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[1] Subcritical flow in an intersection composed of four similar orthogonal channels has
been studied experimentally in a configuration with two inflows and two outflows for a wide
range of experimental conditions. The results have been used to develop a relationship
between the incoming flow rates and the flow distribution in the two outlet channels, based
on the conservation of discharge and momentum in the intersection, and suitable stage-
discharge relationships for the downstream controls in the outflow channels. A final
equation is provided by an empirical correlation for the outflow in one of the channels,
based on the experimental data obtained from these experiments; this correlation agrees
with all the available data to within 65%. It is shown how the resulting set of equations can
be used to compute the discharge distribution in any similar intersection, given the
incoming flow rates and some form of stage-discharge relationship for the outlet conditions.

Citation: Rivière, N., G. Travin, and R. J. Perkins (2011), Subcritical open channel flows in four branch intersections, Water Resour.
Res., 47, W10517, doi:10.1029/2011WR010504.

1. Introduction
[2] During severe flooding of urban areas, the water in

the streets can reach a depth of a meter or more, resulting in
important economic losses, and possible loss of life. The
prediction of flood propagation in urban areas is required in
order to design suitable protection (possibly by directing the
flood waters to previously identified ‘‘sacrificial’’ zones)
and to develop realistic emergency planning. Geographical
Information Systems now provide detailed descriptions of
street geometry for most urban areas, so it is reasonable to
envisage investigating a wide range of different scenarios
using numerical simulations based on the St. Venant equa-
tions [Inoue et al., 2000; Calenda et al., 2003; Haider
et al., 2003; Mignot et al.,2006; El Kadi Abderrezzak et al.,
2009]. In general, the 1-D St. Venant equations provide a
reasonable model for the flow in individual streets, but they
are not well-suited to model street intersections where the
flow is necessarily strongly three dimensional, and where
the slope of the free surface can be significant. Unfortu-
nately for these numerical simulations, street intersections
often play a crucial role in determining how the incoming
flow is distributed between the outlet channels. There have
been few experimental studies of flow in open channel
intersections, and most published studies have concerned
flow distribution in networks of irrigation channels, where
the intersection is usually formed by the intersection of
three channels (in the form of a T or a Y), and where the
flow regime is subcritical. These intersections function ei-
ther as a convergence, two upstream reaches feeding one
downstream reach, or as a bifurcation, one upstream reach
feeding two downstream reaches. Although this paper

addresses the problem of subcritical flow in four branch
intersections, some of the ideas that are used to model the
flow are based on results obtained for three branch intersec-
tions, so we begin with a review of current research on that
configuration.

1.1. Three Branch Confluence
[3] The general characteristics of subcritical flow merg-

ing in a three branch T junction were investigated experi-
mentally by Weber et al. [2001], and numerically by
Huang et al. [2002]. These studies showed that a three
dimensional recirculating region develops downstream of
the junction, in the axial branch; the extent of this region
varies from the bed to the surface, and has been the subject
of several investigations [Best and Reid, 1984; Hsu et al.,
1998; Gurram et al., 1997; Hager, 1999]. Various 1-D
models have been developed to link the flow distribution
and the water depths for steady subcritical flow in different
configurations of a three branch junction. Most of these
models assume that the depths are identical in the two inlet
channels, just upstream of the junction [e.g., Taylor, 1944;
Webber and Greated,1966; Ramamurthy and Satish, 1988;
Gurram et al., 1997]. This assumption has been confirmed
by experiments in which the ratio of the depths in the main
and branch channels entering the intersection is close to
unity (�5%, þ2% for Hsu et al. [1998]; 1.4% for Weber
et al. [2001]). If the flow is subcritical everywhere, the
depth in the downstream channel is determined by the exit
condition. It only remains, therefore, to compute the depths
in the two upstream channels [Sridharan and Lakshmana-
Rao, 1966]. This can be done by applying a momentum
balance equation to the junction flow, as described by the
previously cited authors, for example. Shabayek et al.
[2002] derived a model which does not rely on the assump-
tion of equal depths in the upstream channels but requires
the solving of more complex equation. Two of the flow
conditions that have been investigated in three branch con-
fluence flows are beyond the scope of this study; the first is
when the recirculating zone downstream of the junction
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2Laboratoire de Mécanique des Fluides et d’Acoustique (LMFA),
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causes a contraction in the channel section, provoking transi-
tion to supercritical flow, as reported by Ramamurthy et al.
[1988] and Hager [1989]. The second corresponds to two
supercritical incoming flows; one or more hydraulic jumps
form in the junction because of the mutual deflection of the
two incoming streams, producing a variety of different flow
configurations, depending on the positions of the jumps,
which can be either straight or oblique [Gisonni and Hager,
2002; Mignot et al., 2008b].

1.2. Three Branch Bifurcations
[4] The general characteristics of steady subcritical flow

in a three branch bifurcation were described by Neary
and Odgaard [1993]. In this case a three-dimensional recir-
culating region develops in the lateral branch [Neary and
Odgaard, 1993; Neary et al., 1999; Ramamurthy et al.,
2007; Li and Zeng, 2009a, 2009b]. The principal difference
with the flow in a junction is that the distribution of the
incoming flow between the two outgoing channels is unknown,
and since the total flow is conserved (and known) this introdu-
ces one extra unknown quantity into the problem; a model
based solely on a momentum balance of the flow in the
bifurcation cannot therefore provide a solution of the prob-
lem [Taylor, 1944]. However, this approach can be used to
express the flow distribution in terms of another variable
which characterizes the flow, such as the ratio of Froude
numbers upstream and downstream of the bifurcation [Law
and Reynolds, 1966], or the ratio of the depths upstream
and downstream of the bifurcation [Ramamurthy et al.,
1990; Hsu et al., 2002]. An additional equation is still
required to close the system and provide a full solution;
one possible approach would be to use an equation based
on the conservation of energy, with empirical coefficients
to account for energy dissipation in the bifurcation, but
these losses are so low that they are difficult to measure
accurately [e.g., Hager, 1992] and cannot be accounted for
by simple coefficients [Lipeme-Kouyi et al., 2010]. There
have been attempts to exploit the results from other, similar
flows, flow in a channel bend for Neary and Odgaard
[1993] and flow in the T bifurcation of a closed conduit for
Barkdoll et al. [1998], but the analogy between these flows
is not sufficiently close (because of the three-dimensional
nature of the flow, and the influence of variations in the
depth of the flow) for this to be useful. Kesserwani et al.
[2010] adopted a different approach, with some success, by
exploiting an analogy with flow over side weirs with zero
height. Dimensional analysis provides another possible
approach for deriving an additional equation. Nougaro and
Boyer [1974] provide a diagram giving the discharge ratio
valid over a wide range of Froude numbers and intersection
angles for free-outlet conditions. However, their results are
strongly dependent on the downstream conditions [Nou-
garo et al., 1975]. In fact, several different flow regimes
can occur, depending on the formation of hydraulic jumps,
free surface waves, and other flow transitions generated by
the bifurcation [Law and Reynolds, 1966]. These different
regimes can be classified into three categories: subcritical
flow everywhere, transition to supercritical flow in the
main outlet channel, and subcritical flow everywhere
except in the side branch where the contraction of the flow
creates a region of choked flow. Several authors have
focused on this latter case because the existence of choked

flow (Fr ¼ 1) reduces the number of variables and limits the
scope of the problem. The approach based on dimensional
analysis provides empirical relationships for the flow distri-
bution [Krishnappa and Seetharamiah, 1963; Lakshmana-
Rao and Sridharan, 1967; Ramamurthy and Satish, 1988].
Finally, Rajaratnam [1962] showed that when the flow in
the upstream branch is supercritical, the axial velocity in the
intersection can be considered as constant, and this can be
used to compute the distribution of the flow between the
branches [Rivière and Perkins, 2004].

1.3. Four Branch Intersections
[5] The case of two incoming supercritical flows is

beyond the scope of this paper. It has been studied experi-
mentally by Nania et al. [2004] and Mignot et al. [2008b],
numerically modeled by Mignot et al. [2008a] and analyti-
caly by Mignot et al. [2011]. The case of two incoming sub-
critical flows, with horizontal channels, was investigated
experimentally and numerically by Rivière et al. [2006] but
the authors were unable to develop an analytical model for
the flow distribution.

[6] Two main conclusions emerge from this analysis.
First, although the most common basic configuration in
urban areas is the intersection consisting of four streets
meeting orthogonally, most of the studies of subcritical flow
in intersections have concerned three branch intersections.
Second, for those configurations in which the outgoing flow
is distributed between two channels, an analytical model for
the flow distribution is only available for the case in which a
critical section occurs in the side channel; even if the four
branch intersection is considered as the superposition of a
confluence and a bifurcation, it has not proved possible to
derive a solution for the flow distribution.

[7] The work described in this article concerns an experi-
mental investigation of subcritical flow in a four branch
intersection, with two inlet and two outlet channels. There
are three main objectives. First, the experiments will pro-
vide valuable insights into the different physical phenomena
that occur in the flow. Second, the results of the experiments
provide an empirical correlation for the flow distribution
which complements existing one-dimensional models for
this configuration. Finally, the data will be useful in vali-
dating 2-D and 3-D numerical simulations of the same
flow, and this validation will be essential if the models are
then to be used to investigate more complicated geometries
or flow conditions. In the following section 1.4 we describe
the problem in detail, the physical parameters that charac-
terize it, and the experimental conditions. In section 2 we
derive the equations necessary to define the flow in the ex-
perimental configuration, and we show how these can be
generalized to any set of boundary conditions likely to be
encountered in practice. In section 3 we extend existing
models for a three branch intersection to our four branch
configuration, based on a momentum balance, to relate the
flow distribution to the depths in the channels. Finally, in
section 4, we use dimensional analysis to close the problem
with an empirical correlation for the flow distribution.

1.4. The General Problem
[8] The geometrical configuration is shown in Figure 1a;

the intersection is formed from four identical canals of
width b meeting at right angles; the intersection itself is a
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square of side b. We denote the acceleration due to gravity
by g. We define the main, axial channel (and hence the
direction x) as the inlet channel carrying the greatest flow,
so the flow in the side inlet channel (direction y) is always
less than or equal to the flow in the main channel. Assuming
that the flow can be characterized by a one-dimensional rep-
resentation, the problem is completely defined by the fol-
lowing eight variables that are the flow rate and the depth:

[9] 1. in the main inlet channel : Qxi and hxi,
[10] 2. in the side inlet channel : Qyi and hyi,
[11] 3. in the main outlet channel : Qxo and hxo,
[12] 4. in the side outlet channel : Qyo and hyo.
[13] The only parameters that are imposed (and are there-

fore known a priori) are the inlet flow rates Qxi and Qyi ; we
therefore require six equations to close the problem.

[14] The first one is the continuity equation:

Qxi þ Qyi ¼ Qxo þ Qyo: ð1Þ

[15] Following the literature review of section 1.1, we
adopt the commonly used assumption of equal depths in the
two inlet channels. Measurements performed in some of the
configurations studied here confirmed the validity of this
assumption to within 65%, and as far as we are aware this
is the only validation of the assumption for a four branch
intersection. It is possible to derive a set of model equations
that do not rely on this assumption [e.g., Shabayek et al.,
2002] but the model is sensitive to the values of various em-
pirical coefficients, which have not been measured for the
four branch problem. This assumption yields

hxi ¼ hyi: ð2Þ

[16] Two further equations can be obtained from the
boundary conditions at the exits of the two outlet channels,
which link the depths to the flow rates. For the experimental
conditions used in this work, these relationships are imposed
by the weirs that are used to regulate the flow depths in the
channels; the equations themselves are provided in section 2,
and we then show how they can be generalized to any

boundary conditions likely to be encountered in practical
applications. The fifth equation is derived in section 3 by
extending the models developed for three branch intersec-
tions, based on a momentum balance in the intersection,
which relate the flow distribution to the ratio of flow
depths. Finally, the sixth equation is derived in section 4,
using dimensional analysis and experimental results to
obtain an empirical correlation for the flow distribution.

2. Experimental Arrangements
2.1. Experimental Geometry and Measurement
Techniques

[17] The setup consists of an intersection of four identical
channels which intersect at right angles [Rivière et al.,
2006]. Each channel is made from glass, with a length L ¼ 2
m and width b ¼ 0.3 m. The slopes of the four channels
can be fixed independently (in this experiment at 0%), and
each channel can function either as an inlet or an outlet for
the intersection. The channels are aligned with the x and y
axes; the flow enters through two of the channels. At the
inlet to each channel a honeycomb screen straightens and
smoothes the flow. Surface waves are eliminated by mean
of a sheet of polyurethane floating on the free surface to
ensure that it is reasonably smooth. The inlet flow rates Qxi

and Qyi can be varied between 0 and 12 l s�1, and the con-
ditions are always chosen so that Qxi � Qyi. The discharges
at the inlets and the outlets are measured by four identical
electromagnetic flowmeters (Promag 50 from Endress &
Hauser) with an uncertainty of 60.05 l s�1. Water depths are
measured using a movable point gauge with an uncertainty
of 60.15 mm, at least in the absence of surface waves.

[18] At a scale of 1/24, the 300 mm wide channels would
represent streets 7.20 m wide, which is representative of
streets in the center of old European towns. In the experi-
ments, the water depth ranges typically from 15 to 120
mm, corresponding to flood depths in the range 0.36 to
2.88 m. This matches values observed during flood events
in dense urban areas, such in Nı̂mes, France, in 1988
Mignot et al. [2006].

Figure 1. Junction composed of four identical channels intersecting at right angles.
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2.2. Outlet Control Weirs
[19] In order to control the flow conditions, PVC chan-

nels (length 61 cm) fitted with sharp crested weirs were
added to the ends of the two exit channels. The weirs are
continuously adjustable so that the crest levels cx and cy
can be set to any values between 0 and 180 mm. The depths
upstream of the weirs (hxo and hyo, respectively) can be cal-
culated from the flow rates in the channels (Qxo and Qyo)
and the stage-discharge relationships for the weirs. For
those experiments in which the discharge rate is less than
9 l s�1, the Reynolds number Re ¼ 4Q=b� is less than 105,
and if the discharge rate falls below 1 l s�1 then the Weber
number becomes less than 10. It was therefore necessary to
calibrate the weirs for the range of operating conditions
used in these experiments. The stage-discharge relationship
was defined in terms of an ‘‘equivalent weir’’ (see section
2.3 for a full definition of this concept) ; the depth measured
1.5 widths upstream of the weir is given as a function of
the flow rate by the equation

hpo ¼ cp þ 1þ 0:793
cp

b

� �0:731
� �

Q2
po

gb2

 !1=3

; ð3Þ

where p ¼ x,y depending on the channel under considera-
tion. This empirical correlation was obtained from a set of
70 data points, consisting of 10 different flow rates (Qpo ¼
0.2 – 20 l s�1) and seven different weir heights cp ¼ 10, 20,
30, 50, 80, 100, and 120 mm with the additional constraint
that the relationship should yield the critical depth as cp !
0. The maximum difference between the theoretical and the
measured depth varied between �7% and 3.4%. For flow
conditions for which the Reynolds number exceeds 105,
equation (3) is equivalent to standard stage-discharge rela-
tionships such as that given by Rehbock and Böss, cited by
Graf [2000]. Such weirs create an upstream flow recircula-
tion that could be avoided using other downstream control
devices. Nevertheless, with the length to width ratio of the
present channels, the effects of recirculation are expected to
be negligible.

2.3. The Downstream Boundary Conditions, and the
Notion of an ‘‘Equivalent’’ Weir

[20] There are two main reasons for defining the charac-
teristics of the flow in the intersection in terms of the flow
at the outlet weirs. First, in most of the existing studies
[e.g., Ramamurthy and Satish, 1988], the correlations that
are proposed are defined in terms of the depths downstream
of the intersection, obtained directly from measurements,
or in terms of parameters that are based on them, such as
the Froude number. But these downstream depths are not
well defined or easy to measure; the stagnation and separa-
tion points and the recirculating regions in the intersection
all generate surface waves which are the source of uncer-
tainty and error in the depth measurements. The use of a
stage-discharge relationship at the outlet of the channel
avoids this problem; the flow rate in the channel is known
(measured with reasonable precision by an electromagnetic
flow meter) and the weir height can be measured precisely,
so that the effective water depth is known, using equation
(3), whatever the perturbations of the flow introduced by
conditions in the intersection.

[21] The second reason for defining the flow in terms of
a stage-discharge relationship is that it facilitates the use of
dimensional analysis (see section 4.1) to analyze the exper-
imental data; the weir height yields a dimensionless vari-
able which can be varied independently of the flow rate,
and this is an advantage over the direct use of the down-
stream depth.

[22] It could be argued that the use of weir heights to
characterize the depth downstream of the intersection is
somewhat artificial, since it is unlikely that such a control
structure would exist in any real situation, in an urban envi-
ronment. The exact method for generalizing our results to
any boundary condition is developed in section 5.

3. Momentum Balance
3.1. Control Volumes and Modeling Assumptions

[23] A momentum balance applied to the flow in the inter-
section can only provide one additional equation [Taylor,
1944]. The flow leaving the intersection via the side branch
is too strongly three-dimensional, principally because of the
recirculating region, to be described by a one-dimensional
model. As a result, the conservation of momentum can only
be used in the x direction. Even then, the equation involves
additional unknown terms, resulting from the forces
exerted on the flow by the channel walls. This problem has
already been studied for intersections of three identical
channels at 90�, for both bifurcations [Ramamurthy et al.,
1990] and for junctions [Ramamurthy et al., 1988; Gurram
et al., 1997]. We will show here that the hypotheses used in
those studies to derive the momentum balance also apply to
the four branch intersection, and that we can therefore
derive a similar equation for this flow.

[24] The momentum balance involves three control vol-
umes, [V1], [V2], and [V3] (Figure 1b) separated by the left
hand surface (L1) and the entry to the side channel (L2). In
order to simplify the problem we make the following five
assumptions (H1–H5):

[25] H1: the flow regime is subcritical upstream of the
intersection, in both inlet branches.

[26] H2: the flow crossing the entry sections Axi and Ayi
and the exit section Axo can be considered one dimensional,
and the pressure is therefore hydrostatic at these sections.

[27] H3: the frictional forces on the channel walls are
negligible compared with the pressure forces. It follows
from this that the pressure forces are the only forces
involved in the x axis momentum balance; we denote these
forces as Fi acting on the flow in the upstream branch
and Fo acting on the flow in the downstream branch
(Figure 1b).

[28] H4: the water depths in both inlet channels
upstream of the intersection are the same (equation (2)).

[29] H5: without loss of generality, the entire inlet flow
Qyi leaves via the main outlet channel (in the x direction)
while the inlet flow Qxi is divided between the two outlet
channels, in the x and y directions. In the case of the oppo-
site configuration, Qyi separates in two and Qxi leaves via
a single channel, the results obtained in this paper still
apply, with a change of variable, as described at the end of
this section.

[30] These assumptions define the control volumes, as
shown in Figure 1b, and the flow rates through them are
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related to the flow rates that characterize the problem by
the following equations:

Qxi ¼ Q1 þ Q2 ; Qyi ¼ Q3 ; Qyo ¼ Q1 ; Qxo ¼ Q2 þ Q3: ð4Þ

[31] A momentum balance for each control volume then
involves the interactions between the control volumes,
which can be reduced to the pressure force F12 exerted by
[V1] on [V2] and the momentum flux M32 leaving [V3] and
entering [V2]. Projected onto the x axis, the equation of
conservation of momentum for the control volume [V2] can
be written

��xo
ðQ2 þ Q3Þ2

bhxo
� ��xi

Q2
2

bhxi
�Mx32

¼ Fx12 þ �g
h2

xi

2
b

Q2

Q1 þ Q2
� �g

h2
xo

2
b;

ð5Þ

where �xi and �xo are Boussinesq momentum coefficients.
The expression for the force Fx12 can be obtained in the
way described by Ramamurthy et al. [1990] for a three
branch bifurcation. Using the variables of the present pa-
per, this can be written

Fx12 ¼
1
2
�gb

Qyo

Qxi
h2

xi þ
Q2

xi

3gb2hxi
þ Q4

xi

20g2b4h4
xi

� �
: ð6Þ

[32] The term Mx32 in equation (5) represents a momen-
tum flux in the x direction that enters [V2] via the flow
through the upstream side channel. This occurs because the
free surface level in the side channel, just upstream of the
intersection, is not horizontal ; the difference in surface ele-
vation across the channel generates a pressure force Fi, and
the effect of this force can be modeled as an additional mo-
mentum flux along the main channel, as has been suggested
by several authors [e.g., Ramamurthy et al., 1988; Gurram
et al., 1997; Hsu et al., 1998].

[33] The form of the momentum flux term depends on
the geometry of the intersection, and the flow conditions;
the closest configuration to the four branch intersection
investigated here is the three branch junction studied by
Ramamurthy et al. [1988], which also consisted of identical
channels intersecting at right angles. For that case, they
obtained the following expression for the momentum flux:

Mx32 ¼ �
Q2

3

bhyi

1
tan �

¼ �
Q2

yi

bhyi

1
tan �

with tan � ¼ Q3

Q2
¼ Qyi

Qxo � Qyi
:

ð7Þ

[34] Expressions for the force Fx12 (equation (6)) and the
momentum flux Mx32 (equation (7)) are substituted into the
momentum balance equation (5). The latter is rewritten in
dimensionless form, using the dimensionless variables

Rq ¼
Qyo

Qxi
; Rh ¼

hxi

hxo
; Rqi ¼

Qyi

Qxi
;

Rxo ¼
hxo

b
; Rg ¼

Qxi

b2
ffiffiffiffiffi
gb
p :

[35] If the Boussinesq coefficients in equation (5) are
both assumed equal to 1 (�xo ¼ �xi ¼ 1), as has been
assumed in previous studies, then the dimensionless mo-
mentum balance equation becomes

�R3
xoR5

h

2R2
g
þ R3

xo

2R2
g
þ 1þ 2Rqi � 2Rq þ R2

qi � 2RqiRq þ R2
q

 !
R3

h

þ 5
6

Rq � 1þ RqiRq � Rqi

� �
R2

h �
RqR2

g

40RhR3
xo
¼ 0:

ð8Þ

[36] There is no analytical solution for equation (8), but
it can be solved by iteration. The parameter Rxo depends on
the downstream depth hxo, which can be obtained from the
flow rate Qxo and the stage-discharge relationship for the
weir (see section 2.3). From this equation it is possible to
compute Rh, and hence hxi, as a function of the flow distri-
bution. As a check on this equation, we can evaluate it with
Rqi ¼ 0; as required, the resulting equation is then identical
to that proposed by Ramamurthy et al. [1990] for a simple
bifurcation, taking into account that they have used a dif-
ferent definition for the parameter Rq. This equation was
derived for the condition where the main upstream dis-
charge separates in two (Qyi < Qxo, hypothesis H5). It is
equally valid when the minor upstream discharge separates
in two (Qyi > Qxo) provided that the control volumes are
modified, with the result that the variables x and y are per-
muted. In the following section we will test the validity of
the assumptions used to derive the equation, using experi-
mental observations and data.

3.2. Comparison with Experiments
[37] The theoretical values of the depth ratio Rh, given

by the solution to equation (8) are plotted in Figure 2 as a
function of the experimental values (hxi measured one-
width upstream of the intersection and hxo one width and a
half upstream of the weir). The agreement is generally sat-
isfactory, with the values agreeing to within 64% over the
entire range of values of Rh used in the experiments. On the
basis of these measurements it seems reasonable to con-
clude that the momentum balance equation (8) provides a
valid model for the flow in the intersection. This equation
could be rewritten, using equations (1)–(3), to provide an
equation linking two of the unknown quantities—hxo and
Qxo, say, or hyo and Qyo—in terms of the other imposed
conditions. So we only require one additional equation
involving the same two unknown variables to close the sys-
tem. An energy balance could provide such an equation, and
it could be rewritten in the same way as for equation (8), but
unfortunately, as indicated previously, it would be unlikely
to yield accurate results, because of the uncertainty con-
cerning the energy losses in the intersection. So instead we
have had to resort to an empirical correlation, derived from
our data. It would not be possible to obtain such a correla-
tion simply by plotting one of the unknown variables as a
function of the other, because of the large number of inde-
pendent parameters in the problem, which are likely to fea-
ture in the eventual correlation; we have instead adopted
an approach based on dimensional analysis of the inde-
pendent parameters in the experiments.
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4. An Empirical Correlation Derived Using
Dimensional Analysis
4.1. Dimensional Analysis

[38] The problem is fully characterized by 12 parameters—
the four flow rates Qxi, Qyi, Qxo, and Qyo, the four depths
hxi, hyi, hxo, and hyo, and four parameters that characterize
the installation itself : the weir heights cx and cy, the chan-
nel width b, and the gravitational acceleration g.

[39] The preceding analysis has already yielded five
equations linking these variables and we can now use these
to simplify the problem somewhat; the seven independent
variables that define the problem are b, g, Qxi, Qyi, cx, cy,
and Qyo.

[40] If we take b for our length scale and b3/Qxi for our
time scale, dimensional analysis yields

�
Qyo

Qxi
;
Qyi

Qxi
;
cx

b
;
cy

b
;

Qxi

b2
ffiffiffiffiffi
gb
p

� �
¼ 0: ð9Þ

Here we have neglected the effects of viscosity and surface
tension (see section 2) which would have resulted in two
additional dimensionless numbers, the Reynolds number
and the Weber number.

[41] By rearranging these dimensionless parameters we
can write the flow distribution ratio as

Qyo

Qxi
¼ F

Qyi

Qxi
;
cy

cx
;
cx

b
;

Qxi

b2
ffiffiffiffiffi
gb
p

� �
ð10Þ

which is written, for simplicity:

Rq ¼ F Rqi;Rc;Rb;Rg
	 


: ð11Þ

[42] Equation (11) actually represents a surface in five-
dimensional space. A detailed description of this surface

would require a very large number of experimental meas-
urements, 104, if each dimensionless parameter is discre-
tised into 10 values, and this is not feasible. However a
preliminary study [Rivière et al., 2006] showed a simple
linear dependency of Rq on some of the other parameters ;
in certain conditions (e.g., Rc ¼ 1) Rq was even independ-
ent of some of the parameters. Guided by those preliminary
results, we have constructed an empirical correlation for
equation (14) using the projection of the surface onto the
different planes (Rq;�) where � is one of the parameters,
the three others being held constant.

4.2. Empirical Correlation
[43] This preliminary study showed that if all the other

parameters are held constant, Rq varies linearly with Rqi.
This can be seen in Figure 3a, where we have plotted the
results for data sets 0 and 2. For any given value of Rc the
data points agree well with the straight line obtained by lin-
ear regression; both the slope and the intercept depend on
Rc. In Figure 4a, Rq has been plotted as a function of Rqi for
different values of Rb, the other parameters being constant ;
this shows that the intercept depends on Rb, but the slope
does not. The same procedure was performed to character-
ize the influence of Rg and show that the intercept depends
on Rg, but the slope does not. Moreover, for the particular
case Rc ¼ 1, the relation between Rq and Rqi is not affected
by the other parameters [Rivière et al., 2006] as shown in
Figure 3a. Therefore the discharge distribution will depend
on the different parameters in the following way:

Rq ¼ SðRcÞ � Rqi þ Bþ ð1� RcÞ � CðRc;Rb;RgÞ: ð12Þ

[44] To examine the influence of (Rc, Rb, Rg) on the
intercept, Rq is plotted successively as a function of each of
these parameters, Rqi being constant.

Figure 2. Comparison of the theoretical and measured values of Rh.
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[45] Figure 3b shows that Rq depends linearly on Rc, and
the intercept must take the form C ¼ C(Rb,Rg). The slope is
also necessarily a linear function of Rc : S ¼ ARc þ A0. As
we know that Rq ¼ 1 when Rc ¼ 1 and Rqi ¼ 1, Rq can be
written in the following form:

Rq ¼ ½1� A� Bþ ARc� � Rqi þ Bþ ð1� RcÞ � CðRb;RgÞ: ð13Þ

[46] Figure 4b shows that Rq depends linearly on Rb.
Finally, considering R�1

g , the dependency (not presented
here) is again linear.

[47] The final correlation providing the discharge distri-
bution Rq reads

Rq ¼ ½1� A� Bþ ARc� � Rqi þ B

þ D� ðRc � 1ÞðRb þ EÞðR�1
g þ FÞ

ð14Þ

with A ¼ �0.141, B ¼ 0.456, D ¼ �0.113, E ¼ �0.030,
F ¼ 9.797. These values of constants A, B, D, E. and F have
been estimated using the 220 data points obtained in these
experiments and in the experiments reported by Rivière
et al. [2006]. We used a method of least squares, although
other methods are available, such as for instance principal
component analysis (PCA) or partial least square (PLS)
[Ramamurthy et al., 2006]. The correlation coefficient is
0.9968 and the result is plotted in Figure 5. The data points
agree well with the empirical correlation over the full range
of experimental conditions, with an error that rarely exceeds
65%. This correlation was derived for a fairly wide range
of values for the four dimensionless parameters:

0 < Rqi < 1; 0:4 < Rc < 2:5; 0:1 < Rb < 0:37; 0:0226

< Rg < 0:0651

Figure 3. (a) Rq as a function of Rqi for constant values of Rc with Rb ¼ 0.25 and Rg ¼ 0.0389 and
(b) as a function of Rc for constant values of Rb with Rg ¼ 0.0389.

Figure 4. (a) Rq as a function of Rqi for constant values of Rb and (b) as a function of Rb for constant
values of Rqi (with Rg ¼ 0.0389 and Rc ¼ 0.65).
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which must nevertheless be taken as delimiting the range
of validity of the correlation (equation (14)), in the absence
of any data outside these limits. It should also be remem-
bered that the flows are strongly turbulent (so the Reynolds
number does not figure as a dimensionless parameter) and
we have neglected the influence of surface tension, so the
Weber number does not appear among the dimensionless
parameters either.

[48] The empirical correlation (14) therefore represents
the sixth and final equation necessary to close the model.

5. Application of the Model
[49] The six equations that constitute the model [(1), (2),

and (3) for p ¼ x ; (3) for p ¼ y ; and (8) and (14)] can be
used to compute the flow distribution and the flow depths
in the outlet channels, given the flow rates in the two inlet
channels. If we assume that the equivalent weir heights cx

and cy are known, then the empirical correlation (14) pro-
vides the outlet flow distribution (Rq ¼ Qyo/Qxi) as a func-
tion of the inlet flow distribution (Rqi ¼ Qyi/Qxi), which is
known, and the other dimensionless parameters (Rc, Rb,
and Rg) which characterize the geometry of the configura-
tion. The depths in the downstream channels (hxo and hyo

can then be obtained from the flow rates in the channels
(Qxo and Qyo) and the stage-discharge relations for the
channel controls. Finally, the depths in the inlet channels
(hxi and hyi) can be calculated from the inlet flow rates (Qxi

and Qyi) and equation (8).
[50] The model can therefore be used for any configura-

tion for which the equivalent downstream weirs are known.
Of course, in practice, the flows in the outlet channels will
not be controlled by weirs, but as discussed earlier, it will

always be possible to define an equivalent weir for the con-
trol structure, provided the stage-discharge relationship for
the structure is known. The problem is that, in order to com-
pute this equivalent weir, it is necessary to know the dis-
charge in the channel, and this can only be calculated (from
equation (14)) if the equivalent weir is already known! The
only way to solve this is to assume an initial value for Rq,
compute the corresponding depths hxo and hyo from the
stage-discharge relationships, and deduce the equivalent
heights cx and cy from equation (3). All the variables needed
to solve equation (14) are then available, and a new value of
Rq can be calculated using this equation. This will not, in
general, be the same as the value assumed initially, and so it
is necessary to iterate this procedure, adjusting the value of
Rq each time, until the system converges.

[51] Two practical problems can arise in the application
of this iterative procedure. The first occurs when the down-
stream control leads to the blockage of one of the channels,
and this can occur even if all the dimensionless parameters
remain within the domain of validity given in this paper. At
high values of Rc, for example, the outlet discharge in the
side channel can fall to zero, in which case the value of Rq

given by equation (14) will become negative; the best solu-
tion to this problem is then to set Rq ¼ Qyo ¼ 0. A similar
problem arises when Rc becomes very small, and Rq �
(1 þ Rqi), indicating that all the flow leaves through the
side outlet channel, so that Rq ¼ (1 þ Rqi) and Qxo ¼ 0.

[52] The second problem occurs if the Froude number in
one of the channels exceeds 1. Indeed, the equations all
assume that the flow remains subcritical everywhere, and
are not valid for the supercritical regime. The Froude num-
ber of the flow in each channel can be calculated from a
combination of the six dimensionless parameters (Rq, Rqi,

Figure 5. Comparison of the theoretical values of Rq given by the empirical correlation (14) with the
experimental values of Rq.
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Rc, Rb, Rg, Rh) and it is possible for the computed flow in
one or other of the downstream channels to become super-
critical. In practice, this will occur in one of the regions
where the flow contracts because of the presence of a recir-
culating region. In these flow configurations equation (14)
is no longer applicable, but their appearance can be pre-
dicted by deriving Fryo ; results in the literature suggest
they will appear for Fryo Z 0.34 (1/3 for Hager [1999];
0.35 for Ramamurthy and Satish [1988]).

[53] Two types of critical section can exist in the axial
direction. The first forms just downstream of the intersection,
at the contraction created by the combination of the two
incoming flows; this has been observed in three branch junc-
tions, but never in the experimental conditions studied here.
A second type of critical section can form just upstream of
the intersection if Rqi ¼ 0 and if the downstream control in
the main downstream channel is weaker than in the side
channel. This is caused by the acceleration of the incoming
flow in the main channel [Law and Reynolds, 1966; El Kadi
Abderrezzak et al., 2011]. This type of transition was
observed in some of the experiments reported here, but only
for Rqi ¼ 0 and Rc > 2.

6. Conclusion
[54] The flow distribution in a four branch intersection

has been studied experimentally for subcritical flow in all
four channels. The water depths in the two outlet channels
were controlled by weirs at the downstream end of the chan-
nels, and the heights of these weirs were introduced as con-
trol parameters for the problem. We have developed an
empirical correlation for the distribution of the flow in the
channels leaving the intersection, based on the results of
220 experiments over a wide range of conditions. This cor-
relation depends only on the incoming flows and the heights
of the downstream weirs. We have shown that it is possible
to define an equivalent height for any downstream control
structure, provided that the stage-discharge relationship for
the structure is known, and that it is therefore possible to
use this correlation for any situation which corresponds to
the range of conditions studied in these experiments. The
depths in the channels upstream of the intersection can be
computed from other relationships, derived from a physical
analysis of the flow.

[55] The correlation also provides a fairly compact and
accurate summary of a large number of experimental
results, so it can be used to calibrate or validate numerical
simulations, which could then be applied to other, more
complicated geometries.

[56] Despite the success of the correlation in reproducing
the entire data set with a relatively simple formula, further
work is still required. First, it would be useful to compare
the correlation with data sets that fall within the domain of
validity, but which were not used in the derivation of the
correlation. This would test the ability of the formula to
interpolate within the data sets. It would then be interesting
to compare the correlation with data for conditions outside
the domain of validity, to test its capacity to extrapolate
from the original data sets.

[57] In some of the experiments the flow underwent a
transition from subcritical to supercritical, and we have
identified three different mechanisms that could cause this,

depending notably on the downstream conditions: appear-
ance of a critical section in the downstream branch or in the
main downstream channel, or critical regime at the entrance
of the intersection. The results presented in this paper are
only valid if the flow is subcritical everywhere in the inter-
section, and the existence of several different transition
mechanisms indicates that the transcritical regime requires a
separate study to complement and complete the results pre-
sented here and extend the domain of validity of the model
to those cases in which the flow is blocked by the presence
of a critical section. This would also provide a link with
other similar studies of supercritical flow in intersections.
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INSU: ECCO-PNRH 2003, project 31) and the French ANR (Hy2Ville pro-
ject, grant ANR-05-ECCO-016; Rives project, grant ANR-05-PGCU-004).

References
Barkdoll, B. B., B. L. Hagen, and A. J. Odgaard (1998), Experimental com-

parison of dividing open-channel with duct flow in T-Junction, J.
Hydraul. Eng., 124(1), 92–95.

Best, J. L., and I. Reid (1984), Separation zone at open-channel junctions,
J. Hydraul. Eng., 110(11), 1588–1594.

Calenda, G., L. Calvani, and C. P. Mancini (2003), Simulation of the Great
Flood of December 1870 in Rome, Water Mar. Eng., 156(4), 305–312.

El Kadi Abderrezzak, K., A. Paquier, and E. Mignot (2009), Modelling
flash flood propagation in urban areas using a two-dimensional numerical
model, Nat. Hazards, 50(3), 433–460.

El Kadi Abderrezzak, K., L. Lewicki, A. Paquier, N. Rivière, and G. Travin
(2011), Division of critical flow at three-branch open-channel intersec-
tion, J. Hydraul. Res., 49(2), 231–238.

Gisonni, C., and W. H. Hager (2002), Supercritical flow in the 90� junction
manhole, Urban Water, 4, 363–372.

Graf, W. H. (2000), Hydraulique Fluviale, Presses Polytechniques et Uni-
versitaires Romandes, Lausanne, Switzerland (in French).

Gurram, S. K., K. S. Karki, and W. H. Hager (1997), Subcritical junction
flow, J. Hydraul. Eng., 123(5), 447–455.

Hager, W. H. (1989), Transitional flow in channel junctions, J. Hydraul.
Eng., 115(2), 243–259.

Hager, W. H. (1992), Discussion of ‘‘Dividing flow in open channels’’ by
A. S. Ramamurthy, D. M. Tran, and L. B. Carballada, J. Hydraul. Eng.,
118(4), 634–637.

Hager, W. H. (1999), Wastewater Hydraulics, Springer, Berlin.
Haider, S., A. Paquier, R. Morel, and J.-Y. Champagne (2003), Urban flood

modeling using computational fluid dynamics, Water Mar. Eng.,
156(72), 129–135.

Hsu, C. C., W. J. Lee, and C. H. Chang (1998), Subcritical open-channel
junction flow, J. Hydraul. Eng., 124(8), 847–855.

Hsu, M. H., S. H. Chen, and T. S. Chang (2002), Dynamic inundation simu-
lation of storm water interaction between sewer system and overland
flows, J. Chin. Inst. Eng., 25(2), 171–177.

Huang, J., L. J. Weber, and Y. G. Lai (2002), Three-dimensional numerical
study of flows in open-channel junctions, J. Hydraul. Eng., 128(3), 268–280.

Inoue, K., K. Kawaike, and H. Hayashi (2000), Numerical simulation models
of inundation flow in urban area, J. Hydrosci. Hydraul. Eng., 18(1), 119–126.

Kesserwani, G., M. Abdallah, J. Vazquez, N. Rivière, Q. Liang, G. Travin,
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de canaux lorsque les biefs aval sont pourvus de retenues, La Houille
Blanche, 30(4), 267–273 (in French).

Rajaratnam, N. (1962), The constant velocity concept for supercritical
branch channel flow, Irrig. Power, 19(1), 17–21.

Ramamurthy, A. S., and M. G. Satish (1988), Division of flow in short open
channel branches, J. Hydraul. Eng., 114(4), 428–438.

Ramamurthy, A. S., L. B. Carballada, and D. M. Tran (1988), Combining
open channel flow at right angled junctions, J. Hydraul. Eng., 114(12),
1449–1460.

Ramamurthy, A. S., D. M. Tran, and L. B. Carballada (1990), Dividing
flow in open channels, J. Hydraul. Eng., 116(3), 449–455.

Ramamurthy, A. S., J. Qu, and D. Vo (2006), Nonlinear PLS method for
side weir flows, J. Irrig. Drain. Eng., 132, 486–489.

Ramamurthy, A. S., J. Qu, and D. Vo (2007), Numerical and experimental
study of dividing open-channel flows, J. Hydraul. Eng., 133(10),
1135–1144.

Rivière, N., and R. J. Perkins (2004), Supercritical flow in channel intersec-
tions, Proceedings of the 2nd International Conference on Fluvial
Hydraulics, Grecco, Carravetta, and Della Morte, Eds, River Flow 2004,
Napoli, Italy, 23–25 June 2004, 1073–1077.

Rivière, N., R. J. Perkins, B. Chocat, and A. Lecus (2006), Flooding flows
in city crossroads: 1D modelling and prediction, Water Sci. Technol.,
54(6–7), 75–82.

Shabayek, S., P. Steffler, and F. Hicks (2002), Dynamic model for subcriti-
cal combining flows in channel junctions, J. Hydraul. Eng., 128(9),
821–828.

Sridharan, K., and N. S. Lakshmana-Rao (1966), Division and combination
of flow in open channels, J. Inst. Eng., 46(7), 337–356.

Taylor, E. H. (1944), Flow characteristics at rectangular open-channel junc-
tions, ASCE Trans., 109, 893–902.

Webber, N. B., and C. A. Greated (1966), An investigation of flow behav-
iour at the junction of rectangular channels, Proc. Inst. Civ. Eng., 34,
312–334.

Weber, L. J., E. D. Schumate, and N. Mawer (2001), Experiments on flow
at a 90� open-channel junction, J. Hydraul. Eng., 127(5), 340–350.

R. J. Perkins and G. Travin, Laboratoire de Mécanique des Fluides et
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