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The effect of a constant and uniform horizontal magnetic field on the flow in a cylindrical cavity heated from
below, with a free surface at the top, is numerically investigated. The azimuthal modes, which usually trigger
convection in a cylinder, are changed by the horizontal magnetic field to oriented modes, either parallel or
perpendicular to the magnetic field direction. The corresponding primary thresholds increase with the Hartmann
number Ha. This increase, however, depends on the structure of the modes and is the weakest for the parallel
modes and the strongest for the perpendicular modes. The changes that affect the evolution of the primary
thresholds with the aspect ratio for nonzero Ha are also emphasized. The nonlinear evolution of the convection
with a horizontal magnetic field is presented through bifurcation diagrams for different values of the Prandtl
number Pr. For Pr = 1 and small values of Ha, the structuring effect of the horizontal magnetic field, which
involves modifications of the flow structures and bifurcation points, is put into light. Results are finally shown
for smaller Pr values corresponding to liquid metals.

DOI: 10.1103/PhysRevE.84.056303 PACS number(s): 47.20.Bp

I. INTRODUCTION

The effect of a magnetic field on convection has been
investigated in situations belonging to various domains, such as
astrophysics, material processing, or, more recently, tokamak
development. In crystal growth processes, the steady magnetic
field is often used to control the convective flow in the melt. The
desired effect of the magnetic field is to damp the convection
and suppress the instabilities and, by the way, to improve the
quality of the obtained crystals.

Ben Hadid et al. [1] and Ben Hadid and Henry [2,3] studied
the effect of a constant magnetic field on the flow in laterally
heated parallelepipedic or cylindrical cavities, corresponding
to horizontal Bridgman crystal growth configurations. They
considered different magnetic field orientations, as well as
different situations for the parallelepipedic geometry: confined
cavity, cavity with a free surface at the top, and cavity with
the upper boundary subjected to surface tension. For the
long cavities (length/height = 4), the magnetic damping is
found to be more effective for the vertical magnetic field. In
addition, the effect of the magnetic field strongly depends
on the configurations studied, i.e., on the cross-section shape
and the boundary conditions. Alboussière et al. [4] analytically
studied the influence of the cross-section shape on the magnetic
damping in the case of long horizontal cavities. They have
shown that, with electrically insulated walls, the damped
convective velocity varies as a function of the Hartmann
number as Ha−2 when the cross section has a horizontal
plane of symmetry and as Ha−1 for nonsymmetrical shapes,
whereas for conductive walls, the damped velocity always
varies as Ha−2. More recently, Henry et al. [5] numerically
studied the directional effect of a magnetic field on the onset of
time-periodic convection in a laterally heated parallelepipedic
cavity. They found that the critical Grashof number and the
frequency at the Hopf bifurcation point exponentially increase
with the Hartmann number, and that the vertical magnetic field
is still the most efficient.

In the Rayleigh-Bénard situation, representative of vertical
Bridgman growth configurations, different studies on the
action of a steady magnetic field have been performed.
Chandrasekhar [6] first made a linear analysis to study the
effect of a vertical magnetic field on convective instabilities
in a fluid layer confined by horizontal walls and heated from
below, showing that the primary threshold varies as Ha2 and the
wave number decreases as Ha−1/3. Benzid et al. [7] recently
extended the study by considering the combined effect of a
high frequency vibration and a constant magnetic field. They
found that the Rayleigh-Bénard system submitted to gravity
and vibrations is systematically stabilized by a magnetic field
perpendicular to the horizontal walls. This stabilization by the
magnetic field is, in particular, effective in microgravity condi-
tions (Ra = 0) where only vibrational g-jitter accelerations are
involved. Touihri et al. [8] numerically investigated the effect
of a constant and uniform magnetic field on the convection
in a confined cylindrical cavity heated from below. They have
shown that the vertical magnetic field is more efficient than the
horizontal field, but that the horizontal field gives interesting
modifications of the flow patterns and bifurcation diagrams
due to the breaking of some symmetries. Houchens et al. [9]
extended these results toward larger Hartmann numbers in
the case of a vertical magnetic field. They developed two
linear analyses: first, a hybrid approach, which combines an
analytical solution for the Hartmann layer with a numerical
solution for the rest of the liquid domain, and then a second
approach, which involves an analytical asymptotic solution for
large Ha. They concluded that the combination of the hybrid
approach, the asymptotic analysis, and the fully numerical
study of Touihri et al. [8] provides accurate linear results
for values of Ha from zero to infinity. Walker et al. [10]
also presented a linear analysis on the effect of a steady,
uniform, vertical magnetic field on the buoyant convection
during the liquid-encapsulated Czochralski growth process.
Their calculations concerned two fluids: indium-phosphide
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(InP) melt and gallium-arsenide (GaAs) melt. They concluded
that, for the weak magnetic fields, the critical Rayleigh number
variation in both cases is close to that for the Rayleigh-Bénard
instability in a cylindrical cavity. For the stronger fields, in
contrast, the critical Rayleigh number for GaAs is higher than
for InP because convective heat transfer in the GaAs base flow
reduces the vertical temperature gradient.

In this paper, we present a numerical study on the effect
of a constant and uniform horizontal magnetic field on the
convection in a cylindrical cavity heated from below with a
free surface at the top. The pure thermal situation (Ha = 0)
was treated by a linear approach by Vrentas et al. [11] and
Dauby et al. [12] and extended in the companion paper [13]
toward larger parameter ranges and nonlinear analyses. Our
results on the effect of the horizontal magnetic field are first
presented through stability diagrams giving the evolution of
the primary thresholds as a function of the Hartmann number
and the aspect ratio of the cavity. The nonlinear evolution of
the convection is then given through bifurcation diagrams: the
structuring effect of a weak magnetic field is studied for Pr = 1
and the further influence of moderate fields is considered for
a small Pr value.

II. PHYSICAL MODEL AND NUMERICAL METHODS

We consider an incompressible liquid layer contained in a
vertical cylindrical cavity that is placed in a constant magnetic
field. The cavity has aspect ratio A = Rd/H , where Rd is
the radius of the cavity and H is its height (Fig. 1). The
lower end of the cylinder is assumed isothermal and held
at the temperature Tb; a Newton law −λ∂zT = h(T − Tg)
expresses the heat exchange between the liquid free surface
and the ambient gas (λ is the liquid thermal conductivity,
h the heat exchange coefficient, and Tg the temperature of
the ambient gas); and the vertical sidewalls are considered as
adiabatic. The fluid is assumed to be Newtonian with constant
physical properties (kinematic viscosity ν, thermal diffusivity
κ , electric conductivity σe, density ρ), except for the density in

z

A

1

y
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FIG. 1. Schematic diagram of the cylindrical cavity.

the buoyancy term, which, in the Boussinesq approximation,
depends linearly on temperature ρ = ρref[1 − β(T − Tref)],
where β is the thermal expansion coefficient, Tref is a reference
temperature, and ρref is the value of the density at Tref.
The free surface is flat and subject to a surface tension
σ , which is assumed to vary linearly with the temperature
σ = σref[1 + γ (T − Tref)], where σref is the surface tension
at Tref and γ is constant. According to Moreau [14], in
most laboratory experiments using molten metals, the induced
magnetic field is negligible, so that the applied magnetic field
B = |B| eB can be considered as the effective magnetic field.
The imposed thermal conditions generate a conductive rest
state, which corresponds to a linear temperature profile along
the vertical coordinate

T (z̄) = − Bi

1 + Bi
(Tb − Tg)

z̄

H
+ Tb, (1)

with a temperature at the upper surface of the layer Tt =
−Bi (Tb − Tg)/(1 + Bi) + Tb and, thus, a temperature differ-
ence across the layer 
T = Tb − Tt = Bi (Tb − Tg)/(1 + Bi).
In these expressions, Bi is the Biot number defined as
Bi = h H/λ.

The convective motion is governed by the Navier-Stokes
equations coupled to an energy equation. Using H , H 2/κ ,
κ/H , ρrefκ

2/H 2, 
T , κ|B|, and σeκ|B|/H as scales for
length, time, velocity, pressure, temperature, induced electric
potential, and induced current, respectively, these equations
take the following form:

∇ · u = 0, (2a)
∂tu + (u · ∇) u = −∇p + Pr ∇2u + Pr Ra θez

+ Pr Ha2 j × eB, (2b)
∂tθ + (u · ∇) θ = ∇2θ, (2c)

where ez and eB are unit vectors in the vertical direction
and in the direction of B, respectively. In the equation of
motion (2b), the body force Pr Ha2 j × eB is the Lorentz
force that results from the interaction between the induced
electric current density j and the applied magnetic field B.
The dimensionless electric current density j is given by Ohm’s
law for a moving fluid:

j = −∇φe + u × eB, (3)

where φe is the dimensionless electric potential. By combining
the continuity equation for j ,∇. j = 0, and Ohm’s law
[Eq. (3)], we obtain the dimensionless equation governing the
electric potential:

∇2φe = eB.(∇ × u). (4)

We impose no-slip boundary conditions along the rigid bottom
and lateral walls. The lateral walls are thermally insulating,
while a constant temperature is maintained on the bottom.
Along the rigid bottom at z = 0, we thus obtain u = v = w =
0, θ = 1, and along the lateral walls at r = A, u = v = w =
∂rθ = 0. Along the free surface, the normal velocity w is zero
and the stress equilibrium gives the boundary conditions for
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u and v, whereas the heat exchange law gives the boundary
condition for θ . At the free surface at z = 1, we thus obtain

∂u

∂z
− Ma

∂θ

∂x
= ∂v

∂z
− Ma

∂θ

∂y
= ∂θ

∂z
+ Biθ + 1 = w = 0.

(5)

The nondimensional parameters arising from the scaling of
the equations are the Rayleigh number Ra = (βg
T H 3/νκ),
the Prandtl number Pr = ν/κ , the Marangoni number Ma =
(
T Hσrefγ /ρνκ), the Biot number already defined, and the
Hartmann number Ha = |B| H√

σe/νρm. The dimensionless
variables are the velocity vector u = (u,v,w) [defined along
the (x,y,z) coordinates], the pressure p, and the temperature θ ,
and the dimensionless conductive temperature profile is given
by θ (z) = 1 − z.

The governing equations are solved in the three-
dimensional cylindrical domain using a spectral element
method. The solutions are obtained by time integration or by
steady state solving through a Newton method. A continuation
method allows us to follow the solution branches as well as
the primary or secondary bifurcation points. Details on the
methods are given in the companion paper [13].

Compared to the case without magnetic field (see the
companion paper [13]), the calculation of the perturbation
kinetic energy budget at critical parameter values will now
involve the energy dissipation related to the magnetic forces
Emagn, which is defined as

Emagn = Re

(∫


Pr Ha2 ( j ′ × eB) u′∗ d

)
. (6)

The perturbation kinetic energy at threshold, normalized by
−Evisc = |Evisc|, will be

E′
shear + E′

buoy + E′
Mar + E′

magn = 1. (7)

For primary thresholds and for Ma = 0, we get

E′
buoy + E′

magn = 1. (8)

If Ra is factored out of the buoyancy energy term so that
E′

buoy = Ra E′′
buoy, Eq. (8) at marginal stability can be rewritten

as

Rac E′′
buoy = 1 − E′

magn, (9)

which leads to

Rac

Rac,0
=

Rbuoy︷ ︸︸ ︷(
E′′

buoy0

E′′
buoy

) Rmagn︷ ︸︸ ︷
(1 − E′

magn) , (10)

where the values with the subscript 0 refer to the case where
Ha = 0.

III. RESULTS

The results presented in this paper have been obtained
for particular values of the Biot and Marangoni numbers,
Bi = 100 and Ma = 0, corresponding to an almost fixed
temperature at the upper surface and to the absence of surface
tension. We consider a constant horizontal magnetic field along
the y direction, which has both a stabilizing effect on the

TABLE I. Tests of numerical accuracy for Pr = 0.0286: The
secondary bifurcation threshold RaS2 and Hopf bifurcation threshold
RaH1 of Fig. 14 are given as a function of the mesh size.

Mesh (Nxy × Nz)

(337 × 11) (521 × 13) (745 × 17)

RaS2 1739 1750 1747
RaH1 1646 1632 1632

convection and an influence on the flow structures due to
symmetry changes.

We will first define the different primary modes that are
obtained when a horizontal magnetic field is applied, and
then study the variation of their thresholds with respect to the
aspect ratio A and the Hartmann number Ha. Concerning the
nonlinear dynamics, we will compute bifurcation diagrams for
Pr = 1 and Ha = 1 and analyze how the horizontal magnetic
field modifies the characteristics of the bifurcations. Finally,
we will consider smaller values of the Prandtl number (as
Pr = 0.0286) characteristic of molten metal, and present the
dynamics in this case, without and with an applied horizontal
magnetic field.

The same mesh refinement, corresponding to (Nxy × Nz) =
(337 × 11), has been used for all the calculations in this paper.
This mesh has been validated in the companion paper [13] for
Pr = 1 and without magnetic field. Precision tests have been
performed for Pr = 0.0286 on the values of the secondary
S2 and Hopf H1 bifurcation points (Table I). We see that the
mesh corresponding to (337 × 11) points gives a precision of
about 1% for these thresholds. Concerning the influence of
the magnetic field, the range of Ha values used in this paper is
limited, so that we can keep the same mesh refinement. Indeed,
for the primary thresholds, which did not need such a mesh
refinement for Ha = 0, the Hartmann number does not exceed
the value Ha = 30, and for the nonlinear calculations, the
values used are still smaller and correspond to Ha = 1 and 10.

A. Onset of convection: Evolution of primary thresholds
and flow structures

As mentioned in the companion paper [13], the way the
convection will develop above the critical threshold will
depend on the symmetries of the system. The horizontal
magnetic field defines a preferential direction and then does
not allow the azimuthal invariance found for the convection
in a cylinder. More precisely, when a horizontal magnetic
field is applied, the initial O(2) symmetry group, valid for
convection in a cylindrical cavity with a free surface, is
changed to a Z2 × Z2 ≡ D2 group. This D2 group corresponds
to the reflection symmetries with respect to two vertical planes
containing the vertical axis of the cylinder, the plane containing
the direction of the magnetic field denoted as P‖, and the plane
perpendicular to this direction denoted as P⊥.

Due to these symmetry changes, the Fourier modes found
without magnetic field are changed when a horizontal magnetic
field is applied. For example, as illustrated in Fig. 2, the
first three Fourier modes m = 0, 1, and 2 give five distinct
modes denoted as m = 0/2‖, 2a , 0/2⊥, 1‖, and 1⊥. The m = 1
mode, which was defined to within a rotation without magnetic
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direction of eB�

FIG. 2. Variation of the first three Fourier modes when a horizontal magnetic field is applied. The figure shows the three modes m = 0, 1,
and 2 for Ha = 0 (the modes m = 1 and 2 are defined to within a rotation), and the different possible modes m = 0/2‖, 2a , 0/2⊥, 1‖, and 1⊥
for Ha 	= 0. Both modes m = 0 and 2 can evolve into m = 0/2‖ or 0/2⊥ modes; it is in fact the more unstable of these two modes without
magnetic field that will evolve into the m = 0/2‖ mode, and the other mode will evolve into the m = 0/2⊥ mode. The plots give the isovalues
of the vertical velocity at midheight in the cavity.

field, gives the two modes m = 1‖ and 1⊥, which have rolls
with their axis, respectively, parallel and perpendicular to the
magnetic field direction. These new modes break one of the
reflection symmetries of the D2 group and keep the other
symmetry. Concerning the two other modes m = 0 and 2, there
is a connection between their evolution when a horizontal
magnetic field is applied. Indeed, the axisymmetric mode
m = 0 (which can not keep the axisymmetry with a horizontal
magnetic field) is changed into either an m = 0/2‖ mode or an
m = 0/2⊥ mode, whereas the m = 2 mode (defined to within a
rotation without magnetic field) gives two modes: a first mode
denoted as m = 2a , which has its two zero vertical velocity
planes oriented along the main horizontal directions x and
y (this mode is the only one that breaks both symmetries
with respect to the P‖ and P⊥ planes), and a second mode,
which is either the m = 0/2⊥ mode or the m = 0/2‖ mode.
These changes of the modes m = 0 and 2 due to the horizontal
magnetic field are depicted in Fig. 3, which shows the variation
with the aspect ratio of the critical thresholds for the modes
m = 0 and 2 (without magnetic field) and for the modes
m = 0/2‖, 0/2⊥, and 2a when the magnetic field corresponds
to Ha = 3. These thresholds Rac are expressed as Rac − Ra0,
i.e., the difference with respect to the threshold Ra0 of the
m = 0 mode for Ha = 0. We see that the critical curves of
the m = 0 and 2 modes intersect at A ≈ 0.9, whereas those of
the m = 0/2‖, 0/2⊥, and 2a modes do not intersect. The reason
is that, without magnetic field, the two modes m = 0 and 2
have different symmetries, which allows their critical curves
to intersect, whereas the modes m = 0/2‖ and 0/2⊥ (which
are issued from either the m = 0 mode or the m = 2 mode)
have identical symmetries as they both keep the symmetries
of the D2 group, and their critical curves can not intersect.
Figure 3 also clearly shows that the m = 0/2‖ mode comes
from the m = 2 mode for A < 0.9 and from the m = 0 mode
for A > 0.9. This indicates that this m = 0/2‖ mode, which is
little stabilized because the magnetic field is parallel to the roll

axis, comes from the one of the two m = 0 and 2 modes, which
is first critical for Ha = 0. The m = 0/2⊥ mode, in contrast,
comes from the one of the two modes that is the more stable
for Ha = 0, i.e., the m = 0 mode for A < 0.9 and the m = 2
mode for A > 0.9.

The influence of the cylinder aspect ratio on the primary
thresholds in a situation with a horizontal magnetic field is
shown in Fig. 4 for Ha = 3. We see that the dominant modes
are those corresponding to rolls with their axis parallel to
the magnetic field direction, namely, the m = 1‖ mode for

FIG. 3. Primary thresholds for the modes m = 0 and 2 without
magnetic field (Ha = 0) and for the modes m = 0/2‖, 0/2⊥, and 2a

into which they evolve when a horizontal magnetic field is applied
(Ha = 3 for this figure). These thresholds Rac are given as a function
of the cavity aspect ratio A and expressed by Rac − Ra0, i.e., the
difference with the threshold Ra0 of the m = 0 mode for Ha = 0.
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FIG. 4. Variation of the thresholds Rac for the primary modes as
a function of the aspect ratio A in a case with a horizontal magnetic
field (Ha = 3).

0.5 < A < 1.05 and the m = 0/2‖ mode for 1.05 < A < 1.5.
In contrast, the modes corresponding to rolls with their axis
perpendicular to the magnetic field direction have larger
thresholds. At Ha = 3, the critical curves for the modes m = 1‖
and 1⊥ have quite similar variations with the aspect ratio A.
Minimum values are reached at A ≈ 0.9 and a change of
curvature (corresponding to a change in the number of rolls
from 1 to 3) takes place at A ≈ 1.075. As seen before, the
critical curves for the three m = 0/2‖, 2a , and 0/2⊥ modes
do not intersect. The curve for the m = 2a mode (which has
been generated from the curve of the m = 2 mode at Ha = 0)
is in-between the curves for the m = 0/2‖ and 0/2⊥ modes. It
is very close to the curve of the m = 0/2‖ mode for A < 0.8
and very close to that of the m = 0/2⊥ mode for A > 1.2,
whereas it evolves differently in the intermediate range of A,
i.e., around the intersection point of the m = 0 and 2 modes at
Ha = 0. Note that these curves obtained for Ha = 3 are very
close to each other. They will indeed become more and more
separate for higher values of the Hartmann number.

The influence of the Hartmann number Ha on the critical
thresholds Rac for the primary modes is shown more in details
in Fig. 5 for A = 1.5. All the different curves emerging
from the first three thresholds at Ha = 0 (successively for the
m = 0, 1, and 2 modes) increase with Ha, which indicates a
general stabilizing influence of the magnetic field. The modes,
however, are differently stabilized. The modes corresponding
to rolls with their axis perpendicular to the magnetic field
direction are strongly stabilized; those corresponding to rolls
with their axis parallel to the magnetic field direction have a
weaker stabilization, and the m = 2a mode has an intermediate
stabilization. Note that the more selective stabilization by the
horizontal magnetic field is obtained for the m = 1 mode, with
the largest initial stabilization for the m = 1⊥ mode and the
weakest for the m = 1‖ mode. The stronger stabilization of
the m = 0/2‖ mode compared to the m = 1‖ mode explains
the shift of the intersection point of the dominant modes

FIG. 5. Stabilization of the first three critical modes by a
horizontal magnetic field in a cavity with A = 1.5. The thresholds
Rac are given as a function of Ha for Ha � 5. Insets show vertical
velocity contours at midheight in the cavity for the different modes in
order of appearance at Ha = 1 (left insets) and Ha = 5 (right insets).

toward stronger values of A as Ha is increased: for example,
this intersection point is changed from A = 0.9 for Ha = 0
to A = 1.05 for Ha = 3. These different evolutions of the
modes with increasing Ha may induce crossings between the
critical curves, except that the curves of m = 0/2‖, 2a , and
0/2⊥ modes can not cross each other. Note that Fig. 5 also
clearly shows how the modes are changed when the horizontal
magnetic field is applied for A = 1.5. The dominant m = 0
mode is changed into an m = 0/2‖ mode, the m = 1 mode,
defined to within a rotation, gives both the m = 1‖ and 1⊥
modes, the thresholds of which progressively separate when
Ha is increased, and the m = 2 mode, also defined to within
a rotation, gives the m = 2a and 0/2⊥ modes, which more
slowly separate. From the plots given as insets for Ha = 1
and 5 in Fig. 5, we see that the flow structures for Ha = 1
have specific orientations (either parallel or perpendicular
to the magnetic field direction), but are not much changed
compared to the case without magnetic field (the mode m = 0
is almost axisymmetric, and the modes that have split are still
similar). In contrast, for Ha = 5, we see that all the modes
have evolved. The parallel modes have rolls (with their axis
parallel to B) that are elongated in the direction of B, two
rolls for the m = 0/2‖ mode and three rolls for the m = 1‖
mode. The m = 1⊥ mode has rolls with a common axis (the
x axis, which is perpendicular to B), a main roll with a size
equal to the diameter of the cavity, and two, less expected,
counter-rotating rolls closer to the lateral wall. This flow
structure looks quite similar to that of an m = 3 mode. Finally,
the modes coming from the m = 2 modes have less changed,
although the two-roll structure of the m = 0/2⊥ mode becomes
more visible.

The influence of the Hartmann number on the primary
thresholds is also shown in Fig. 6 for A = 1. In that case, the
first destabilized mode at Ha = 0 is the m = 1 mode, before
the m = 0 and 2 modes. The stabilization of the modes can
be observed in this figure in a larger range of Ha. The parallel
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FIG. 6. Stabilization of the first three critical modes by a
horizontal magnetic field in a cavity with A = 1. The thresholds
Rac are given as a function of Ha for Ha � 25.

modes m = 1‖ and 0/2‖ are similarly and weakly stabilized,
with almost parallel variations of the critical curves. The
m = 2a and 1⊥ modes are better stabilized and their critical
curves also have close evolutions. Finally, the best stabilization
is obtained for the m = 0/2⊥ mode. These different critical
curves can be fitted by expressions of the form

Rac − Rac,0

Rac,0
≈ a × 10−3Hab. (11)

Such polynomial expressions were found to fit the numerical
data quite accurately over the range of Ha studied. The values
of the prefactor a and the exponent b are given in Table II for
the different instability modes. We can see that the powers of
Ha are between 1.35 and 1.95. The smallest powers of Ha are
obtained for the parallel modes; in fact, the m = 1‖ mode has a
larger value of the exponent b than the m = 0/2‖ mode, but this
effect is counterbalanced by a smaller value of the prefactor
a. Larger powers of Ha are obtained for the intermediate
modes, and here also the larger value of b for the m = 2a

mode compared to the m = 1⊥ mode is counterbalanced by
a smaller value of a. Finally, the strongest power of Ha is
obtained for the m = 0/2⊥ mode.

TABLE II. Values of the prefactor a and the power of Ha b for the
polynomial expressions of the form [Rac − Rac(Ha = 0)]/Rac(Ha =
0) ≈ a × 10−3Hab, which best fit the stability curves as a function of
Ha for the different instability modes. The results have been obtained
for A = 1, Bi = 100, and Ma = 0.

m = 1‖ m = 0/2‖ m = 2a m = 1⊥ m = 0/2⊥

a 4.95 6.74 8.35 12.12 11.45
b 1.45 1.35 1.75 1.70 1.95

FIG. 7. Variation of the magnetic energy contribution E′
magn to

the perturbation kinetic energy budget as a function of the Hartmann
number for the modes m = 1‖, 2a , and 0/2⊥ in a cavity with A = 1.

We will analyze these three different evolutions of the
thresholds by the calculation of the perturbation kinetic energy
budget for the modes m = 1‖, 2a , and 0/2⊥. In Fig. 7, we give
the variation of the magnetic energy contribution E′

magn with
the Hartmann number for these three modes. As expected,
E′

magn is negative, indicating a stabilizing influence of the
magnetic energy term, and this influence increases as Ha is
increased. Up to Ha = 25, this magnetic energy term remains
small for the case of the m = 1‖ mode, reaching about 30%
of the viscous energy term, but it is much stronger for the two
other cases, reaching about 150% of the viscous energy term
for the case of the m = 2a mode and even more than 400% for
the case of the m = 0/2⊥ mode. The energetic contributions
to the critical Rayleigh number, Rbuoy and Rmagn, calculated
according to Eq. (10) are given as a function of Ha for the same
three modes in Fig. 8. In all cases, the main energetic contri-
bution to the critical Rayleigh number is the magnetic contri-
bution, but the buoyancy contribution also plays a role. The
magnetic contribution increases with Ha, but at Ha = 25, the
slope of the variation has already begun to decrease. The values
reached at Ha = 25 are close above 1.3, 2.5, and 5 for the
m = 1‖, 2a , and 0/2⊥ modes, respectively. The buoyancy con-
tribution, which is induced by the changes of the flow structure
with the magnetic field, is weaker. Its initial variation is slow
and can even be slightly decreasing (down to 0.98) for the m =
0/2⊥ modes. The values reached at Ha = 25 are, respectively,
1.16, 1.31, and 1.37 for the three modes, which give relative
contributions Rbuoy/Rmagn equal to 88.3%, 51.5%, and 26.4%.
Thus, the relative contribution of the buoyancy energy is the
strongest in the cases where the stabilization is the weakest.

The symmetry changes from O(2) to D2, which occur
when a horizontal magnetic field is applied, will affect the
characteristics of the primary bifurcations. The transcritical
bifurcation associated with the axisymmetric m = 0 mode
will remain transcritical as the two new possible modes
m = 0/2‖ and 0/2⊥ do not break any symmetry of the D2
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(a) (b) (c)

FIG. 8. Variation of the energetic contributions to the critical Rayleigh number Rbuoy and Rmagn [calculated according to (10)] as a function
of Ha for the modes (a) m = 1‖, (b) m = 2a , and (c) m = 0/2⊥ in a cavity with A = 1.

group. The same type of modes are triggered at one of the
bifurcations issued from the m = 2 threshold at Ha = 0, so
that this bifurcation is also transcritical. These transcritical
bifurcations, associated with a single eigenvalue, generate
two different branches: a stable supercritical branch and an
unstable subcritical branch, which will be later stabilized at
a saddle-node point. In contrast, the bifurcations associated
with the m = 1‖, 1⊥, and 2a modes are pitchfork bifurcations
as they break at least one of the D2 symmetries. These
bifurcations are no more circular pitchfork bifurcations (as
they were without magnetic field) because of the loss of the
rotational invariance, and they are associated with a single
eigenvalue. These symmetry changes will also affect the
secondary bifurcations, in particular, those which, at Ha = 0,
connect the axisymmetric solution to the m = 0/2 solutions.
As the axisymmetric solution is already transformed into
an m = 0/2 solution by the horizontal magnetic field, these
secondary bifurcations will disappear and be replaced by
imperfect bifurcations. More precisions will be given in the
next section during the study of the bifurcation diagrams.

B. Dynamics of the convection for a weak magnetic
field at Pr = 1

In the companion paper [13], the nonlinear dynamics
of the convection in a cylindrical cavity was presented in
a case where the primary mode was axisymmetric. Two
axisymmetric solution branches with different dynamics were
obtained. In this paper, we first consider the same configuration
corresponding to A = 1.5, Pr = 1, Ma = 0, and Bi = 100, and
impose a constant horizontal magnetic field in the y direction.
A small value of the Hartmann number, Ha = 1, is chosen
so as to focus on the modifications induced by the symmetry
changes from O(2) to D2.

The vertical velocity at the center of the cavity w0 was
plotted in the bifurcation diagrams without magnetic field
because all the solutions defined to within a rotation (those
initiated by the m = 1 and 2 modes) appeared as a single
point in this diagram. w0 is less adapted in the case with

magnetic field because the different solutions that separate
under the influence of the magnetic field remain close in this
representation, particularly for small Hartmann numbers. In
order to best portray the features of the bifurcation diagram
with magnetic field, we then chose to plot the vertical velocity
wl at a fixed spatial location outside the cylinder axis. Finally,
note that we use solid (dashed) lines in the bifurcation diagrams
to indicate linearly stable (unstable) steady solutions.

1. Bifurcation diagram

The thermally stratified motionless basic flow is stable up
to RaP0‖ = 1222, where a transcritical bifurcation to m = 0/2‖
states occurs. These states are characterized by two rolls, the
axes of which are parallel to the magnetic field direction. At
this point, two different branches of solutions are produced.
The branch with wl < 0 ( wl > 0) is supercritical ( subcritical)
and corresponds to states with downflow (upflow) along the
cylinder axis. As in the case without magnetic field, the
subcritical branch quickly undergoes a saddle-node bifurcation
where it is stabilized. The corresponding hysteresis is too small
to be visible on the bifurcation diagrams. The next primary
bifurcations that affect the basic flow are first those related
to the m = 1‖ and 1⊥ modes, which result from the splitting
of the bifurcation to the m = 1 mode obtained at Ha = 0.
These bifurcations occur at RaP1‖ = 1422 and RaP1⊥ = 1434,
respectively. The splitting of the m = 2 mode obtained at
Ha = 0 then gives two other primary bifurcations related to
the modes m = 2a and 0/2⊥, which occur at RaP2a = 1471
and RaP2⊥ = 1472, respectively.

As expected from the linear results, RaP1‖ < RaP1⊥ . Con-
cerning the other bifurcations, we have to note that, in the
case chosen (A = 1.5), the threshold corresponding to the
m = 0 mode is below that corresponding to the m = 2 mode
for Ha = 0. It is why the m = 0/2‖ mode comes from the
m = 0 mode, whereas the m = 2a mode (less stabilized) and
the m = 0/2⊥ mode are obtained from the m = 2 mode. Note
also that because of the small value of Ha (Ha = 1), the modes
that split still have close thresholds. All the branches obtained
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FIG. 9. Bifurcation diagram for the supercritical part of the
axisymmetric branch for a cavity with A = 1.5 when a weak magnetic
field (Ha = 1) is applied (Pr = 1). This diagram involves the splitting
of an original pitchfork secondary bifurcation. Insets show vertical
velocity contours at midheight in the cavity.

from the primary modes m = 1‖, 1⊥, 2a , and 0/2⊥ have been
found to remain unstable in the Ra range studied.

The supercritical m = 0/2‖ branch shown in Fig. 9 remains
stable up to RaS1⊥ = 10 061 where a secondary pitchfork
bifurcation associated with m = 1⊥ perturbations occurs.
Another pitchfork bifurcation now associated with m = 1‖
perturbations occurs for a slightly larger Rayleigh number
at RaS1‖ = 10 087 [see Fig. 10(a)]. In fact, by changing the
symmetry of the problem from O(2) to D2, the horizontal
magnetic field induces the splitting of the double multiplicity
zero eigenvalue at RaS1 , which was associated with an m = 1
mode defined to within a rotation. The circular pitchfork
bifurcation at RaS1 is thus split into two successive pitchfork
bifurcations at RaS1⊥ and RaS1‖ . This splitting is shown in
Fig. 10(b), which has been obtained by following S1⊥ and S1‖
down to Ha = 0. We clearly see how the horizontal magnetic
field progressively splits the thresholds of the m = 1⊥ and 1‖

(a) (b)

FIG. 10. (a) Zoom of the two pitchfork secondary bifurcation
points S1⊥ and S1‖ on the supercritical branch of the m = 0/2‖ solu-
tion for Ha = 1 together with the corresponding critical perturbations.
(b) Splitting of the pitchfork secondary bifurcation point RaS1 into
the two points RaS1⊥ and RaS1‖ when a horizontal magnetic field
is applied (0 � Ha � 1). Branches of m = 0/1⊥ and 0/1‖ solutions
will be generated at these points, respectively. The results have been
obtained for A = 1.5 and Pr = 1.

FIG. 11. Bifurcation diagram for the subcritical part of the
axisymmetric branch for a cavity with A = 1.5 when a weak
magnetic field (Ha = 1) is applied (Pr = 1). The complex behavior is
the result of the unfolding of an original subcritical circular pitchfork
secondary bifurcation. Insets show vertical velocity contours at
midheight in the cavity.

modes as Ha is increased. Note that both thresholds decrease as
Ha is increased and that the decrease is smaller for the m = 1‖
mode. As was the bifurcation at S1, these bifurcations at S1⊥
and S1‖ are subcritical. They produce unstable branches of m =
0/1 states, which differ by their symmetry properties as they
break a different symmetry of the D2 group. These branches
evolve in a similar way as the m = 0/1 branch in the case
without magnetic field and eventually connect with m = 0/2
solution branches at RaS

′
1⊥

= 5657 and RaS
′
1‖

= 5848. During

this evolution, the m = 0/1 solutions progressively recover
both symmetries of the D2 group. The new m = 0/2⊥ and 0/2‖
branches acquire stability for decreasing Ra at saddle-node
bifurcations at Ra = 2428 (almost identical values for the two
branches), and remain stable up to Hopf bifurcation points at
RaH1⊥ = 8362 and RaH1‖ = 8462, respectively.

Except for the very small interval between P0‖ and the
accompanying saddle-node bifurcation, the subcritical m =
0/2‖ branch, shown in Fig. 11, remains stable up to Ra = 7573,
where the curve reverses direction at a saddle-node point. Note
that this initial stability range is much reduced compared to
the case without magnetic field, where the loss of stability
occurred at RaS2 = 12 513. The branch is further stabilized
at a second saddle-node point at Ra = 2123, and becomes
unstable again at RaU1‖ = 3942 before a restabilization at
RaU2‖ = 14 881. The branch is then definitively destabilized
via a Hopf bifurcation at RaH2‖ = 17 322. All the solutions on
this branch are m = 0/2‖ states, but the nonaxisymmetry of
these states is more and more revealed as we progress along
the branch. Compared to the case without magnetic field, we
can see that these states belong now to a primary branch and
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(a) (b)

FIG. 12. Growth rate of the critical perturbations that stabilize the (a) m = 0/2‖ and (b) m = 0/2⊥ branches at U2‖ and U2⊥ , respectively,
in the bifurcation diagram of Fig. 11. The parameters are A = 1.5, Ha = 1, Pr = 1.

that this branch is characterized by the presence of saddle-node
points. We will later see that these characteristics are typical
of a subcritical circular pitchfork bifurcation, which becomes
imperfect. In the present case, the imperfection is connected to
the horizontal magnetic field, which, by breaking the rotational
invariance, changes the symmetry from O(2) to D2. Note also
that, as in the case without magnetic field, the destabilization
and restabilization of the m = 0/2‖ branch at RaU1‖ and
RaU2‖ , respectively, is connected to the same perturbation. The
amplification rate of this perturbation, shown in Fig. 12(a),
has a similar bell shape as for Ha = 0. There exists also
another branch, which is disconnected from the main branch
and corresponds to m = 0/2⊥ states. This branch reverses
direction at a saddle-node point corresponding to a small
value of Ra, but remains unstable and acquires stability only
beyond a steady bifurcation at RaU2⊥ = 14 942 before a further
destabilization via a Hopf bifurcation at RaH2⊥ = 17 029.
The plot of the amplification rate of the critical perturbation
involved at RaU2⊥ is given in Fig. 12(b) for the branch portion
containing U2⊥ (the critical perturbation corresponds to an
m = 2a mode). The evolution of the amplification rate looks
similar to what was obtained on the m = 0/2‖ branch. The
amplification rate, however, remains positive for the small
values of Ra close to the saddle node, so that the m = 0/2⊥
branch is not stabilized in this Ra range.

We can summarize the results obtained for Ma = 0, Bi =
100, Pr = 1 in a cylinder with aspect ratio A = 1.5 submitted
to a magnetic field with Ha = 1. Convection appears at a
transcritical bifurcation as an m = 0/2‖ mode, i.e., as a
couple of rolls aligned with the magnetic field direction. The
supercritical branch goes through two close bifurcation points
at which two distinct branches of m = 0/1‖ and 0/1⊥ states
appear. These solutions evolve until m = 0/2‖ and 0/2⊥ states
are reached, which are further stabilized at saddle-node points.
The subcritical branch remains stable up to a saddle-node
point and regains stability at a second saddle-node point.
It is accompanied by a disconnected branch of m = 0/2⊥
states that reverses direction at a saddle-node point close to
the saddle-node point of the subcritical branch but remains

unstable. We then see that the change in symmetry from O(2)
to D2 due to the magnetic field induces the splitting of the
circular pitchfork bifurcation at RaS1 (which connected the ax-
isymmetric solution with m = 0/1 states) into two successive
pitchfork bifurcations (at which one of the D2 symmetries is
lost). In contrast, the circular pitchfork bifurcation at RaS2 ,
which connected the axisymmetric solution with m = 0/2
states, disappears because the primary flow with magnetic field
is already an m = 0/2 state. The corresponding evolution of
the branches with the appearance of a saddle-node point and a
disconnected branch will be studied in the next section. Note,
finally, that the point at which the supercritical primary branch
becomes unstable is only slightly modified by the magnetic
field at Ha = 1 (the relative variation between RaS1 and RaS1⊥
is less than 0.3%), whereas for the subcritical branch, the
corresponding relative variation between the bifurcation point
at RaS2 and the saddle-node point appearing with magnetic
field is about 40%.

2. Unfolding of the subcritical circular pitchfork bifurcations

One of the more interesting changes that was observed in the
nonlinear dynamics of the convection problem when a weak
horizontal magnetic field is applied, i.e., when the symmetry
of the problem is changed from O(2) to D2, is the unfolding of
the subcritical circular pitchfork bifurcation where a secondary
branch of m = 0/2 states appears for Ha = 0. The amplitude
equations that describe this unfolding are given by

dA

dt
= μA + |A|2A − |A|4A + ε, (12)

where A is a complex variable, μ is the threshold distance
(Ra − Rac)/Rac, and ε (0 < ε � 1) measures the weak
influence of the horizontal magnetic field. With A expressed
as A = Reiφ (with R > 0), we get

dR

dt
= μR + R3 − R5 + ε cos φ, (13)

dφ

dt
= −ε sin φ

R
. (14)
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FIG. 13. Theoretical model showing the unfolding of a subcritical circular pitchfork bifurcation. The bifurcation diagrams give the amplitude
R as a function of the continuation parameter μ for different values of the imperfection parameter ε. For ε = 0, the bifurcation is perfect
and produces a circle of equivalent solutions. For ε 	= 0, the bifurcation becomes imperfect and the changes in the diagram increase with
increasing ε.

According to (14), for ε = 0, the zeros of these equations
are those of μR + R3 − R5 = 0 and are defined for any
φ ∈ [0,2π ]. Moreover, the direction of φ is a neutral direction
for these zeros. For ε 	= 0, the zeros are only obtained for φ = 0
and π . For φ = 0, they are solutions of μR + R3 − R5 + ε =
0 and stable in the direction of φ, whereas for φ = π ,
they are solutions of μR + R3 − R5 − ε = 0 and unstable
in the direction of φ. All the zeros for φ = 0 and π can
also be considered as those of μR + R3 − R5 + ε = 0, if we
choose R � 0 for φ = 0 and R � 0 for φ = π . The solutions
are represented in this way in Fig. 13.

The change of the subcritical circular pitchfork bifurcation
when ε is increased is shown in Fig. 13. For ε = 0 (case without
horizontal magnetic field), there exist circles of equivalent
solutions defined to within a rotation φ [represented on the
diagram by the two solutions for φ = 0 (R > 0) and φ = π

(R < 0)]. We see that a circle of unstable solutions appears
subcritically at a circular pitchfork bifurcation at μ = 0, and
these solutions are stabilized at a saddle-node point. For ε 	= 0
(case with a horizontal magnetic field), only two branches of
solutions are kept, the branch for φ = 0 (R > 0) and the branch
for φ = π (R < 0), and these branches are now disconnected

due to the disappearance of the bifurcation at μ = 0. The
branch with R > 0, which is connected with the stable part
of the basic solution at ε = 0, keeps the stability properties
of the corresponding solutions at ε = 0 because this branch
is attractive in the φ direction. For a small value of ε (as
ε = 0.002), this branch has two saddle-node points; it is one
time unstable beyond the first saddle-node point and retrieves
stability beyond the second saddle-node point. In contrast,
the other branch with R < 0 (connected with the unstable
part of the basic solution at ε = 0) is one time more unstable
than the corresponding solutions at ε = 0 because it is now
unstable in the φ direction. The former subcritical part of the
branch becomes two time unstable in continuity with the part
coming from the basic solution (at small negative R), and the
part of the branch beyond the saddle-node point becomes one
time unstable. When ε is further increased, the two branches
become more and more separate due to the strong changes of
the curves in the vicinity of μ = 0. The two saddle-node points
on the upper branch also get closer and will collapse close
above ε = 0.1, giving a continuously stable upper branch. At
this stage, the initial characteristics of the system at ε = 0 are
completely lost.
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C. Dynamics of the convection in a liquid metal

The influence of a horizontal magnetic field is now
considered for the convection in a liquid metal characterized
by a small Prandtl number (0.01 < Pr < 0.05). The particular
value Pr = 0.0286 corresponding to liquid gallium has been
chosen. Two cases will be presented in the following sections, a
first case (for A = 1.5) corresponding to a transcritical primary
bifurcation and a second case (for A = 0.5) corresponding to
a supercritical primary bifurcation.

1. Magnetic field effect on the convection induced at a
transcritical primary bifurcation

The bifurcation diagram obtained without magnetic field
(Ha = 0) for the convection in a cavity of aspect ratio A =
1.5 for Pr = 0.0286, Bi = 100, and Ma = 0 is presented in
Fig. 14. As shown in the companion paper [13], the primary
bifurcation for A = 1.5 is a transcritical bifurcation associated
with a single eigenvalue, which occurs at RaP0 = 1213. Two
distinct stable branches of axisymmetric solutions appear at
this point: a subcritical branch with upflow at the center of the
cavity and a supercritical branch with downflow at the center
of the cavity. The supercritical m = 0 branch is stable up to
RaS1 = 1391, where a circular pitchfork bifurcation associated
with a couple of m = 2 perturbations occurs. The resulting
circle of stable m = 0/2 branches (defined to within a rotation)
is further destabilized via a Hopf bifurcation at RaH1 = 1646.
In contrast, the subcritical m = 0 branch is destabilized by a
couple of m = 3 perturbations at RaS2 = 1739. The resulting
circle of m = 0/3 branches is stable in a small Ra range, up
to RaS ′

2
= 1742, where it is destabilized by a shifted m = 3

P0

S1

H1

S2

S′
2

H2

FIG. 14. Bifurcation diagram for a liquid metal (Pr = 0.0286) in
a cavity with A = 1.5 in a case without magnetic field (Ha = 0).
On the supercritical axisymmetric branch, transition to an m = 0/2
branch beyond a circular pitchfork bifurcation S1. On the subcritical
axisymmetric branch, transitions to m = 0/3 states. Hopf bifurcations
finally destabilize the steady flow branches. Insets show vertical
velocity contours at midheight in the cavity.

P0

H1

S2

S2H2

FIG. 15. Bifurcation diagram for a liquid metal (Pr = 0.0286) in
a cavity with A = 1.5 when a horizontal magnetic field is applied
(Ha = 10). Note the unfolding of the bifurcation S1 obtained for
Ha = 0 and the change of S2 to S2‖ . Insets show vertical velocity
contours at midheight in the cavity.

perturbation. The new stable branch is eventually destabilized
via a Hopf bifurcation at RaH2 = 2643.

As shown in Sec. III A, the presence of a horizontal
magnetic field will change the primary axisymmetric m = 0
mode to an m = 0/2‖ mode. If the changes of the flow fields
remain weak for a small value of Ha (as Ha � 1), they
become more important for sufficiently large values of Ha,
as Ha = 10. The bifurcation diagram obtained for Ha = 10
is shown in Fig. 15. As expected, the primary bifurcation is
delayed. It occurs at RaP0‖ = 1497, at a transcritical bifurcation
where two distinct branches of m = 0/2‖ solutions appear. The
supercritical branch remains stable up to a Hopf bifurcation
point at RaH1‖ = 1811. The secondary bifurcation obtained for
Ha = 0 at RaS1 , which changed the symmetry of the solutions
from O(2) to D2, was to disappear in the presence of a
horizontal magnetic field as the symmetry of the problem is
already changed to D2. But, we can see that, for Ha = 10,
there even remains no memory of this early bifurcation
at S1 as the solution directly moves toward the point H1‖
without exploring the neighborhood of S1. The disconnected
branch corresponding to m = 0/2⊥ solutions is unstable. For
Ha = 10, this branch has moved far away from the stable
branch and, as we will see later, it lies outside the Ra range
plotted in the figure.

The subcritical branch is also changed by the horizontal
magnetic field. This branch, which corresponds to m = 0/2‖
solutions with upflow at the center, remains stable in a larger
range of Ra than for Ha = 0, as the point S2 is moved up to
S2‖ at RaS2‖ = 2447, where a pitchfork bifurcation associated
with an m = 3‖ perturbation occurs. Note that the point S2 is
in fact split to the two points S2‖ and S2⊥ when the horizontal
magnetic field is applied, but RaS2⊥ is already far above RaS2‖
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P0

H1

S2⊥

S2

H1⊥

H2

S1
SN

S2

S2

FIG. 16. Paths of the main bifurcation points found in the
bifurcation diagrams of Figs. 14 and 15 for 0 � Ha � 10 (Pr =
0.0286, A = 1.5).

for Ha = 10. The two new branches initiated at S2‖ (only one
of them is plotted on the bifurcation diagram) correspond to
solutions with only one plane of symmetry, the vertical central
plane perpendicular to the direction of the imposed magnetic
field. The new solutions denoted as m = 0/2/3‖ solutions are
stable up to a steady bifurcation point S ′′

2‖ at RaS ′′
2‖

= 2804.
The branches then reverse direction at a saddle-node point and
remain unstable. The bifurcation at S ′′

2‖ is subcritical, so that
the branches initiated at this point and that go through a Hopf
bifurcation point H ′

2‖ are unstable.
The transition between these two diagrams is depicted in

Fig. 16 through the paths of the bifurcation points as a function
of Ha. As expected, the primary bifurcation threshold RaP0‖

continuously increases for increasing Ha, which corresponds
to a delayed onset of the convection. The secondary bifurcation
on the supercritical primary branch at RaS1 disappears as soon
as Ha is nonzero. The point S1, however, becomes a saddle-
node point on a disconnected branch. The path of this point
denoted as SN shows a very strong increase with Ha, with
RaSN already reaching 3000 for a value of Ha smaller than 6.
The Hopf bifurcation that appeared on the secondary branches
at RaH1 for Ha = 0 gives two distinct Hopf bifurcation points
for Ha 	= 0: H1‖ on the supercritical primary branch and H1⊥
on the disconnected branch. After a small initial decrease,
RaH1‖ is slowly stabilized when Ha is increased, in a similar
way as the primary bifurcation at RaP0 . In contrast, RaH1⊥ is
strongly stabilized, but it quickly disappears by collision with
the saddle-node point SN . Concerning the subcritical primary
branch, the circular pitchfork bifurcation at RaS2 gives two
pitchfork bifurcations at RaS2‖ and RaS2⊥ when the horizontal
magnetic field is applied. Both bifurcations are stabilized as
Ha is increased, but beyond Ha = 3, the increase of RaS2⊥ is
much stronger than that of RaS2‖ , and RaS2⊥ reaches 3000 for
a value of Ha smaller than 7. It was not possible to follow
the other bifurcation points S ′

2‖ , H2‖ , and S ′′
2‖ on the whole Ha

range from 0 to 10. S ′
2‖ was obtained only for Ha � 2.2, H2‖

for Ha � 4.6, and S ′′
2‖ for 8.6 � Ha � 10. This means that, for

the secondary branches involved in this part of the diagram,
there is not a simple transition between the results obtained for
Ha = 0 and those obtained for Ha = 10.

2. Magnetic field effect on the convection induced at a
supercritical primary bifurcation

We now consider a smaller aspect ratio cavity (A = 0.5) for
which the first bifurcation is supercritical and associated with
an asymmetric m = 1 mode. The bifurcation diagram without

Ha = 10

(a) (b)

FIG. 17. (a) Bifurcation diagrams for a liquid metal (Pr = 0.0286) in a cavity with A = 0.5 in a case without magnetic field (Ha = 0)
and in a case when a horizontal magnetic field is applied (Ha = 10). The primary bifurcation is either circular pitchfork and associated with
an m = 1 mode (Ha = 0) or pitchfork and associated with an m = 1‖ mode (Ha = 10). (b) Stabilization of the primary bifurcation by the
horizontal magnetic field. Two critical curves corresponding to an m = 1‖ mode (weakly stabilized) and an m = 1⊥ mode (strongly stabilized)
are obtained. Insets show vertical velocity contours at midheight in the cavity.
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magnetic field (Ha = 0) for this configuration is plotted in
Fig. 17(a) for the same parameter values as in the previous
section (Pr = 0.0286, Bi = 100, and Ma = 0). The first
bifurcation is a circular pitchfork bifurcation, which occurs at
Ra = 3180 and leads to an asymmetric one-roll flow structure
(defined to within a rotation). This flow remains stable in the
range of Ra studied (Ra � 6500). As in the previous cases, the
solution branches initiated at other primary bifurcation points
remain unstable and do not interact with the stable solution.

The stabilization of the first primary bifurcation point as a
function of Ha is shown in Fig. 17(b). The initial m = 1 mode
gives two one-roll modes oriented either parallel (m = 1‖) or
perpendicular (m = 1⊥) to the magnetic field. The m = 1‖
mode is clearly less stabilized with a relative increase 
Ra‖ =
0.36 for Ha varying from 0 to 20, whereas the m = 1⊥ mode
is strongly stabilized with 
Ra⊥ = 2.04. The m = 1‖ mode
will then be the first critical mode with a horizontal magnetic
field in this case. The bifurcation diagram obtained when a
horizontal magnetic field is applied (Ha = 10) is also shown in
Fig. 17(a). The onset of the m = 1‖ flow occurs at Ra = 3540 at
a supercritical pitchfork bifurcation (symmetry breaking from
D2 to Z2). The two branches of m = 1‖ states (symmetric from
each other) still remain stable in the studied range of Ra. Note,
finally, that the flow structure has not been changed much by
the horizontal magnetic field, except for the fact that it is now
an oriented flow structure.

IV. CONCLUSION

The effect of a constant horizontal magnetic field on the
development of convection in a cylindrical cavity heated from
below and with a free surface at the top has been investigated.
Such a magnetic field changes the symmetries of the problem
from O(2) to D2, so that the eigenmodes that determine the
convective flow at onset are modified. The axisymmetric mode
is changed to an asymmetric m = 0/2 mode, whereas the other
asymmetric modes that were multiply defined (to within a
rotation) have now only two possible orientations connected
to the direction of the applied magnetic field. The three main
modes (m = 0, 1, and 2) then give five modes: two m = 1
modes (m = 1‖ and m = 1⊥), two m = 0/2 modes (m = 0/2‖
and m = 0/2⊥), and an m = 2 mode (m = 2a).

The effect of the magnetic field on the onset of convection
has been studied by following the paths of the primary bifur-
cation points (expressed as Rac) as a function of the Hartmann

number Ha. It was found that the modes are differently
stabilized, weakly if the axis of the rolls is parallel to B (m = 1‖
and 0/2‖), strongly if the axis of the rolls is perpendicular to
B (m = 1⊥ and 0/2⊥), and moderately for the m = 2a mode.
These stabilizations are mainly due to the stabilizing energy
contribution coming from the Lorentz force, but the change of
the flow structure also gives a contribution to the increase of
Rac through the evolution of the buoyant force. The variation
of the primary thresholds with the aspect ratio of the cavity
has also been studied in a case with magnetic field (Ha = 3).
The more striking result is the interaction between the modes
m = 0 and 2. When the magnetic field is applied, these modes
can not intersect any more. Moreover, the weakly stabilized
m = 0/2‖ mode comes from either the m = 0 mode or the
m = 2 mode, more precisely, from the one of the two modes
that has the smallest threshold for the chosen aspect ratio.

The nonlinear evolution of the convection in the presence
of the horizontal magnetic field has then been studied for
two values of the Prandtl number: Pr = 1 and Pr = 0.0286.
For Pr = 1, the study was focused on a cavity with aspect
ratio A = 1.5, a case where a complex dynamics with strongly
subcritical branches was obtained without magnetic field. The
changes induced by the magnetic field were analyzed for Ha =
1. Convection sets in as an m = 0/2‖ mode so that the former
secondary subcritical bifurcation to such a mode disappears,
giving an imperfect bifurcation, which has been characterized
and modeled. Moreover, the transitions to m = 0/1 solutions
are split into two distinct transitions to m = 0/1‖ and 0/1⊥
solutions, which evolve distinctively but in a similar way. For
Pr = 0.0286, a value corresponding to liquid metals, the effect
of the magnetic field was studied for two aspect ratios A =
1.5 and 0.5 and for Ha = 10. For this Prandtl number, the
dynamical evolutions are a little more simple. For A = 1.5, the
onset of convection as an m = 0/2‖ mode when the magnetic
field is applied still induces the disappearance of the secondary
bifurcation, which was, however, supercritical in this case. For
A = 0.5, the main change is that the stable m = 1 flow is
replaced by a slightly delayed stable m = 1‖ flow.
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