified when

3p08,
o =—0. < =&q(D) (17)
ol === 25, + N

The last result is foreseeable because [3pd,/(—28,+\3)Jéqq(T)
=foc€eq(T), Which is the bicompressive elastic limit after dehydra-
tion. The stresses are, indeed, bicompressive since they are
concentrated in the plane (6,z).

The combination of equality (16) and inequality (17) on o..
allows us to deduce a critical temperature of plastification T} at
which a plastic flow starts. T, verifies

(T)drszcgeq(rpl) (l 8)

& varies linearly on temperature (for 7<773 K) following the
function

For this curve of dehydration, the resolution of Eq. (18) gives the
“plastification” temperature 7~ 440 K and then the dehydration
degree §p1=§eq(Tp,) =~(.75.

Plastic Phase

Now, it is supposed that plastification temperature 7, is exceeded.
There is a plastic flow and according to Eq. (8)
) a d,
de,"l:d)\—f. dely L aa de?l:dx,—f
ﬂU,, 3‘709 - do

where using flow rule (3), for (i=r.0.z)

af s |
;,',' = ; + (0’ - pog)P,- + ;5(@)
with
dd
= — o — o), + apr?
; d@"\l" 3[(2(7 o - of)s; +aa’]

where of', 8" and of'=principal stresses: and a;=—4 if o;;=0{"
and a;=2 otherwise.
Approximation (14) is used again: ggg=0 and o,,~0, and so
O™~ 0
Knowing that ogg~0c..<0=0,, it can be concluded that
o,,=ol" and then a,=—4 and ag=a_=2. Finally

and

A first conclusion is

deby = de”! (19)
and
13,
B3
deP = - — el =~ 27 47def), (20)
LI
243

It is clear then that the most important plastic strain is done in the
radial direction.

In our cylindrical case, thermoelastic state equation (7), taking
into account plastic strain rate, reads

do, = (£+K)(de —de?) + (K——)(dSee defy)

[ 2G
- (K—T)de{.’i—sKadT

4G 2G
dogg= ( ot K)(dese —dely) + ( K- T)(ds" —de)
! 2G
- (K— T)dsp - 3KadT

4G 2G
do..=— ( -+ K)depl (K - )(ds,,—de,p:+d890 —deby)

- 3KadT

Still using approximations (14), g49=0, o,,~0 leading then
0 ogg~0.. and ehy~e" allows us to establish the following
relation:

18GK
do_.= de +ad 21
T n @1
Because the plastification temperature Ty is exceeded, it can be
affirmed according to Eq. (17) that at each time (in the plasticized
zone)

3I:-'Oar
S =~ =-— 22
0= 3o 5D =~ kD (22)
It can be deduced now from Egs. (19), (21), and (22) that
4G +3K (1 =v)fyedE
defl =deP = adlT=——-2—>4_
by =del. = 1SCK “orw foid€eq—adT E, &y adT

(23)

and then

dej, = de,, - def) = [(6K - 4G)debl + 9KadT]

T 4G +3K

_ Wi dEy

Ey &y

The first differential equality (23) can be integrated between the

plastification temperature Ty [es'e(Tpl)=e§’!(Tp|)=0] and the actual
temperature 7.

+adT (24)
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Fig. 2. Temperature of the heated surface (intrados) T, is reached after 1 X 10° s

1-v )
ofy= et = L2 log| 2a(? @ |-ar-1) @3
EO \ gpl /

The radial plastic strain (which is more important than the ortho-
radial or axial plastic strain) can be then expressed from Eq. (19)

1.8
373
Mo\ £hl
rr _L_ 5’ 66
2v3 3
1.8
373 |-
N [( v)fbcmg(gm(n)_m(r_rpl)]
I R
2y3 3

(26)

The integration of the second differential equation (24) between
T, and T needs to know the elastic radial strain when the plasti-
fication temperature Ty is reached. The value sf',(Tp,) is the value
of sjl when plasticity is just beginning and is, therefore, given

by the expression of elastic phase (15)

l+v
ef':(Tpl) =g, (Ty) = :u(Tpl -Ty)

and then

g 1+v 2vf, £.,(T)
el = : _va(Tpl— Ty) + E_UM Iog( ﬁa_) +alT-Ty)

(27)

Finally, the total radial strain s,,=sf',+sf: can be deduced from
Eqs. (26) and (27). The elastic orthoradial and axial strains can
also be expressed

oo =85 =~ oy =l

from Eq. (25).

* In Fig. 2 is presented the temperature of a heated surface. It
can be noticed that the plastification temperature is reached
after 1X10%s. At the same moment, the radial plastic flow
starts (Fig. 3) and the variation of the axial compressive stress
changes (Fig. 4). Fig. 5 also shows that the slope of the total
radial strain changes due to the plastic flow.

« It can also be noticed in Figs. 3-5 that there is good agreement
between the analytical curves [simplified approach using ap-
proximation (14)] and the numerical ones (complete model
without any approximation). The approximations introduced
before (o, ~0 and g¢4=0) are then validated.

Explanation of Thermomechanical Spalling

In the following, the results of the previous section are used to
explain under which conditions thermomechanical spalling can
oceur.

General Case Taking Account of Decohesion
and Softening

Layers of concrete having a temperature greater than T are in a
plastification process. The remaining layers are still in an elastic
phase. Let us note the ry radius where T=T,,. For r>ry, itis the
elastic domain: T< Tp,. From Eq. (16), the axial stress can be
expressed

T
0= [E(1 -v)]a f £ (DT
To

and then



EPSrp(-) plastic radial strain at heated surface
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Fig. 3. Plastic radial strain at heated surface: existence of two phases; the plastic phase starts when T} is reached (Fig. 2)

do,, do T E,

do.. do..dT 0o T
dog JogdT_ . Hudl
ar dT ar dT ar

aT
=— — >0
ar dT or 1- va§eq(T) ar

For r<tr,. it is the plastic domain: 7>T,. From Eq. (22), It has been just proven that o, (and also agq) changes of variation

cr;.=—§eq(7‘)f,,c and then at r=ry. There is a plug of axial and orthoradial stresses at

SIGMAZZ (Pa) axial stress at heated surface
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Fig. 4. Compressive axial stress at heated surface: variation changes when 7= Tpl
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Fig. 5. Total radial strain at heated surface: slope changes when 7=Tp,

r=ry (Fig. 6) and this change of slope may explain spalling by
failure in the plane (6,z).

Thus, the problem of mechanical spalling is brought back to
study the propagation of the plasticized zone by the mean of ry,
where the temperature reaches T, Forecasting the spalling can
be, therefore, reduced to a purely thermal problem.

SIGMAZZ(Pa)

1.13e+006

What follows is a study of the different parts of the constitu-
tive model to examine which term is necessary to forecast the
spalling.

Neglecting Thermal Softening
* E(T)=E, instead of expression (1).

axial stress after 1h30

=7.08e+006—

=1.53e+007—

~2.35e+007—
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=5.63e+007—

=6.45¢+007

=7.27¢+007 T

T T
0.000 0.089 0.177

T T T X{my
0.266 0355 0443

Fig. 6. Axial stress after 1 h 30 min of heating: existence of a stress “plug” and a change of slope at the surface r=ry, which may explain failure

at this surface



* During the elastic phase, the expression of radial strain is still
e, =[(1+v)/(1-v)]a(T-T,). However, expression (16) of
axial stress reads

E
0.~ Ogy~ — l—oa(T— Ty) (28)
-v
Eq. (18) for determining the plastic temperature changes into
E
T2 T =To) = fockeo(Ty)

+ During the plastic phase, o,,=~fy£eq(T) is still valid but the
different strains change into
8819=€p| (] _v)fhc

[geq(T) - Epl] -a(T- Tpl)

1%
e
\“. -
R &
r 1 8, (L]
BRI
2373

1 2
8:: = 1 = va(TpI - TO) + Vfbc[geq(T) - gpl] + Q(T— Tpl)
-v E,

In this case, the spalling explanation is always valid, because

do./dr is still positive for r<ry according to Eq. (22) and

negative when r>ry according to Eq. (28).

It can be noticed that the plastification temperature is lower in
this case (T}, =425 K instead of 440 K). This means that the plas-
tification radius ry is higher.

Neglecting Thermal Decohesion

In this section, plasticity criterion (3) is independent of the dehy-
dration degree & [f(o) instead of f(a,£)]: the strength diminution
caused by dehydration is neglected.

For the elastic phase, the expressions of strains and stresses are
unchanged. However, the plastification temperature changes and
is given while solving
T,

E pl
| Ey(TAT = fiy
I=v Jg

During the plastic phase, the axial stress is constant
0= fic (29)
Then, the different strains change into

= ell=-alT-T,)

13, 13,
=+ =+
3 3 3 3
| V3 1 \?
e T T
-—Fr+= -+
23 3 23 3
l+v
ef: = :ot(Tp1 -To) +a(T-T,)

The spalling explanation is not valid in this case because do../dr
is null for r<ry according to Eq. (29). There is no plug of axial
and orthoradial stresses able to explain a failure in the plane

(6,z). It means that taking into account the thermal decohesion is
necessary to be able to forecast the spalling.

Neglecting Both Thermal Decohesion and Softening

Neglecting both thermal decohesion and softening means that the
chemomechanical couplings are neglected [f(g),E(T)=Ey]. The
stress expressions are obtained directly from the last case [by
simply replacing &(7) by 1]. The plastic temperature changes
and verifies

E
_OQ(T

[T ) = fue
Like the last case, the compressive stress is constant in the plas-
ticized zone near the heated surface. The spalling cannot be ex-
plained in this case. There is rather a crushing failure mode at the
surface.

Conclusion

In this paper, the approximative expressions of compressive
stresses and strains (elastic, plastic, and total) have been estab-
lished in both elastic and plastic phases. The existence of a plas-
tification temperature has also been obtained. Then, the spalling
phenomenon is related to a “peak™ appearing on the stresses at a
certain depth ry; where the plastification temperature is attained.
The existence of this peak was studied in different cases (with or
without thermal softening and decohesion) to conclude that it is
the thermal decohesion which is necessary to forecast the thermal
spalling. The plastification temperature, obtained just while treat-
ing a simple problem of thermal conduction, is useful in identi-
fying the plasticized zone where a spalling process is probable.

Notation

The following symbols are used in this paper:
= volumic heat capacity (J K~' m=);
= Young modulus (Pa);

thickness (m);

bicompressive elastic limit (Pa);
compressive elastic limit (Pa);
shear modulus (Pa):

bulk modulus (Pa):

internal radius (m); and
temperature (K).

thermal dilation coefficient (K™');
= dehydration degree:

conductivity (Js™''m™' K);
Poisson ratio;

cohesion pressure (Pa);

stress (Pa):

characteristic time (s); and

= strain.

[

I

Il

qu'oesz-ﬂg’k:Q?"?f\ e
I

Superscripts

el = elastic:

pl plastic;

pr = principal;
th thermal; and
tot = total.



Subscripts
0 = initial;
6 = orthoradial;
eq = equilibrium;
h = hydrates;
r = radial; and
z = axial.
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