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Introduction

A linear stability analysis of small-amplitude waves on an otherwise flat liquid film would provide a powerful tool in understanding and modelling the onset of droplet entrainment from a liquid layer by a shearing superposed turbulent gas flow, which has numerous industrial applications (e.g. [START_REF] Hall-Taylor | Annular Two-Phase Flows[END_REF]). Furthermore, this would serve as a benchmark for direct numerical simulations of two-layer flows, as in [START_REF] Boeck | Ligament formation in sheared liquid-gas layers[END_REF]; [START_REF] Valluri | Numerical simulation of the onset of slug initiation in laminar horizontal channel flow[END_REF]; [START_REF] Fuster | Simulation of primary atomization with an octree adaptive mesh refinement and vof method[END_REF]; [START_REF] Valluri | Linear and nonlinear spatio-temporal instability in laminar two-layer flows[END_REF] for laminar flows. Although various authors have worked on this problem [START_REF] Miesen | Hydrodynamic stability of a sheared liquid film[END_REF][START_REF] Kuru | Linear stability of stratified channel flow[END_REF], several difficulties have arisen in these studies, preventing them from being of direct use as benchmark tests for direct numerical simulations of turbulent stratified channel flows and industrial applications. First, a robust model for a base-state velocity profile that has been tested against experiments and numerical simulations is not available, and its detailed modelling turns out to be important. Second, the base state should not require specification of any fitting parameters: merely the flow rate or imposed pressure drop (along with the physical and geometrical properties) should suffice. Previous models lack at least one of these aspects; the base-state model proposed here satisfies all of these criteria. A second motivation for this study is to ascertain the role of perturbations in turbulent stresses, which are caused by the presence of waves. These could potentially feed back to the growth rate and speed of the wave even in a linear analysis.

In previous work, a 'lin-log' base-state profile has been used in a boundary-layer setting, and either the friction velocity U * or the friction factor C f was guessed [START_REF] Miesen | Hydrodynamic stability of a sheared liquid film[END_REF]. Others have adopted an empirical profile, the validity of which is unclear [START_REF] Kuru | Linear stability of stratified channel flow[END_REF]. Here, we derive a base-state model that contains no free parameters: the friction velocity is determined as a function of Reynolds number. We develop our base state starting from a rigorously validated model (that of [START_REF] Biberg | A mathematical model for two-phase stratified turbulent duct flow[END_REF]), and generalise it in order to take account of the near-interfacial zone. This is an important step since this region is significant for instabilities driven by viscosity contrasts [START_REF] Yih | Instability due to viscosity stratification[END_REF]; as will be shown below, this is the dominant mode for our system over the range of parameters studied in the present work. We compare the resulting model with direct numerical simulations and experiments. Furthermore, our model contains no logarithmic singularities: full modelling of the viscous sublayers is provided, in contrast to the model of [START_REF] Biberg | A mathematical model for two-phase stratified turbulent duct flow[END_REF].

To explain the second motivation for the present study, we summarise the averaging technique presumed herein. Consider a large ensemble of realisations of a three-dimensional pressure-driven turbulent channel flow. The velocity field contains perturbations due to turbulence, and due to the presence of small-amplitude waves. At any time, a Fourier decomposition can be taken of the interface height and, simultaneously, of the velocity and pressure fields. These Fourier-decomposed velocity and pressure fields can be averaged over the ensemble of realisations (as well as over the spanwise direction). These ensemble-averaged velocity and pressure fields are not uni-directional, but are distorted due to the presence of the corresponding (normal mode) interfacial wave. Example fields that have been obtained in conceptually the same manner from DNS (albeit for turbulent flow over a wavy wall) can be found in the paper of [START_REF] Sullivan | Simulation of turbulent flow over idealized water waves[END_REF]. In the present study, results are presented (and compared) from several RANS models. A significant issue here is that such wave-induced perturbation stresses may, in principle, affect the growth rate and speed of waves. Questions concerning the importance of these stresses have been much debated in the literature [START_REF] Miles | On the generation of surface waves by shear flows[END_REF][START_REF] Belcher | Turbulent shear flow over slowly moving waves[END_REF][START_REF] Belcher | Linear dynamics of wind waves in coupled turbulent air-water flow. Part 1[END_REF][START_REF] Kuru | Linear stability of stratified channel flow[END_REF][START_REF] Janssen | The interaction of ocean waves and wind[END_REF]. Previous studies on sheared liquid films have not accounted for these effects, hence the significance of these stresses is not known at present. The present study does at last provide convincing evidence that these are indeed not important in the determination of wave speed and growth rate for sheared thin films. The linear stability analysis and assessment of the significance of perturbation turbulent stresses (perturbed turbulent stresses) are the subject of Sec. 3.

At least four mechanisms have been reported to generate instability in a laminar liquid layer sheared by an external turbulent gas flow. The first kind, called the critical-layer instability, was identified by [START_REF] Miles | On the generation of surface waves by shear flows[END_REF]. The transfer of energy from the mean flow into the wave perturbations is governed by the sign of the second derivative of the base-state flow at the critical layer -the height where the wave speed and the base-state velocity match. Another kind of instability, called the viscosity-contrast mechanism, was identified by [START_REF] Yih | Instability due to viscosity stratification[END_REF], alluded to above: here, the instability arises due to the jump in the viscosity across the interface. In addition, instability can occur because of direct forcing by turbulent pressure oscillations in the gas [START_REF] Phillips | On the generation of waves by turbulent wind[END_REF]. The so-called internal mode [START_REF] Miesen | Hydrodynamic stability of a sheared liquid film[END_REF][START_REF] Boomkamp | Classification of instabilities in parallel two-phase flow[END_REF] is observed when the bottom layer is laminar. This mode derives its energy both from the interface, and from conditions in the bulk of the bottom layer. Thus, this mode persists even when the upper layer is void [START_REF] Miesen | Hydrodynamic stability of a sheared liquid film[END_REF] and has the characteristics of a Tollmien-Schlichting wave, depending sensitively on the viscosity contrast. [START_REF] Belcher | Turbulent shear flow over slowly moving waves[END_REF] proposed that the turbulent stresses could produce the same effect, although in this paper, we find that the viscous stresses are dominant in the creation of the instability, at least under the thin-film parameter regime studied here. Finally, we note here that approximate mechanisms such as those identified in Kelvin-Helmholtz-type theories, although perhaps relevant in large-amplitude waves, do not arise in the full linearised problem wherein viscous effects are fully accounted for [START_REF] Boomkamp | Classification of instabilities in parallel two-phase flow[END_REF].

The paper is organised as follows. The base-state (flat interface) model is presented in Sec. 2. In Sec. 3, we carry out preliminary linear stability calculations to investigate the stability of the flat interface, and to assess the importance of the perturbed turbulent stresses. The implications of our stability analyses are discussed in Sec. 3.3: we investigate the source of the instability, the possibility of mode competition, and the importance of interfacial roughness. We validate the linear stability against experimental evidence, and find good agreement in Sec. 5. Concluding remarks are in Sec. 6.

Base-state formulation

Given a flat-interface base state of a two-layer, pressure-driven channel flow (Fig. 1), the growth rate of small-amplitude waves on the interface depends sensitively on the details on the base state. We therefore focus on deriving an accurate description of the base state. The resulting velocity profile, including the interfacial shear stress, are determined by a prescribed external pressure drop, without the need to introduce any ad hoc parameters. Our starting point is the model of [START_REF] Biberg | A mathematical model for two-phase stratified turbulent duct flow[END_REF], although we develop this model further by accounting for the presence of near-wall and near-interface viscous sublayers. The resulting model compares very favourably with direct numerical simulations (DNS) and with experiments, as we outline below. We begin by considering the case of a flat interface, before considering a base state with interfacial roughness in Sec. 2.2.

Flat interface

Here, we consider a base state characterised by a steady, spatially-uniform, interface separating a turbulent layer overlying a thin, laminar one in a rectangular channel; both layers are assumed to be fullydeveloped. We use a Cartesian coordinate system, (x, z), to examine this two-dimensional flow, wherein the lower and upper layers occupy the regions -d L ≤ z ≤ 0 and 0 ≤ z ≤ h, respectively; the flat interface is located at z = 0 and the upper and lower walls at z = h and z = -d L , respectively. For ease of comparison with experiments, the focus of this paper is on laminar-turbulent systems; the generalisation to turbulentturbulent layers is straightforward. Furthermore, the parameter ranges investigated below are characteristic of air-water systems, hence for the remainder of this paper, we will refer to the upper and lower layers as the 'gas' and 'liquid' layers, respectively.

In the base state, the flow is uni-directional in the horizontal, x-direction. In the gas layer, near the gas-liquid interface and the gas-wall boundary, the flow profile is linear, and the viscous scale exceeds the characteristic length scale of the turbulence [START_REF] Monin | Statistical Fluid Mechanics: Mechanics of Turbulence[END_REF][START_REF] Pope | Turbulent Flows[END_REF]; this is indicated in Figure 1. In the bulk of the gas region, the flow possesses a logarithmic profile [START_REF] Monin | Statistical Fluid Mechanics: Mechanics of Turbulence[END_REF][START_REF] Pope | Turbulent Flows[END_REF]. We assume that the gas-liquid interface is smooth, although the model can account for interfacial roughness; this will be discussed in Sec. 2.2.

Liquid layer

In the liquid film, the Navier-Stokes equations reduce to the following standard balance law between pressure and viscous forces:

µ L ∂ 2 U 0 ∂z 2 - ∂P 0 ∂x = 0, (1) 
where U 0 (z), P 0 , and µ L denote the liquid mean flow velocity, pressure, and viscosity, respectively. We integrate Eq. ( 1) and apply the following boundary conditions, which correspond, respectively, to continuity of tangential stress at the interface, z = 0, and no-slip at the channel bottom wall, z = -d L :

µ L ∂U 0 ∂z z=0 = τ i = ρ G U 2 * i , U 0 (-d L ) = 0, (2) 
where we have assumed that the pressure gradient does not depend on z. In Eq. ( 2), ρ G denotes the gas density, τ i is the interfacial stress and U * i is the interfacial friction velocity on the gas side. An expression for U * i in terms of ∂P 0 /∂x will be obtained below. Application of the boundary conditions (2) yields the following relation for

U 0 U 0 (z) = 1 2µ L ∂P 0 ∂x ( z 2 -d 2 L ) + τ i µ L (z + d L ) . ( 3 
)
We nondimensionalise on the scale U p , where

U p = √ h ρ G ∂P 0 ∂x ; ( 4 
)
this scale is characteristic of a flow driven by a pressure gradient. The rescaling gives

Ũ0 = 1 m [ -1 2 Re ( z2 -δ 2 ) + Re 2 * Re (z + δ) ] , δ = d L h , ( 5 
)
in which the tildes denote dimensionless quantities: Ũ = U/U p , z = z/h, and m = µ L /µ G is a viscosity ratio. The Reynolds numbers

Re = ρ G U p h µ G , Re * = ρ G U * i h µ G ,
are based on U p and U * i , respectively, the latter being a characteristic, interfacial frictional velocity. Note also the following relation for the dimensionless, base-state interfacial streamwise speed, which we will use below in deriving the base-state profile in the upper layer:

Ũ0 (0) = 1 m ( 1 2 δ 2 Re + Re 2 * Re δ ) . (6)

Gas layer

In the gas layer, the RANS equations reduce to the following:

µ G ∂U 0 ∂z + τ 0 = τ i + ∂P 0 ∂x z, ( 7 
)
where U 0 (z) is the base-state velocity in the gas, µ G is the gas viscosity, and τ 0 = -ρ G ⟨u ′ w ′ ⟩ is the turbulent shear stress due to the averaged effect of the turbulent fluctuating velocities, u ′ and w ′ . In channel flows, it is appropriate to model this term using an eddy-viscosity model [START_REF] Monin | Statistical Fluid Mechanics: Mechanics of Turbulence[END_REF]. In mixinglength theory, the eddy viscosity depends on the local rate of strain [START_REF] Bradshaw | Possible origin of prandtl's mixing-length theory[END_REF], which means that the turbulent shear stress depends on the square of the rate of strain. Instead of this standard mixinglength theory, we introduce an interpolation function for the eddy viscosity, based on the work of [START_REF] Biberg | A mathematical model for two-phase stratified turbulent duct flow[END_REF], which mimics the ordinary mixing-length theory near the interface and near the wall, and transitions smoothly from having a positive slope near the interface, to having a negative slope near the wall. Thus, the turbulent shear stress is linear in the rate of strain, and

τ 0 = µ T ∂U 0 ∂z , µ T = κρ G hU * w G (z) ψ i (z) ψ w (1 -z) , ( 8 
)
where µ T is the eddy viscosity, U * w is the friction velocity at the upper wall z = 1, and where G (z), ψ i (z), and ψ w (1 -z) are functions to be determined; κ is the von Kármán constant, taken as to 0.4. Here ψ i and ψ w are interface and wall functions respectively, which damp the effects of turbulence to zero rapidly near the interface and the wall, while G is an interpolation function designed to reproduce the 'law of the wall' near the interface and the upper wall. The precise choices for G and the wall functions, given below, are confirmed by the agreement between our predictions of the base state and experiments and numerical simulation, as will be discussed later in this paper.

To generate a closure for U 0 , we substitute Eq. ( 8) into Eq. ( 7) and integrate with respect to z:

U 0 (z) = U 0 (0) + τ i h ∫ z/h 0 ( 1 + h τi ∂P0 ∂x s ) ds µ G + κρ G hU * w G (s) ψ i (s) ψ w (1 -s) , = U 0 (0) + τ i h ∫ z/h 0 ( 1 + h τi ∂P0 ∂x s ) ds µ G + κρGhU * i √ |R| G (s) ψ i (s) ψ w (1 -s) , ( 9 
)
where R = τ i /τ w . We nondimensionalise Eq. ( 9) and make use of Eq. ( 6) to obtain

Ũ0 (z) = 1 m ( 1 2 Reδ 2 + Re 2 * Re δ ) + Re 2 * Re ∫ z 0 ( 1 -Re 2 Re 2 * s ) ds 1 + κRe * √ |R| G (s) ψ i (s) ψ w (1 -s) . ( 10 
)
The ratio R can be obtained in closed form as follows. Since

τ (z) = τ i + ∂P 0 ∂x z, = -τ w + ∂P 0 ∂x (z -h) ,
these formulas can be equated to give

τ i = -τ w - ∂P 0 ∂x h, or, - τ w τ i = 1 + ∂P 0 ∂x h τ i = 1 - ( Re Re * ) 2 , hence, |R| = 1 - ( Re Re * ) 2 -1 .
To determine Re * , we make use of the no-slip condition at the upper channel wall, z = 1, Ũ0 (1; Re * ) = 0:

1 m ( 1 2 δ 2 Re + Re 2 * Re δ ) + { Re 2 * Re ∫ 1 0 ( 1 -Re 2 Re 2 * s ) ds 1 + κRe * √ |R| G (s) ψ i (s) ψ w (1 -s) } |R|= 1-( Re Re * ) 2 -1 = 0. ( 11 
)
Solution of this equation yields a relationship between Re * and Re, δ, and m.

We now select G as follows:

G (s) = s (1 -s) [ s 3 + |R| 5/2 (1 -s) 3 R 2 (1 -s) 2 + Rs (1 -s) + s 2 ] =V(s) , 0 ≤ s ≤ 1. ( 12 
)
We show below that this function reproduces a logarithmic velocity profile near the gas-liquid interface and upper channel wall. For the wall functions, ψ i and ψ w , we use standard van Driest-type relations [START_REF] Pope | Turbulent Flows[END_REF]:

ψ i (s) = 1 -e -s n /Ai , ψ w (1 -s) = 1 -e -(1-s) n /Aw , ( 13 
)
where n, A i , and A w are input parameters. These parameters will be fixed below and will not be adjusted in order to maximise agreement between modelling predictions and experimental data.

Limiting behavior

Based on the derivation detailed above, we have the following velocity profile in the base state:

Ũ0 (z) =        1 m [ -1 2 Re ( z2 -δ 2 ) + Re 2 * Re (z + δ) ] , -δ ≤ z ≤ 0, 1 m ( 1 2 δ 2 Re + Re 2 * Re δ ) + Re 2 * Re ∫ z 0 ( 1-Re 2 Re 2 * s ) ds 1+ κRe * √ |R| G(s)ψi(s)ψw(1-s) , 0 ≤ z ≤ 1. ( 14 
)
To examine the limiting behavior of the gas velocity profile in the viscous sublayers near the gas-liquid interface, z = 0, and upper channel wall, z = 1, we first note that the functions ψ i and ψ w transition rapidly from ψ i (0) = 0 and ψ w (1) = 0 to unity, across a width given by

d v h = ν G hU * i = 1 Re * , and d v,w h = ν G hU * w = |R| Re * , (15) 
respectively; here, the value of A i (A w ) is related to the width of ψ i (ψ w ). Thus to determine the behavior of U 0 near the gas-liquid interface, that is, for 0 ∼ z ≪ 1/Re * , we make use of the fact that, in this region, ψ i ∼ 0, ψ w ∼ 1 -exp(-1/A w ), and G ∼ 0, whence

Ũ0 ∼ 1 m ( 1 2 δ 2 Re + Re 2 * Re δ ) + Re 2 * Re ∫ z 0 ds = 1 m ( 1 2 δ 2 Re + Re 2 * Re δ ) + Re 2 * Re z. ( 16 
)
Similar arguments demonstrate the existence of another linear layer near the upper channel wall, which is the appropriate behavior one expects in viscous sublayers adjacent to boundaries. Next, we determine the behavior of Ũ0 in regions that lie outside the viscous sublayers, located near z = 0 and z = 1, but still far from z = h m /h,

h m = h Re 2 * Re 2 , ( 17 
)
where h m /h denotes the mid-point of the region 0 ≤ z ≤ 1 at which

∂ Ũ0 ∂ z ∝ 1 - Re 2 Re 2 * z = 0. ( 18 
)
Thus, for regions sandwiched between the viscous sublayer near the gas-liquid interface and z = h m /h, that is, for we have G ∼ |R| 1/2 z, (ψ i , ψ w ) ∼ 1. Substitution of these results into Eq. ( 14) yields

1 Re * ≪ z ≪ Re 2 * Re 2 ,
Ũ0 ∼ 1 m ( 1 2 δ 2 Re + Re 2 * Re δ ) + Re 2 * Re ∫ z ds κRe * s = 1 m ( 1 2 δ 2 Re + Re 2 * Re δ ) + Re * κRe ln (z) . ( 19 
)
A similar calculation near z = 1 establishes the existence of a log layer close to the upper channel wall, which, once again, is the appropriate behavior one expects in the transition region between viscous sublayers and the channel core. The expression for G, Eq. ( 12), was first derived by [START_REF] Biberg | A mathematical model for two-phase stratified turbulent duct flow[END_REF] and is generalised here by accounting for the dynamically important viscous sublayers neglected in that work. This is essential in order to avoid the logarithmic singularities that would have otherwise arisen near z = (0, 1).

Determination of the model constants

We establish the values of A i,w and n in Eq. ( 13). By combining Eqs. ( 8) and (13) in a Taylor expansion near z = 0, we obtain the following form for the Reynolds stress:

τ 0 ρ G U 2 p ∼ κ Re 3 * Re 2 zn+1 A i .
A good approximation to the interface in two-phase turbulence with a large density contrast is, in fact, a solid wall [START_REF] Fulgosi | Direct numericical simulations of turbulence in a sheared air-water flow with a deformable interface[END_REF]. Thus, we set n = 2, the value appropriate for wall-bounded turbulence [START_REF] Pope | Turbulent Flows[END_REF]. In a similar manner, we fix A i and A w with reference to single-phase theory, wherein there is a one-to-one correspondence between the values of A i and A w and the additive constant B in the single-phase log-law. With κ = 0.4, the specification

A i,w = e 6.3 Re -2 * i,w (20) 
corresponds to the known value B = 5.3. It is this relationship that we use throughout our study. Thus, the values of n and A i,w have been fixed and will not be adjusted in the rest of the paper, particularly when comparing our predictions with experimental observations. We plot in Fig. 2 the base-state velocity profile, Ũ0 , for Re = 1000, for which the corresponding superficial Reynolds number based on the gas flow-rate is approximately 12, 000. The near-interfacial viscous and logarithmic layers are visible in Fig. 2(b). Using Eq. ( 11), we can determine the friction Reynolds number, Re * , as a function Re, which we treat as a 'control parameter'; this relation is shown in Fig. 3(a). We can also determine the dependence of a 'liquid Reynolds number', defined as on Re; this is shown in Fig. 3(b). The relationship shown in Fig. 3(a) is approximately linear, a consequence of the very small velocities in the liquid, compared with the maximal gas velocity. Thus, the gas layer closely resembles single-phase channel flow, and the condition U 0 (0) ≪ U max mimics the zero interfacial-velocity condition in the single-phase channel. The channel midpoint where ∂U 0 /∂z = 0 is thus approximately equal to half the gas-layer depth h m ≈ h/2. Using this guess in Eq. ( 17) gives Re * ≈ Re/ √ 2, which is close to the slope calculated in the figure. Having now fully characterised the smooth, flat-interface base state (Figs. 2-3), we discuss a way to model the scenario wherein the interface possesses a small amount of roughness generated by the turbulence.

Re L = ρ L d L U i µ L , U i = τ i d L µ L . ( 21 
)

Interfacial roughness

In the preceding exposition, we have been concerned with flow profiles where the interface is perfectly smooth. Now, we allow for interfacial roughness by modifying the eddy-viscosity law (8) and ( 12). The work of [START_REF] Lin | Direct numerical simulation of wind-wave[END_REF] gives one possible explanation for the generation of such roughness. This indicates that the so-called Phillips mechanism [START_REF] Phillips | On the generation of waves by turbulent wind[END_REF] may be important, whereby instantaneous turbulent pressure fluctuations lead to a regime of linear wave growth. This is later followed by an exponential growth regime, which is primarily governed by the disturbances in the flow induced by the waves themselves. In the present context, we regard the interfacial roughness as a consequence of the gas-phase turbulence, which then acts on the interfacial waves, thereby modifying the growth in the wave amplitude.

To model interfacial roughness, we use an eddy-viscosity model like that of [START_REF] Biberg | A mathematical model for two-phase stratified turbulent duct flow[END_REF]. Such a model has the effect of shrinking the viscous sublayer near the interface. In our formalism, this is achieved by altering the form of the mixing length near the interface: before it was

L ∼ zψ i (z/h) , as z → 0,
where ψ i (z/h) is the damping function that operates in the near-wall region z 5U * i /ν G ; now, instead, we propose the behaviour L ∼ ℓ i , as z → 0.

Thus, 

τ 0 ρ G U 2 p = κ √ |R| [z + K (1 -z)] (1 -z) ψ w (1 -z) V (z) d Ũ0 dz , z = z/h, = κ √ |R| G (z; K) ψ w (1 -z) d Ũ0 dz , ( 22 
)

Symbol

Numerical value, S.I. Units

µ G 1.8 × 10 -5 Pa.s m = µ L /µ G 55 ρ G 1 Kgm -3 r = ρ L /ρ G 10 3 d L 10 -3 -10 -2 m δ = d L /h 0.1 g 9.8 ms -2 σ 0.074 Nm -1
where K = ℓ i / (κh) is the nondimensional interfacial roughness parameter. In all but one subsection of the paper, we focus on the case wherein the base-state interface is smooth; only in Sec. 4.4 do we investigate the effects of interfacial roughness on the linear stability of the two-phase interface.

Slow and fast waves

Our model gives a way of predicting the values of (Re, d L ) for which the critical-layer instability could be relevant. This mechanism depends sensitively on the shape of the base state in the gas layer, and causes a tiny wave-like perturbation at the interface to grow in time when

( d 2 U 0 /dz 2 ) z=zc < 0,
where the critical height z c is the root of the equation U G (z) = c, and where c is the wave-propagation speed (tildes over nondimensional quantities are omitted).

First, we describe the wave speeds for which the critical-layer mechanism plays no role. Our discussion is based on the fact that if the critical layer lies inside the viscous sublayer, which is five interfacial units in extent, then the curvature of the mean profile therein is negligible, and the critical-layer mechanism is unimportant. Thus, in order for the critical-layer mechanism to play no role,

z + c = Re * z c ≤ 5.
In this limiting case, the velocity profile in the vicinity of the critical layer is linear:

U (z c ) ≈ U 0 (0) + Re 2 * Re z c = U 0 (0) + Re * Re z + c , (23a) 
We solve the critical-layer equation U 0 (z c ) = c in the limiting regime (23a). The result is

z + c = Re Re * (c -U 0 (0)) ,
which is true provided the right-hand-side never exceeds five wall units. Thus, there is an exact criterion for the waves to be slow:

z + c ≤ 5, or c -U 0 (0) ≤ 5Re Re * . ( 23b 
)
Equation ( 23b) gives a formal definition of a 'slow' wave. We use the thin-film approximation Re * ≈ Re/ √ 2 and redimensionalise the slow-wave criterion; this condition then reduces to Next, we estimate the wave speed c, which we denote by c est , using the formula for gravity-capillary waves on a quiescent free surface (recall that the tilde is used to denote dimensionless variables) [START_REF] Acheson | Elementary fluid dynamics[END_REF]:

c -U 0 (0) U p 5 √ 2 = O (1) . ( 23c 
)
c est U p = 1 Re √ gh (µ G /ρ G h) 2 r -1 r + 1 1 α + 1 r + 1 σ µ 2 G /ρ G h α√ tanh (αδ). ( 24 
)
This formula holds exactly only for inviscid fluids with an infinite upper layer (the prefactor 1/Re is due to the choice of nondimensionalisation). However, we have tested the accuracy of the formula in a number of cases (see Sec. 4.1), where it gives an order-of-magnitude prediction of the wave speed. The true value of the wave speed and the estimate agree at short wavelengths, which is precisely the limit where interfacial waves show inviscid behaviour. Finally, we substitute the values from Tab. 1 into Eq. ( 24) and obtain a graphical description of the boundary between slow and fast waves, as a function of the parameters (d L , δ, Re, α) (Fig. 4). When c est /U p ≪ 1, we expect the critical-layer mechanism to be unimportant. This is precisely the regime of small d L -values and high Reynolds numbers, which is the subject of this report. According to the classification of [START_REF] Boomkamp | Classification of instabilities in parallel two-phase flow[END_REF], the other two mechanisms of instability that exist for two-phase flow are the viscosity-contrast instability, and the liquid internal mode. We must therefore be on the lookout for these instabilities in any linear stability based on the velocity profile derived herein.

Comparison with experiments and DNS

To validate our model for the base state, we compare it with other studies of both single-and two-phase flow. A further comparison with studies of single-phase flow over a wavy wall [START_REF] Zilker | Influence of the amplitude of a solid wavy wall on a turbulent flow. part 1. non-separated flows[END_REF][START_REF] Abrams | Relaxation effects observed for turbulent flow over a wavy surface[END_REF] is provided in Appendix A. We first of all characterise the single-phase version of our model. This is obtained by setting U 0 (0) = 0 and by ignoring the liquid layer. We compare with the experimental work of [START_REF] Willmarth | Laser anemometer measurements of reynolds stress in a turbulent channel flow with drag reducing polymer additives[END_REF], for single-phase pressure-driven channel flow. In the experiment, the input parameter is the Reynolds number based on the friction velocity, Re * = 1.143 × 10 3 . In the single-phase version of our model, Eq. ( 17) reduces to Re ≈ √ 2Re * . Thus, the input parameter for the model is Re = √ 2 × 1.143 × 10 3 . From this model input, we derive a Reynolds number based on the mean velocity in the model:

Re m = ρ G µ G ∫ h 0 U 0 (z) dz.
The mean Reynolds number in the experiment was Re m = 2.158 × 10 4 ; we compute Re m to be 2.13 × 10 4 , close to the experimental value. A plot of the profile is shown in Fig. 5: the model and the experimental data are in excellent agreement. To validate the two-phase version of our model, we compare it with the work of [START_REF] Akai | A co-current stratified air-mercury flow with wavy interface[END_REF][START_REF] Akai | The prediction of stratified two-phase flow with a two-equation model of turbulence[END_REF] who studied two-phase turbulence for an air-mercury system, where m = 77 and r = 1.120 × 10 4 at room temperature. The liquid Reynolds number, based on the liquid-layer depth and the mean liquid velocity is set to Re m,L = 8040 throughout the experiments. Because the liquid is no longer laminar, we apply the turbulence model Eq. ( 8) to both layers; the result is the following equation pair:

Ũ0 (z) =            Re 2 * Re0 ∫ z -δ ( 1- Re 2 0 Re 2 * s ) ds m+ κRe * δr √ r|R B | GB (-s/δ)ψB (s) , -δ ≤ z ≤ 0, Re 2 * Re0 ∫ 0 -δ ( 1- Re 2 0 Re 2 * s ) ds m+ κRe * δr √ r|R B | G B (-s/δ)ψ B (s) + Re 2 * Re0 ∫ z 0 ( 1- Re 2 0 Re 2 * s ) ds 1+ κRe * √ |R| G(s)ψ(s)ψ(1-s) , 0 ≤ z ≤ 1, (25) 
where

R B = - τ i τ w,B = - 1 1 + Re 2 0 Re 2 * δ , G B (s) = s (1 -s) [ s 3 + |R B | 5/2 (1 -s) 3 R 2 B (1 -s) 2 + R B s (1 -s) + s 2 ] , 0 ≤ s ≤ 1, ψ B (s) = 1 -e -(s+δ) n /A vd,B ,
and where Re * is determined as the root of the equation Ũ (1; Re * ) = 0. In the experiment, the input parameters are the gas-layer Reynolds number based on the mean gas velocity, and the liquid-layer Reynolds number: The results of this comparison are shown in Fig. 6, where excellent agreement is obtained, particularly in the gas phase. The agreement between the model and the experiments is as good as in the paper of [START_REF] Biberg | A mathematical model for two-phase stratified turbulent duct flow[END_REF]. This is not surprising, since our model is designed to replicate his in the log-law regions of the flow, and in the core regions. Indeed, we conclude from the near-exact agreement between our predictions and those of Biberg that our model inherits all the results he obtained from experimental comparisons. The added advantage of our model is that it can be continued down to the wall and interfacial zones.

Re m,G = ρ G µ G ∫ h 0 U 0 (z) dz, Re m,L = ρ L µ L ∫ 0 -d L U 0 (z) dz.
Finally, to validate the near-interface region of the model, we compare it with the DNS results of [START_REF] Solbakken | On the drag reduction mechanism in a lubricated turbulent channel flow[END_REF] for two-phase lubricated channel flow. To compare with their results, we take δ = 1/34, m = 2, r = 1 (hence ρ L = ρ G = ρ), and

Re τ = ρ (h + 2d L ) U τ 2µ G = ρ (h + 2d L ) 2µ G √ h + 2d L 2ρ ∂P 0 ∂x = 180.
To connect the model input parameter Re to the simulation input parameter Re τ , we use the formulas

U p U τ = √ 2 2δ + 1 , Re Re τ = ( 2 2δ + 1 ) 3/2 .
Furthermore, we take

z + = z h 2Re τ 2δ + 1 , U + = U U p √ 2 2δ + 1 .
The results of the comparison are shown in Fig. 7. There is excellent agreement, in particular near the interface. Further, comparisons for air-water flow [START_REF] Adjoua | Développement d'une méthode de simulation à un fluide découlements diphasiques turbulents[END_REF], and flow past wavy walls [START_REF] Zilker | Influence of the amplitude of a solid wavy wall on a turbulent flow. part 1. non-separated flows[END_REF][START_REF] Abrams | Relaxation effects observed for turbulent flow over a wavy surface[END_REF] are given in Appendix A.

In conclusion, we have formulated a model of two-phase interfacial flow where the upper layer is fullydeveloped and turbulent. The model requires no fitting parameters that are introduced. In particular, the model provides a correlation between the pressure drop and the interfacial shear stress. The agreement between our model and experiments and DNS is convincing and inspires confidence in its use as a base state for the linear stability analysis which we now perform.

Linear stability analysis

In this section, we carry out a linear stability analysis based on the flat-interface base state derived above. We discuss in detail the modelling of the Reynolds stresses in the perturbation equations, the choice of physical parameters appropriate for modelling thin films in two-phase channel flow, and assess the importance of the Reynolds stresses in this scenario. Throughout this section, we work with a smooth-interface base state; only in Sec. 4.4 do we consider base states with interfacial roughness. We base the dynamical equations for the interfacial motion on the Reynolds-averaged Navier-Stokes (RANS) equations. We start by listing the relevant equations without assigning distinguishing decoration to designate the different phases; appropriate subscript notation is then introduced for the gas and liquid phases as appropriate.

Governing equations

The turbulent velocity is decomposed into an averaged component (U, W ), and fluctuations. The averaged components depend on space and time through the RANS equations:

ρ ( ∂U i ∂t + U • ∇U i ) = - ∂P ∂x i + ∂T (v) ij ∂x j + ∂T (t) ij ∂x j , sum over j, ( 26a 
) ∇ • U = 0, (26b) 
where

T (v) = ( 2µU x µ(U z + W x ) µ(U z + W x ) 2µW z ) , T (t) = ( σ 1 τ τ σ 2 ) (26c)
represent the viscous and turbulent stress tensors in which τ denotes the turbulent shear stress, and σ 1 and σ 2 the turbulent normal stresses; here, the symbol σ should not be confused with that used to denote surface tension in the previous section. We have already used these equations to model the flat-interface base state of the two-phase system shown in Fig. 1. To understand the waves that develop on such an interface, we introduce a small disturbance that shifts the flat interface at z = 0 to z = η (the dimensionless wave elevation), where |η| ≪ 1:

(U, W, P ) = (U 0 (z) + δu (x, z, t) , δw (x, z, t) , P 0 (x) + δp (x, z, t)) , (σ 1 , σ 2 , τ ) = (σ 01 + δσ 1 , σ 02 + δσ 2 , τ 0 + δτ ) ,
where we denote base-state quantities by a subscript zero and the δ quantities are infinitesimally small disturbances; here, δ is not to be confused with the dimensionless film thickness. Since the flow is turbulent, and since the perturbations take the form of a wave with speed c, they must satisfy the RANS equations for a wave, ∂/∂t = -c∂/∂x:

ρ [ (U 0 -c) ∂ ∂x δu + dU 0 dz δw ] = - ∂ ∂x (δp -δσ z ) + µ ( ∂ 2 ∂x 2 + ∂ 2 ∂z 2 ) δu + ∂ ∂x δσ + ∂ ∂z δτ, ρ (U 0 -c) ∂ ∂x δw = - ∂ ∂z (δp -δσ z ) + µ ( ∂ 2 ∂x 2 + ∂ 2 ∂z 2 ) δw + ∂ ∂x δτ, ∂ ∂x δu + ∂ ∂z δw = 0.
where δσ = δσ 1 -δσ 2 . Using the streamfunction representation (δu, δw) = (∂ϕ/∂z, -∂ϕ/∂x), and the normal-mode decomposition (ϕ, p, σ, τ )(x, z, t) ∝ e iα(x-ct) the perturbed RANS equations reduce to a single equation following the elimination of the pressure. In non-dimensional form, the equation governing the streamfunction in the gas-phase is given by iα

[ (U 0 -c) ( D 2 -α 2 ) ϕ G - d 2 U 0 dz 2 ϕ G ] = 1 Re ( D 2 -α 2 ) 2 ϕ G + iαDδσ + ( D 2 + α 2 ) δτ, ( 27a 
)
where D = d/dz, and, as in the previous section, subscript 'G' designates gas phase quantities. The analogous equation for the liquid reads iαr

[ (U 0 -c) ( D 2 -α 2 ) ϕ L - d 2 U 0 dz 2 ϕ L ] = m Re ( D 2 -α 2 ) 2 ϕ L . ( 27b 
)
Equations ( 27) represent an Orr-Sommerfeld type of system (Orr, 1907a,b;[START_REF] Orszag | Accurate solution of the orr-sommerfeld stability equation[END_REF][START_REF] Yiantsios | Linear stability of plane Poiseuile flow of two superposed fluids[END_REF], with turbulent stresses in the gas that are additional to those that arise from viscous contributions. The problem of modelling these stresses in Eq. ( 27a) has received considerable attention in the literature [START_REF] Belcher | Turbulent shear flow over slowly moving waves[END_REF][START_REF] Belcher | Linear dynamics of wind waves in coupled turbulent air-water flow. Part 1[END_REF][START_REF] Belcher | Turbulent flow over hills and waves[END_REF][START_REF] Townsend | Flow in a deep turbulent boundary layer over a surface distorted by water waves[END_REF][START_REF] Townsend | The response of sheared turbulence to additional distortion[END_REF][START_REF] Ierley | On Townsend's rapid-distortion model of the turbulent-wind-wave problem[END_REF]. In this section, we use two 'stationary' turbulent models from this literature to describe these stresses in which the eddy turnover frequency U * i / (κz) exceeds the advection frequency α|U G (z) -c| [START_REF] Belcher | Turbulent shear flow over slowly moving waves[END_REF][START_REF] Belcher | Linear dynamics of wind waves in coupled turbulent air-water flow. Part 1[END_REF][START_REF] Janssen | The interaction of ocean waves and wind[END_REF] in the gas phase. The use of such models is appropriate for 'slow' waves because the dynamically important region for the instability is located very close to the interface, on the gas side. These 'stationary' models are discussed next.

The visco-elastic model

This turbulence model is a 'stationary' one whose starting-point is the following standard description for the perturbation-induced turbulent kinetic energy (TKE) [START_REF] Pope | Turbulent Flows[END_REF]:

( ∂ ∂t + U 0 ∂ ∂x ) δk + δw dk 0 dz Advection = ( µ T + 1 Re ) ∇ 2 δk + dµ T dz ∂ ∂z δk Transport + σ 0 ∂ ∂x δu G + τ 0 ( ∂ ∂z δu G + ∂ ∂x δw G ) + δτ dU 0 dz Production -δE dissipation , (28) 
where k 0 and δk denote the base-state and perturbation TKE, δE is the dissipation of TKE due to turbulence, and σ 0 = σ 01 -σ 02 . The functional form of the dissipation term is unknown and must be modelled.

Here, we assume it to be linear in δk: δE = (Re 2 * /Re)δk. This is an approximation (other closure laws will be investigated in detail in future work), and is convenient from a mathematical point of view: in this form, the dissipation rate is well-behaved in the dynamically-important interfacial zone, unlike other models [START_REF] Townsend | Flow in a deep turbulent boundary layer over a surface distorted by water waves[END_REF][START_REF] Townsend | The response of sheared turbulence to additional distortion[END_REF][START_REF] Ierley | On Townsend's rapid-distortion model of the turbulent-wind-wave problem[END_REF][START_REF] Biberg | A mathematical model for two-phase stratified turbulent duct flow[END_REF] that fail to resolve this zone, and possess logarithmic singularities.

We substitute (δu -ct) , where subscript G denotes gas-phase quantities, along with (δk, δτ )(x, z, t) ∝ e iα(x-ct) into Eq. ( 28), and allow molecular viscosity to dominate its turbulent counterpart in the interfacial region where the latter is negligible [START_REF] Townsend | Flow in a deep turbulent boundary layer over a surface distorted by water waves[END_REF][START_REF] Townsend | The response of sheared turbulence to additional distortion[END_REF][START_REF] Ierley | On Townsend's rapid-distortion model of the turbulent-wind-wave problem[END_REF]. Thus, Eq. ( 28) reduces to the following:

G , δw G ) = (∂ϕ G /∂z, -∂ϕ G /∂x) ∝ e iα(x
[ iα (U 0 -c) + Re 2 * Re ] δk = 1 Re ( D 2 -α 2 ) δk + δτ dU 0 dz + τ 0 ( D 2 + α 2 ) ϕ + iασ 0 Dϕ G + iα dk 0 dz ϕ G . ( 29a 
)
The 'visco-elastic' aspect of the model comes from the manner in which the unknown stress δτ is constituted. Such models have been used by [START_REF] Townsend | Flow in a deep turbulent boundary layer over a surface distorted by water waves[END_REF][START_REF] Townsend | The response of sheared turbulence to additional distortion[END_REF], and by [START_REF] Ierley | On Townsend's rapid-distortion model of the turbulent-wind-wave problem[END_REF]. The model described here fits into the framework of the latter paper, with slight modifications: the base-state quantities are computed according to the formalism in the previous section. Thus, to close the system, the following constitutive relations are posed:

δτ - τ 0 k 0 δk = 0, δσ - σ 0 k 0 δk = 0, (29b) 
with the base-state stress, τ 0 , given by Eq. ( 8), and σ 0 set equal to the base-state kinetic energy: σ 0 = k 0 ; the latter is consistent with the DNS results of [START_REF] Spalart | Direct simulation of a turbulent boundary layer up to r θ = 1410[END_REF]. Equations (29b) are consistent with the statement that the tensor T (t) ij /k maintains its equilibrium (base-state) value [START_REF] Ierley | On Townsend's rapid-distortion model of the turbulent-wind-wave problem[END_REF][START_REF] Pope | Turbulent Flows[END_REF].

Finally, the base-state turbulent kinetic energy must be modelled. Instead of writing down a transport equation for the base-state kinetic energy, and invoking a closure assumption for the base-state dissipation, we use the following model:

k0 = k 0 ρ G U 2 p = 1 C 2 Re 2 * Re 2 ψ (z) ψ (1 -z) , ( 29c 
)
where C is a constant, here taken to be 0.55, which is the value appropriate for the logarithmic region of the mean velocity in a boundary layer. This form is desirable because it captures both the log-layer behaviour of the turbulent kinetic energy, and the asymptotic behaviour near the upper channel wall and near the interface: for instance, k0 ∼ z2 as z → 0.

The zero-equation model

In the formalism associated with the so-called 'zero-equation' model, the stresses δσ and δτ are not related directly to the TKE. Rather, the normal stresses are set to zero, δσ = 0, and the shear stress is modelled as

δτ = µ T ( D 2 + α 2 ) ϕ G , (30a) 
where

µ T = κRe * √ |R|Re G (z) ψ i (z) ψ w (1 -z) , (30b) 
viz. Eq. ( 8). This is a rather basic model of the eddy viscosity, although Belcher and co-workers [START_REF] Belcher | Turbulent shear flow over slowly moving waves[END_REF][START_REF] Belcher | Linear dynamics of wind waves in coupled turbulent air-water flow. Part 1[END_REF][START_REF] Belcher | Turbulent flow over hills and waves[END_REF] have used a similar model to Eqs. (30), with the aim of capturing the physics of the equilibrium turbulence.

Interfacial conditions

To close Eqs. ( 27), continuity of velocity and tangential stress is imposed at the interface z = 0, while the jump condition in the normal stress is also applied. These are standard conditions [START_REF] Chandrasekhar | Hydrodynamic and Hydromagnetic Stability[END_REF], with slight modification for the presence of turbulent stresses, δσ and δτ , on the gas side:

ϕ L = ϕ G , ( 31a 
)
Dϕ L = Dϕ G + ϕ G c -U 0 [ U ′ 0 (0 + ) -U ′ 0 (0 -) ] , ( 31b 
) m ( D 2 + α 2 ) ϕ L = ( D 2 + α 2 ) ϕ G + δτ G - ϕ G c -U 0 σ 0 , (31c) m ( D 3 ϕ L -3α 2 Dϕ L ) + iαrRe (c -U 0 ) Dϕ L + iαrRe U ′ 0 (0 -)ϕ L - iαrRe c -U 0 ( F r + α 2 S ) ϕ L = ( D 3 ϕ G -3α 2 Dϕ G ) + iαRe (c -U 0 ) Dϕ G + iαRe U ′ 0 (0 + )ϕ G + iαδσ + Dδτ. (31d)
where F r and S correspond to the Froude and inverse Weber numbers, respectively:

F r = gh (µ G /ρ G h) 2 r -1 Re 2 , S = σ µ 2 G /ρ G h 1 Re 2 . ( 32 
)
Next, the no-slip conditions are applied at z = -δ and z = 1:

ϕ L (-δ) = Dϕ L (-δ) = ϕ G (1) = Dϕ G (1) = 0,
and, when the 'visco-elastic' model is used, the following conditions are applied to the TKE

δk(0, 1) = 0. ( 33 
)
Note that if the 'visco-elastic' model is adopted then (δσ, δτ ) ∼ δk so (δσ, δτ ) → 0 as z → (0, 1) since δk → 0 in these limits; this is also true for the 'zero-equation' model since, in that case, δσ = 0 identically, and δτ ∼ µ T → 0 as z → (0, 1) since (G, ψ i , ψ w ) → 0 in these limits. Thus, the turbulent stress contributions in Eqs. (31c)-(31d) vanish leaving the 'standard' interfacial conditions unaltered. The vanishing of these terms occurs only because we have carefully formulated the assumptions concerning the turbulent base state, highlighting yet again the importance of modelling the flat-interface state accurately. The Orr-Sommerfeld equations ( 27) and the turbulence models reduce to an eigenvalue problem in the eigenvalue c. This is solved numerically according to a standard method, described and validated elsewhere by the current authors in the context of absolute and convective instabilities in laminar two-phase flows [START_REF] Valluri | Linear and nonlinear spatio-temporal instability in laminar two-layer flows[END_REF]Ó Náraigh and Spelt, 2010).

Results

In this section, we begin by examining the validity of certain simplifying assumptions that involve the neglect of the turbulent stresses in the linear stability analysis; this is followed by a brief study of the effect of varying Re on the stability characteristics and the establishment of a critical Re which will form the basis for comparisons with experiments. In the remainder of the section, we perform an energy-budget decomposition to identify the dominant mechanism for instability, and investigate the possibility of mode competition. Finally, we assess the possibility that mode competition can be generated by large amounts of interfacial roughness.

Quasi-laminar hypothesis

Here, we compare the predictions of the turbulence models of the perturbed turbulent stresses against the so-called quasi-laminar hypothesis. This hypothesis states that the turbulence makes itself felt primarily through the base state and, consequently, that the perturbed turbulent stresses are to be ignored. We demonstrate that this approximation is sufficient to capture the dominant features and essential physics of the interfacial instability. To do so, we carry out a stability analysis based on the values in Tab. 1, with d L = 2.5 mm and δ = 0.05. The inverse Froude and inverse Weber numbers are computed as

F r = ( 3.7809 × 10 6 ) r -1 Re 2 , S = 1.1420 × 10 7 Re 2 . ( 34 
)
We select a Reynolds number, Re, that produces substantial shear in the liquid, but is such that the liquid remains laminar. Thus, Re = 1000, and Re L = τ i d L /µ L ≈ 460. (We verify a posteriori that the liquid remains laminar, in the sense that no unstable modes associated with the liquid exhibit positive growth.) In Fig. 8, we obtain dispersion curves, describing the dependence of the growth rate λ r = αc i on the wavenumber α using three models: the basic Orr-Sommerfeld equation without the perturbed turbulent stresses (i.e. the quasi-laminar approach), the visco-elastic model (29), and the zero-equation model ( 30), to which we refer below as the 'eddy-viscosity model'. Over a large range of Reynolds numbers (Re = 500-5000, Re Umax = ρ G U max h/µ G = 10 3 -10 5 ), the growth rates for the different models differ only quantitatively. In particular, the differences between the quasi-laminar calculation and the eddy-viscosity one are small: the shift in the maximum growth rate upon including the perturbed turbulent stresses is less than 10% in the cases considered here, while the cutoff wavenumbers are virtually unchanged. The differences between the quasi-laminar calculation and the visco-elastic calculation are slightly larger, increasing with Re. In particular, the cutoff wavenumber is shifted to a higher value in the Re = 5000 case (Fig. 8(d)). Nevertheless, the shift in the maximum growth rate upon including the terms associated with the visco-elastic model is a little over 10% for the largest Re considered in Fig. 8. The minor discrepancy in behaviour between the visco-elastic model and the other two models is due to the simplicity in modelling the kinetic-energy dissipation function, here assigned the simple linear form ( Re 2 * /Re ) δk. Accurate modelling of this term will be the subject of future work.

Our conclusion from the small differences evinced by these comparisons is that we are justified in considering the quasi-laminar approximation for the rest of this work. Physically, the marginality of the perturbed turbulent stresses is explained as follows. Any difference in the stability results between the models is driven by the presence of extra terms in the perturbation equations for the bulk flow, and by the existence of extra terms in the interfacial conditions. In our case, the additional terms in the bulk equations scale as κRe * /Re, which for thin layers is approximately κ/ √ 2, and thus has a small effect. Moreover, in our case, the additional interfacial terms are turbulent in nature, and are thus damped to zero in the viscous sublayer, and vanish at z = 0. Hence, this second contribution to the modified growth rate is identically zero. Thus, in the case of equilibrium turbulence considered here, the effects of turbulence are felt almost entirely through the choice of base state. The only possibility for the effects of turbulence to enter through the perturbed turbulent stresses is when the critical-layer instability is present, in which case the perturbed turbulent stresses and the critical layer may interact. However, the discussion of 'slow' and 'fast' waves in Sec. 2.3 suggests that thin-layer waves are 'slow', and, therefore, not susceptible to the critical-layer instability. In conclusion, we are satisfied that the perturbed turbulent stresses are of marginal importance; therefore, for the rest of the paper, we focus only on the quasi-laminar model. Finally, in Fig. 9, we investigate the extent to which the wave speed c r agrees with the free-surface formula (24). Inspection of panel (a) of this figure suggests that the agreement is good in the limit of large α, deteriorating with decreasing α, although it remains a useful order-of-magnitude estimate (for which it is used here). Figure 9(b) also shows that the agreement is reasonable over a range of F r values.

The critical Reynolds number

We investigate the effect of varying Re on the structure of the dispersion curves, using the quasi-laminar assumption; emphasis is placed on the variation of the cutoff wavenumber and maximum growth rate with Re. The results shown in Fig. 10 demonstrate that the maximum growth rate increases monotonically with Re. Furthermore, upon decreasing Re, the lower critical wavenumber shifts from α cl = 0 to a finite value α cl > 0, suggesting that for a given parameter set ( m, r, δ, Re 2 , S, F r ) , there is a critical Reynolds number for stability. This is exemplified by Fig. 10, where the critical Reynolds number is Re c ≈ 750. The existence of the critical Reynolds number provides a means of comparing our models with experiments (Sec. 5). First, however, we examine some further properties of the eigenvalue problem, which characterises the quasi-laminar model.

Energy-budget decomposition and identification of unstable modes

In this subsection, we use an energy budget to classify the instabilities observed. The linearised dynamical equations associated with the Orr-Sommerfeld equations possess an energy Figure 10: The effects of varying Re on the dispersion curves using the quasi-laminar assumption. We have set (m, r, δ) = (55, 1000, 0.05); F r and S are given by Eq. ( 34).

1 2 ∫ 0 -δ dz ∫ 2π/α 0 dx |δu L | 2 =EL + 1 2 ∫ 1 0 dz ∫ 2π/α 0 dx |δu G |
where r L = r and r G = 1, which grows or decays in time according to the stability of the base state. By matching the time change in the kinetic energy KIN j = dE j /dt (j = G, L) with the inputs of power into the perturbations, an energy budget is obtained [START_REF] Hooper | Shear-flow instability at the interface between two viscous fluids[END_REF][START_REF] Kelly | The mechanism for surface wave instability in film flow down an inclinded plane[END_REF][START_REF] Boomkamp | Classification of instabilities in parallel two-phase flow[END_REF]:

KIN G + KIN L = DISS G + DISS L + REY G + REY L + N OR + T AN ,
where DISS G,L denotes energy loss through viscous dissipation, REY G,L denotes wave-Reynolds-stress terms that correspond to transfer of energy from the mean flow into the perturbations in the bulk parts of the two phases; N OR and T AN denote energy delivered by the normal and tangential stresses at the interface. For the quasi-laminar model, the perturbed turbulent stresses, being of marginal importance, are ignored. Of particular interest in the present application are the terms

REY L = ∫ 0 -δ dz τ L,wrs (z) U ′ 0 (z), τ L,wrs (z) = -r ∫ 2π/α 0 dx δu L δw L , ( 35 
)
REY G = ∫ 1 0 dz τ G,wrs (z) U ′ 0 (z), τ G,wrs (z) = - ∫ 2π/α 0 dx δu G δw G , ( 36 
)
and

T AN = ∫ 2π/α 0 dx [(δu L -δu G ) δT G,xz ] z=0 , ( 37 
)
where δT G,xz is the off-diagonal component of the viscous stress tensor in the gas layer. Using this decomposition, we characterise the instability in Fig. 9(a), for which m = 55, r = 1000, δ = 0.05, and Re = 1000. The most-dangerous mode is at α ≈ 20, which equates to a wavelength 2π/α ≈ d L . The energy budget of this mode is given in Tab. 2. The results in this table indicate that it is the T AN term that is the main source of the instability. To understand this term in more depth, we apply the kinematic condition

δu L -δu G = η [ U ′ 0 (0 + ) -U ′ 0 (0 -) ] = ηU ′ 0 (0 -) (m -1) , on z = 0,
to the tangential term (37), to obtain Thus, T AN > 0 is consistent with m > 1, provided the phase shift between the interfacial height η (x) and the disturbance stress δT G,xz (x, z = 0) is small. Specifically, the phase shift must be in the range

T AN = (m -1) Re 2 * Re ∫ 2π/α 0 dx η (x) δT G,xz (x, z = 0) . ( 38 
)
[ -π 2 , π 2 ]
; see Fig. 11. This means that the interface destabilises through the viscosity-contrast mechanism (also called the Yih mode [START_REF] Yih | Instability due to viscosity stratification[END_REF]). Similar results hold over a range of parameter values 1000 ≤ Re ≤ 10, 000, 0.1F r 0 ≤ F r ≤ 10F r 0 , and 0.1S 0 ≤ S ≤ 20S 0 , where (F r 0 , S 0 ) represent the reference values used in Tab. 2. This confirms the dominance of the viscosity-contrast mechanism in destabilising the interface in the thin-film case considered.

We now examine a second unstable mode which appears for sufficiently large Re; an example of this is shown in Fig. 12 for Re = 2000. The energy budget of the two unstable modes is shown in Tab. 3. The first mode, associated with the eigenvalue branch that has interested us until now, derives all but a small fraction of its destabilising energy from the T AN term, which as was mentioned above, owes its existence to Table 3: Energy budget of the two unstable modes shown in Fig. 12 at α = 25. Here we have set (m, r, δ, Re) = (55, 1000, 0.05, 2000); F r and S are given by Eq. ( 34). work done by the tangential stress on the interface. This term is positive when m > 1, and we designate this mode the 'interfacial' mode. The second, less unstable mode derives the majority of its destabilising energy from this source too, although the magnitude of the term REY L is larger for this mode. Thus, the transfer of energy from the mean flow to the perturbation in the liquid is destabilising. This mode is commonly called the 'internal' one (e.g. [START_REF] Miesen | Hydrodynamic stability of a sheared liquid film[END_REF]).

α λ max KIN G KIN L REY L REY G DISS L DISS G N OR T AN 25 0.
Figure 13(a) shows the streamfunction for these two modes. The streamfunction of the internal mode possesses a large non-zero component in the liquid, in contrast to that of the interfacial mode. This produces significant flow in the liquid, and hence gives an important contribution to the wave-Reynolds-stress term, REY L . The development of such a term is shown in Fig. 13, where we plot the wave-Reynolds-stress, τ wrs in the liquid and the gas (Eqs. ( 35)-( 36)) for both modes; this function is non-zero throughout the liquid layer in the internal-mode case, confirming the importance of the dynamics in the bulk of the liquid for the development of this less unstable mode.

The existence of a second unstable mode implies the possibility of mode competition, in which the most dangerous mode changes type, from being interfacial to internal. We have verified that this competition can be effected by decreasing m, which decrease the importance of the interfacial mode relative to the internal mode. A similar modal competition has been observed in two-phase mixing layers by [START_REF] Yecko | Viscous modes in two-phase mixing layers[END_REF], where the mode competition is also a function of the viscosity contrast. Instead of pursuing this mechanism of competition in detail, we turn instead to the variations in the interfacial roughness, which can also engender modal competition.

Modelling interfacial roughness

We examine the effect of interfacial roughness on the internal and interfacial modes. We use the model described in Sec. 2.2, where the eddy-viscosity contains an explicit roughness parameter K = ℓ i / (κh), and where ℓ i is the mean height of the roughness elements. In view of the success of the quasi-laminar hypothesis in describing the linear stability of smooth base states, its use is extended to the surface-roughened case 14(c). (a) The growth rate of the three most dangerous modes at Re = 4000 and K = 0.005, being an enlarged view of the α = 15-30 region of Fig. 14(c). The sharp kink or extreme point in the growth rate of the internal mode is thus genuine, and not the consequence of mode crossover. (b) Furthermore, by examining the wave speed, we see that the wave speed of the internal and the third most dangerous modes do in fact cross close to the corresponding extreme point of the growth-rate curves. Finally, (c) shows the wave speed of the interfacial mode. considered here. Figure 14 shows the effect of varying the roughness parameter K on the dispersion curves. As K increases, the maximum growth rate of the interfacial mode shrinks dramatically, while the maximum growth rate of the internal mode increases slightly. This change is sufficient to promote the maximum wavenumber-growth-rate pair on the internal branch, (α max,int , λ max,int ), to the status of most dangerous mode. This crossover occurs for K 0.001, as shown in Fig. 14(b).

In Fig. 14(c), the dispersion curve of the internal mode possesses a local minimum near α ≈ 20. To verify that this is not due to a crossover between the second and third modes, we have plotted the three least negative modes for K = 0.005 in Fig. 15(a). The second and third least negative modes are well separated and a crossover effect is thus ruled out. Figs. 15(b) and (c) are plots of the wave speed for the internal and interfacial modes: the continuity of these curves confirms that no crossover effect is taking place. Note, however, that the wave speeds of the second and third most dangerous modes intersect close to the point where the internal mode has its local minimum. Such phenomena often occur in modal coalescence [START_REF] Shapiro | On the patterns of interaction between shear and interfacial modes in plane air-water poiseuille flow[END_REF]. The difference c r -U int is negative for the internal mode, which shows that the critical layer is in the liquid for the internal mode. Note finally that although the roughness-modified eddy viscosity has been rigorously validated by [START_REF] Biberg | A mathematical model for two-phase stratified turbulent duct flow[END_REF], and although [START_REF] Morland | Effect of wind profile on the instability of wind blowing over water[END_REF] have explained previously how interfacial roughness can reduce the growth rate of the wave, our interfacial roughness results In the next section we turn to an aspect of our investigations for which experimental data are available, namely the thin-layer, flat-interface base state.

Comparison with experiments and other models

We compare our results with some of the experimental data from the literature, in particular the work of [START_REF] Cohen | Generation of waves in the concurrent flow of air and a liquid[END_REF][START_REF] Cohen | Generation of waves in the concurrent flow of air and a liquid[END_REF][START_REF] Craik | Wind-generated waves in thin liquid films[END_REF]. We also compare our findings with a model that is frequently used in practical applications to predict flow-regime transitions, namely the 'viscous' Kelvin-Helmholtz theory.

Comparison with experiments

Cohen and Hanratty (1965) report critical Reynolds numbers for millimetre-thick water films forced by air. They observe the development of two-dimensional waves above a critical Reynolds number. They call these waves 'fast', in the sense they move at a velocity that exceeds the interfacial velocity. These waves are, however, in our classification, 'slow' (or on the boundary between 'slow' and 'fast'), since the theoretical values computed are c r /U p 1, and thus the viscosity-contrast instability is expected. We show a comparison between the theoretical predictions of our model and the measurements of Cohen and Hanratty in Tab. 4. Our estimates for the critical Reynolds number Re CH = ρ G hU G /µ G are in close agreement with the experimental values, well within the margin of error in the experiments, reported to be in the range of 10-20%. We have also compared our theoretical model with the measurements of the critical wavelength and wave speed. There is reasonable agreement between the theoretical and experimental values for the wave speed. The spread in values of the critical wavelength is larger, although this is acceptable, in view of the large error attached to the experimental measurements. The energy budget in Tab. 4 is based on a calculation, with parameters taken from experiment (3). Specifically, Re = 207.3, r = 873.9, m = 50.45, δ = 0.2350, F r = 346100, S = 5258000. The corresponding streamfunction and the wave-Reynolds stress function are presented in Fig. 16. The instability is confirmed to be due to the viscosity-contrast mechanism, with additional, inertial contributions from the liquid and gas phases. [START_REF] Craik | Wind-generated waves in thin liquid films[END_REF] performs a similar experiment with liquid films thinner than those found in [START_REF] Cohen | Generation of waves in the concurrent flow of air and a liquid[END_REF] and reports critical conditions for instability. The trend in the data in Tab. 5 agrees with that in our calculations, although the quantitative agreement deteriorates with increasing film thickness (see sub-table containing runs (2.1)-(2.3); we do not compare our results with runs (2.4) and (2.5) in [START_REF] Craik | Wind-generated waves in thin liquid films[END_REF] wherein our model predicts laminar gas flow). Craik explains that waves are observed for film thickness below that quoted in experiment (1.1), although the uniform thin film of liquid is difficult to maintain under these conditions. It is possible that the thinness of the film inhibits precision in the measurement at film thickness above this lower bound too. Craik also explains that accurate measurements of wave speed were difficult owing to the long wavelengths of the observed waves (compared to the channel length). These are sources of 23 error that explain why there is only qualitative agreement between the theoretical and experimental data. Finally, the energy budget in Tab. 6 is based on a theoretical calculation, with parameters taken from experiments (1.5) and (2.1). The instability is controlled entirely by the viscosity-contrast mechanism; the contributions from the bulk phases seen in the previous case (Tab. 4-5) are absent here, since the liquid film is much thinner.

Comparison with 'viscous' Kelvin-Helmholtz theory

In this section, we compare our predictions with those obtained using viscous Kelvin-Helmholtz theory [START_REF] Barnea | On the effect of viscosity on stability of stratified gas-liquid flow -Application to flow pattern transition at various pipe inclinations[END_REF]. This is a simplified theory for the interfacial instability of two-phase turbulent flow, and takes account of turbulence in either or both phases. It is commonly used in one-dimensional models for largescale stratified and slug-flow predictions. The velocity field enters only through the liquid-and gas-averaged values, u L and u G , while the cross-sectional area fractions ϵ

L = d L / (d L + d G ) and ϵ G = d G / (d L + d G )
also play a role. Then, the complex frequency ω is obtainable from a quadratic equation, the details of which can be found in Appendix B.

We plot the stability boundary predicted by this theory in Fig. 17, and compare the results with Craik's data for experiment-set 1 (a six-inch channel) (Tab. 5), and with a curve fit based on a number of points obtained from our calculations. The viscous Kelvin-Helmholtz model overpredicts the critical Reynolds number compared with both the data of [START_REF] Craik | Wind-generated waves in thin liquid films[END_REF] and our theoretical model by an order of magnitude (Fig. 17). This casts severe doubts on the usefulness of such a depth-averaged model. Our model gives better agreement with the data of [START_REF] Craik | Wind-generated waves in thin liquid films[END_REF], although we are mindful of the experimental error associated with these data. Nevertheless, both our theoretical calculations and the experimental data demonstrate the unstable-stable-unstable transition that arises when the film depth is increased, holding the Reynolds number fixed. This is the statement that our theoretical curve in Fig. 17 is non-monotonic (the non-monotonicity in the model curve is masked somewhat by the large scale necessary to show the viscous Kelvin-Helmholtz results in the same figure).

In conclusion, the model predictions of the critical Reynolds number agree reasonably well with experiments, and inspire confidence in our base-state formulation. To obtain this agreement, no parameter tuning was required: we simply backed out the pressure drop from the experimental papers and used our model for these cases. This is in contrast to (for example) the work of [START_REF] Miesen | Hydrodynamic stability of a sheared liquid film[END_REF], wherein the authors encountered some difficulty in matching up the model parameters with the experimental conditions. Furthermore, the poor agreement between the predictions of the viscous Kelvin-Helmholtz theory and experimental data (and our model predictions) calls into question the validity of this depth-averaged model, at least for the kind of thin-film waves studied here.

Conclusions

In this paper, we have investigated the linear stability of an initially flat interface separating a thin, primarily laminar liquid layer (although cases wherein this layer is turbulent are also considered briefly) from a turbulent gas in a rectangular channel. A base-state model for the flow is derived, which is a generalisation of the model of [START_REF] Biberg | A mathematical model for two-phase stratified turbulent duct flow[END_REF]. In this model, both phases are assumed to be steady and fully-developed, and a modified mixing-length theory is employed in which an interpolation function is used for the eddy viscosity; this function is capable of reproducing the 'law of the wall' near the gas-liquid and gas-solid interfaces. The model also employs standard van Driest functions that damp the effects of turbulence as these interfaces are approached. This model has also been extended to include effects of interfacial roughness, which may be brought about physically by pressure fluctuations in the turbulent phase. Crucially, the model does not contain any 'adjustable' or 'fitting' parameters. Yet, in spite of this feature, the predictions of this model are in excellent agreement with the results of experimental data as well as direct numerical simulations. This is one of the two main achievements of this paper (the other, related to linear stability, will be summarised below): to the best of our knowledge, no such base-state model exists in the literature.

In order to investigate the linear stability of the base state, we have started from the linearised Reynoldsaveraged Navier-Stokes equations in the turbulent phase, and the linearised Navier-Stokes equations in the laminar phase. We then considered different models for the perturbed turbulent stresses: one in which these stresses are directly related to the turbulent kinetic energy, and another in which they are related to the turbulent velocity field with a simple eddy-viscosity model. In both cases, the perturbed turbulent stresses are damped to zero at the gas-liquid interface.

The linear stability of smooth interfaces was then examined via numerical solution of the linearised eigenvalue equations, which correspond to a generalised Orr-Sommerfeld problem. The effects of the perturbed turbulent stresses on the linear stability were shown to be negligibly small. This is the second main finding of this paper: the influence of perturbed turbulent stresses on interfacial instabilities had been an unresolved issue in the literature prior to the present work. On the basis of these findings, the remaining results in the paper were generated in the 'quasi-laminar' hypothesis according to which the turbulence enters the problem through the base state only.

A decomposition of the energy associated with the most dangerous mode was also carried out, which revealed that, in the majority of the cases considered, the interface is destabilised as a result of a viscosity mismatch; this gives rise to 'interfacial' modes. Cases wherein additional, 'internal' Tollmien-Schlichting-type modes are also destabilised have also been studied; in these cases, the 'internal' modes are sub-dominant to the 'interfacial' modes. Competition between these modes was demonstrated only for the case where significant interfacial roughness is considered. It is hoped that the latter result can lead to experimental work aimed at validating our predictions. [START_REF] Adjoua | Développement d'une méthode de simulation à un fluide découlements diphasiques turbulents[END_REF]. (a) The mean profile with the viscous-sublayer and log-layer laws for comparison. Our model possesses both these features; the LES data approximates these features but does not capture them perfectly; (b) The liquid profile. The liquid is laminar and experiences no pressure gradient. good, in particular in the dynamically important viscous and buffer layers. Furthermore, a key assumption of our model is validated by the LES data of [START_REF] Adjoua | Développement d'une méthode de simulation à un fluide découlements diphasiques turbulents[END_REF]. Namely, and on average, the upper layer 'sees' the bottom layer, which is much denser and more viscous, as a solid wall moving at the mean interfacial velocity.

Next, we compare our turbulence modelling with experimental data for flow past a wavy wall, obtained from the papers of [START_REF] Zilker | Influence of the amplitude of a solid wavy wall on a turbulent flow. part 1. non-separated flows[END_REF], and [START_REF] Abrams | Relaxation effects observed for turbulent flow over a wavy surface[END_REF]. In this set of experiments, the amplitude a of the corrugation of the lower wall is finite, but the slope αa is assumed infinitesimal. The curvilinear coordinates necessary in such a scenario were first introduced by [START_REF] Benjamin | Shearing flow over a wavy boundary[END_REF] (where U 0 is the single-phase version of the base state in Eq. ( 14)), then the momentum-balance equation for

F is iα [( ∂ 2 η -α 2 ) F (η) -U ′′ 0 (η) F (η) ] + C = 1 Re ( ∂ 2 η -α 2 ) 2 F (η) + R, (A.2a)
where C is the curvature-related term where we work with the quasi-laminar approximation. We solve Eqs. (A.2) subject to the boundary conditions F = F ′ = 0 on η = 0 and on η = 1, which are no-slip conditions on the perturbation F . Although the no-slip condition on the upper boundary is at z = 1, not η = 1, these planes are close to one another: the physical boundary z = 1 corresponds to an η-value 1 -ae -α e iαx , which is close to unity for large α-values. Thus, for simplicity, we impose a boundary condition at η = 1. The solution of the boundary-value problem facilitates a comparison with experimental data. In this comparison, we use the quasi-laminar assumption, wherein the turbulence enters only through the shape of the base state U 0 . To make an accurate comparison between the experiments and Eqs. To conclude, the wavy-wall scenario described here serves as an adequate testbed for verifying the turbulence modelling of our base state. However, it is an incomplete model of two-phase flow, since it assumes that the wave speed is a parameter. For that reason, we have focussed on genuine two-phase flow in the main part of the paper.

Appendix B. Application of the Viscous Kelvin-Helmholtz theory

In this section, we review the viscous Kelvin-Helmholtz theory [START_REF] Barnea | On the effect of viscosity on stability of stratified gas-liquid flow -Application to flow pattern transition at various pipe inclinations[END_REF] used in the comparison in Sec. 5.2. This is a simplified theory for the interfacial instability of two-phase turbulent flow, and takes account of turbulence in either or both phases. It is commonly used in one-dimensional models for largescale stratified and slug-flow predictions. The velocity field enters only through the liquid-and gas-average values, u L and u G , while the cross-sectional area fractions ϵ L = d L / (d L + d G ) and ϵ G = d G / (d L + d G ) also play a role. Then, the complex frequency ω is obtainable from a quadratic equation: where

ω 2 -2 (x 0 α -x 1 i) ω + ( x 2 α 2 -x 3 α 4 -ix 4 α ) = 0,
ρ * = ρ L ϵ L + ρ G ϵ G , x 1 = 1 ρ * ( ρ L u L ϵ L + ρ G u G ϵ G ) , x 2 = - S i 2ρ * A ( 1 ϵ L + 1 ϵ G ) ( 1 ϵ G ∂τ i ∂u G - 1 ϵ L ∂τ i ∂u L + 1 ϵ L ∂τ iL ∂u L - 1 ϵ G ∂τ iL ∂u G ) , x 3 = 1 ρ * [ ρ L u 2 L ϵ L + ρ G u 2 G ϵ G -g (ρ L -ρ G ) (d L + d G )
] ,

x

4 = σ ρ * (d L + d G ) , x 5 = S i ρ * A ( ∂τ iL ∂ϵ L - ∂τ i ∂ϵ L + u G ϵ G ∂τ iL ∂u G - u G ϵ G ∂τ i ∂u G - u L ϵ L ∂τ iL ∂u L + u L ϵ L ∂τ i ∂u L ) ,
and where the viscous stresses are modelled as

τ L = 1 2 f L ρ L u 2 L , f L = C L ( D L u L ν L ) -nL , D L = 4d L , τ G = 1 2 f G ρ G u 2 G , f G = C G ( D G u G ν G ) -nG , D G = 2d G , τ i = 1 2 f i ρ G (u G -u L ) |u G -u L |, τ iL = τ L ϵ G -τ G ϵ L ϵ L + ϵ G .
The coefficients C G and C L both take the value 0.046 for turbulent flow and 16 for laminar flow, while n L and n G both take the value 0.2 for turbulent flow, and 1.0 for laminar flow. Finally, the interfacial friction factor f i is assumed to be constant and equal to 0.0142 (see [START_REF] Barnea | On the effect of viscosity on stability of stratified gas-liquid flow -Application to flow pattern transition at various pipe inclinations[END_REF]).

Figure 1 :

 1 Figure1: A schematic representation of the base flow. The liquid layer is laminar, while the gas layer exhibits fully-developed turbulence, described here by a Reynolds-averaged velocity profile. A pressure gradient in the x-direction drives the flow.

Figure 2 :

 2 Figure 2: Base-state profiles for the parameter values (µ L /µ G , ρ L /ρ G , d L /h) := (m, r, δ) = (100, 1000, 0.1), and Re = 1000. (a) The mean velocity profile; (b) the mean velocity profile in wall units, showing the logarithmic and viscous layers (the viscous layer has a wall-unit thickness of approximately 5); (c) the Reynolds stress profile corresponding to the basic velocity.

Figure 3 :

 3 Figure 3: The dependence of Re * and Re L on Re (circles) shown in (a) and (b), respectively, with δ = 0.1 and (m, r) = (55, 1000). Also shown in both panels are lines of best fit (lines).

Figure 4 :

 4 Figure 4: The plot (cest/Up)Re = (cest/U * i )Re * provides an estimate of the boundary between slow and fast waves. For very thin films (d L = 1 mm), slow waves are guaranteed at almost all Reynolds numbers, while for thicker films (d L = 10 mm) the waves are faster for all but the highest Reynolds numbers.

  Figure 5: A comparison with the work of Willmarth et al. (1987) for single-phase channel flow for Rem = 2130 × 10 4 .

For

  all the experiments, the liquid-layer Reynolds number is kept constant: Re m,L = 8040, while Re m,G varies; we study the cases where Re m,G = 2340 and 3690. The input parameters for the model are δ and Re. We obtain the δ-value that corresponds to Re m,L by an automated iteration procedure, wherein a trial value of Re * is used to compute a trial value of δ, which in turn is used to compute a new value of Re * . The iteration terminates when the refined value of δ corresponds to Re m,L = 8040. Finally, the input parameter Re is obtained by trial-and-error, such that the value of Re corresponds to the correct value of Re m,G . The implementation of this second step leaves the liquid-layer Reynolds number unchanged at Re m,L = 8040.

Figure 7 :

 7 Figure6: A comparison with the work of[START_REF] Akai | A co-current stratified air-mercury flow with wavy interface[END_REF][START_REF] Akai | The prediction of stratified two-phase flow with a two-equation model of turbulence[END_REF]. Subfigures (a) and (b) show the comparison for Re m,G = 2340; (c) shows the result for Re m,G = 3690. Here U (1/2) denotes the liquid-phase velocity half-way between the bottom wall and the interface. In both cases, Re m,L = 8040.

Figure 8 :

 8 Figure 8: Dispersion curves showing a comparison of the predictions of the various models described in the text: quasi-laminar model (thick solid lines), eddy-viscosity model (dashed lines), 'visco-elastic' model (dotted lines), denoted by 'QL', 'EVM' and 'VEM' in the panel legends; the horizontal solid lines correspond to zero growth rate. Also shown is the parametric dependence of the growth rate on the Reynolds number for (a) Re = 875; (b) Re = 1000; (c) Re = 2000; (d) Re = 5000. We have set m = 55, r = 1000, and δ = 0.05.

  Figure 9: A comparison of the wave speed cr computed as part of the solution of the eigenvalue problem with the predictions of Eq. (24) for free-surface waves. In panel (a), the same parameters were used as those in Fig. 8(b), while in panel (b), the comparison is shown over a range of F r at fixed Reynolds number Re = 1000. (F r 0 is the reference value given by Eq. (34).) Also shown in (a) is the dispersion curve from Fig. 8(b) in dotted lines.

Figure 11 :

 11 Figure 11: The phase shift between the viscous shear stress at the interface, δT G,xz , and the perturbed interface location η (x) for the most dangerous mode α = 20. The parameters have the same values as those in Tab. 2.

Figure 12 :

 12 Figure 12: The appearance of two unstable modes for sufficiently large Re, Re = 2000. Here (m, r, δ) = (55, 1000, 0.05), and F r and S are given by Eq. (34).

  Figure 13: (a) The streamfunction for the internal and interfacial modes, normalised such that max |ℜ (ϕ) | = 1, for the parameters used to generate Fig. 12 and α = 25; (b) the wave Reynolds stress function for the internal and interfacial modes, τwrs, normalised such that max τwrs = 1.

Figure 14 :

 14 Figure 14: Dependence of the dispersion curves on the interfacial-roughness parameter, for K = 0, 0.001, 0.005, shown in (a)-(c), respectively; in each panel the interfacial and internal modes are shown using solid and dashed lines, respectively. Here, we have set (m, r, δ, Re) = (55, 1000, 0.05, 4000).

Figure 15 :

 15 Figure 15: Companion to Fig.14(c). (a) The growth rate of the three most dangerous modes at Re = 4000 and K = 0.005, being an enlarged view of the α = 15-30 region of Fig.14(c). The sharp kink or extreme point in the growth rate of the internal mode is thus genuine, and not the consequence of mode crossover. (b) Furthermore, by examining the wave speed, we see that the wave speed of the internal and the third most dangerous modes do in fact cross close to the corresponding extreme point of the growth-rate curves. Finally, (c) shows the wave speed of the interfacial mode.

Figure 16 :

 16 Figure 16: Theoretical calculation based on the parameters in experiment (5) of Cohen and Hanratty. (a) The streamfunction; (b) the wave-Reynolds stress.

  Figure A.18: Comparison with the results of[START_REF] Adjoua | Développement d'une méthode de simulation à un fluide découlements diphasiques turbulents[END_REF]. (a) The mean profile with the viscous-sublayer and log-layer laws for comparison. Our model possesses both these features; the LES data approximates these features but does not capture them perfectly; (b) The liquid profile. The liquid is laminar and experiences no pressure gradient.

  † : ξ = x -iaΦ, η = z -aΦ, Φ = e -αz e iαx . s) ds + aF (η) e iαξ

  (A.2) we study the shear stress at the interface:δτ = Re -1 (ϕ zz -ϕ xx ) η=0 = ae iαξ Re [ F ′′ (0) + α 2 F (0the phase shift between this stress function and the wave surface aℜ [ e iαξ ] . We examine the situation described by Fig. (5) in the work of Zilker et al. (1976), for which a/H = 0.003, αH = 13.3, Re * = 2270, (A.4) where H = 5.08 cm is the channel depth. We also look at Fig. (4) in the work of Abrams and Hanratty (1985), where a/H = 0.007, αH = 2π, Re * = 1110, (A.5) where H is the same is in the Zilker experiment. A comparison between theory and experiment is shown in Fig. A.19. Figures A.19

  (a)-(b) show the results of a comparison for the experiment described by Eq. (A.4).

  Figure A.19(a) is a plot of the total shear stress at the interface, [ Re -1 U ′ 0 (0) + δτ (x) curve is compared with the data from the experiment. Reasonable agreement is obtained for the amplitude. Excellent agreement is obtained for the phase shift of the shear stress relative to the wavy wall: the data predicts a phase-shift of approximately 50 o , while our model predicts a phase-shift 52.6 o . The wavy wall is shown in the figure for comparison, albeit with an exaggerated amplitude. The parameter α/Re * has the value 0.0059, while aα = 0.04. Figure A.19(b) provides theoretical curves for the shape of the streamfunction and the stress distribution Re -1 (ϕ zz -ϕ xx ) x=x0 , where x 0 is some reference value. The plots in Figs. A.19(c)-(d) are similar; these are for the experiment described by Eq. (A.5).

  Figure A.19: Comparison with experiments for flow past a wavy wall. Figures (a) and (b) are for the data of Zilker et al. (1976) (Eq. (A.4)); figures (c) and (d) are for the data of Abrams and Hanratty (1985) (Eq. (A.5)).

Table 1 :

 1 Table of parameter values used to estimate the wave speed.

Table 2 :

 2 Energy budget for the most dangerous mode α = 20 at Re = 1000 (hence Re L ≈ 460). Here m = 55, r = 1000, and δ = 0.05; F r and S are given by Eq. (34).KIN G KIN L REY L REY G DISS L DISS G N OR T AN

	0.18	0.82	2.34		-11.90		-4.28	-57.42	-2.73 74.99
				η/max(eta)		
			1	δT xz /max(δT xz )	
			0.5				
			0				
			-0.5				
			0 -1	0.05	0.1	0.15	0.2	0.25	0.3
						x	

Table 4 :

 4 Comparison of our model predictions with the work of[START_REF] Cohen | Generation of waves in the concurrent flow of air and a liquid[END_REF] (see text for definition of Re CH ). The sub-table is an energy-budget decomposition related to experiment (3), with α = 5.5; the other parameters are chosen to match those in the experiment.Experiment d L (mm) Re CH Re CH (exp) c r /U G c r /U

	G (exp) 2π/α (inches) 2π/α (inches, exp)

Table 5 :

 5 Comparison with Table 1 (p. 375) and Table 2 (p. 378) in the work of[START_REF] Craik | Wind-generated waves in thin liquid films[END_REF]. The Reynolds number Re Cr is defined with respect to the gas density and viscosity, the channel height, and the interfacial velocity.

		Experiment d L (mm) Re Cr Re Cr (exp)	
		(1.1)	0.128	20	30	
		(1.2)	0.230	68	61	
		(1.3)	0.218	66	71	
		(1.4)	0.355	110	140	
		(1.5)	0.307	94	140	
	Experiment d L (mm) Re Cr Re Cr (exp) c r /U int c r /U int (exp)
	(2.1)	0.535	35	94	1.1	1.75
	(2.2)	0.665	50	89	1.0	1.9
	(2.3)	0.820	56	91	1.1	1.8

Table 6 :

 6 Theoretical energy-budget calculations related to experiments (1.5) and (2.1) of[START_REF] Craik | Wind-generated waves in thin liquid films[END_REF]. The instability is viscosity-induced, and there are no other contributions to the instability, unlike in the Cohen data.
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	(1.5) 0.3	1.00	0.00	0.00	-165.56	-2.47	-1359.25 -0.09 1528.37
	(2.1) 0.02	1.00	0.00	0.00	-45.06	-3.23	-701.34	-0.14	750.76
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Figure

17

: A comparison of our predictions with the 'viscous' Kelvin-Helmholtz model (see Appendix B for details), labeled 'VKH', and the experimental data of

[START_REF] Craik | Wind-generated waves in thin liquid films[END_REF]

. We have plotted the Reynolds number Re Gmax = ρ G U Gmax d G /µ G against the liquid film thickness d L .

† We thank S. Kalliadasis and D. Tseluiko for suggesting the application of this coordinate system to the problem.
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Appendix A. Further validation of the base state

For further validation of the base state discussed in Sec. 2, we compare our turbulence modelling with the numerical simulations of [START_REF] Adjoua | Développement d'une méthode de simulation à un fluide découlements diphasiques turbulents[END_REF], and the experiments of [START_REF] Zilker | Influence of the amplitude of a solid wavy wall on a turbulent flow. part 1. non-separated flows[END_REF], and [START_REF] Abrams | Relaxation effects observed for turbulent flow over a wavy surface[END_REF]. First, we consider the work of [START_REF] Adjoua | Développement d'une méthode de simulation à un fluide découlements diphasiques turbulents[END_REF]. This involves a large-eddy simulation (LES) of an air-water system where the bottom layer (a thin film of water) is laminar. A pressure gradient drives the turbulence in the gas, and is absent in the liquid. A symmetry condition is imposed at the gas boundary: thus, the geometry of the system is identical to that described by [START_REF] Solbakken | On the drag reduction mechanism in a lubricated turbulent channel flow[END_REF]. The liquid Reynolds number, based on the film height and film superficial velocity, is Re L = 4. The gas Reynolds number, based on the interfacial friction velocity and the gas-layer depth, is Re * ,G = 500. To agree with our model, we choose Re 0 such that Re * ,G = 1000; this is twice the value given in the numerical study because we solve for the flow in the entire domain. The results of this calculation are shown in Fig. A.18. The agreement between the LES data and our model is good: our model reproduces the logarithmic layer and the viscous sublayer accurately. These features are captured well but not perfectly in the data; this could be due to an excessively large filter width in the LES. Nevertheless, the agreement is