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Abstract

Granular materials have been subject of considerable interest in the recent years because of the richness of their physical behavior.
Coupled with experimental approaches, the discrete element methods are now recognized as powerful tools to understand several mech-
anisms related to these materials such as convection, compaction and settlement. However, these methods are very costly in terms of

calculation time.

In this paper, we introduce a computational method for the simulation of three-dimensional granular bed responses under long term
cyclic loading. It sequentially uses a molecular dynamics scheme, a time averaging technique, and a relaxation method in order to predict
the long term flow. The suggested approach is then applied to specific cases in order to verify its efliciency and accuracy.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Granular materials have been found to be very useful
for road pavements and railway track platforms, because
of their porosity, vibrational characteristics and rigidity.
However, with the increase in vehicle speeds and high com-
fort standards, a better understanding of granular behavior
under dynamic loading is required. Therefore, accurate
prediction of local long term residual displacements and
induced forces is necessary in assessing the capacity of
infrastructures and preventing their differential settlement.
These types of materials can exhibit astonishing and
roughly understood phenomena under vibration. Several
experimental devices and numerical methods were devel-
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oped in order to investigate the behavior of granular mate-
rials subjected to cyclic loading. In the early seventies
Shenton [1] studied granular residual deformations under
repeated loading using triaxial testing. He obtained an
empirical logarithmic law which describes granular settle-
ment with respect to the number of cycles. Guérin [2] devel-
oped an experimental setup and studied the settlement of
dimensionally reduced ballast samples. Results showed
the existence of two settlement phases, the first one takes
place at the beginning of the process and corresponds to
the compaction regime whereas the second takes place
beyond a relatively high number of cycles: it corresponds
to the stabilized regime. Testing results showed that the
second regime can be described with a power law relating
the elastic deflexion to the settlement rate with respect to
the number of cycles. Later on, Bodin [3] studied the same
phenomenon under vertical and lateral excitations, she



ended up with a similar empirical law which includes a cou-
pling effect between lateral and vertical permanent dis-
placements. More recently. Al-Shaer [4] produced a
dimensionally reduced railway platform, on which he stud-
ied the granular settlement in the vertical direction for dif-
ferent train speeds. The obtained results show that the
settlement speed increases non-linearly with respect to the
acceleration intensity. In addition. the power laws obtained
by Guérin [2] and Bodin [3] at relatively low acceleration
intensities (accelerations lower than the 10 ms’z) are no
longer valid.

In general. experimental tests provide reliable results
that can describe the global behavior of granular materials.
However, in many cases experiments are limited in terms of
number of geometrical and mechanical parameters. In
addition, without a high degree of sophistication, the exist-
ing experimental setups do not allow access to local stress,
displacement and acceleration fields, thereby, they jeopar-
dize the understanding of the granular behavior. Numeri-
cal methods can represent trustworthy complements. One
of the recent interesting models specially developed for
granular materials was suggested by Nguyen [5]. The par-
ticularity of this phenomenological continuum model lies
in its unidirectional aspect. The non-tension effects
observed in granular materials are considered when devel-
oping the constitutive law. More recently, Abdelkrim [6]
suggested a computational step by step algorithm which
uses a cyclic constitutive law relating the progressive accu-
mulation of irreversible displacement to the cyclic stress
generated by the traffic loading, applied it to the granular
materials considered as a continuum elastic medium, and
predicted the permanent displacement of the following
step. When repeated for a large number of cycles, this pro-
cedure can produce interesting results in a relatively limited
number of iterations. However, this algorithm assumes the
existence of residual stresses under repeated loads. This
assumption can be relaxed in case of discrete element anal-
ysis as permanent deformations are not necessarily related
to permanent stresses, but can be attributed to the granular
rearrangement, and migration under repeated loading.
Saussine et al. [7] used a full contact dynamic to describe
2D polygonal granular materials settlement under repeated
loading and showed an interesting agreement between the
discrete element approach and the experimental results.

According to the above mentioned studies, granular
materials settlement under repeated loading can be due to
some or each one of the following issues: (i) material com-
paction due to the cyclic loading, (ii) migration and flow of
granular particles to less loaded zones, and (iii) granular
overwork and failure, (iv) lateral and vertical loading cou-
pling effect [8,9]. In this paper, we focus only on the first
two issues. It is assumed that the ground/granular interface
overlapping is negligible as compared to the permanent
deformation. The granular particles are assumed to be rigid
with elastic contacts and the excitation is taken as purely
vertical. With the advent of discrete element methods, it
is possible to simulate complex flows of granular materials

and to cover a high range of parameters. Besides, unlike the
continuum models which rely on homogenization tech-
niques [10], by definition discrete methods allow indepen-
dent particles flow. Therefore, granular rearrangements
can be observed and quantified in order to evaluate their
effect in the settlement mechanism.

Since its introduction by Cundall and Strack [11] for
mechanical engineering applications, the molecular dynam-
ics (MD) method is gaining momentum and becoming an
interesting computational tool for granular materials anal-
ysis. Associated with appropriate time averaging and relax-
ation technique, the molecular dynamics represents an
interesting mean for studying the settlement mechanism
under dynamic loading, in more detail than the experimen-
tal tests would usually allow.

The present paper, therefore, introduces a computa-
tional method which associates a molecular dynamics
scheme, the engine of the suggested method. with time
averaging and relaxation techniques, in order to describe
the granular settlement under dynamic loading. In Section
2, the molecular dynamics scheme adopted for this study is
briefly introduced. In addition, a particular interest is given
to the contact models which govern the granular interac-
tions. In Section 3, the estimation technique is explained
and tested in terms of agreement with full calculations. In
Section 4, the relaxation method is derived and explained
through two simple examples. Finally. the whole procedure
is presented in a sequential flow chart in Section 5, more-
over, results regarding the convergence of the suggested
method and settlement mechanisms are presented for dif-
ferent field parameters.

2. Discrete element simulation model

Consider a system . of N isotropic rigid particles with
elastic contacts, equal mechanical characteristics, ran-
domly distributed diameters dger1, a1 These particles are
placed into a cylindrical container of diameter D. The ratio
D/d is high enough to avoid any size effects. In our simula-
tions, this parameter is about 25, unless differently indi-
cated. The container is open from the top in order to
apply the appropriate boundary conditions according to
the desired modes of vibration.

2.1. Equations of motion

The molecular dynamics, as adopted by the mechanical
engineering researchers [11-13]consist of modeling the gran-
ular motion using Newton equations, in order to describe the
flow. For a given particle, f of mass 7, and moment of iner-
tia 1. the equation of motion can be written as follows:

Fﬂ + Z F:ﬂ = IIIﬂ):ﬂ.

atpes

My+ S My =140,
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where (Fy. My) represent the external actions, (F,z M,z)
denote the contact actions of a particle  on f, and
(}’,,.b/,) are the particle accelerations. Several numerical fi-
nite difference schemes such as Verlet, leap-frog. or predic-
tor-corrector algorithms can be used to integrate the above
mentioned second-order equations of motion. The predic-
tor-corrector algorithm is used herein. It consists of first
predicting the displacements and velocities using a Taylor
development:

5

Pt + At) = rp(r) + ip(t)Ar + ;'-,,(z)AT+ O((A1)), 2
(1 + At) = ig(1) + (1) At + O((Ar)%).

The predicted configuration is used to calculate the con-
tact interactions at 7 + Az. The resulting accelerations are
generally different than the predicted accelerations. The dif-
ferences between them can be written as follows:

Aa = it + At) — (1 + Ar). (3)
The difference calculated in the above mentioned equation
is used to correct the predicted fields. The new configura-
tion as well as its corresponding velocities and accelerations
read:

(t+ A1) + ((]A—A(l

rylt+ Aty =1}
it + Af) = J;,( +At) +¢ |AIAa (4)
iyt + At) = #(t + At) + c2Aa.

According to Allen and Tildesley [14], the corrector
coeflicients are evaluated in order to optimize the algorithm
convergence. In the case of three order predictor-corrector
scheme, the coeflicients are ¢y =0, ¢; =1 and ¢, = 1.

2.2. Contact modeling

Granular materials represent the assemblies of solid dis-
crete particles. At the microstructural level, the granular
behavior is mainly governed by the contact nature between
the material constituents. Consequently, the description of
the granular flow highly depends on the understanding
of the granular interactions. The interactions considered
herein are dissipative, non-linear, and loading path depen-
dant. In the normal direction, Hertz-Mindlin law [15.16], is
used to describe the elastic normal interactions:

Fe = 4;,5*\/7&51’3. (5)

The equivalent Young modulus between two particles o
and f is defined by £* = 5755, and the equivalent particle
radius is defined by 7= RL,"’# The Hertz law induces a
circular contact surface of radius, a, which depends on
the normal penetration J,. Assuming a uniform tangential
displacement, uncoupled normal and tangential actions,
and no slip at the contact interface, Johnson [17] showed

that the tangential elastic contact force can be written as
follows:

FE=8G* VR 5!, (6)

The equivalent shear mod ulus between two particles « and
f is defined by G* = ﬁ Note that the advantage of the
above mentioned tangential contact law is its easy imple-
mentation as compared to more realistic but complex tan-
gential contact models which are available in the literature
[18]. The tangential displacement is evaluated using the rel-
ative tangential velocity of two overlapping particles since
to, Oy = [:] Utyg dr. The normal and tangential forces acting
on the particles also enclose viscous terms that depend on
the mass and normal velocity. In addition, a coulomb fric-
tion is included through the threshold F, = uF,. where u is
the friction coeflicient. Finally, the forces acting on a par-
ticle o can be written as follows:

[' _Fe 7 lnln
_ {F 270t Fil| < W, )
SlEn(ff)/‘fn 7 }lll Ir ”I‘l” > .UI'n'

The phenomenological constant coeflicients 7, , describe
the normal and tangential viscous damping. In case of lin-
ear contact, these coeflicients are related to the restitution
coeflicients ¢, and can be written as y, = 20, \/mkyy.
where o, , represent the dissipation coeflicients defined by
ot = —In(en)/( + Inz(c,m))'/2 as derived by Da Cruz
[13]. In our case. the viscous dissipative damping is as-
sumed to remain proportional to \/mk,,, and the propor-
tionality constants o, are introduced as input parameters.

Roux and Chevoir [19] and Elata and Berryman [20]
showed that in case of Hertz-Mindlin contacts, some load-
ing paths can generate fictive energy in the system. In order
to address this issue, when the normal effort F,, decreases
by AF,,. the value of the tangential force when the normal
force was F,, — AF, is assigned to F,. These contact actions
are embedded in each iteration, in order to update the cor-
rection terms of the predictor-corrector algorithm.

2.3. Granular sample preparation

The system parameters used for simulations are summa-
rized in Table 1. It is worthwhile noticing that the surface
interaction between the granular particles and the wall
are modeled using the same contact equations presented
in Section 2.1, where the wall is assumed to be made of steel
with a Young modulus, £ = 210 GPa and a Poisson’s ratio,
v=0.3. The granular particles are made of diorite'. Unlike
Alanso-Marroquin and Hermann [21] and Sitharam [22
who used reduced rigidities which produce time steps from
1735 to 177 s, the simulations conducted in this study use
the material properties, contact parameters and dimensions

' A grey to dark rock composed principally of plagioclase feldspar,
homblende, and/or pyroxene. Because of its hardness, diorite is widely
used in road pavements and railway track platforms.



Table 1
System parameters and material properties used for simulation

Dimensions Properties

Initial relative density b; 0.5615 Particle density Pp 2710 kg/m?
Mean particle radius r 3.2mm Particle Young modulus E 46.9 GPa
Radius standard deviation o 5.6510°* Particle Poisson’s ratio v 0.25
Radius of the cylindrical container R 75 mm Friction coeflicient u 0.5

Depth of the sample H 60 mm viscous coefficients Oy Oy 0.44

presented in Table 1. This means that the step time is of
about 1077 s. This step time is of the same order as the
one used by Lobo-Gerrero et al. [23], it ensures realistic
deformation and granular flow with respect to time
(Fig. 1).

Although the particles are randomly distributed in terms
of positions and shapes. the cylindrical sample is assumed
to be symmetric with respect to x and y axes, as can be seen
in Fig. 2. Therefore, only one quarter of the sample is mod-
eled. The above mentioned figure also shows the boundary
conditions concerning the planes of symmetry (u, =0 at
x=0and u, =0 at y =0) and the wall frontier (wall-par-
ticles interactions will be described later). The cyclic load
is described with a sinusoidal law as can be seen in the
above mentioned Fig. 2.

We first start with the description of the sample prepa-
ration. The preparation process consists in starting with
an initial configuration where the particles are randomly
spread in the container with an initial density ¢; of about
0.05. The particles are then subjected to the gravity field
in order to settle them down until the full equilibrium. In
order to avoid any instability due to the preparation pro-
cess, an equilibrium criterion in terms of the potential

Ec(n)]
Epl0)] S 6

where ¢ is a small constant of about 107°. At the end of
the preparation process, the ratio defined beforehand, the
coordination number, the apparent weight and the density
of the sample are stable (Fig. 3).

As preliminary verifications, it can be noticed in Fig. 3a
that the apparent weight is close to 13.6 N, the cumulative
weight of the granular sample. The small difference is due
to the reaction forces at the wall-sample interface [24].
On the other hand. Fig. 3b shows the variation of the coor-
dination number versus time, and it obviously increases

(Ep(1)) and kinetic (Ec(7)) energies is adopted,

Fig. 1. Contact model for deformable bodies.

with respect to time. In addition. it can be seen that the
coordination number approaches 5, when the sample stabi-
lizes. Actually, in order to obtain a stable sample, each par-
ticle should have a sufficient number of constraints.
According to Alexander [25], in a frictionless assembly,
the coordination number in a & dimensional space should
be at least equal to z = 2%. However, in a frictional assem-
bly, Edwards [26] asserted that this number is at least equal
toz = 1 + %. The samples prepared herein are subjected to
a [riction coeflicient of 0.5, therefore the obtained results
are in agreement with the above mentioned propositions.
According to Suiker and Fleck [27], the coordination num-
ber of 3D granular systems depends on the friction coeffi-
cient. In addition, it falls between 4 and 6 when the
particles are relatively rigid, monodisperse, rotating, and
in neutral equilibrium. This behavior is mainly due to the
frictional energy dissipation which increases with p and
induces a slowing down of the rearrangement process. In
Fig. 3¢ the granular relative density is evaluated with
respect to time. It can be noticed that the relative density
stabilizes at the end of the preparation process and asymp-
totically tends to ¢,= 0.537. The former value justifies the
use of the material properties presented in Table 1. Actu-
ally, the authors noticed that reducing the material proper-
ties results in soft contact stiffness and induces high particle
penetrations. This leads to densities which are too high
with no physical meaning. As a matter of fact, a randomly
distributed granular package can be stable under loading
starting from a compaction relative density ¢y, of
0.555 4+ 0.005 (loose packing [28]) until ¢y, = 0.64 (dense
packing). Crystalline solids with consistent three-dimen-
sional orders in their internal structure can reach a maxi-
mum relative density of ¢ =0.74. The former value
seems to be the limit that cannot be overstepped for real
materials. In practice, densities from ¢gp and ¢ are diffi-
cult to reach unless artificially arranged in order to get an
ordered structure.

3. Residual displacement estimation

When used during loading cycles, the molecular dynam-
ics method briefly described in the last section provides
enough information to estimate the granular configuration

2 The free surface of the sample is non uniform after preparation, this
induces an overestimated sample height and consequently gives an
underestimated relative density. The more accurate relative density is
about ¢ = 0.5615.



A quarter of a granular sample prepared using

a F=F (1+sinot) the molecular dynamics under the gravity field
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Fig. 2. Loads and boundary conditions (a) applied to the granular material sample (b).
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Fig. 3. Sample preparation under gravity field variation of: (a) apparent weight, (b) coordinations number, (¢) granular relative density, and (d) kinetic

energy (resp. potential energy) versus time.

after a finite number of cycles. In this section, we explain
the time averaging technique and we compare its results
to a full time integration for several numbers of cycles.

3.1. Estimation method

Let us subject the sample .’ to a cyclic load of period T,
then the particles flow according to the initial chain of con-
tacts, internal interactions, material properties. and bound-
ary conditions. The displacements of the particles with
respect to time can be additively decomposed as follows:

Yiel0.T], Ve &,

ug(t) =u;,(l)+u;,(l). (8)
where the superscripts (r) and (v) denote, respectively, the
residual and reversible displacements. It should be empha-
sized that the loading cycle results in dynamic and visco-
elastic effects that continue to act even after removing the
exciting load. This means that they may continue to move
and to explore new positions until a final equilibrium is
reached. Once the dynamic and viscoelastic effects vanish,
the residual displacement of the particle i can be simply
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Fig. 4. Overall displacement evolution with respect to time,

described as the difference between the initial and final (ob-
tained after cyclic loading and relaxation) displacements:

uy(T) = rEE‘L(llﬂ(T“" ) — ug(0)), 9)

where 7t represents the relaxation time. It can be easily no-
ticed that anticipating the residual displacement at the end
of the loading cycle is not an obvious task. On the other
hand, the above mentioned definition is not suitable for
the calculation of instantaneous residual displacements,
especially when the sample is subjected to several loading
cycles with no relaxing time in between.

In order to overcome this problem and suggest an
appropriate residual displacement description, let us inves-
tigate a typical overall displacement of granular samples
subjected to repeated loading. According to observations
made on granular materials, the overall displacement can
be illustrated by a typical description presented in Fig. 4.
In this representation, the first term of Eq. (8) represents
the residual displacement which increases slowly with time
and the second denotes the fluctuating reversible displace-
ment with respect to time.

It can be seen that the differential residual displacement
over a cycle p is considerably smaller than the reversible
displacement as argued by Abdelkrim [6]:

[lug((p+ D)T) — uy(pT)|| < max([[ug(0)]]),
t€pT. (p+ 1T (10)

Therefore, the overall displacement can be seen as a rapidly
fluctuating periodic function representing the reversible
term, a slowly increasing function representing the residual
term, and a correcting term representing the error that can
be encountered. It is worthwhile to notice that the error
term represents the unpredicted or not explained variation
in the dependent variable. It is conventionally called “er-
ror” whether it is really measurable or not. Since the
reversible term is periodic, the displacement can be de-
duced from Eq. (8) as follows:

upt + 1) = up(t) + up(t + 1) + & (11)

illustration of the residual and reversible displacement.

Over several loading cycles, p =1, ..., k, the displace-
ment of the particle f# under consideration can be written
as follows:

k
up(t+ KT) = up() + [u;,(z +pT) =it + (p— 1)T)

p=1
_,_gv«”m _ g"ﬁ’"”], (12)

Now, the objective is to estimate the unknown function
ug(1), where g is a zero mean random error. The estima-
tion is made based on a finite number of training data’
w(t +T).....u(t+ kT). It provides the best functions z‘:;,(l)
expressed in terms of a set of parameters ¢ which can be
obtained by the minimum square root method.

Several functions can be chosen to describe and estimate
the residual displacement (7). For instance, this function
can be assumed to be linear with respect to time, in order
to simplify the presentation without loss of generality.
Then, the accuracy of the estimation can be tested by
studying the variation of the following functions with
respect to the number of cycles:

+
| 2\
gk =7 (Zlu;‘,u +pT) =t (t + (p - 1)7‘),‘) (13)

B.pd

and

4
] 12 -
felk) = ,\—,(ZI@“Z,‘/.') , (14)

Bpd

where f# denotes the particles of the systems, p represents
the index of a given training datum, and d one of the three
degree of translation. The two above mentioned functions
are simply the expressions of the second norm used to
study the accuracy of the estimations. In Fig. S, it can be

* The term “training data™ is widely encountered in neural network
applications. It will be used herein to denote the displacements of the
particles with respect to the number of cycles. These displacements are
called training data since they will be used first for estimation and then for
extrapolation.
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Fig. 5. Accuracy of the estimation procedure for a linear estimator with two different initial numbers of calculated cycles, ;.

seen that g, becomes stable when & increases, moreover, the ble to estimate the (k + /i)th configuration, where 7 € N. In
error terms decrease in norm average /: when k increases. particular, if the residual displacement is assumed to be lin-
The number of training data required for the estimation  ear with respect to time, this configuration can be described
of the trend function can be expressed in such a way that as follows:
the accuracy is controlled. In general, applying the law of
ldr&e numbers provides an upper bound which converges
in - In our case, a higher bound can be obtained since
lhe enols are always bounded (the errors are within the
maximum and minimum displacements obtained along k —uy(t+(p—1T)
loading cycles). The sequence of error terms (g“‘,,”' Jpet.
can be seen as a set of random independent variables.  The first right-hand term of the above mentioned equation

k
ug(t+ (k+h)T) = up(t +kT) + Z"ﬂ t+pl)
P=

(16)

where ‘f;;m € la,b]. The probability of obtaining a function s known from the last step. whereas, the second represents
which estimates the residual displacement with an error € (e estimation of the residual displacement at the (k + A)th
can be written as cycle. The estimation suggested beforehand assumes that
the residual displacement is linear with respect to the num-

pr /\l Z é;f] > e < ?_e_ﬁ (15) i)er (.)fc?f.cles:A better es‘limuli'on c'a‘n be madelt.lsing a m(_)rf
- appropriate settlement law that has been obtained empiri

cally by Shenton [1]. This law reads uy(r + pT') = agln
(t+ pT) + bg(t + pT'). The parameters ag and by can be de-
duced from the molecular dynamics calculations using the
least square method (minimizing the quadratic error be-
tween the empirical low and the calculated residual dis-
placements). Therefore, the displacement can be written
as follows:

The above mentioned inequality is a theorem which is
known as the “Chernoff Bound™. Its proof can be found
in [29]. According to Eq. (15), it is possible to control the
necessary number of cycles, &, by choosing an error level
of e dnd dn associated probability. Indeed. for
k> P1|||‘Z q ?|| = €| < p. The trend function
can be esumdled using the available training data within ig(t+ (k+h)T) = up(t +kT) + agIn(t + (k + h)T)
the preselected error. n

So far, the accuracy of the estimations is established +by(t+ (k+ M), (17)
through a parametric approach. The obtained model esti-
mating the residual displacements over k loading cycles will where the parameters ag and by are calculated using the
be used in the following section in order to extrapolate the  least squares method which consists in minimizing the
results and obtain an estimated configuration after addi-  squares of errors expressed by:
tional /1 loading cycles.

k k
R = Zg’f, Zu (t+pl)—u (1+[)7)) (18)
3.2. Extrapolation p=1 p=1

Using the estimation model obtained beforehand, the = The above mentioned expression is a second-order poly-
final configuration as well as the residual displacements  nom, its minimum can be obtained by deriving it with
evaluated during the above mentioned k cycles. it is possi- respect to its variables ag and by:



R k
Py —ZZ[U;,(I +pT) —agn(t + pT')

p=1

— bg(t + pT)|Ln(t + pT) =

oR £
oy = 22l

p=

(19)
t+pT) —agin(t + pT’)

— by(t + pT)|(t+ pT) = 0.

This system of two unknowns and two equations can be
solved to obtain the following expression of the estimation
parameters, using the information collected during the
molecular dynamics calculations:

k .
Yonei ;Z,, 1(tp) In(t,) = 3707

f’ﬂln(’/r)ZZ:ﬁ
= - i,
S uzz - (

A
er,, ln(l,,))

>

(20)
and
- S In(e,) S (2,00, — S0, In(r, )zgj*,u:(rp) ln(t,,).
P (1) Z:,tf, - (Zp_lt,,ln i, )
(21)

where 1, =1+ pT. To distinguish between the two ap-
proaches. Eq. (16) will be termed as linear estimation and
Eq. (17) will be called logarithmic estimation. It is obvious
that for both of the above mentioned approaches, the clo-
ser hfk is to zero, the better the estimated configuration is.
However, the objective of the procedure is to simulate the
granular flow when / is close to or higher than &, therefore,
the parameters will be selected in such a way that the esti-
mation procedure gives sufficiently accurate results.

3.3. Numerical application

In order to examine the reliability of the time averaging
technique, estimated configurations are compared to full
time calculated solutions. The prepared stable sample is
now subjected successively to k; (initial) and & loading
cycles, as described beforehand. The information collected
from the molecular dynamics calculation is used in order to
estimate the configuration after /i cycles as described in
the last section. In order to systematically evaluate the
agreement between the calculated and estimated displace-
ments, the following estimation of the relative error &, is
defined:

[|ee — |
flull

The second norm, as defined in Egs. (13) and (14), is
used in the above mentioned equation in order to calculate
the relative error. Note that « is an N x 3 matrix containing
the coordinates of the particles. It denotes the calculated
residual displacements. Similarly, & represents the esti-
mated residual displacements, f is a particle of the system

E.(u) = (22)

&, and N is the number of particles. Figs. 6 and 7 show
that an interesting agreement between the calculated and
estimated configurations is obtained, especially when the
calculated number of cycles & is higher than 20, either for
the linear or logarithmic estimation approaches. It can be
seen in the above mentioned figures that the error in these
cases does not exceed 2% (in Figs. 6 and 7. the errors are
presented in a logarithmic scale for clarity).

It can also be noticed that the initial number of cycles k;
highly affects the accuracy of the estimation techniques.
Fig. 6 shows that the maximum relative error decreases
from 14% to 2.5% when k; increases from 10 to 500 initial
loading cycles, in the case of linear estimation. Similarly,
Fig. 7 shows that the maximum relative error decreases
from 14% to 1% when k; increases from 10 to 500 initial
loading cycles, in the case of a logarithmic estimation. In
addition, Figs. 6 and 7 show that the relative estimation
errors decrease with the number of calculated cycles k. This
is obviously due to the fact that the more calculated points
are available, the better are the estimations. Moreover, it
can be seen that the relative error increases with the length
of the estimation interval /4. More interestingly. it can be
noticed that the logarithmic estimation is more accurate
than the linear estimation. Actually, with its two parame-
ters, this approach is more appropriate for time averaging.
Therefore, it will be used in the last section in the full set-
tlement calculation procedure.

In spite of the accurate residual displacements that can be
obtained through the averaging technique, the obtained con-
figuration can exhibit local excessive penetrations between
the particles, especially for large numbers of cycles /4. This
kind of configuration may be unsuitable for further molecu-
lar dynamics calculations. In order to overcome this prob-
lem, a relaxation technique which consists of correcting the
estimated configuration is suggested in the following section.

4. Relaxation method

The objective of this section is to prove the existence of
an optimality property that can be satisfied by the bound-
ary conditions of the system . as well as the equations of
motions (1). This property is used in order to equilibrate
instable configurations with excessive local penetrations.

4.1. Minimum energy functional

Applying an arbitrary vector u; € R’ to the equations of
motion (1), it is possible to establish its dual, the virtual
work principle (v.w.p.) [30], which can be written as
follows:

{V(uﬁ)ﬁé_v’ € (R, 5

")
—

zﬂgyvl'vﬂllﬂ + Zﬂ(_:.(/'zzf’h_:(/ ['v,/;llﬂ = Zﬂe.‘/"”ﬁ“/’”ﬂ'

The first left-hand term of the above mentioned
equation is the virtual work of the external forces. it can
be expressed by Z)(ui. ..., uy) =3 peyFpup. The second
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left-hand term expresses the virtual work of the inter-
nal forces 2 (uy...., UN) = pesd appesFapup.  The
right-hand term denotes the work of the inertia forces
A uy, ..., uy) = 3 pegmpagug. Note that the set of vectors
(ug)pern, wp) is arbitrary in (B*)". Therefore, it can be seen
as virtual displacements or velocity applied to the system
Y. In particular, this virtual displacement can be taken
continuous and in coherence with the boundary conditions
(up = ujy ¥ € 7)., where 7% denotes the frontier of .’
where displacements are applied. Similarly, the external
forces of Eq. (1) should be in coherence with the boundary
conditions (Fy = ﬁ';, vp € 7). where 7' denotes the fron-
tier of " where forces are applied.

Applying a set of displacements (ug)ge, vy to the sys-
tem of particles ./, the existence of a solution for the equa-
tions of motion implies that there is a set of internal forces
(Filf)/f.:e' L2 and a set of external forces (Fg)geq, vy 2OV-
erning the evolution problem. Taking into consideration
the above mentioned solution (uy. Fg, Fap) g ey 2+ 1t s
possible to write the v.w.p. as follows: )

{ Zﬁemﬁ'&ztﬁ + Zﬂeyuﬁ'ﬂzl,d, + 3 pegmp(g — a)ug,

. (24)
+ e D appesFaptip = 0.

where 74(J.7" = . and g represents the gravity accelera-
tion. As a second application of the v.w.p.. let us consider
the same set of forces, the solution of Eq. (1) associated
with a different virtual displacement, which is in coherence
with the boundary conditions. (uy. Fg, Fap) o 2~ This
leads to a second equation which is similar to Eq. (24).
The difference between them leads to the following
equation:

{ g (Flply — Flug) + 5 omp(g — a) (ufy — up),

, (25)
+Zﬂe,‘/‘21{ﬂe,‘/(F1/f“ﬂ — Fiﬂllﬁ) =4

The last left-hand term of Eq. (25) can be expressed as
follows:

Yo.p €.,
Foyp(u, up) = Vi 5ty up),

in contact,
(26)

where Y, 4(u,. ug) represents the potential of the contact
forces. The proof of the optimum existence can be estab-
lished through the variation rate of this potential:

W (14, tg) = Y1ty + Sty ttp + Suup) — g ug).  (27)



Considering a quasi-static relaxation, the condition
||| < pFy remains valid and it is possible to write the po-
tential as y,;(u,, ug) = :,—A:T(i;‘;“(u,. uy). where 7 depends on
the normal contact model, it equals 3/2 in case of Hertz
law, dy(uy. ug) = [0.5(d, + d,) — ||x, + u, — xp+ ugl|]. and
Xgern, n) are the initial positions of the particles. Making
use of Cauchy-Schwartz inequality, it is possible to show
that 6,5 = 0 while contact exists. Therefore. it can be de-
duced that:

v Solution

Yl #u

> Tr/";x“;f + '”l‘g“;f + Z/i—'.-/ sz/{;,-/ ll’x/f(“;f)‘
pey

(g Egs Fap)g ey vy

in coherence with ¢,
Lape

>y

2.pe

ik plp + Z/;; gMpgy + Z/xe:/ > pes '//1/1(“/‘)-
(28)

The obtained inequality proves the existence of a func-
tional .7 («) which reads

F(u) = Z I-'-;,u,, + Zm,,gu,, + Z Z Wop(tp).
v

P! P a#tpes

(29)

This functional can be minimized in order to equilibrate
instable configurations where excessive penetrations in
some zones can induce divergence of the flow.

4.2. Numerical application

In this section, we consider particular instable configura-
tions characterized by local excessive penetrations and sub-
ject them to the relaxation technique which consists of
minimizing the functional .7 (u) while keeping fixed all
the particles of the frontier, in order to find out the optimal
particle positions guaranteeing a stable system .. As a first
example, let us consider a granular cell of nine particles in
coherence with the material properties defined in Table 1.
This cell is presented in Fig. 8. The results show that this
approach equilibrates the penetrations and provides a sta-
ble configuration.

Now, let us consider a second example corresponding to
an estimated configuration from simulations carried out as

a x10°
x10*
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Es
N 06
0
0.4
10 . - 0.2
4 5 i 10 .
Al 0 S x10* [l
y (m) x (m)

penetration

described in the last section. The configuration under con-
sideration is obtained after k; = 20 initial cycles, k= 20
additional calculated cycles, and a linear extrapolation
over 1 = 20 cycles. In terms of settlement calculations, such
an estimation is in agreement with the calculated results as
discussed in the last section. However, it can be seen in
Fig. 9a that it exhibits excessive particle penetrations.
Although limited in number, these anomalous penetrations
may be important enough to induce flow divergence.

The relaxation method for this case consists of fixing all
the particles of the frontier and finding the optimal posi-
tions by minimizing the functional (29) using the gradient
method. It leads to an equilibrated configuration with the
penetration distribution presented in Fig. 9b. It can be
noticed that the distribution is improved and the maximum
penetration is reduced from 1.8x 107> m to 6 x 107> m.

The example presented herein proves that the relaxation
technique improves the estimated configuration in terms of
penetration magnitudes and distributions. In the following
section, the estimation and relaxation techniques will be
used in a full procedure to describe the settlement of gran-
ular samples.

5. Settlement procedure

In this section the molecular dynamics algorithm, the
averaging technique and the relaxation method, described
beforehand are used in a computational procedure in order
to simulate granular materials settlement under repeated
loading. The flow chart of the procedure is explained, then
a convergence study is conducted. Finally, a particular field
case is studied in order to show the advantages and limits
of the suggested procedure.

5.1. Flow chart of the computational procedure

The flow chart displayed in Fig. 10, transfers the basic
idea of the concept into a programmable algorithm. The
analysis starts with an initial configuration where the par-
ticles are randomly distributed in the cylinder with no pen-
etration in between. This initial configuration is then

z(m)

4 2

penetration

Fig. 8. Relaxation of a granular cell of nine particles: (a) estimated configuration and (b) corrected configuration.
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Fig. 10. Flow chart of the settlement computational procedure.




subjected to the gravity field until equilibrium (Fig. 3). The
obtained sample is subjected to A; initial loading cycles,
before starting the sequential procedure, since the first
cycles are always characterized by high settlement slopes
as can be seen in Fig. 4. The sequential procedure consists
first in subjecting the sample to & loading cycles which
upper bound can be determined knowing the probability
and error levels defined in Eq. (15). During these k loading
cycles, training data are evaluated using the molecular
dynamics and stored at the end of each cycle. The collected
information is then used to establish trend functions
describing the behavior of the granular sample in terms
of residual displacement. The obtained functions are then
used for logarithmic extrapolation up to (i + k) cycles, as
described by Egs. (17), (20), and (21).

Although the estimations and extrapolations are tested
in terms of residual displacements accuracy. possible local
anomalies in terms of excessive penetrations may show up,
as can be seen in Fig. 9. Addressing these possible issues
consists of applying the relaxation technique to the
obtained configuration. The former step produces stable
configurations which are suitable for further molecular
dynamics calculations.

In Section 2, it has been shown that the accuracy of the
estimation technique depends on the values of k;. k and /.
The relative error decreases with the increase of & and/or
the decrease of /. In addition, the estimation accuracy
increases with the total number of cycles. Actually, in terms
of computational cost, it is obvious that the higher the
ratio /i/k. the better it is. It is therefore advantageous to
increase /7 with the total number of iteration. In this study.
the parameter /1 can be varied with respect to the number of
iterations, since the error decreases when the total number
of calculated cycles increases.

5.2. Convergence study

In order to validate the suggested procedure, the
obtained overall residual displacements are compared to

Convergence study for ki=h=10
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full molecular dynamics calculations. The simulations
parameters used for the convergence study are detailed in
Table 1. Fig. 11 shows the settlement path of the granular
sample using the molecular dynamics (MD) as well as the
settlement paths calculated with the suggested procedure
for different parameters. As a first step, the initial number
of cycles calculated before the sequential procedure is taken
ki =10 and the length of the estimation interval is taken as
/=10, while varying k. It can be noticed in Fig. lla that
the error between the full molecular dynamics and the
obtained results decreases with the number of calculated
cycles k. Similarly, the effect of the estimation interval
length on the accuracy of the procedure can be tested by
taking a constant initial number of cycles ki = 10 and a
constant number of calculated cycles & =40. Fig. lla
shows that the error decreases when /i decreases, as can
be expected. More interestingly, it can be seen that the
error stabilizes when the length of the estimation interval
tends to 0.

The presented procedure can be used either in a compac-
tion process or for settlement calculation, as stated in the
introduction. If used in a compaction process, the proce-
dure is self-consistent since the objective is to obtain a
dense granular sample for other studies. In this case, the
parameters k;, k and / are selected in such a way that the
dense state is obtained with the minimum number of itera-
tions. However, in case of settlement calculation, the objec-
tive is to study the behavior of granular materials under
repeated loading, in terms of residual displacements.
Therefore, the accuracy of the procedure has to be estab-
lished carefully, by choosing the suitable parameters &;, k
and /. in order to ensure acceptable results.

5.3. Application and scope

The suggested procedure is developed to study the
mechanism of long term granular materials settlement
under cyclic loading. Experimental studies conducted on
granular materials [2-4] showed that the permanent
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Fig. 11. Convergence of the procedure with the simulation parameters & (a) and 4 (b) and comparison with the full molecular dynamics calculations.



displacements depend on several parameters such as the
applied force, frequency and material properties. In addi-
tion, the mode of loading is expected to have a crucial effect
on the amount of settlement when the considered granular
sample is periodically excited. In this section, the effect of
the gained time on the precision of the whole procedure
will be evaluated. Moreover, different modes of loading will
be investigated in order to show the limits of the suggested
procedure.

The simulations under consideration are performed
using the dimensions and material properties presented in
Table 1. however, the periodic excitation presented in
Fig. 2 will be varied according to the mode of loading.
The stress amplitude of the signal applied to the fully con-
fined sample is Ao = 14.15kPa and the excitation fre-
quency is f= 50 Hz. In general, the procedure works
properly when the residual displacements are relatively
small as compared to the particle size. When the granular
material is fully confined the settlement mechanism is
mainly related to the particle rearrangement when the exci-
tation take place and consequently, the displacement is rel-
atively small. In this case, it can be seen in Figs. 11 and 12a
that the procedure is accurate enough to predict the evolu-
tion of the sample with respect to the number of cycles, in
terms of residual displacement and coordination number.
The precision can also be evaluated in terms of overall

Coordination number
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Number of cycles

C 0012
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Relative Error

0.004

0.002

i i
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Gained calculation time (%)

residual displacement, coordination number, and configu-
ration as can be seen in Fig. 12. It can be noticed that
for all the above mentioned criteria, the relative error
increases with the gained time. For instance, it can be
noticed that the coordination number presents a relative
error of about 12% when 180% of gained calculation time
is achieved. Moreover, the relative error calculated in terms
of configuration precision (using Eq. (22)) is of about
1% for 180% of gained calculation time. The residual
displacement is evaluated in a more accurate manner since
the relative error does not exceed 0.5% when the same
gained time level is achieved.

Unlike the fully confined mode of loading, where the set-
tlement is mainly due to granular materials rearrangement,
the partially confined mode of loading results in particles
rearrangement as well as particles migration under periodic
excitation. In fact. the particles move toward the regions
with lower loading level. Therefore, the residual displace-
ment largely undergo the settlement produced in case of
equivalent fully confined samples. This behavior makes it
difficult to obtain more accurate displacement estimations,
thereby inducing anomalous configurations in terms of
excessive penetration. For instance, the partially confined
loading case of interest in this section is characterized by
a stress amplitude of Ag =5.87 kPa, an excitation fre-
quency of f=10Hz and a confinement level of 80%.
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Fig. 12. (a) Variation of the coordination number with respect to the number of cycles, (b) precision in terms of final coordination number, (c) particle

positions, and (d) overall residual displacement.



ki=10and k= 10
a 5 T T T
5
o
£
3
c
<
kel
T
£
B
8
i N NLE S W
o 50 100 150 200 250 300
C 0014

0.012

0.008} -

Relative Error
o

0 20 40 60 80 100 120

Gained calculation time (%)

0.0424

ki=10and k=10

0.0422

0.042
0.0418-
0.0416
0.0414
0.0412

0.041

Loaded surface latitude, z ax m o

i i i i i
00408 50 100 150 200 250 800

Number of cycles

Relative Error

0 20 40 60 80 100 120 140
Gained calculation time (%)

Fig. 13. (a) Coordination number with respect to the number of cycles, (b) Settlement with respect to the number of cycles, relative error in terms of (c)

Coordination number and (d) Settlement.

The material properties, sample dimensions, and dissipa-
tion parameters are kept unchanged as can be seen in Table
1. Fig. 13a and b shows the variation of the coordination
number and the loaded surface width with respect to the
number of cycles. It can be noticed that the slope of settle-
ment is higher in the case of partially confined loading as
compared to the fully confined case. However. it can be
seen that the coordination number average remains in the
same range. On the other hand, Fig. 13c shows the relative
error in terms of coordination number with respect to the
gained calculation time. Note that the error is calculated
relative to the coordination number obtained with full
molecular dynamics calculation (since the curve crosses
the origin). The same procedure is used to calculate the
error in terms of settlement. Fig. 13d shows the variation
of error in terms of gained calculation time. It can be
noticed that the error in this case is about 8% when the
gained time reaches 120%. This means that the error
decreases with the degree of confinement.

The examples presented above demonstrate that the sug-
gested procedure works properly in the case of fully con-
fined modes of loading. However, its accuracy decreases
in terms of settlement prediction when it is used for par-
tially confined modes of loading. We also note that in this
paper, the procedure is implemented with a molecular
dynamics scheme, however, it can be easily adopted in con-
tact dynamic based algorithms.

6. Conclusion

A computational procedure for long term granular
material settlement calculations has been presented. The
suggested procedure sequentially uses the molecular
dynamics, a time averaging technique, and a relaxation
method in order to estimate the granular flow under cyclic
loading. The molecular dynamics represents the engine of
the suggested method, it consists of integrating the parti-
cle’s equations of motion. The Hertz-Mindlin law is used
to describe elastic particle interaction, a Coulomb law is
used to describe the frictional dissipation, and a propor-
tional damping law is used to describe the viscous aspect
of the particles interaction. The averaging technique is
based on information collected during the molecular
dynamics calculation. A comparison between calculated
and estimated configurations has been carried out and
showed satisfactory agreements between the averaging
and calculated results. Finally, a relaxation method is sug-
gested. It consists of optimizing the granular particles posi-
tions in order to determine suitable configurations for
further molecular dynamics calculations.

The whole procedure is implemented in an understand-
able manner in order to calculate granular materials flow
under repeated loading. The numerical results from the
suggested procedure show that the necessary time for cal-
culating long term settlement is reduced. In addition, the



suggested procedure provides relatively accurate results.
However, according to the convergence study that has been
carried out, there is a compromise between the accuracy
and the time reduction.

The suggested procedure is mainly developed to study
the behavior of granular materials under a large number
of repeated cycles. In a future work, it will be applied on
several granular samples with different exciting frequencies
and degrees of confinement in order to study the mecha-
nism of long term granular settlement.
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