N

N

Probabilistic and asymptotic methods with the Perron
Frobenius’s operator
Guy Cirier

» To cite this version:

Guy Cirier. Probabilistic and asymptotic methods with the Perron Frobenius’s operator. 2012. hal-
00691097v2

HAL Id: hal-00691097
https://hal.science/hal-00691097v2

Preprint submitted on 2 May 2012 (v2), last revised 27 Jun 2012 (v3)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00691097v2
https://hal.archives-ouvertes.fr

Probabilistic and asymptotic methods with the Perron Frobenius' s operator

Guy Cirier
guy.cirier@gmail.com

Résumeé

1- Ecart résolvant . Soit f une application polynomiale d’ un compact C de RY dans Iui-méme. Une
mesure P est diteinvariantesous f sss P=P, o0 P, =Pof™. P, est appelé| opérateur de
Perron Frobenius (PF). Soient €}(y)= a“[eya—eyf<a>]/aa”|a=0 etH (y)=9"e"®/0a"|,., ou
Oest point fixe def . Soit E,, I'idéal engendré par d +1 polynémese] (y) = Oet € (y) = 0. Sous
cette hypothése et via la transformation de Laplace-Steiltjes, la solution est obtenue a partir de la

distribution asymptotique des zéros réels de E quand n— . En effet, I'idéal E, définit des

variétés algébriques affines réelles. S ces variétés sont O-dimensionnelles et ont une distribution
asymptotique de densité dérivable q d -dimensionnelle, la densité invariante sera de la forme sous

réserve de convergence:

(=d
p(a) = T (-a,)0°q(a) / 9a,.0a, .0,
2-Approximation. Sous les hypothéses de la méthode du col, la distribution asymptotique des zéros des
H  (y) (variétés algébriques affines) est image réciproque de distributions uniformesk, sur (0,1) :
nc, =s,Imf,(a)-9,[/=12..,p
pour toutes les p<d coordonnées complexes du point critique a de y(a)=<sf(a)—{loga . ¥,
est 'argument de &, , S, =Y,/Nn). S la hessienne dey(a) est dégénérée, comme dans le cas de

linéarités partielles, nous obtenons des familles de variétés aléatoires (exemple Henon).

3- Applications. A toute EDO ou EDP, de la forme da/dt = F(a), on peut associer I'itération
infinitésimale f(a,0) =a+ dF(a)et lui appliquer la densité de Perron Frobenius. S F(a) est
partiellement linéaire, alors une distribution aléatoire peut étre solution asymptotique de cette

équation. Les applications les plus remarquables de I'étude sont les solutions asymptotiques des
équations de Lorenz, de Navier Stokes ou d’ Hamilton.

4-5 A% =1,il y a résonance. Sous les hypothéses précédentes, si N = kg — oo, au point critique a
de y(a), on ala condition of résonance
1=a"
Abstract
1- Solving deviation. Let f be a polynomial application of a compact C of R in C. Ameasure P is

invariant under fiff P=P, where P, =Pof™. P is said Perron Frobenius operator (PF).
Denote e?(y):a“[eya—eyf<a>]/aa”|a=0 and H,(y)=0"¢"® /0a"|,., whereOis a fixed point

of f. LetE, be the ideal spanned by thed +1 polynomials€](y) = Oand€!*" (y) = 0. Under this
hypothesis on f , via the Laplace-Steiltjes transform, we prove that the solution is given by the
asymptotic distribution of the zeros of E_ when n — e . Theideal E, definesreal algebraic affine

manifolds. If these manifolds are O-dimensional and have an asymptotic distribution with a derivable
d -dimensional density q, theinvariant density is:

/=d
p(a) = T (-a,)0°q(a) / 9a,.0a, .0,




2-Approximation. Under assumptions of the steepest descent, the asymptotic distribution of the zeros
of theH ,(y) (algebraic affine manifolds) getting the solution of (PF), isa function of iid x, on (0,1)

nc, =s,Imf,(a)-9,[/=12..,p
for all thep complex coordinates of the critical pointa of y(a)=s,f(a)—{loga. ¥, is the
argumentof a, , S, = Lim Yy, I n. If the Hessian is degenerated, which is the case of partial linearity,

we get a family of random manifolds as in the Henson's case.

3 — Applicationsto EDP, EDO. Asymptotic behaviours of ODE or PDE, as da/dt = F(a), via the
Perron Frobenius's density, are most interesting. Here, the infinitesimal iteration is
f(a,0) =a+0F(a). But, if the Hessian is degenerated, the asymptotic design can be probabilistic.
Among applications, are asymptotic solutions of Lorenz, Navier-Stokes or Hamilton's equations.

4-1f A* = 1, there is resonance. Under the previous hypothesis when n=kq— <o, at the critical

point aof y(a), we have the condition of resonance

1=a"

Introduction
The Perron-Frobenius's equation (PF) is a very difficult functional equation. Ulam and Von Neumann

gave the only well-known first solution[23] for the logistic X1 = 4(x— X°) . Therefore, two important
directions are used in physics: quantum chaos [11] and thermodynamics|22] . This paper brings many
improvements and corrections to the first preprints[ 3] [4] [5] .

The subject of this paper is to describe the structures of invariant probabilistic distributions. They
can exist, even they are masked by others cycles or distributions. The convergence to some point or
some distribution depends on zones of domination, as we match with the topographic zones of
attraction of certain cycles or fixed points. This problem is very difficult but not completely studied
here. The reader is warned that we put forward here a very static and asymptotic conception of the
physics phenomena. No transitions, no dynamics, no orbits, except perhaps for the cycles, only a
probability of presence somewhere after infiniteiterationsin a compact set.



Chapter 1: The resolving deviation

I- Hypothesis, notations and definitions
1--HO- Hypothesis on the polynomial application f

Let f be a polynomial application of a compact set C of R in C with at least one fixed point
f(0) = Owell isolated in C. Diameter of C isD. f islocallyinvertibleat 0. f =(f, f,,.., f,., f,).
Then, fis C~ and have afinite number v of reciprocal images.

2- Collection of iterations

Let C(f) bethe collection of iterations C(f) = (f, f@,..., f®. )where f® = f o &

We can index genericaly an f® e C(f) asf, with aspot « , » We check HO for f, provided to be
invertibleat 0, (see below). So, generally, al demonstrationsfor f arevalid for all f,.

3- Notations of the fixed points and eigenvalues of thelinear part at theses points

Let Oe Fix(f): f(0)=0.But, al f* canhavef™(a)=ain C.These «, are generaly called
cyclesof k order. Let Fix(f™®) thisset and Fix(f.) the generic union for all k.

Under HO, the real eigenvalues A (A, ) of the linear part of f (f,) ate 0(0,) are determining for the
convergence to some invariants: fixed points, cycles or distributions. We don’t study here complex or

multiplicity of A . These cases are not very difficult. When exist integerst € N®such as A" =1,
there is resonance, and we present here only a trivia situation of this recurrent case. Let

Res ={ke N4 >1[2* > 1,0 =1,..d} and Res™ ={ke N[ <12 <1r=1...d]

4- General notations

If a,x,ye RY, Xy is the scalar product; X.y the vector with coordinates X,y,, ¢=1..,d; in
bold X = X,...X, X, ; dx = dx,..dx,.dx, and oh/da=9°h/da..0a,.0a,.

Il —Laplace-Steiltjestransform of the Perron Frobenius (PF) equation

1- Definitions : Perron Frobenius' soperator (PF) and its L aplace-Steiltjes transfor mation (L PF)
Let P be an arbitrary probability measure and f an HO-application. For al Borelian set B, the
transformation of P by the Perron Frobenius's operator (PF)isP o f(B) = P, (B) . The measure is
f -invariant if P(B) =P, (B) for al Borelian set B. As f (resp. f.) apply a compact setC in C,
P (resp. P) exist[6]. All f® e C(f) letsP, = P invariant.

2-Lemmal

Under HO, for all f and p, ¢,(y) is: ¢ (Y) = Jps € ™dP(x)

By definition of P o f (x), thisistruefor all positive function of L"(P) (see[15] ), hence for €”*.

If P has a Lebesgue-Steiltjes density p, then p, =X, po f*
(PF). But this definition is not very useful, complicated and sometimes misleading. We prefer use the
lemma 1. Nevertheless, if we suppose we start the iteration process from apoint X, , either X, = Oand
the Lebesgue-Steiltjes density is the Dirac’s distributiond(X), orx, #0 with the distribution
p(x) vanishing at O.

Now, we take the Laplace-Steiltjes transform $of a probability measure dP(X) with support
contained in the compact C, is naturally written to capture the mass of the fixed pointO
o(y) = lim [ €”dP(x) . Then, we have ¢, (y) = lim [ €”dP, (x) for al f with afixed point at O

f ‘ is the transformation of p by



and all probability measure P on C. Its existence is due to the compactness de C, which makes the
set Q= (y| lim]", €dP,(x) <eoNlim[ ", €”dP(X) < =) not empty: O € €2 convex.

-0 -0
Under HO, the support of the distribution is contained in compact C with diameter D . Hence, ¢(Y)
can be represent by analytic seriesin a poly-disk with infinite radius of convergence. ¢(y) = X b y"
b,/<D"/n!). More, we can take

y =k(n+1) provided Dke™ <1/ ed to conserve the convergence of the series.
3-Definition: resolving equation L
PF equation gives a resolving equation L: 6 ,(¢) =@ ,(y)—&(y) =0 (resp. collection of equations

0. (0)=0(y)-0(y)=0).
More, if P isinvariant, ¢, (y) = [ €"*"®dP(x) = ¢, (y) . By recurrence, o (y)=0o(y).

converges for all measure of probability P in C(

11 -Main Result
1-Notations of the sets of zeros of €"(y)

Under HO, without resonance, let @(y)=ZX,c,y" be a solution de of the resolving equation
0; (p) = Z,c,€"(y) =0 where€(y)=(y" - H,(y)andH,(y) = 2"¢"® /9a"|a=0a a=0. Let
¢, be the expansion of order n de ¢ suchas 6;(¢,) =0.

If Z(e")is the set of zeros of €"(y), let Z(E,) = Z(€") N, Z(€"*) ¢ =1,..d, be the set of common

zeros of these polynomials. E, istheideal spanned by these d +1 polynomials.

2-Theorem
When N — oo ;

1- Exists an integer m such as (@,(y) —1)™ €. With a probability 1, the distribution defined by
¢, (Yy) is constant on the algebraic affine real manifolds defined by E,, .

2- If the manifolds are O-dimensionnal and if ¢(S)is solution de the equation 6, (¢) = Ofor the
density q(a), we can write that the invariant density of Perron-Frobenius p(a) is

/=d
p(a) = T (-a,)0°q(a) / 9a,.0a, .0,

3- Theseresultsare valid for Vf, € C(f).
The demonstration needs some steps. d(X) isthe Dirac’ sdistributionat O;

I V- Effects of a translation on analytical expression of ¢, (Y)

1- Notations of the effects of atranslationa:
Observe the effectsof a trandationa: X =u+a=# 0 changing the origin from O to —a in C. If
p(x) is adistribution density of a Lebesgue- Steiltjes measure for al x # 0, we have:

f(x) becomes f,uy=f(u+a)—a,

p(x) becomes  p(u) = p(x—a),

P; (X) becomes p;(x—a),

o(y) becomes 0. (y) = ¢(y,a) = ¢(y)e”,
0.(y)=E(e"®) becomes ¢ (y,@) = E(e"“™),

0;(9) becomes 0:(¢.) =0:(y,a)—¢(y,a).



The following proposition uses the notations: As ¢(y) has an analytic expansion ¢(y) =X b V",
theng, (y,a) has the expansion ¢, (y,a)=X, b d"e"® /0a". All following series are uniformly
convergent for al y (see Constantine [6] with |bn| <D"/n!). We shall see uniform valuations | ater.
2- Proposition 1

- Let ¢(y) = Zb,Yy" be the Laplace-Steiltjes transform of an arbitrary p. Under HO, the iteration f
transforms all terms y"e”? of ¢, (y) =¢(y)e” in H (y,a)e"® =9"e"® [ ga", and, for all f with
f(0) = Oand p, we have:

¢ (y,a)=2.b0"% @ /oa"

- Invariant density is solution of the resolving equation: 6 (¢) = X b,(y" —H,(y)) =0 Moreover,
for VaeCand Vy, 6,(¢,) =2 b 0" -e"®)/09a" =0. For all multi-integers g, we already
have 099, (¢,) / 0a® = 9°E(e” — &' “*¥)/9a = X b 0" (™ - @) /9a" =0 and
90, (¢) = Z,b,(y"" = H,..,(y)) = 0.

Density £ (P(x — a)) = £7(¢(2)e™) where ¢(2) has the analytic expansion ¢(z) = Z b z". We can
use the Laplace-Steiltjes transform as a Fourier transform that is:
THZ"e®) = 9™(6(x—a) / 9x™ = 8™(x — &) , because, at 0, the density isinvariant 8(f(0)) = 6(0).
As ¢ (y,a) =] €"™dP(x-a), we can write:

¢ (y,a)=2.b0"[ (Sx-adx)/0a" =X bo"e" @ /oa"

Hence, the resolving equation is: 0 (¢,) =¢(y,a)—¢ . (y,a) =2 b d"(€* —e"@)/9a" = 0.
Then,at a=0,wehavef, (¢) =X, b, (Y"— H,(y)) = 0. Observe theidentity for 6, (¢,) = O:

o(y) = (Z,b.H, (v,2)e""@ P for YacCand Vy, and the last result is obtained by derivation.
Denote that, in combinatoria theory, these polynomials H (y,a) are known as Bell’s polynomials.
(Notice: H, (y) arepolynomiasiny evenif f isonly anaytical).

3- Remarks

- We can localise the resultson a p- dimensional manifold taking a volume on the manifold instead of

the L ebesgue-Steiltjes measure on RY.
- A diffeomorphism gin C of infinite class defined by x=g(u) induce f (u)= gto fog(u),
hence ¢ (y) becomes ¢g—10 fOg(y).

p+1

- If a=af e Fix(f¥) is apoint of cycle of orderk for p=1,..,k—1 and o™ = f(ct?), then

oY) = (b H, (v o) ) at of . so: [o(y)]" = E(Enann(y, o).

4-Corollary 1
Polynomials H, (y,a) have some recurrent matrix equations (see Constantine| 6] ):

- H,..(y,a)=0dH, (y,a)/da+H (y,a)ydf(a)/da

- OH (y,a)/ dy = ZS0CEH ., (y,@)9%f(a) / 9ak.

- At a=0, the leading term of H_(y) is (1y)" and polynomial A™"H, (y)can be seen like
«unitary»in y.

V- Relation between ¢(Yy) and ¢(y) - Hypothesison zerosreal of H_(y)



1- Relation between ¢(Y) of (L PF) and ¢(y) of (PF)
Let @(Y)be the solution of (LPF) 6(¢) =0 and ¢(y) the transform of the solution of (PF). For

conveniences, we suppose the random variable d-dimensional.
2- Proposition2

Under HO, ¢(y,a) = 9°p(y,a)/ ayda = a(yep(y,a)) / ay
Let ¢(Yy) be asolution of 6 (¢)=0. In the expansion of ¢(Y), b, are fixed and we can construct

¢(y,a) and 0, (p,) =0. But, according to proposition 1, if @(Y,a) is solution of (PF), 6, (¢,) =0
will be an identity for al y and a. All derivatives must vanish. In fine: 9(a°p(y,a)/dyda)=0.
o(y,a) = d°p(y,a)/ dyda. Asg(y,a) = €*| €°dP(s), we have theresult.

Itis not difficult to rewrite the result for arandom vector p-dimensional p < donamanifold.

We can verify the arguments are true for every f, . In the following, no resonance gets very important.

VI- Analysis of the solution @(Y) of L PF

¢(Y) is now the Laplace-Steiltjes transform of a distribution with support in C and solution of LPF.
We must study the expansion ¢,,(Y) limited to order nand define the resolving deviation:

1- Definition 4: resolving deviation and theideal |,

We call resolving deviation: €'(y,a) =d"(€”? —e"@)/0a". At the fixed point a=0,
€'(y)=€"(y,0)=y"— H,(y) isapolynomial of degree n.

2- Proposition 3

If (1#A"), under HO and 6,(p,)=0, we can construct dpolynomials ¢, on Z(E,)and
limZ(E,) = (yle, () =0}

For al analytic function y(Yy), we can form the function 6, (y) = v, —y where v, (Y)is obtained
in substituting y" by H, (Y) in the analytic expansion of y . We perturb asolution ¢ of 6,(¢) =0

k=n
by an arbitrary polynomial &,(y) = kgoekyk . The coefficient of the leading term of &,(y) is.g, # 0.
k=n
The perturbed function " (y) = @(y) +&,(y) becomes under f: w? =¢, + Eong"(y)’ yet

k=n
convergent, and 6 =Y gey). As €,#20 and 1% A", the coefficient of the leading term
W)= =& n

of 6, (w") is the one of the leading term of €"(y): asg,(1—A")#0, we cannot vanish this
coefficient. We must seek a polynomia with agreater degree, and so on.
By induction, to vanish 6, (¢) , we must take €"(y) null when N — .

Now, we take a large fixed N to construct ¢, by thisway. Suppose y € Z(€") for this ne N*. Can
we have @, (Y) = Z_C,Y" assolutionof 6 (¢,) = E:)ckek(y) =07

Responseisyes: We find d solutions, but under some other conditions.

Here, polynomial e“(y):gock'nyk is known, but vanished if ye Z(€"). 6,(p,)has a smaller
degree than Nn: we have d candidates €' (y) for the leading term. Choosing one €" " (y), we must
identify the coefficientsC, to compute ¢,,. The term of degree n—1, is cancelled with Cooy,
@-A"")c,, +ca,, ,=0. Under the no-resonance hypothesis, notice that 1— A" # Ofor

¢=1,...,d.But c, isarbitrary. Now, the polynomia ¢, (e, , € (y)— (21— A"™")e"(y)) is known.



By successive linear identifications, we shorten the degree of unknown coefficients of ¢, . If we
we haveP, ; () = C,(Z,,C €(¥)) = 0, then®, (¢,,) = 0. That is
truefor V/ and we have dsolutions ¢, . We take one denoted ¢, (Y) .

We examine ¢,(y) with atranslation a of the origin: ¢,(y) becomes ¢, (y,a). As our previous

denote coefficients ¢, = ¢, ,C

n?

computation for ¢(y), we have for dl a : 8,(¢,(y,a)) = ¢,(y)e” —¢,,(y,a) =0. We expend 6, :
0.(p,(y,a)=2,.Cce€(y,a). Then, we can derive 6 ,to obtan a a=0:
00, (0, (¥,@)) /08 | o0 = Z1cnCr€" ¥ (y) = 0 for k=1,..,d. A solution of this equation is obtain in
taking the polynomial € (y) = 0. Hence, ify € Z(€") N Z(€"*), ¢, (y)is solution of the both
equations 6(¢,) =0and0,(¢,,, ) = 0. Thence, taking Z(E,) = Z(€") N, Z(e"™*), thed solutions

Q,, -aevaid.
3-Someinequalities
Let ¢@be the solution of 6,(¢)=0 and ¢,(y) the expansion of order n. We have

0.(¥) — 01n(y)| < 2d|yD[" & 1 (n+1)!, |p(y) - 9, (y,3)] < (€ - D& +|Dy"* &'/ (n+1)!

The general term of this series is less than |yD|" / n!. The remaining Lagrange-Taylor's rest of order
n of € is less than |p(y)-g,(y)|<d|yD|"™ € /(n+1)!. As|f(a)<D, we have aso:
|0, (y)— @ (y)| <dlyD"* &/ (n+1) for V[a] <D, and |p(y)-g,(y.a)| < (" - e +|Dy" &/ (n+1)1.
Now, for fixed nand n—1,, we study the solution ¢,,, with ¢, (0)=1 a y=0.

4- Lemma 2

For large N, @, convergeto @ when N — eo. Exist anumber msuchas (¢,,— )" € E, .
Imbedding the problem in the algebraically closed field of the complex numbers. The Hilbert's
theorem of zeros (nullstellensatz) says (¢,, — D)™ € E,,.

We can identify ¢,, with @, (y).

¢, (y) convergestog forlarge N and Vy < k(n+1). Wetake ye{Z(En)m y<k(n +1)} .As @,
9u(Y)— 9n(y)| <dlyD["" &/ (n+1)!, and
theng,,, converge to @ when n— o . In such case, the coefficient of the leading term of ¢, (y) and the

is a Laplace-Steiltjes transform of a measure in C, we have

one of @ (y) arecloseto 0 when N — o . But, 6(¢,,) = @,, — @;,, = €"(y), and the leading term of
€"(y) is1— A" and tend toward 1 or infinite. Either ¢,, —1has same zeros than Z(E,)or y=0.

Get the problem in the algebraically closed field of the complex numbers. The Hilbert’s theorem of
zeros (nullstellensatz) says (¢,,—1)™ € E,. We can identify ¢, with ¢,(y). We give a first
characterisation of the distribution on |, as Lucaks [17] or Wintner.

5- Proposition 4

With a probability 1, all real point of E_ belongs to the support of the distribution 50,‘1((pn) and tends
asymptotically to the support of £™(¢) . The distributionP,(a) = £™(¢,) , defined for y e z(E,) - {0} ,

is constant on the real algebraic varieties affine (connected component) of E_ , null elsewhere.
6- Remarks

- In resonant case, exist neCR:{reNd| 1= /”Lr}where the leading term of H, (y)isy". To
construct ¢, , we can identify the ¢ foral r € {, . But we shall see more interesting methods.



- If the measure dP(a) isinvariant, on have the identity | e dP(a) = | " ®@dP(a) for Ype N .
6,(y) = ¢,(y)— ¢(y) = 0. Then, the resolving deviation f‘® will asymptotically vanish.

7-Lemma 3

If N— cowith neRes’, the zeros of €"(y)are very close to theses of H_(y). Conversely, if
N— cowithne Res™ and N — oo, the solution is y = 0. We can say that the ideal E,—{0} is
asymptotically generated by the zeros of polynomials H (y) and H, ,,(y) /=12,..,d.

If neRes’ and N— o, we can write€"(y) as €'(y)=A"(1"y"—A1"H,(y)). But the leading
term of A""H_(y) is 1and A7"y" — 0. By the continuity of the roots, we can say that the zeros of
€"(y) are very close to theses of H (y). Now, If ne Res and n— oo, €"(y)is has its leading
termof y", and €"(y)isvery closetoy". Solutionis y=0

8-Normalisation of E,

The number of zeros can increase with N. For instance, if K € R, suppose that we have Yf (ka) such
yf(ka) > —o when k—*e for a fixed couple(y,a), then, by Rolle’'s theorem
d"e’® 1 dk" = 9"e" ™ /9a" a" has nzeros. We normalise these zeros (think to the Hermitian

polynomials) to obtain acontinuum. Let y=n.s (y, =s,n,): E, (y) becomes En= E.(n.s).
9-Lemma 4

®,(s) <1 and Z(En) isbounded.

-1If (@,(n.s)—1) €En, ¢, (ks) must converge on Z(En) . But logarithm @, is convex. For every
coordinates,n,, loge,(s,n,) <loge,(s,(n, —1))/ 2+loge,(s,(n, +1))/ 2. Hence:
logg,(s,n,)—logg,(s,(n, 1) <logg,(s,(n, +1)) - loge,(sn,) -

?,(SN,)) 2 0, ()P, (N, —1)s,) = (9, (s.)™ et @,(N.S) 2, (S)" convergeonly if ¢, (s) <1.

VI1- Random variables d-dimensional.

If @(y)isasolution of LPF 8(¢p) = Ofor ad-dimensional density g(s) andq(s) =0 if se dC where
dC isthe edge of thedistribution. Let @(Yy) solution of the transform of PF with density p(S) .

1- Proposition 5

If HO, if g(s) =0 on dC edge of the distribution, we have p(s) = (-s)dq(s)/ ds

From Proposition 2, we have¢(y,a) = 0°p(y,a) / dyoa. Then, if g(s) = 0 on dC, we have the result.
2-HypothesisH1 on real zerosof H,(y) = 9"e"® /da"e™®| _,
H1- Let s, € § be such asH, (n.s,)=0. The repartition limit of S, when n— o has a density

0(S) with respect to the d-dimensional Lebesgue-Steiltjes measure: in a volume dy = n’ds of R*
we have asymptotically dy = n“g(s)ds zeros s, .
Then, n points y, verify H_(y,)=0. Let 0.(Y) :n_ldznewn

3- Proposition 6
Under HO and H1, If it is not masked the Perron Frobénius's density is asymptotically

¢=d
p(a) = T (-a,)0°q(a) / 9a,..0a, .0,

Let t =y/n.Under HO, H1 ¢, (t.n) = n—ldznet* n‘q(s,)ds, — o(t) =] €°q(s)ds.

VIII- Applications



1- the logistic f=A(a—a’)in dimension 1. if 4>A>1 , f apply the compact set
C:[f(/l/4),/l/4] in C. Its resolving deviation is :€}(y)|,.o=Y"'—H,(y) where
H.(y)=H,(JAy/2)(y2Ay)" with the Hermitian polynomias of order n H_ . Hence, the
distribution of the zeros of H,, denoted as t, is asymptotically the semi-circular low of Wigner:

q(t)dt = kvl-t?dt. q1)=q(-1)=0. Thencet =c\/y /v with c=+/A/2andv =+2n+1has

the semi-circular law. The distribution p,(S) of the variable s=y/2n+1 will verify: t = ry/sand:

p,(s)ds=—(dq(t) / dt)dt = kr /(2 s(1- rzs))ds. Then P(S) = 9,(S) . The density of the invariant

measure is a beta law S(1/2,1/2) : p(S) = K"/ \/S(L-r?S) , obtained by Kawamura with the Cunts-
Krieger's algebra, which generalise the well-known result of Ulam and Von Neumann. But this
distribution will be masked if exist attractive cycles according with the valuesof A .

2- First Approach of the Julia’siteration
We prevent the readers that this example doesn’'t pretend characterise the Julia’s sets. Many important
works have been made. Here, we don’'t worry with cycles or resonances, or relations of domination.

Let f(2) =2" +1/4—a’betheiteration de Juliain C[14]. It has 2 fixed points: &, =1/2+a and
a'y, =1/2— o . We denote here with« bold » characters the vectors de R for the complex numbers
a=(ab), ¢ =(o,B)and &, =(a',,b'y)=1/2-«.

Consider the function f(z) a the fixed point a&,; we can write with z=a+a,:
f =(a®-b® + 2a,a— 2bb,2ab + 2a,b + 2b,a) . We can suppose that it applies a compact C in C

by convergent reciprocal iterations. Let W, =@ +b,u=x*+y*,y = (u+Xx)/2uand

6 =+/(u—X)/2u . We denote the orthogonal matrices:

w32 w1
Here, the sign ' design the transposition. Quote that: ' O0,0 = O,
We have the function: 'yf (a)=2 'yL(a) + 'yQ(a):
- thelinear part is ' yL(a) = x(a,a— b,b) + y(a,b + b,a) = pyO,a where O, isorthogonal.
-the Hessian is orthogonal ' yQ(a) = xa’ — xb” + 2yab = i, ‘a0 ,a.
Suppose the eigenvalues of the linear part a, and % are conjugated with a modul e greater than 1.

La Hessian of 'yQ(a) has characteristic equation X +y* — u”> = 0 with 2 eigenvalues, one positive
U, and the other negative —p. Noting y=0Osanda=Ou with u=(u,v) and s=(r,9):

‘yf(a)=2u, 's 'O0,0u + pu® — pv? = 2r(a,u — byv) + 2s(a v + byu) + pu® — pv?

Hence: 'yf(a)=(2ra, + 2thy)u+ pu® +(2ta, — 2rby)v— uv*. Namely: ‘ya='su. In the
orthogonal eigenspaces, the application split into two independent iterations. (2ra, + 2,)u + pu®
and (2ta, — 2rb,)v— uv’. AsO isorthogonal: p=+/r* +s

The resolving deviation gives two Hermitian polynomias: H,((2ra, +2sb,)/ i\/ﬂ)(i \/ﬂ)“
andH, ((2sa, — 2rb,) / \/ﬂ)(\/ﬁ)” . The first is always positive. The zeros of the second follow



asymptotically a semi-circular Law. Thence, (2s@a,—2rb,)/2u (with r,=r/<J2n+1

ands =s/+v2n+1) follows asemi-circular Law. And S,v2n +1 = sgives the distribution.
We change coordinates for &', without modify the distribution. They may be masked locally by cycles
or distributions of f, .
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Chapter 2: Approximation of the zeros

I- Notations, rappelsand hypotheses

1-Leading idea

We search the asymptotic distribution of the real zeros of H, (y) when y — e with n. As Plancherel

and Rotach[ZO] do for the Hermitian polynomials, we represent H_(y)in the field of the complex

e’ ®@da
an

whereT'is a closed poly-disk around the fixed point 0 of f, ae C'. Note

n-1=(n,-Ln,-1..n,—1). cisafinitenon-null constant.

The steepest descent’s method, due to Riemann-Debbie, gives us an approximation of this integral

wheny — . If yisazeroof H_ ,(y), we will hope that the approximation will give this zero. The

method needs many assumptions. If yf (@) is polynomial in a, we can see Pham [19] or Delabaere

numbers with the Cauchy’s d -dimensional integral : H,_,(y) =9"'¢"® /9a"| ., = C-[r

[ 7] for agood formulation.

Definition 1
We call Plancherel-Rotach’s function PRF: vy(a)=yf(a)—nloga where loga is the main

determination of the complex logarithm. Then H,_,(y) =c[. ¢?da

2-Basic notations

y positive of R tend toward the infinite with nand we writey=n.s where y, =n,s,. All
then, — oo . We shall see soon that all the must be equal. Now we can write y(a) = n. (sf (a) — loga)
3-Recallson the steepest descent’s method and assumptions

The approximation of H, ,(y) by the steepest descent’'s method is the finite sum of contributions
2. Q.(a) of al the critica points of y(a). Among these contributions, some of them are
exponentialy negligible. So, we keep only that one of which the real part is the most important. The
approximation can be written (see[ 7] ):

H,,(ns)=Q,(a)=c'e®(L+g(a,n,s)/n’)

Where the function g is bounded when n' depends onn and tends toward infinite. C' isnever null.

A point ais critical point non-null of y(a) if we have dy(a)/da=0 which can be written
a,n.sdf (a)/da, —n, =0. Then ady(a)/da ispolynomia with the same degree than f .

4- Hypotheses: general position

H1- The critical point @ giving the maximum of € is assumed bein general position [7]:
Definition 2

The critical point in general position if it isisolated with finite distance.

Here, for all fixed Sand, it isisolated, unique, (except its complex conjugate) and from the fixed point

0. Itiscalled Morse ‘s point, if it is not degenerated.
H2- A sufficient condition to obtain this maximumis that the Hessian (which is Hermitian) of y(a) is

definite negative at a. Critical points not degenerated areisolated.
Unfortunately, in alot of problems, the Hessian is not definite negative (see V).

H3- n. sf tendstoward —o when the variable N — o to define the Laplace sintegral.

I1- Asymptotic equivalencerelation of thereal zerosof H,_ ,(y) when n— oo

We first identify the equation of the zeros of the approximation, then we study under what conditions,
the distribution of the approximation is asymptotical very near with the zeros of H_(y). The variety
of the situationsis so rich that we examine here only the most common.
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As we are only interesting by the real zeros of H, ,(Yy), we can neglect in the representation Q(a)
all the factors # 0 : that may be functions, constants, etc . Notice that g/n'— 0 when n— oo and
c'#£0in Q@ =c'e@@1+g(an.s1/n)/n"). Then &@is the one and only one factor making
Q(a) null. We write this equivalence Hn_l(y)(z)ey(a) .Then n' hasno importance when N — oo .
1-Lemmal

Almost everywhere (when Hessian isnot null) : Hn_l(Y)an(y) =sn(imy(a))

- Firgt, if H,_,(y)=0, all contributions & ®must be null at critica a=a(y). The polynomial
ady /da=0 has red coefficients. Hence, if ais complex, a is solution, but the contour gives a
negative contribution, then the sum is &® — '@ =J,(y). Let pbe the number of complex

coordinates of a critical point of PRF.

- Conversely, if J (a) =0, we can imagine that another contribution Q,(a) takes the place of Q.
Hence, it can existy and Q, suchas |H,_,(y) =|Q,(a)| =& >0when Q(a) = 0. But, itisimpossible::

Let @' be apoint in asmall neighbourhood of awhere Q is the dominating contribution and such as
Q,is continuous. Suppose that exists Q, as defined above. At a', Q,(a') <Q(a') <&/ 3 because Q
is dominating. Then H,_,(y)=Q(a"). As (a,a') determines a unique couple (y,y') :
[Ho ) <[H o2 () = Ho o (Y)] +[H (YY) In this inequality, we can substitute H,_,by Q or
Q, each time they are dominating: |H,_,(y)| <|Q,(a) — Q(a")| +|Q(a")] <|Q.(a) - Q(a")| + £ / 3, but
|Q.(8) - Q@) <|Qu(a) - ()| +|Q.(a") — Q(a’)| . The continuity of Q induces the contradiction.

2- Comeback totheideal E|

Recal that Z(E,) be the set of common zeros of the polynomias €"(y)=0and
el (y) = 0 ¢=1..d. E,isided of these polynomials. And, if N — cowith ne Res", the zeros of

€"(y) are very close to those have H (y). But, we can study H_(y)even though n¢ Res’. Let
Z(H,) the set of common zeros of the polynomials obtained after writing H () instead of €"(y).
Let Z(J,) bethe set of the common zerosof J,(y)for n-1and N—1+1,, /=12,...d.

11 —Main theorem

1- Theorem 2

If the critical pointa e Z(J,,)isin general position, then :

1 - y(a) depends only on one common index of derivationn, =n. We can writey, =ns, and the
PRFis ny(a) = n(sf (a) — loga) with a =11,a, . The coordinates are defined by the system:
asdf(a)/da, =1 /=p+12,..,d.As f ispolynomial, solutions are algebraic affine manifolds.
Moreover, the resolving deviation€"(y) must be computed only for common derivation n. Thus,
let A = A =|f| bethe determinant of the linear part of f.We have

If |A| <1 theiteration convergesto 0;

If |A| >1 theiteration, if it is not masked, can converge to a distribution defined by Z(J,)

2 - The imaginary parts of the complex coordinates of asatisfy a uniform code of the real zeros,
which are algebraic affine manifolds for all complex coordinates /=12,..,p. These

d — pdimensional many folds are indexed by a code k € [J.,n—l]p and verify
s, Imf,(a)— ¥, =k, / nwith the codek, € (1,...,n—1) . Between two zeros (manifolds Jl,, ) at time
n—1lthereisonezero at timen: then we have a Roll€' s foliation.
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Whenn, — oo
ifx, =limk, /n for £=1,..,p , then K is asymptotically a random uniform vector on the unit cube

N— oo
[0,1]" .Then, The d — pdimensional many folds are indexed by a random vector of [0,1]” — {0} and
define the random equation ‘mq =s,Imf,(a)- 19%‘ (=12,.,p

Remark : It seems possible to extend the results to the rational fractions and analytical functions.
IV- Proof: Analysis of the zeros of J, ()

LetC(a) =Re(y(a)) and Sa)=Im(y(a)) be the real and imaginary parts of y(a) a a.
Let p # O be the number of complex coordinates.
We must find the zeros of Sin(S(a)) . Hence Imn. (sf(a)) — ) = kr .

Proof of point 1
Suppose we found a complex critical point a(y) such as J, (y)=0. As snkS(a)=Ofor al

integersk € N, ais invariant if we multiply y by any integers k. Hence, ky(a)gives the same

critical point athan k'y(a) . We can write ky(a) = k'Z,n,(s,f,(a)—loga,)

But,if ye Z(J,),al changeof n,—1 in n, givesthe same point y foral ¢:

thena,ydf (&) / da, — n, = Obecomes (a, + Aa,)ydf (a+ Aa)/da, —n, +1=0. Dividing y by a

commonn=min(n,) , we obtain by difference [a(a((y/n)af (a)laaé)/aa] Aa=1/nand
Aa = c/n. Then, theintegrand is quite constant:

kY(a) = klzz(nf +1)(S/, f/(a)_ logaﬁ) = kl}/(a"' Aa) + k'Zé(S/X f/,(a+ Aa)_ lOQaf + Aaﬁ,)
(k—Kk)y(@) =k'Z,(s f,(a) - loga,)

Then, with kK—k'=1all then, must beequa: n, =nfor/=12,..,d.

Starting from a point @, , the iterations ™ can tends only toward 0 or Z(J ). But they can be

masked by any distribution of Fix(f,).

2-Lemma 2

If k., =k, /n,thezerosof J, (a) must verify the condition Z,n,(s,Imf,(a)- 4, -k 7)=0

slm f(a) contains only sinus, the arcs of which are linear combinations of multiple integers of 1,

then sim f(a) isperiodic: S(a(® +2k'r)) = S@a(?9)) + 2k'z . Hence, all NS(a(2k'nw))—kr =0 are

solutions. Writing kr = X,nk, 7w where k,, =k, /n,and Yy, =sn, the solutions can be written as
nZ, (s, Imf,(a)— ¥ -k, 7)=0 where p is the number of complex coordinates. Let k, runs over
12,..,n—1, then the solution compounds N —1 distinct points for each complex coordinates.

In particular, =0 such asS(a(0))=0 gives the fixed point and a non-null solution
Z,(s,Imf,(a)—k ) =0. But we don't know if there is other 0= ¢ e (-x,+r)". If such a solution

exists, we cannot have C(a)=0, becausea=0. Asae Z(J,), we examine now a complex

coordinatea, , when n, —1 becomes n,, the others k # ¢ remaining constant.
3- Proof of point 2
If yeZ(J,),theny remainsinvariant when only n, —1 becomes n,. The equation of the complex

a,, ayof(a)/da, =n, becomes a,ydf (a)/da, —n, +1=0, the other equations don’t move. The
critical point a becomes a+ Aa. If we normalise the equations by the common n, we have again :
[a(a(yaf (a)laae)/aa] Aa=A and |Aa<cA

Now, the equation Zin(s Imf (@9 - kcj n)=0 becomes
Zn'(sIimf(a)-v'-k'; 1)=0

where n'; =n;if j#/and n', =n, +1
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k'y =k if j#/¢ and k', =nk, /(n, +1)for therange of k,+anew point: n,/(n, +1)

By difference we obtain ; 0S(a + pAa) / daAa+s,Im f,(a+ Aa)- k', 7 - 6k'. # =0

where n,6k isthe point when the range change from (1,n, —1)to (Ln,)

Examine the quantitydS(a+ pAa)/odaAa. As o0S(@)/da=0a the critica point a, then
|0S(a+ pAa) /98| < [0”S(a + pAa) / 9a° | uAal We obtain
|oImS(a+ pAa)/ daAa| < c'|Aaj<c'c/n

Then, s,Imf,(a)-6, — k,m — 0 with nk_ running over (1,n,).

This is true for all complex coordinates and , when n islarge, we have the result.

We obtain a uniform code by k_ of coordinates of real zeros of €® sinS(a). Note that a n+1 -th

zero is between two n-th zeros. If O is the unique solution of Im(sf(a))— ¥ =0, the order

N +1manifolds can’t intersect order N manifolds. Then we have a Rolle' s foliation
Suppose now that N — oo

Wehaveadready s, = Lijpoy( In, x, = Li_)r[loké for /=1,.,p;

Let ¥ arandom vector with uniform repartition on the unit cube

equations, Imf,(a)— ¥, =k /n,)tendtos, Imf,(a)- ¢, =x,n

4- Complex or real coordinatesof a,

The question is to know how vary the number p of complex coordinates of a, with S. We know
some results in the 1-dimensiona case. Criterions are condition as 0<s<c"z. In the
multidimensional case, we obtain criterions with via the Morse's theory [18], which can explain the
Stokes' s phenomena.

2- Examples

- One-dimensional case

a, depends only on s=y/n:adf(a)/da-1/s=0 and the equation of zeros is
(simf(a,)-v,)/ 7 =K .thenq(s)ds = Prob{1 zéroe (s,s+ds)} = f(a,)ds/

- Case of acycle

Let acycle: f®(0)=0with f*(0)=c, 20 pour k=12,.,p—1. A point «, of this cycle is
fixed point for the application f(Pas f™(a,)=¢,. If exists a critical point  a, of
y(a) =¢sf P (a)—loga we can have a probability distribution. But this distribution will move at
each iteration and be cyclical asin a Markov process.

e(/la—a2/2)da
= .[F a.n

The PR function [11] givesfor t = A/+/4n = cos®: Hn_l(l)isin[ﬁ—sin(Zﬁ)/Z] when A —> oo

-Hermitian case: f =Aa-a’/2:cH,_,(1)= co"lgha-a'2) 192" 120

under the condition A*—4n<0. The density of zeros of tis the semi-circular low :
p(t)dt = (1— cos(28))dv / = (2/ w)V1-t*dt .

Demonstration that seems more explicative than the theorem of Sturm.

-r-Hermitiancase: f =Aa—a' /r .

We write the PR function y(z)=Az-2Z'/r—tlogz and the critica point is solution of the
Lambert’s[9] equation of zy'(z)=Az—-7z -t =0.

If r =3 and if we usethe Fourier’s transform, the characteristic function isthe Airy’s function.
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- Quadratic case in R?: f(a)=Aa+Q(a) : Q(a) is quadratic. We can diagonalize yQ with
transformation orthogonal a = Oyu . In this basis, the volume is invariant, thennloga = nlogu. The
function y(a) isy(u)=yAOu, + T(uu?—nlogu,), the eigenvalues U, are solutions of
|yQ(a) — pl| = 0. The semi circular low is generated by each coordinate having a (, < 0. Moreover,

the distributions are independent in orthogonal eigenspaces. The equations L, =0 give zones where
the number p of complex coordinates remains constant.

3- Relations of domination and distributions masked
- We have now atool to explicit the relations of domination between the distributions imputed to each

point Fix(f). Consider without loss of generality two fixed points: ¢¢ for fand o, for f™:
For fixed N, apoint Sof amanifold I, solution at o verifiesthed + p following equations:
dy,(@)/da, =0, /=12,.,d

Imy. (@=kzx/n, (=12,.p
The firstd equations are generally a bijection between a and s, Then® (for eachk,) others imply
n® manifolds d — pdimensiona L, .
We can do the same considerations to compute a point 5, on amanifold [, ., solution at o, , but with

p,instead of p.

Consider now the intersection of all these manifolds Jf, - ML, » ijf supposing we are in the Rolle’s

(m) !
foliation case. We can write now ¥, (S) instead of 7, (a) on J..
At a point s, one of 2 functions, exp(y,(s)) or exp(y .« (S)), must exponentialy dominate the

other. Then, the dominated iteration is masked. Avery important case for classify the region with
constant domination is the surfaces defined by y (S) = 7, (S) We can classify in this category the

Stokes phenomena or all random manifolds like the Julid siteration.
We shall apply this method of domination to EDP or EDO.

V- Linear degeneracy of the Hessian

0*y(a)/dada definite implies that yo?f(a)/dada must be definite at the critical point. The
discriminant of yf(a): ‘yazf(a)/aaaa‘will degenerate in two distinguish situations: this arrive for
particular values (time to time )of Yy or structurally, when the rank of yo?f(a)/dada islessthan d.

1- The from timeto time degener acy

The determinant is a homogeneous polynomial in y ‘yazf(a)/ aaz‘with a degree d. This

polynomial can vanish when one or more eigenvalues vanish. This equation cut the space in regions
where the eigenval ues of the Hessian keeps a constant sign. For instance, in dimension 2 without |oss

of generality, if f is quadratic, with two quadrics: Q=Q(c,3,7) = a” + 23ab + yb® and
Q'=Q(x',B',y"). The Hessian of yf where y=(Xy): XQ+yQ' has the determinant
(ay — BP)X* +(a'y'= B?)Y + (ay +o'y'= 28B")xy . Its cancellation gives two straight lines of
time-to-time degeneracy.

1- the structural degeneracy

More difficult is the structural degeneracy when, at the critical point, y(a) has abloc of coordinates
which depends on the others. We use here a bold notation of the vectors of R? with two spaces R
and R™": a=(a,b)with ac R°andb e R*". The structural degeneracy appears each time when
b depend functionally ona, without a depends onbin the equations a.dy(a.)/da=0. The
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Hessian is now functionally degenerated. Then the Hessian is function only of a of R”. The method
of the steepest descent must be modified. Unfortunately, we don’t know a good book about that.

Unlike the literature on the chaos, which imputes these phenomena the non-linearity, linearity will
induce many complicated situations, or exhibit some auto-similar structures and many effects masked
by the probability’s calculus. The most elementary case studied here is that where f is partly linear.

This case gives afirst explication of the “ esthetical” chaos [10] .

2-Definition 3

Theiteration f issaid partly linear if f islinear in band nonlinear in a.

Notations

We can writethat: f(a) = f (a,b) = h(a)b+ g(a) where gisapolynomia applicationof R in R®
and h is a polynomia matrix (d,d—p) in a each element of which apply R” in R®. Here
polynomia means non linear. At the fixed point 0:g(0) =0. The linear part of f at O is supposed
diagonalized  real: h(0) = (0,A") and 0g(0)/oa=(4,0). We can  write
f(a)=(la+A(a)b+ B(a),A'b+C(a)b+ D(a)) where theA(a),C(a) have al at least degree 1
and the B(a),D(a) at least degree 2. Note a=(a,b) and n =(n,n’), y=(X,y), ay =ax+by and
yf (a) = yh(a)b + yg(a) .. The function of Plancherel-Rotachin a is:

Ny(a) = yh(a)b+ yg(a) - nloga—n'logh. That relative a at the critical point sh(a,)b, =1 is:
7.(a) = nlog(yh(a)) + yg(a) - nloga.

Note y=ns and lloga = /E:Ioga( and llogsh(a) = ;Zpillogsm(a) .

The resolving deviation can  be written: €7 (&, Y)agpo = X" Y = H, 0 (Y)
with H,_, .(y) = 9" *((yh(a))" €' @)/ 9a"*| ., where the term obtained by n'derivationsin b is

yh@" =y"[(A+xA@)/y]" . Then &7 (0,y) = y" (X"~ H 1. (V) /Y").
The convergence is deeply modified: the density for the d- dimensional Lebesgue's measureis null.
3- Proposition 3
If sh(a) has no real zero, the zeros of H,_,(Yy)tend to a family of algebraic manifolds of dimension p
depending on an random uniformvector of R”for / =1,2,..., p:
mk, =s,Img,(a) + 1Arg(sh, (a)) - ¥,
When, N — o the code k, / n tends asymptotically to a distribution uniformon (0,1)" and gives the

distribution of S by reciprocal image:
The main manifold contains par the fixed point, the others are obtained par iteration of the critical

point.
An important caseis that where h(a) isconstant: 7k, =s,Img,(a) -9,

Werepresent H,_, .(y) by theintegral of contour:
cH, 10 (¥) = [ (Yh(2)"e"® /(a'b)dadb = [. &*"'dadb where

y(a,b) = yf (a) + n'yh(a)— nloga—logb

Le polynomial yh(a) is holomorphic at a. We can construct logyh(a) on a locally connected open
space, but we have many problems with the singularities of yh(a), (number finite of zeros of yh(a) of
null measure) and the monodromy. the equations of the critical point are :
dy(a,b)/db=0yf(a)/db—n'/b=yh(a)—n/b=0

dy(a,b)/da=09yf(a)/da—n/a=0

thence, if we writey,(a) = n'log(yh(a)) + yg(a) — nloga, theequationis:
dy(a,b)/da=dy,(a)=0
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We follow with the coordinatesof N areequal N—1 and n'=n : if the Hessian of y,(@) is definite
negative and if sh(a) don't have rea zero, the critical points a,verify the polynomial equations
dy,(a.)/da=0.

We take ¥, (a)instead of the PRF y(a) = yf(a) - nloga. All isasif n{log(sh(a)) + sy(a)} replace
nsf(a). For afixed s, if we can apply the steepest descent’s method, the following demonstration
will be the same than the precedent where a€ R .

note a = (pe”), S, p) = Imy(a) = simg(a) — 1% + 1Argsh(a)

r=p
then, for fixed S, we have a uniform code with Elsélmg(a)—z‘}[ + 1Argsh,(a) -k, =0

(=12,..,p. Wehave pequationsmaking a asafunction of the variables k, amanifold in RY
with the uniform code «,: 7k, =S, Img,(a) + 1Argsh,(a) — ¢,

Whenn — oo, we obtain a family of random manifolds depending a uniform random p -dimensional
vector.

4-First analysiscritical point a, = (a.,b,)

The Perron Frobenius's operator is defined by Prob(a) = £ Prob(f_*(a)), then when we iterate n

times, we apply f™ . But the critical points are the images by f™ of the critical random point

a = (a,b,).
All the branches are obtained by iterations of the critical point. Thence, the distinct points of cycles
f(M(a) =awill be on these branches. But, heuristicaly, the iterations of a_, are more and more

negligible: iterate f Ntimes, then a_isiterated N times, but f*(a,)only PE(n/ (k +1)) times.

5- Example: the branches of random parabola of Henon [9]

The iteration of Henon without resonance f(a,a’) ischaracteristic of the phenomena:
a=b+ya-wa’, b=Ba. A a=(ab), we takey=(xYy)>0. We write
yf(a,b)=x(b+ya-aa’®)+yBa  and the resolving  deviaion  for n=n'
ef(ay)= a“[eay - ey”a)]/aa“ =x"(y"—H, ((xy +yB) /N20x)) where H_ is a Hermitian
polynomial . Under the condition ‘xy +yB)/ m)‘ >|y|, then, t=xy +ypB)/~/20 follows the

semi circular low. If the initial space we have branches of random parabola following (1/2,1/2) .
We must iterate the critical point to obtain the whole random curve. Roughly speaking, in a
neighbourhood of the point 0, we obtain random ‘parabola and we can calculate the mean and the
variance. In the resonant cases, we must consider the intersection of parabola with the equation of
resonance. Rest to examine the decreasing of the branches with the iterations...
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Chapter |11 — Applications: PDE, ODE, etc.

|- Introduction, notations and definitions

Many physical problems can be written with the differential equation da/dt = F(a), where F(a) is
an application of R in R®. In this equation, the unknown variables are a vector a of R? and the
known variables are a vector t =(q,t,) of R™. The vectorq=(q,..,q,..0_) € R™™ is the

position and t, € R" is the time. The number of equations equals the numbers of unknown variables
a. We reserve the index ¢/ =12,..d to the unknown a and the index i =1,2,.K to the known
twith d>Kk.

We trangdlate the differential equation as differential iteration to use our methods. As in numerical
calculus, we define :

1- Definition 1

A differential iteration is the application f(a,8) of R in R?, defined by f (a,8) = a+ §F(a) for all
fixed §, >3 >0 of R™.

Starting from an initial position a(0) = (a,(t(0))) at t(0) =(q(0),0), we iterate f(a,d)with a path
din al directions, with the particularity that, when f(a,d)is iteratedn times, 6 will depend on n.

Let § be a small fixed vector of R™. When we iterate ne N° times f(a,8), we link § to
n:d, =t /n. The solution a(t) of the differential equations can be obtained whenn — co . We don't
study here the frontier's problems. The main reference on these questions is Arnold[l] and [2] .In
order to use the previous results, we define:

2- HypothesisH

We assume the previous hypothesis of chapter 1and 2. Quickly said: the polynomial applicationF
iterates a compact set C  R? in C and we can apply the steepest descent’s method to f (a,5) .

But here, we shall see how the steepest descent’ s method can be managed.

3- Difficulties for the probabilistic approach under H

We want determine the conditions of convergence toward an asymptotic distribution and the
distribution induced. But, if we apply all the previous results to f (a,0) under H, the distribution will

depend on § . What isthelimit of the asymptotic invariant set of zeros S; when ¢ vary?

We shall proof in the following that, when the Hessian of F is definite, then the invariant set S() is
reduce to fixed points and cycles. The degeneracy of the Hessian can induce a random variable with a
complicated behaviour. The case is only studied here when theiteration is partly linear f(a,0).

For ODE, we recall that some deterministic theorems, as the Poincare-Bendixon’s, give asymptotic
behaviours, but can’t be used beyond the dimension 2. One of these theorems says that, if F is
Lipschitzian, starting from a point of this compact, we have a local solution, but does not give any
information about the behaviour when t — oo

4 - Problem of notation’s coherence with definitions

We shall see a problem when the t — o as the convergence toward some set can depend on the

direction 7 of t, we must choose a direction 7 = limt /1t] with [t =Zt,. Hence, 6 =7t|//n—>0

In the case of the ODE or when al the variablesq are bounded, thent = 1.

5- Partly linear F

Definition 2

Theiteration f(a,0) issaid partly linear if F ispartly linear.
6- Notation
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As in chapter 2-V, we denote: F(a) = (Aa+ A(a)b + B(a),A'b+ C(a)b + D(a))
wherea = (a,b) withae R” andb € R*”. Thelinear part of F is (Aa, A'b) and all other polynomials
have a degree greater than 2.

We denote a=u+aand u=(u,Vv) inR’" and y=(x,y)eR?. The PRF of f(ad) is
y.(a) = yf(a,6)—nloga.

For every zero ¢ of F, we define a partly linear iteration: G, (u) = (u+7AU+a)v,v) a & and
the PRF 7, of G,(a) isyg, (a) = x(a+7A(u+a))+yb—nloga—nlogb.

At 0:G(a) =(a+7A(a)b,b)andy.(a) = x(a+ tA(a)) + yo—nloga—nlogb O

and have G, is v

I1- Theorem 3

If the differential iteration f(a,8)=a+d&F(a), applying Cc R" in C for all§, >8>0 with
d=|t|]r/n—0in R**is polynomial and apply a compact Cin C with two fixed points 0,c € C,
and verify the hypotheses H of chapter1 and chapter2:

1--The invariant distribution dominates the fixed point according to A7 be positive or negative . In
the EDO case, the condition XA > 0 implies the convergence toward if there is no other dominating
distribution. In the case of the PDE, the planes A7 = 0 get big gaps. If 7 =1, we have the classical
resonance.

2-- If the Hessian of yF (@) is definite, there exists, besides the fixed points of F , only cyclical orbits
with uniform density and period T such as jg F(a(t +t,)dt =0, Vt,.

3- If F ispartlylinear, then asymptotically

the critical pointa = (a,b) dey(a) can tend the critical point of either y(a)at O or ¥, at a.
Thence, we can find the asymptotic invariant solution among the solutions of each iteration G, (&) .
As G, arepartly linear, we have families of random manifolds by iteration of the critical point.
4--According with Re(xtA(a)B) is positive or negative at critical point, we shall take the
distribution at O or at o that gets get the greatest contribution of the steepest descent’ s method. The
critical pointsrealisng Re(xtA(a)B) = 0 can induce a route of communication between thetwo sets.
The proof is guided by the geometry of the attractor of Lorenz.

1- Proof of point 1: conditions of convergence
The read eigenvdues p of the linear pat of f(a,0) denoted A=1+pd verify

|(0F(0)/9a)— Al| = 0. As in chapter 1, we write the resolving deviation of the iteration f(a,8) :
e(y,8) =y —H,(v,6) with H,(y,8)=0"e"®" /da"|,.,. For al fixed § >0, we can write :
e (y,8)=y"—p"H, (v,0)/ p" =0 whenn— . H, (y,0)/ p"hasitsleading term equal 1.

when N—oo: p" =(1+A5)" = €™ with t=8=7|t|/n, provided that |t|/n is bounded. That
expression tend toward infinite, 0 or 1 according to At = X,A,7, be positive, negative or null. Then,
the zeros of H (S, p)givethelimit or not.

In the case of the PDE, consider At = 0. Thedirection 7 can vary and becomes At = 0. The process
can enter in resonance and conversely. Then, we can observe big gaps in the behaviour.

Note that even though the fixed point is repulsive, it can exist attractive cycles which mask these facts.
2—Proof of point 2: Cyclesor fixed points when the Hessian does not degener ate.

- Non-cyclical case; we study now the zeros of H, ,(Yy,8) by the steepest descent’s method. We

search the critical points of the PRF with: y(a,8) = ya+ 8yf (a,6) — nloga whered = z|t|/n. At
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Oe Fix(f) the domainS(d) is determined by the critica points of y(a,d), provided that
y(a,8) = —o when (y,n) — o and the Hessian be definite negative. The equations of the critical
point & are a,0ya.,0)/da, =y,a +doyF(a)/da,—n=0, /=22,.d.if § >0 and Nn— oo,
y,8, —n— 0 and a, isrea. Thereis no probabilistic invariant distribution.

- Cyclical case:

f"(a,8) = a . We observethat, if § — Oindependently of n, the cycles disappear .

But, we remark for any cycle K: f™(a,8) = f"(a,8) + 6F o f"(a,6) = afor al ae K, because
we have the limit f((a,0) = f"(a,0) = a when N— oo . Nevertheless, for dl§ =t/n>0, we
can eventually found solutions with period T such as lim f™(a,T /n) = a. Inthe ODE case, as each

point is matched once per periodT , the asymptotic density is uniform. Moreover, the recurrence’s
relation can be written: of ™ (,8) /98 = [ 1+ 6F o f¥(a,8) [of "V(a,6)/ 95 + F o f"(a,5).

k=n-1
When 6 —0, we have by recurrencefor dlaeK: (1/n)k_Z_OFof(k)(a,5)—>0 and

asymptoticaly JOT F(a(t +t,)dt =0, Vt,. In the PDE case, we obtain similar results.

3- Proof of point3: Partly linear differential iteration

We come back to the partly linear differentia iteration (1V-1-5): f(a,0) = a+d6F(a)
withd =|t|z/n. Therea zerosof F arefixed ,isolated pointsof f(a,d), and don't depend on &.
Wedenote @, = (a,b,) with b, =b|t|/n and y, = (X, y,)with y;|t|/n=ysuchas y,b, = yb
f(a,0) = (a+tA(@)b, +d(Aa+ B(@),bin/t[ + (tA'b, + 7C(a)b,) + 6D(@)) . Then, with y; = (X, ¥;):
¥t (a,6) = x[a+ rA@)b, + 5(Aa+ B(@))] + y,[ by + 5(A'b, + C(a)b) +(t|/n)D(a)) ]
Asé,|t|/n— 0, we obtain asymptoticaly yf (a,8) — y,G(a,) = xa+ tA(a)b, + y;b, and , writing
y,binstead of y,, b, to lighten the notation, we have the PRF : v, (a,8) — yG(a)—nloga

This phenomenon localizes the distributions around each zero of F and transformsO in a point fixed
of G(a). Let a = (, ) another zero of F , distinct of 0 : F(a) =(0,0), the translated iteration

(proposition 1) of & f,(a,0) = f(a+a,d) —a will beyet partly linear.
4 - Proof of point4 : route of communication
Let G,(a) = (a+tA(a+ a)b,b) betheasymptoticiteration de f,(a,0) localized en ¢ . We observe

that, for 6 = 0, the asymptotic distribution G, (a)en & isnot thetransiated function of G(a)en O.
As we trandateTa=a+a , Tf, T gives the same invariant measure, then, if f(a,6) — G(a) and
f,(a,6) = G,(a), weshould haveTG, T =G . But, we observe that the iteration computed at o
and trandated to 0 : TG,T '(a)=(a+7tA(@)(b-f),b)=G(a)- (rA(a)B3,0). That can be

explained by the fact that ¢ isnot fixed point of G.
But, for all § # 0, as e is fixed point of f(a,0), f(a,8) and f,(a,d) determine a distribution that

we have examined in the domination problems: the sign of y(a,9) — 7, (a,0) = xtA(a)B gives the
most important contribution.

I11- Examples
1- Deter ministic solutions

- Thelogisticda/dt = x(a—a*). f(a,6) =a+dF(a)=a+da(a—-a’).
We have 2 fixed points a=0anda=1.But,only a=1 has 1- 6o <1. Thelimit isthis point.
- Hamilton's equationsin R*
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- Keeping the notations of the classical mechanics [1] :
dp/dt=-0dH(p,q)/dq ; dq/dt =dH(p,q)/Ip.
These equations are an application of R?* in R when the HamiltonianH is autonomous. With
F=(-dH(p,q)/d9,dH(p,q)/dp), we construct the iteration f(a,6)=a+d6F(a),a=(p,q)
and assume that it applies acompact Cin Cfor all smalld >0.
We search the fixed points (of Lagrange or Trojans) dH(p,q)/dg=0and JH(p,q)/dp=0.
Then, we compute the eigenvalues of the linear part at these fixed points, denoting | the identity
matrix of R"and vanishing the determinant composed with 4 blocks d x d :
1) = d*H19q* -2l —3d°H/adpaq | _

( )‘r J?HIdpdq  FPHIIp - M|
Let y(p,q) =xp—x0dH (p,q)/ dq+yq+yddH (p,q)/ dp—nlogp—nloggbe the PRF. The
invariant density will be seek among imaginary critical points of:
n/gq=y—x560°H [ dq° + yd9°H /9 pdq
n/ p=x-x8°H [ dqdp + y6d°H 19 p
giving the distribution if the Hessian is degenerated except the case of the cycles with a uniform
distribution. Thence JOT dH / dqdt = 0 and JOT JH /dpdt=0.

- k bodieswith mass m, in afield of forcesderived of a potential U(Q)

Hamilton’s equations are:: dp / dt =—dU / dq, dq/ dt = p/ m with coordinates p. / m ;

If we can check the validation of the calculus, the PRF of the differential iteration is:
y(p,q) =xp+yq+ o(—xaU / dq+ yp/ m)—nlog p—nlogq which is composed by two functions
independent: y(p,q) =7o(p) +y1(q) with yo(p) = (xp+dyp/ m—nlog p) and
y1(Q) = (ya - 6xaU / dq-nloga).

Thence the equations of the critical points (p,q) are:

dy 1dp=x—-6x0°U [ dpdq+dy/m-n/p=x+8y/m-n/p=0

dy19dq=y—-6x0°U /3 -n/q=0.

If ¥(p, Q) has a non degenerate Hessian, the system does not have a random solution. After checking
calculus (U(qg)is not polynomial), if the potential is Newtonian, we have cycles or points.

2- Probabilistic solutions

2-1- Lorenz equations ( see [16]for instance)

This equation is very important because the partial linearity of its differential iteration induce an
asymptotic probabilistic solution. It’ s the best example to illustrate the previous results.

- Presentation of the differential iteration and fixed points

We write these equationswith our notations da/dt=F(a), where a=(a,b,c):

(da/dt=0c(b—a); db/dt=pa—b-—ac ;dc/dt=—pc+ab).

With & being thetime, the differential iteration is quadratic and partly linear in a:

(atoo(b—a) ; b+d(pa—b—ac) ; c+6(—pc+ab)) Theiteration applies acompact C in CFor
0, >0 >0 (the phenomenon happens between a hot plane and a cold plane). The fixed points are
zerosof F(a)=0.When p>1and o =./B(p—1), we have three: the point 0 =(0,0,0), and two
symmetrically with thecaxis: ¢, = (or, 0,0’/ B)and . = (-, —ct, 0”1 B).

The eigenvalues equation of the linear part is : (ﬁ+/l)[(0'+/l)(1+2.)—6p] =0 a 0, but
MB+A)(A+0c+A)-a’(A+20)=0a a, orat o_. The coefficients(3, p,0) are assumed such

the three fixed points are repulsive. Hence, we have random distributions around each point fixed. We
don’'t speak here about attractive cycles or resonances. It remains many things to clarify.
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-PRF at the fixed point O

When 6 —» 0 , the differentia iteration tends toward:G(a) =(a; b+ pa-—ac; c+ab).
If y=(xY,2),thePRFis:

y(a) = yG(a) — nLoga— nLogb — nLogc = yG(a,) — nLogabc

Denotingy = ns, with s=(r,s,t) and[@ =T +sp|,

we can write: yG(a)/n=am +bs+ ct—sac+tha= L(a) +Q(a)

with alinear part L(a@) = am + bs+ ct and aquadratic part Q(a) = —sac + tha

As the application is quadratic, we can compute directly with Hermitian polynomials. The Hessian of
G(a)/n hasthe constant quadric Q and the eigenvalues matrix of which T isorthogonal for al a:

0O t -s 0 u u

_ ith - 1
Q= t 0 0 ,Wlth._r:m o7 -t
-s 0 0 tv2 s -s

U isthe positive eigenval ue of the characteristic equation of Q: u(u®—s*—t?)=0.
- Changing basis
The orthogonal application a=Tu avecu = (u,v,w)transforms the 3 factors of the PRF:
y(a)/n=3sG(a)— Logabc = L(a) + Q(a) — Logabc:
-Q(a) becomes —uv? + puw?
-L(a) becomes LTu= puu+aov/ V2+ow/2 .

- Asthe orthogonal transformation T lets invariant the volume of the rectangular parallelepiped abc,
we have Logabc = loguvw .

In the new basis u,y(u)/n=y,(u)+y,(v)+7y;(w) isthe sum of three independent functions:
7,(U)= @u/~2 - pu? —logu , 7,(v) = uv—logv and y,(W) = @w/ /2 + uw? — logw
becomesinbase U : y(u)/n then derivates of which arewith H the Hermitian polynomial:

" exp(@u / N2 — pu?) 1 ou”| o = H, (@ 1 2/11)(—J21)"; 3" exp(uv) 1 V"o = K"

" exp(@w / N2 + pw?) [ W o = H, (@ / 2i Ju)(=i2u)"

Thence, the real zeros of 0"¢’") /du"|,_, are zeros of H, (@ /2\/1).

- Computing thesolution

As we note: dy(u)/du=0y(a)/da.daldu=dy(a)/oaT, critica points of y(a) are theses of
y(u) and conversely. Hence, it is equivalent to compute the resolving deviation

€ @y) a0 =0"(€"-€"®")/0a"|,., in basis a or in basis u. The question is
now: 9"e™ @ [ 9a"| ,_, >>0"(€™)/da"| -, inthe base U ? The point fixed O doesn’t be attractive.
As ya/n=sTu= pu+(r /~/2)(v+w), the derivates thirdn of expsTu are " (r / +/2)*". Thence,
the resolving deviation: 1"[ (r*/2)" = H,(@ / 2/ )H, (@ 21 [u)(i2p)" |

The leading term of the second member of the deviation must be greater than (r”/2)" to obtain the

probabilistic solution. The condition is|@|=|r+sp|>r . Then@/(2%(s* +t?)) follows

asymptotically the Wigner's law. We have afamily of random ovals of law beta 5(1/2,1/2) ,
- Computation at the other fixed points and dominating distributions
We search the distributions around the 2 other fixed points. To compute SG,(a)at o, ( resp.

sG (a)at ) from sG(a)at O, it is enough to change in the differentia iteration a=(a,b,c) in
a+o, =(ab+a,c+a’/p) (resp. a+o_ =(a,b—o,c+a’/B)):
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(a+do(b—a) ; b+d(pa—b—ac) ; c+d(—PBc+ab)). Then sG,(a)=sG(a)-(p-c)+th)
and SG_(a) = sG(a)+ (s(p-c)+th)o .

The two distributions centred in @, and ¢_ dominate the one centred in 0. (S(p-C)+th)=0 is
route of communication between the two others. At o, wetake @, =1 +sp+so” / B +ta instead

of @,and@®_=r+sp+ so? | B—toat o_, toobtain the asymptotic geometry.
- Geometrical inter pretation

The variable random(r + sp)/(23/(s* +t%)) = x gives the distribution of the random ovals at
0,0,,0c.. The plane c=r+Sp intersects the cylinder (c/2y)* =" +t*> with random

radius(c/ 2)’. Such are the first approach of a mathematical study. To complete, we must compute
aso the critical pointsiterates. Thence:

-Proposition 2

An asymptotic solution of the equation of Lorenz is composed by 2 family of random ovals
random(r +sp) / (2Y(s* +1%)) = ¥ with beta law 3(1/2,1/2) , centred on the 2 fixed points ¢,
and o_, linked by the route of communication (S(p - c)+tb) = 0 and the distributions of iterates of
critical points.

2-2 - Navier Stokes equation of and itsrandom ovals
This example isthe same as the Lorenz's case except the fact that 6 is not uni dimensional.
Fefferman[8] , writer of the Clay’s foundation, feels uncomfortable to formalize mathematically The

Navier Stokes equation : prudently, he keeps the concepts of the XIX century where the equations
differentials are expended by Fourier’s series in order to compact the solution. Moreover, the
presentation is trapped by physical considerations, introducing many parameters. In the intention to be
as close as possible with the physical reality? For fear of forgetting something, we neglect a difficulty?
We must admit that the mathematicians have matched many difficulties with the dimension 3 .

In the Navier Stokes equation, the speed U and the pressure p of afluid are the unknown variables

and the known variables are the position X € R" and thetime7 € R* . The divergence must be null.
We have not such considerations here. We take our hypothesis to determine the invariant measure in a

compact set. Nevertheless, we must translate the equations [6]into iteration, thence obtain

oa/ ot = F(a) where the unknown variables are denoted by a, and the known variables by t. The
multiplicity of the variables makes complicated the translation.

-Translating[G] into da/ dt = F(a)

At the beginning, we have as many equations than unknown variables with the divergence null, then,
we introduce as many eguations than unknown intermediary variables :

- the matrix du/ dx = b introduces the unknown intermediary b € R" x R" with an equal number of

j=n
equations. Thence: Zluj&ui / dx; = aby with the matrix U, , composed of 0 and 1, we have:
l:

j=n
-divu= X b, =Ub=0
j=1

- the field of the external forces f,(X,7)= f.(C) is here polynomia (or well approximated by
polynomials) verifying our hypothesis.
We group together all these unknown intermediary linear variables so various as du/dx =D,

j=n j=n
Au, = 2182ui 19x2 = X Jo; /9%, dpldx; =djor gc/dt=1 and we denote that in a block:
1= 1=

0dd/ dt = B where d and B arelinear en (a,b,c)
- The Navier Stokes equation [6] iswritten intermsof da/odt = F(a) :
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daldr =—ab+ Ad + f(c) where A isamatrix with constant coefficients.
dd/odt=B
- Solution
We have obtained a good equation: da/ dt = F(a) with a=(a,b,c,d) and t =(X,7), with alot of
unknown variables linked by linear relations. In the main equations, the only non-linear polynomials
areaband f(C). Thence, the iteration f(a,0)=a+ oF(a)with linearity. Assume that iteration
aply a compactC in C for adlo>0. Withy=(Xy), we can write
P=yF(ab,c,d) :P=x[-ab+Ad+ f(c)] + zc+td + ux and y(a) = P nloga

0 'x 0
Q= x O 0

0 0 xd*f/ot?

The Hessian of P is, if ‘X isthe transposed vector of X:

X9 / 3t being computed at 0. The characteristic equation is: " (u? — |x|*) ‘x&zf /oc® — ul ‘ =0
where Kis such as the total degree of the polynomial equalizes the dimension of the application. The
Hessian is degenerated and has a positive eigenvdue [ =|X|) and a negative u=-|X ; the
movement is situated in the eigenspaces as in the Lorenz case. In dimension 3, we have an orthogonal
matrix as T. We have groups of solutions with ovals depending on the betalaw [(1/2,1/2) , but we
can have independently random sets resulting of the forces f . The analysis of this equation is very
connected to the Lorenz case: the only new elements are the increasing number of fixed points and the
anaysisof f . However, the more important new things are rifts, which can perturb the behaviour.

IV- Reflections on the recurrence of Poincaré or the horizon of Lyapounov ?

Definition

Let Abea measurable set. A point @ issaid recurrent for A, iif for all integers p, exists an integer
k> p suchas: f*(@)eA.

1- Poincar € s theorem says:

If f(a)isa bijectionand preservethe measure u (for all Ac sup p(u) : u(A) = u(f(A)) >0),

Then, for all A < sup p(K) , the points a € A are almost recurrent.

For al smald, >8>0, f(a,6) has a reciproca image. The PF solution is recurrent if exists an

invariant measure. As f(a,8) applies a compact setC of R%in C, this measure exists and all the

points of the support of theinvariant PF distribution are almost recurrent.

Assume that F(a) verify our hypothesis and be partly linear such as the differential iteration be
asymptotically equivaent to G(a) = (a+ tA(a)b,b). The critical points a and their repartition are
reciprocal images of the uniform repartition of the unit hypercube K = (0,1)° compacted with the
point 0. We divide K in cubes x, with edges € =1/ m.

Taking asmall path § such as f(a,d) isinvertible in the compact. We have an invariant measure.
We define the variables t; such as the points a(t;) of f(a,0) belong at least onetimein each k..
tsisthevariable of first matching for each cube «, . For allt <<t the orbit is deterministic .

If t; is sufficiently large such as we have many points in each cells k., then we can apply the
probability calculus and, for alt >>t,, the behaviour will be randomized. We can define 6 = (t;,t,)

as the range between the recurrence of Poincaré and the horizon of Lyapounov. The ergodism allow
us to make calculusasif we draw randomly points in K .
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This conception, nearby the quantum mechanics, gives a transition between determinism and
probability. (see Ghys [8]).

2- Remarksfor the mathematics

- Some asymptotic solutions of a differential equation can be randomized. The probabilistic theory
brings information where the deterministic approach is can’t explain something.

- Curiously, the asymptotic distribution is the same, as for ODE as for PDE, but the conditions of
convergence are very different. In the PDE case, a little variation of the direction 7 can induce great
perturbations.

- Many ideas on the chaos must be corrected: the definition of the chaos, as a situation between
determinism and probability, seems devoid of interest. The multiple errors of approximation making
unpredictable the behaviour are not a good mathematical argument. The notion of sensibility to the
initial conditionsiswithout interest as for a Markov process.

- On the other hand, the degeneracy of the Hessian gets a great importance. This degeneracy remains a
difficult problem. As example, if we have the equationda/ dt = F(a,t) instead of da/dt =F(a),

we can add a new coordinate dt/dt'=1 and a new variable t', but that induce linearity with a
degeneracy of the Hessian, which modifies the results as, we see for the non-autonomous phenomena.
3- Remarksfor the physics

Limits and bounds are essentia for the compactness of the iteration in physics. In many problems, the
position g in t =(q,t")is bounded. The work of Delabaere and Howls [5] induce these conditions
without difficulty. In other problems, the spatial periodicity (par example, equation of Navier-
Stokes[G] ) of the solution a(q,t") = a(q+ et’) isagood circumstance for bound the recurrence.
Bounds concern the majority of the applications of the physics at distance finite.

4- Other equations: with decay a(At) = foa(t)or foa(t) = Aa(t)

These equations determine frequently the semi-invariant curves of iterations of f(a) where A arethe
eigenvalues of the linear part of f . They often present very curious structures (Henon'’ siteration).
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Chapter 4: Resonance
I- Introduction
We speak about an important case, we have avoided until now.
It iswell known that the resonance makes rigid any mechanical system. It is the same for the solutions
of the Perron Frobenius's operator. It is afirst approach of this delicate question.

I1- Hypotheses, definition and notations

Hypothesis: the same as the previous one.

We diagonalize the linear part of f at the fixed point O: of (0)/da = A real.

Definition

We say that there is resonance if exists an integer vector such as A¥=1. We call direction of
resonance &, , thedirection ¢, 1og|A| = 0 in the plane of resonance.

We call group of resonanceG* of order k, the multiplicative subgroup of RY, the dements of
which u verify i =1

As soon as the dimension 3, we can have many vectors kK which verify such arelation, and we obtain
alattice in the plane of resonancexlog|A| = 0. We present here the more simple case where there is

one k minimal A% =1. Thence, we can extend the group G* on R with denoting 1 for the null K, .

The problem
If f apply acompact C in C exists a unique invariant measure, whatever there is resonance or not.

We use the resolving deviation €"(y) = €"(y,0) =y" — H,(y), then, apply the steepest descent to
study the zerosof H_(y). Then We have to computethe set Z(J,).
When resonance, we observe the resolving deviation €*(y)=y* - Hu(Y) where n=gkwith

geN. It has the leading term null. We can obtan by identification d functions
n=kq
o, (y) = EO b, ,¥" vanishing the resolving deviation such as the condition ¢, (y) = ¢ (Y) -

11 -Theorem 4
Let k bethe vector of integers such as =1,
The resolving deviation €*(y) remains invariant under the action of the group G*.

The point critical @ of the PRF verifies the condition of resonance 1= a“*

- Let the resolving deviation €(y) = y* —H(y) when n=gk in the direction of resonance k.
Let e G and a= pu, then, asu™ =1, we have:

e — ") [ guM = 9% (e — &' @) [ 9a™® (9a" | Ju*?) = 9*(e” - @) [ Ja*
- The distribution will verify simultaneously 9%*e"® /gda® =0 for every integer ¢ and
"¢ @ [ 9a"* = Ofor all multi indexes such as N, =n. The PRF for d*&"® /ga™ =0 can be
written: qu(a)=yf(a)—(qk+1)|oga=yf(a)—q(loga"+1/q|oga). When q— e,
Y«(@) - sf(@)—loga“ with s=y/q. If we compare this result with the PRF for the

functiony, (a) — y(a) = sf(a) — loga, we must take loga® =loga for the same distribution, and
conversely.
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