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Orthotropic elastic media having a closed form expression of the Green tensor

G. Bonnet *
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ABSTRACT

Obtaining the Green tensor for the most general orthotropic medium is not generally possible in a closed
form because the solution requires the roots of a sextic, often known as Stroh eigenvalues. The paper
gives some conditions under which the sextic can be solved in a closed form for any direction within
the space. It enables the construction of classes of orthotropic materials for which the Green tensor
can be computed in a closed form (closed-form orthotropic or CFO) for any direction within the space.
The cases of transversely isotropic, tetragonal and cubic materials are studied as special cases. The com-
parison between the exact Green function and approximate Green functions obtained from the nearest
CFO material (in the sense of four different distances) is finally performed in the case of five examples

of elasticity tensors.
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1. Introduction

The Green tensor for elasticity in an infinite space is defined by
the displacement field at any point within a linear elastic medium
induced by a point force in any direction. It is the basis of many
applications either to obtain the stress field due to defects (Mura,
1987) or to solve elasticity problems by integral equations meth-
ods. When the material is not isotropic, a fully explicit analytical
solution for the Green function can be obtained for 2D problems.
In the case of 3D problems a fully explicit expression of the Green
tensor has been obtained only in some specific situations:

for any direction within a transversely isotropic material (Kro-
ner, 1953; Lejcek, 1969; Willis, 1969; Dahan and Predeleanu,
1980; Pan and Chou, 1976; Nakamura and Tanuma, 1997);

for materials whose elastic tensors are obtained by linear trans-
formation of the axes from transversely isotropic materials
(Pouya and Zaoui, 2006; Pouya, 2007a,b) for materials character-
ized by the ellipsoidal anisotropy of De Saint Venant (1863);
for orthotropic or anisotropic materials when the direction
between the point where the displacement is computed and
the point where the force is applied is parallel or perpendicular
to some planes of symmetry (Ting and Lee, 1997; Lee, 2002).

Series solutions can also be obtained in other cases (Mura and
Kinoshita, 1971; Mura, 1987; Chang and Chang, 1995; Kuznetsov,
1996; Faux and Pearson, 2000), but such solutions lead to compu-
tation times which could limit the possibility of applications.

* Tel: +33 160 95 72 20; fax: +33 1 60 95 77 99.
E-mail address: bonnet@univ-mlv.fr

Approximate solutions can also be obtained for example in the case
of cubic crystals (Dederichs and Leibfried, 1969).

For the general case of anisotropy, the solution can be put into
the form of a scalar integral of a rational fraction (Lifshitz and Ro-
zenzweig, 1947; Mura, 1987). Such a form of solution can be used
for numerical purposes within the boundary element method by
computing numerically the integral (Condat and Kirchner, 1987;
Wang, 1997; Sales and Gray, 1998; Tonon et al., 2001; Lee,
2003). It needs, however, further developments and it induces a
priori longer computation times than a closed form solution.

The main problem for obtaining a closed form of the Green ten-
sor is that the denominator of the rational fraction which appears
in the integral form of that tensor is a sixth order polynomial,
whose roots cannot be obtained in a closed-form (Head, 1979) in
the most general case. The purpose of the paper is to search elas-
ticity tensors which display such a property and to show that in
the case of some specific orthotropic material, the roots of the sixth
order polynomial can be obtained for any direction of the space.
The Green tensor can then be computed in a closed form for any
direction of the space.

2. The Green tensor for an anisotropic material

The component Gim(X —y) of the Green tensor of an elastic
medium is defined as the displacement component in the x;-direc-
tion at point x when a unit body force in the x,,-direction is applied
at point y in an infinitely extended media. These components com-
ply to the equilibrium equations:
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where 6(x —y) is the Dirac delta function, i is the Kronecker delta
and G, are the elastic constants.

A classical derivation (Lifshitz and Rozenzweig, 1947; Mura,
1987) leads to the expression of the Green tensor G under the form
of a contour integral:

_ 1 -1
G = g [ 00as(00 @)

where r is the distance between point force and observation point.
The integrand is the inverse of the second order acoustic tensor
Q, whose components are the following:

Qi (K) = Cijskiks (3)

The contour integral must be computed along the circle C of unit
radius centered at the origin which is in the plane (P) perpendicular
to the direction x —y.

If y is chosen at the origin, the cartesian coordinates of the unit
vector in the direction x are given as functions of its spherical coor-
dinates as follows:

(sin(¢) - cos(0),sin(¢) - sin(0),cos(¢p))
Let n and m be two orthogonal unit vectors parallel to the plane
(P); these two vectors can be chosen as follows:

e forn:(sin(f), —cos(6),0);

e form: (cos(¢)-cos(d),cos(¢) - sin(f), —sin(¢)).

In the plane (P), the vector k can be expressed as:
Kk = cosymn + sinym = cos y(n + pm) (4)
where p = tan(y)

With these notations, Eq. (2) can be written as:

1 2n 1
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Let:

Qo = Cisilts  Rix = Cisjms - Tig = Cijesjm (6)

The matrix Q (y) is a function of i which can be written:

Q) = Qqcos?y + (R+ R")cos s siny + Tsin® (7)
=T'(p)cos® (8)

where

I(p) = Qo +PpR+R") +p°T 9

Finally, with the use of p = tan(y):

G | T O = [ i (10)

where T" and |I'| are the adjoint and the determinant of I'. The com-
ponents of T are polynomials of fourth order and |1 is a sixth order
polynomial.

Computing the integral in (10) by residue calculus requires the
poles located at the roots of the sixth order polynomial |I'| which
are all complex (Ting, 1996). If these poles are known and if these
poles are distinct, the Green tensor is given by:

1.~ Tpy)
G znr'; rll(pl) (1])
where p, are the roots of |I'| with a positive imaginary part and
|T'|'(p) is the derivative of |I'|(p).

Obtaining the roots of |I'|(p) is not generally possible by using
radicals as it is well known from the work of Galois (Head,
1979). In the general case, it is possible (Ting, 1996) to obtain these
values by computing numerically the eigenvalues of the matrix

~T'R” T!
RT'R-Qp —R(T)"

In some special cases, the equation |I'|(p) = 0 can be solved in a
closed form; for example if the symmetry is such that the odd pow-
ers of p are cancelled in I'(p). In such a case, the equation is a third
order equation in p?. The equation |I'|(p) =0 has, however, no
closed form solution in the most general case. The aim of the fol-
lowing is to describe situations, in the case of orthotropic materials
only, where the roots of |I'|(p) can be obtained in a closed form for
any direction of the vector x —y.

(12)

3. Principles for the factorization of the determinant of the
acoustic tensor

The previous section has shown that computing the integral in
(10) by residue calculus requires the computation of the poles lo-
cated at the roots of the sixth order polynomial |I'|(p). The proper-
ties of |I'|(p) are, however, closely related to the properties of the
determinant 4(k) = |Q(k)| of the acoustic tensor Q (k).

In the following, the material will be assumed orthotropic and
all Cyyy are, in the axes of symmetry of the material, functions of
nine constants which can be denoted c;y, ¢33, €33, C23, C31, C12, Caa,
Css, Ces Where the classical notation with two indices ¢ is used:

c.-,-:C,-,-,-,- for i=1,..., 3.j:] ..... 3

cp=0Cy for I=4,i=2j=3 or I=5i=3,j=1 or
I=6,i=1,j=2

cy=0 for 1 24J<3 or =4 1<3 or
(IJ] =4 and [#])

This change of notation assumes that the new matrix coefficients al-
low the computing of the components of the stress tensor from the
components of 7; =2¢;. This leads to the matrix related to the
acoustic tensor given in Appendix D.

If the coordinate axes are chosen along the axes of symmetry of
the material, the determinant A(k) of the matrix related to the
acoustic tensor is an homogeneous function of third order of the
squares of the coordinates ky, ks, k3 of k given by:

3 3 3 2 2 2
A= 011111 + 0222’2 +0333l3 + anzlllz + a|]3lll3 +022]l211

+azz3’§l3 +a331l§11 +a3321§’2 +(11l|’213 (]3)

where I; = k* and where the coefficients ay are functions of the
elastic coefficients ¢y given in Appendix A.

As explained previously, the case of a transversely isotropic
material (or the one of a material obtained from a transversely iso-
tropic material by a scaling of the axes) is such that the Stroh
eigenvalues can be obtained in a closed form for the 3D case,
allowing the Green tensor to be obtained in a closed form.

It is easy to show that such a result is due to the fact that the
determinant A of the acoustic tensor can be factorized by using
homogeneous order 2 polynomials in k; (or linear homogeneous
polynomials in ;).

Indeed, for a transversely isotropic material, the components of
the elasticity tensor can be written as functions of five elastic con-
stants ¢y, C33,Cq2, C13, C44, Other constants being given by:

€ =Cn
C23 =C13
Cs5 = Caq (]4)

1
Ce6 = f(C“ —C12)



The coefficients a; of the polynomial A(l,k,I3) are then given by
the expressions given in Appendix B.
Finally, the polynomial A(l;,k,l5) can be written as follows:

A=As(ly + b)? + Ag(h + )2l + Ay (b + b)B + Al (15)
where the coefficients A; are given by:

1
A3=§CIICM(CII —C12) (16)

, 1, 1, 1 1

Ay = 1€y +fC“C33 —ECHCH —§C11C12C33 +§C¥3512

— €13C11Caq + C13C12C44 (17)

3 1

Ay = —CaaCl3 — 2C5,C13 +5CaaCnCs3 — 5CaaC1263 (18)
Ao = C§4C33 (19)

Then, the polynomial A4 is:

A= A;(l] - 12 - hl;)(’] - ’2 - r213)(11 - 12 - r;l;) (20)
where ry, 15,13 are the solutions of the third order equation:
A3r3+A2rz +Ar+A =0 (2])

One solution is given by:

PO S (22)
Ci1 —Ci2 Co6

while r, and r3 are solutions of the quadratic equation:
C44C33 + (C]]C;;-2C|3C44—C$3)V+C11C44r2 =0 (23)

Then, the eigenvalues are obtained by solving the three quadratic
equations in p obtained from the factorization (20) by replacing I,

by (n + pmy)*.
Each equation is given by:
1+p? (cosz(¢) - sinz(:p)) =0 (24)

The eigenvalues are the roots with a positive imaginary part given
by:

i
= (25)

\/cos2 ¢ — rysin®

A comparison can be made with eigenvalues obtained by Ting and
Lee (1997) by noticing that the expression of the eigenvalues de-
pends of the choice of m and n. Taking k = cosym — sinyn instead
of k = cosymn + sinym leads to:

P2+ cos2(¢) — resin® (¢) = 0 (26)

instead of (24).
Finally, for the particular value of ry given by (22), it leads to:

PCo5 + COS2(h)Cop + SIN>(h)Cag = 0 (27)

which is obtained in Ting and Lee (1997).

Such a result recovers the well-known result along which there
is a closed form expression of the Green tensor for a transversely
isotropic material for any direction x — y, showing that the eigen-
values do not depend on 6, as a consequence of the symmetry of
the material.

In addition, this result explains why the solution can be ob-
tained for any direction of the space: it is the factorization in poly-
nomials in k; which is the key to obtain eigenvalues in a closed
form for any direction.

Using this idea, it is natural to seek factorizations of A which
can be of two kinds:

e factorization into one quadratic homogeneous polynomial in [;
and a linear and homogeneous function of [;;

e factorization into three linear and homogeneous polynomials
in I,'.

Starting by the first kind, it is easy to show that if the function
A(l, I, 13) can be written as the product of a quadratic homoge-
neous function of [; and a linear homogeneous function of [; it is
possible to obtain a closed form expression of the roots of A (for
any direction) x — y.

Indeed, taking into account the higher order term in [, within
(13), let us assume that A can be decomposed into the following
form:

A =aPs(l. o, 1z) - Pa(ly, by, 13) (28)
where P, and P4 are given by:

Py = (lf + byl + bysl2 + bialily + byshols + b3111’3) (29)
Pz = (l] <+ Czlz +C313) (30)

where b; and ¢, are the coefficients of the most general homoge-
neous polynomials of orders 2 and 1 in [; which have the term of
highest power in [, equal to 1. These coefficients (like for the case of
transverse isotropy) should depend only on the elastic coefficients.

If such a decomposition is possible, the function A(ky, k2, ks) can
be written:

Ak ko k) =@y (6 + books +bsskd +biokik +bask IS +buikikG )
-(kf+c2k§ +c3k§) (31)

Replacing k; into the definition of |I'| by its expression given by (4)
leads to:

|T] = a1 Qa(p) - Q2(p) (32)
where Q4(p) and Q,(p) are the polynomials:

Qa(p) = (my + mp)* + bya(ny + myp)* + bys(ns + myp)*
+bia(ny + myp)?(ny + myp)* + bas(nz + map)?(n3 + msp)?
+ by (n3 + myp)*(ny +myp)? (33)

Qa(p) = (m +mip)* + ca(nz + mzp)* + c3(n3 + msp)* (34)
where n; and m; are the components of the unit vectors n and m
defined in Section 2, which are perpendicular to direction x —y.

The decomposition of A defined in (32)-(34) ensures therefore
that the poles of the rational fraction I' "' (p) can be computed in a
closed form by solving the quadratic and fourth order equations
Q4(p) = 0 and Q,(p) =0, where Q4 and Q, are obtained from
(33) and (34). Such a decomposition was used for example by Ting
andLee (1997) for the Green tensor at points located on the normal
to the symmetry plane of a monoclinic material.

When such a decomposition is possible, the elasticity tensor
will be called thereafter “Closed Form Orthotropic” tensor of class
4 (order 4 is the higher degree of the polynomials used in the
decomposition), abbreviated thereafter by “CFO4 class”. The
related material will be called “CFO4 material”.

The case which comprises three linear polynomials in Iy is such
that:

A =aPolly 2, 13) - Py(ly, 2, 13) - Pe(ly I, 1) (35)
where
P, = l] + azlz + (13[3 (36)

and similar definitions for P, and P, by replacing a; (i = 2,3) by
b; and c;, where all coefficients depend only on the elastic coeffi-
cients. The elasticity tensors which lead to determinants which
can be put into such a form will be called thereafter of “CFO2 class”.
Such elasticity tensors have less symmetries than a transversely



isotropic tensor (or than tensors obtained from transversely isotro-
pic tensors by transformation of axes), because it involves more
independent parameters, as it will be shown thereafter.

4. Factorization of the determinant of the acoustic tensor for
the CFO4 class

We look now at the conditions under which a decomposition
such as the one defined by (28)-(30) is possible.
Identifying (13) and 28, 29, 30 leads to:

da22 = b2

d333 = b33Cs3

diiz =c2+ bi2

diz=ci+bis

dya1 = by + biaca (37)

331 = b33 + by3c3

a3 = b3y + b3

33y = b33 + b3z

23 = byz + b13Cy + biacs

where the coefficients dy are functions of the elastic coefficients
obtained from the coefficients d by:

dij = i/ Ainy (38)

Combining these equations leads to four equations in ¢, and c3:
Two equations of the third order in ¢, and c;

dy = €3 — dy12G + dog (39)
d3z3 =3 —di3& +dsnics (40)
Two coupled equations:

day3 = 223 — Gdiis + 3633 — 2¢302d 112 + C3dan (41)
ds3; = C3d123 — Gdiiz + 3026 — 20263d 113 + Cadlaz (42)

These four relations involving ¢, and c; are in general independent
and they have a solution only if suitable relations between the elas-
tic coefficients of the elasticity tensor are met. However, it will be
shown thereafter that the compatibility conditions and the expres-
sion of the polynomials obtained by decomposition become simpler
by using suitable transformations of the axes.

It was shown indeed by Pouya and Zaoui (2006) that suitable
transformations of the coordinate system may be used to simplify
some problems related to the computation of the Green tensor.

Let us call x the column containing the coordinates of the posi-
tion vector in the original coordinate system, X' containing the
coordinates of the position vector in the transformed system, with
similar notations u and u’ for the vector displacement.

The transformation matrix P, assumed invertible, defines the
transformation of the coordinates of the position vector.

Xx=P.x (43)

Pouya and Zaoui (2006) have shown that the displacement vector
must be transformed by

u=S-u (44)
where
S= ()" (45)

where P’ is the transpose of P.
Under these conditions, the elasticity tensor is transformed
into:

C;nnpq = ij‘tlsimsinskpslq (46)

and the Green tensor is transformed by:

G =PP"-G.-P (47)

Using such transformations can simplify significantly the conditions
(39)-(42).

To keep the symmetry of the material with respect to the axes, a
scaling will be used in the following, such as x; = x;x; leading to the
transformed values of the coordinates of the wave vector k; = xk|.
Such a transformation leads obviously to diagonal matrices
P and S.

In the new system of axes, the coefficients d;z of the previous
equations are transformed into dj, and the coefficients ¢; and by
are transformed into c; and bj.

The compatibility equations within the new system of axes are
similar to (39)-(42).

Using the relation between dj, and d; leads then to:

dzaby = Bic7 — diaBi o F + daa 3, (48)
333 = BiC5 — duspi Bscd + dsn f3piC (49)
where f5; = o and where ¢, and ¢} are the values of ¢; and c3 in the

new coordinate system.
Dividing the first one by 3 and the second one by /3 leads to:

dypy = 13 — dy1213 + dopi 1z (50)
d333 =13 —dnst? +dsars (51)
with r = 25,

It means that the values of ¢, and ) can be adjusted to any pre-
set value by choosing conveniently the scaling of the axes.

Let us choose ¢, = ¢4 = 1.1timplies f; = f, /r;, where r; (i = 2,3)
are real and positive solutions of Egs. (50) and (51). Due to the fact
that d222 and dss3 are positive, there are always such real positive
roots.

The following choice of scaling can be used: , = 1,8, = 1/r5,

Bz =1/r3.

In the new system of axes, Eqs. (41) and (42) become:
dyps = dip3 — dyy3 + 3 — 2d}y, +diyy (52)
dysy = dyp3 — dypp +3 — 2d}y5 + dis (53)

These two equations display the conditions, in the new system of
coordinates, between the elastic constants of the orthotropic mate-
rial which must be satisfied in order to ensure that the elastic mate-
rial will be of CFO4 class. From a general point of view, the elasticity
tensor of an orthotropic material depends on nine independent con-
stants and the compatibility conditions imply that the elastic
parameters of a CFO4 material depend on less than nine constants.
In the transformed system, the polynomials P4 and P, which
appear in the factorized form, if it exists, are finally given by:

Py :k’l“ + d’zzzklz4 ‘*“1’333'(’3‘1 +(dyy, - l)k?klzz +(dy; - l)k’fklzz
+ (3 — dip K5 K3 (54)

Py =K+ K + K? (55)
where K, are the components of the wave numbers along the trans-
formed axes.

5. Factorization of the determinant of the acoustic tensor for
the CFO2 class

Similar operations can be performed in the case of the CFO2
class. In this case, there are still nine equations analogous to (37)
to solve, but the factorization leads to one more compatibility
equation. These equations can be obtained as for the CF04 class.
In a first step, elimination of a,by,a2,b; from identification be-
tween A and its factorized form leads to Eqs. (39)-(42) and to a
complementary equation



(2d123 — 85283 — 2C352 — 2C2$3)2 — (S; — 41’2)(55 —41’3) =0 (56)
where t;, t3, S;, s3 are defined as follows:

ti = dua/Cr (57)
Sk = dinn — Cx (58)
The same transformation of axes as the one used in the previous
section allows to fix ¢, and ¢y at 1, leading to the compatibility
Eqs. (52) and (53) and to a complementary compatibility
equation:

(23 — 5353 — 25, — 253)° — (57 — 4ty)(s5 —4t5) =0 (59)

where d;jk are, as in the previous section, the values of djy in the
transformed basis, t;, and s, being given by:

t = diu (60)
szc:d;m -1 (61)

The polynomials P,, Py, P, whichappear in the factorized form of 4
are given, in the transformed axes by:

Py = K7 + Ak + A5k (62)
Py = k’lz + szlzz + B3k;2 (63)
Po=K? +KZ + K2 (64)

where A; and B; are solutions of the second order equation:
X2 —(dy —1)X+dyy, =0 (65)
while A; and B; are solutions of the second order equation:

X2 —(dyyy —1)X +dy33 =0 (66)

6. Study of materials with classical symmetries

Within the framework of the previous section, it is now possible
to study materials having more symmetries than the most general
symmetry of an orthotropic material and to check if such materials
are of any CFO class or if there is a compatibility condition ensuring
that the material is of a CFO class.

6.1. Transversely isotropic material

As shown in Section 2, a transversely isotropic material is of the
CFO2 class, according to our previous definition. By scaling of the
axes as the one used in the previous section, the homogeneous
polynomials of the previous section can be put into the following
form:

Py = K7 + K + Ask? (67)
Py =K} + K} + B3k (68)
Pe=K? + k2 + K2 (69)

It is obvious that only a scaling along xs is necessary to obtain such a
decomposition. This form involves two parameters A; and B, in-
stead of four in the most general case of a CFO2 material. It means
that the most general CFO2 material has less symmetries than a
transversely isotropic material or a material obtained from a trans-
versely isotropic material by scaling of the axes.

6.2. Tetragonal (and orthotropic) material

6.2.1. Case of CFO4 class

For a tetragonal (and orthotropic) material, the elasticity tensor
is defined by six parameters, because the symmetry induces the
following relations:

C2=0Cn
Cs5 = Cag (70)
C23 =Ci3

Under these conditions, the polynomial 4 can be written for a CFO4
material as:

A=an(l +5) + @338 + ans (1§ +B)ls + assi (b + 1)
+ ana(h + bbb + avsh bl (71)

where the coefficients a; are given in Appendix C. Taking into
account the symmetries, the factorization must be effected under
the form:

4= an](lf + lg + b;;lg +byalyly +b]3(l1 + 12)13) ) (l] +1h +C3’3)
(72)

The relations between the coefficients of the polynomials can be
given by using the coefficients djy = aj/ay;:

333 = C3b33
dyz =bpz + 1
dys =biz+c3 (73)

ds31 = C3by3 + b33
diz3 = 2by3 + C3by,

Eliminating the coefficients by,, b3, b33 leads to Eq. (40) and to the
following equation:

dy23 = 2dy13 — 3c3 + Gy (74)

This equation can be obtained from Eqs. (41) and (42) in the general
case of orthotropy by putting ¢z =1, baz =1, baa = bya, dns =
dyy3 and dyy; = dy;. As in the previous section, a suitable transfor-
mation of axes allows to ensure the equivalent of Eq. (74) with
¢y =1 (cy being the transformed of c3 by a convenient scaling). In
the transformed system, there remains one compatibility equation,
which can be written:

dyyy =2dy; -3+ d)y, (75)

where dj;, are computed from the transformed elastic constants as
previously.

It is easy to check that the case of the transversely isotropic
medium leads to coefficients d;jk which comply to Eq. (75).

It is, however, possible to construct tetragonal materials which
are not transversely isotropic and for which the compatibility
equation related to the CFO4 property is met.

6.2.2. Case of CFO2 class

Taking into account the symmetries of the material, a tetragonal
material which is of the CFO2 class is characterized by the determi-
nant A given by:
A=am(h + L+ ab)(l + L +bsh)(l + 1+ cls) (76)

This form is identical to the one given by (20), which shows that a
tetragonal material of CFO2 class is necessarily transversely
isotropic.

6.3. Cubic material
In the case of a cubic material, the components of the elasticity

tensor are constrained by:

Cip=0C2 =033

Cz2=C3=0Cn (77)
Caqa = Cs55 = C66

The polynomial 4 can then be written as:



A=am (lf +B+ l;)
+ a2 (Iflz + Bl + Bl + Bl + Bl + l§lz) +ayshbls (78)
where
i = Cn’fq
Qi1 = €31 Cag + C24C11 — 2€1263 — CpCas

Q123 = =311y — 6011C12Cas + 6¢25Cas + 6C12C%, +2¢3, + €3, +4c,
(79)

Taking into account the symmetries of the material, the factoriza-
tion can be written as:

A= (l] + Iz + l3)(l§ + lg + ’g + b12(’]lz + lzl3 + l3l] )) (80)

The relations between the coefficients are:
diz3 = 3by,

(81)
dyz =biz +1
Finally, the compatibility condition can be written as:
3y +4ck, + 263, — 3c11¢2, — 6C11C12Cas + 96, Cas + 1201265,
—3c2ca =0 (82)

The roots of that equation in ¢4 are ca = —C11 — 2¢12 and Caq =
(c11 — ¢12)/2(double).

The first solution being not valid, it implies that only the double
solution, which corresponds to the case of isotropy, can be used. It
means that there is not any possibility to obtain a factorization of A
in the case of a cubic, not isotropic material. The only cubic mate-
rials which are of CFO2 or CFO4 class are isotropic.

7. Components of the Green tensor for a CFO material
7.1. Eigenvalues for the case of a CFO4 material

The eigenvalues p, are obtained from the solution of equations
P4 =0 and P, = 0 where P, and P, are given in Section 4.

The quartic leading to the eigenvalues is a function of the angles
¢ and 6 given by:

fap* + p* +fop* + fip +fo =0 (83)
where the coefficients of the polynomial are given by:
fa = (cp?st?Byy + sp?Bays + Byp)cp?st? + 1 +sp?Bys (84)
f3 =2[(=25t?By; + By3)cp® — By — Bys]st-ct-cp (85)
f> = 6et?cp?st?By, + (sp*Bss — st?Biz + Bis + Basct?)sp?

+Bpp+2 (86)
fi = —=2(2ct?By, + Byy)st - ct-cp (87)
fo=ct*Byy +1+ct?By, (88)

where the compact notations for the trigonometric functions
sp = sin(¢), cp = cos(¢), st = sin(f), ct =cos(f) are used and
where B; are functions of the coefficients dj;, given below. The coef-
ficients dj depend only on the elastic constants in the transformed
system of axes by relations of Appendix A.

B = 2+ digy, — iy (89)
By =4—dy), —dyy; +dyy; —diy, (90)
By =dyy -3 (91)

Solutions of Eq. (83) can be obtained by the classical Ferrari's
solution.

The quadratic equation leading to the last eigenvalue becomes,
in the transformed system of axes:

1+p*=0 (92)

This leads to the constant eigenvalue p = i, which does not depend
on the direction of the axes (in the transformed system of coordi-
nates). As shown thereafter, the fact that p = i is an eigenvalue for
all direction in the transformed axes is a property which is shared
by the CFO2 material.

An elastic elasticity tensor is therefore of a CFO class if the
transformation of axes defined by g, = 1 and ; = ry, r; being the
solutions of Eqs. (50) and (51) leads to a common eigenvalue
p =i for any direction between source and observation point.

It is obvious from the expressions of f; and f, that these coeffi-
cients are null when ¢ =0, 6 =0 or 6 = n. In these cases, the
direction of the observation point is along one of the planes of sym-
metry and it is known that the determinant of the acoustic tensor
becomes in this case a function of p?.

7.2. Eigenvalues for the case of a CFO2 material

In this case, the form of the polynomials Ps, Py and P. show that
there is still a constant eigenvalue p = i in the transformed system
of coordinates. The other eigenvalues are solutions of:

[ep? (ct? + Apst?) + Assp?|p? + 2st - cp - ct(1 — Ap)p + st + Axct? = 0
(93)

and a similar equation replacing Ay by By, the coefficients Ax and By
being coefficients of the elastic constants which are solutions of Eqs.
(65)-(67)

In the case of a transversely isotropic material, A, = B, = 1, and
Eqs. (67)-(69) are recovered. Another case of interest is the case
B; = B3 = 1. In this case, the eigenvalue p =i is double for any
direction of the axes (similarly to the case of isotropy where
p =1iis a triple eigenvalue).

7.3. Computation of the Green tensor with known eigenvalues
When the eigenvalues are obtained, the components of the

Green tensor are obtained, when all eigenvalues are distinct, from
the relations given by

1 .. Tp)
G=-—-2 N 94
a2 2 o) ©9

where T is the adjoint of I' and |I'|' the derivative of its determinant
with respect to p, their value being computed for the three eigen-
values p, (v =1.3).
The terms |I'(p, )|’ are obtained from the eigenvalues as follows:
|T(p,)|" is given by Ting and Lee (1997):

[C(py)|" = 21Ty (py — p2)(Py — B2) (D1 — P3)(Py — P3) (95)

where f, is the (positive) imaginary part of p, and p, the complex
conjugate of p,.

Similar expressions are obtained for the terms related to
p, and p, in the previous relation.

Following Ting and Lee (1997), each cofactor is a polynomial of
degree four in p which can be expanded as:

4
L(p) =Y p'T® (96)
n=0

where the matrices I'™ are independent of p,.

These matrices depend only of the elasticity tensor and of the
components of the vectors nand m through the matrices
Qo. Tand R, = R +R". They are given below as functions of the
matrices of cofactors of Qq. Ry. T. Qg + Ry, T+R;. T+ Q,q



=T (97)
r'® = (T.R} (98)
I = {T,Qy} + R, (99)
T = {Qq. Ry} (100)
ro-qQ, (101)

where A is the matrix of the cofactors of A and where the expres-
sion {A,B} means:

(ABj=A+B-B-B (102)
Finally, the Green matrix G is given by:
1 <IN

G:mganm) (103)
where g, is given by:

n = Qo) + o) + Gus) (104)

o =
ury =ﬂ1(p| —Piazz: _gg?_ﬁ;(pl -Ps) (105)

with similar expressions for q,;, and q,s,.

The main problem with such an expression is that it does not
work when there are double roots, which corresponds to the
“degenerate” case (Wang and Ting, 1997). It can appear, even for
each direction of the space, for the case of isotropy or for the case
of a CFO2 material with B, = B3 = 1 or A, = Bz and As = Bs, for
example. It is shown, however, in Ting and Lee (1997) that the
terms ¢, can be put into a form which is valid for any case. It is
given, for n = 0,1,2 by:

=1 Pt ‘inz}]
= R - 106
Gy 2B1P2ps [ e{(Pi -p2)p—p3) 3 ( )
and for n=3,4 by:
-1 Py 2PaPs ()',,2}]
- R 1 -2 107
w0 = 2555 P\ s e 3 (107)

with similar expressions for q,,, and q,s,.

These relations are used in the following to compare the Green
tensors related to given elasticity tensors and those related to the
closest CFO material.

8. Approximation of orthotropic materials by CFO materials

As shown previously, a CFO4 (or CFO2) material depends on less
than nine constants and a randomly chosen orthotropic material is
not generally a CFO material. It arises the following question: is it
possible to approximate an orthotropic material by a CFO mate-
rial? This question is in the line of previous research works looking
for the best material within a given class to approximate a material
which has less symmetries. For example, Pouya and Zaoui (2006)
have approximated the elastic properties of different orthotropic
materials by elastic properties of materials of higher symmetries.
Similarly, Norris obtained the closest elastic tensor of arbitrary
symmetry to an elasticity tensor of lower symmetry (Moakher
and Norris, 2006), in the sense of different definitions of a distance
between different elasticity tensors and solved a similar problem
for optimizing an approximation of the acoustic tensor by the
acoustic tensor obtained from a material of higher symmetry
(Norris, 2006). This problem, studied by Fedorov (1968), leads to
the “acoustic distance” defined below. In the following, four dis-
tances will be used including the “acoustic distance”, because of
the use of the acoustic tensor in the process leading to the Green
tensor. The properties of these distances may be found in Moakher
and Norris (2006) and Norris (2006).

The Euclidean norm is defined by:

ICIP = CijaCijia (108)
It leads to the Euclidean distance defined as:
dg(C1,G) = |G = G| (109)

The log-Euclidean distance d; and the Riemannian distance di are
defined by:

di(Cy,C) = || log(Cyy — log(C)| (110)
di(C1,C2) = [Jlog (¢, - - (111)
The “acoustic” inner product is defined by:

(A,B), = tr(FAB) (112)

where I is the “totally symmetric part of the fourth-order identity”
defined by P = ;‘((S,‘j(ik, + (3,1((5}1 + (5“(5,(]-).
It leads to the norm:

llAll, = (A,A); (113)
Then, the acoustic distance is finally defined by:
da = “C; - Ci“a (]]4)

where the tensor C” is obtained from the elasticity tensor Cyy by:

G = %(Cikjl + Cijik) (115)
Obtaining the closest CFO tensor to an arbitrary orthotropic elastic-
ity tensor can be effected by solving the following optimization
problem:

For a given initial orthotropic tensor Cy, find the tensor C,
which complies to the set of non-linear compatibility equations
for CFO4 (Egs. (52) and (53)) or for CFO2 (Eqs. (52)-(56), (58),
(59)), such that the distance d(Cj, — Cy,) is minimal.

8.1. Optimization using the Euclidean distance

Table 2 shows the relative errors € computed from the Euclid-
ean distance between experimental elasticity tensors of different
materials and approximate elasticity tensors by the relative dis-
tance given by:

_ICap = Cosll
1ol

The experimental properties are obtained from Kim et al. (1995)
and Dieulesaint and Royer (1974) (cited by Pouya and Zaoui
(2006) or cited byTewary (1979) and Tewary (2004)). The computed
results comprise the approximate elasticity tensors which are of
three different classes: CFO2 and CFO4 classes defined above and
TrTI class which corresponds to the transformation by a scaling of
the axes of a transversely isotropic material, as defined in Pouya
and Zaoui (2006). From the previous sections, it is clear that the TrTI
class is of the CFO2 class. All optimisations were performed numer-
ically by using the Euclidean distances. The results show that the
approximation is better when using in this order: TrTI, CFO2,
CFOA4. The relative distance for CFO4 is always less than 10% while
for other approximations the relative distance can reach values of
the order of 20% or greater.

€ (116)

8.2. Optimization using the different distances

All results using the elastic properties which are optimized by
using other distances than the Euclidean distances were compared
to the result given by the Euclidean distance for all materials
reported in Table 1. The error on the Green tensor was computed as:

maxﬂ.alcapp..ij((L ‘M - G(h..i‘j(()- ¢)|

€ = max;;
Y maxg4|Gen.ijl(0, ¢)

(117)




Table 1
Approximate elastic properties (x10 GPa).

n 22 C22 Caq Css Cs6 C23 C31 C12 €
KBsOs - 4H,0
Experimental 5.82 3.59 255! 1.64 0.46 0.57 231 1.74 229 0
TiTl Sl 3.79 255! 0.93 1.08 0.89 1.84 214 2.61 0.24
CFO2 5.80 4.09 B2 0.94 0.59 0.67 1.70 1.88 2.15 0.19
CFO4 5.79 3.40 221 1.64 053 0.60 255 1.78 2.28 0.056
S
Experimental 2.40 2.05 483 0.43 087 0.76 159 1.7 833 0
TiTl 2.62 213 483 0.63 0.69 0.60 156 173 117 0.096
CFO2 235 1.87 471 0.64 0.96 0.69 1.71 1.77 1.18 0.083
CFO4 253 222 485 0.42 0.89 0.59 1.58 1.7 1.18 0.061
BaSO4
Experimental 8.8 7.81 104 117 279 2.55 289 269 4.77 0
TrTl 0.42 7.96 104 1.92 209 215 266 290 4.37 0.12
CFO2 9.36 7.81 102 175 198 1.99 275 299 4.57 0.12
CFO4 8.87 8.27 10.1 1.17 311 2.08 2.82 3.01 4.40 0.073
PEEK (Polyetheretherketone fiber reinforced composite)
Experimental 285 1.52 1.07 0.22 024 0.57 0.76 0.60 0.77 0
CFO2 285 1.59 1.01 0.22 023 0.56 0.71 067 0.73 0.041
CFO4 284 1.49 1.04 0.23 024 0.58 0.78 0.59 0.78 0.015
TCFC (Tetragonal carbon-fiber composite)
Experimental 8.03 8.03 141 2.59 259 181 4.92 492 3.11 0
CFO2 799 7.99 141 2.59 2.59 230 4.90 490 3.38 0.0075
CFO4 7.69 2 141 259 2.58 214 4.92 492 3.44 0.0065
Table 2
Error on Green tensor for different norms and approximations.
Scheme Norm KB40 - 4H,0 S BasO, PEEK TFIC
CFO4 Euclidean 0.36 0.054 0.042 0.006 0.033
Acoustic 035 0.075 0.046 0.023 0.033
Log-Euclidean 0.16 0.060 0.041 0.021 0.021
Riemannian 0.11 0.069 0.041 0019 0019
CFO2 Euclidean 0.21 0.10 0.096 0.039 0.066
Acoustic 0.20 0.087 0.069 0.031 0.063
Log-Euclidean 0.19 0.082 0.053 0.045 0.045
Riemannian 0.19 0.086 0.052 0.054 0.045

where Ggpp.ij and Gy, ;; correspond to the approximate and theoret-
ical values of Green tensor.

These values are computed for values of # and ¢ (30 values for
each angle) ranging between 0 and %. The table shows that the
CFO4 approximation leads, except in the first case for the Euclidean
norm, to a better approximation than the CFO2 approximation. Re-
sults for the Log-Euclidean distance and the Riemanian distance
are comparable but can differ significantly from the results ob-
tained from the Euclidean norm and the acoustic norm.

The use of a convenient norm and of the CFO4 approximation
leads to a relative error which is less than 11% in any case and is
less than 5% for the last three cases.

8.3. Comparison of exact and approximate Green tensors

Figs. 1, 3 and 5 show the variation of the components
Gy1, Gy, Gy of the Green tensor as a function of 6 and ¢ for the
first material computed from the exact solution, while Figs. 2, 4,
6 show the same components obtained from the approximation
“CFO4". All figures show a good agreement between exact and
approximate values.

9. Synthesis and conclusion

Obtaining a closed form expression of the Green tensor for an
elastic orthotropic medium is possible in the most general case
only for some specific directions between source and reception

point. It is due to the requirement, in the general case, to solve a
sixth order equation for obtaining the poles of a rational fraction
and to perform the integration by residue calculus.

Such a difficulty led to numerous developments to perform
numerical integrations and obtain expressions for the deriva-
tives allowing to compute the stress tensor induced by a point
source.
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Fig. 1. G;; component of the Green tensor as a function of ¢ and ¢: exact value.
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Fig. 2. G;; component of the Green tensor as a function of ¢ and ¢: CFO4
approximation.
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Fig. 3. G;; component of the Green tensor as a function of 0 and ¢: exact value.
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Fig. 4. G component of the Green tensor as a function of ¢ and ¢: CFO4
approximation.

In the present paper, it was shown that a closed form solution can
be obtained for specific orthotropic elastic media (of “CFO2" and
“CFO4" classes),and that the solution which is obtained is an exten-
sion of the classical solution for a transversely isotropic material.

Two different cases were studied: the case of elastic properties
of “CFO4" class such that the process of computation of the eigen-

06+

theta 00 phi

Fig. 5. Gy component of the Green tensor as a function of # and ¢: exact value.

06+
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Fig. 6. G2 component of the Green tensor as a function of 0 and ¢: CFO4
approximation.

values needs, for each direction of the space, the solution of a qua-
dratic equation and of a fourth order equation, and the “CFO2"
class such that the process needs the solution of three quadratic
equations. The CFO2 class contains the “TrTI" class of materials
(obtained from a transversely isotropic material by a scaling of
the axes) introduced by Pouya and Zaoui (2006).

It is shown that transversely isotropic materials are of CFO2
class, that tetragonal and orthotropic materials of CFO2 class are
necessarily transversely isotropic and that cubic materials of
CFO4 class are necessarily isotropic. In addition, it is shown that
any CFO2 or CFO4 material is such that there exists a scaling of
the axes such that there is a constant p =i eigenvalue for any
direction between source and reception point.

The approximation of five different experimental orthotropic
elasticity tensors by elasticity tensors of CFO2 and CFO4 classes
shows that the best approximation is obtained by the CFO4 class,
the level of relative difference between approximate and exact
elasticity tensors being inferior to 11%, on condition that the best
norm is used to obtain the approximate elasticity tensor, the norm
being chosen between Euclidean norm, “acoustic norm”, Log-
Euclidean norm and Riemannian norm.

A comparison between three components of the Green tensor
for all directions of the space obtained from the “CFO4" approxi-
mation and from the exact solution in the case of the PEEK material
shows that the components obtained from the approximation
compare well with the exact solution.



Finally, having obtained (approximate) expressions of the Green
tensor which use closed form expressions of the eigenvalues makes
it possible to obtain directly the derivatives of the Green tensor,
which can be used within the framework of the boundary element
method, for example, or for the computation of the stress field in-
duced by concentrated forces.

Appendix A. Coefficients of the determinant of the matrix
related to the acoustic tensor for an orthotropic material

11 = C11GeeCss
222 = C66C22Ca4
{333 = C55C44C33

Q112 = C11(C22Cs5 + CaaCos) + Cs5(Chg — Ci3)
113 = C11(C33Ce6 + CaaCss) + Cos(C25 — C33)
321 = C22(C11 Cag + Cs5C6) + Caa(Chg —C1 2) (A1)
(223 = C22(C33Co6 + C55Caa) + Cos(Chy — C33)
@331 = C33(C11 Caa + Co6Css) + Caa(Chs — C32)
337 = C33(C22Cs5 + Co6Cas) + Cs5(Chy — C33)
@123 = C11C22C33 + C11 Gy + 22 Chs + C33Co5 + 2CaaCs5Co6
+207565565 — €330 — Cien — ciiex
where
Cip = C12 + Co6
Cy3=C3 +Caa (A.2)
CZ"H = (31 +Cs5
The components dj; are given by:
dij = i/ @ (A.3)

Appendix B. Coefficients of the determinant of the matrix
related to the acoustic tensor for a transversely isotropic
material

1
an = ECIICM(CH —C12)

Q333 = Ci4f33
3
= icucn(cn - C12)

1
a3 = 5(5%1533 — C11C12C33 — C3C11 + C3C12) + CniChy (B.1)

= C13C11Cas + C13C12Cas
1
@331 = 5 Caa (3011 C33 — C1zC33 — 2¢; — 4ci3cas)

2 2
23 = 2C11Chy + Cf1C33 — C11€12€33 — €36 + Cf3C12
— 2€13C11Caq + 2€13C12Cas

Appendix C. Coefficients of the determinant of the matrix
related to the acoustic tensor for a tetragonal material

111 = C11C44Co6
0333=C244C33
0112:C44(C2 —+—(2n +C11Co6 —C;zz)

2
@413 = C11C, +C11Co6C33 + Co6Cag — C13C66

@331 = Caa(C11C33 +CosC33 +Co4 — C13)
Q123 = G C33 + 2011024 + 2C66C4 +Ca3Ch + 23,655 — €33¢33 — 2011633
(1
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Appendix D. Matrix related to the acoustic tensor in the
orthotropic case as a function of ¢;

The matrix related to the acoustic tensor for an orthotropic elas-
ticity tensor when using symmetry axes is given by:

fnkf ‘Csﬁkg‘fsskg
Q= kikz(c12 +ces)
kski(c13+Css)

Kk (€12 +Co6) kaki (€13 +Cs5)

szk§ ‘Cng °566kf

kaks(C23 +Cas)

kaks(c23 +Cas)

Cazkg ‘C55kf —C«kﬁ

A checking of this matrix can be performed by using a vector n in
the plane (x,x;) and the components of n as: (cos(¢),
0,sin(¢)) = (c¢,0,-s). This leads to the matrix Q, of Eq. (9) given
by:

(4] 'C2+C55 . §? 0 —C-5-(C13+ Cs5)
Q= 0 Co €2 + Caq - $% 0
—C-S5-(C13 + Cs5) 0 Css5 - €%+ C33- 52

This result is the same as the one given by Ting and Lee (1997, Eq.
(4.5)) for the case of an orthotropic material.
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