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Shear Correction Factors for Functionally Graded Plates

T.-K. Nguyen and K. Sab

Université Paris-Est, Institut Navier, LAMI (ENPC/ILCPC), France

G. Bonnet

Université Paris-Est, Laboratoire de Mécanique (EA 2545), Institut Navier, UMLV, France

The Reissner-Mindlin plate model for calculation of function-
ally graded materials has been proposed in literature by using shear
correction coefficient of homogeneous model. However, this use is
a priori not appropriate for the gradient material. Identification
of the transverse shear factors is thus investigated in this paper.
The transverse shear stresses are derived by using energy consid-
erations from the expression of membrane stresses. Using the ob-
tained transverse shear factor, a numerical analysis is performed
on asimply supported FG square plate whose elastic properties are
isotropic at each point and vary through the thickness according to
a power law distribution. The numerical results of a static analysis
are compared with available solutions from previous studies.

Keywords functionally graded materials, elasticity, plates, shear cor-

rection factors

1. INTRODUCTION

Multilayered materials are used in many structures of me-
chanical engineering and civil engineering. In conventional
laminated composite structures, homogeneous elastic laminae
are bonded together to obtain enhanced mechanical and ther-
mal properties. The main inconvenience of such an assembly
is that they create stress concentrations along the interfaces,
more specifically when high temperatures are involved. This can
lead to delaminations, crackings, and other damage mechanisms
which result from the abrupt change of the mechanical properties
at the interface between the layers. One way to overcome this
problem is to use functionally graded materials whithin which
material properties vary continuously. The concept of function-
ally graded material (FGM) was proposed in 1984 by the ma-
terial scientists in the Sendai area of Japan [1]. The FGM is a
composite whose composition varies according to the required
performance. It can be produced with a continuously graded
variation of the volume fractions of the constituents. That leads
to a continuous change of the material properties of FGM, which
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is the main difference between such a material and an usual com-
posite material. The FGM is suitable for various applications,
such as thermal coatings of barrier for ceramic engines, gas
turbines, nuclear fusions, optical thin layers, biomaterial elec-
tronics, etc. Its applications within several fields requires special
manufacturing methods and evaluation methods [2—4].
Functionally graded (FG) plate models have been studied us-
ing analytical and numerical methods. Various approaches have
been developed led to establish the appropriate analysis of the
FG plates. The model based on classical plate theory (CPT) of
Love-Kirchhoff was used by Chi and Chung [5, 6] for the FGM.
They developed the analytical solution of simply supported FG
plates subjected to mechanical loads. A finite element formula-
tion based on the CPT was developed by He et al. [7] to control
the shape and vibration of the FG plate with integrated piezo-
electric sensors and actuators. In practice, this model is not used
for thick plates which have an important contribution of the shear
deformation energy. Several authors analyzed the behavior of
thick FG plates. They proposed models that take into account
the transversal shear effect, by using the First-order Shear Defor-
mation Theory (FSDT) [8, 9] and the higher-order shear defor-
mation theories [10, 11]. Praveen and Reddy [12] analyzed the
nonlinear static and dynamic responses of functionally graded
ceramic-metal plates using the first-order shear deformation the-
ory (FSDT) and the von Karman strain (see Reddy [10, 11]).
Croce and Venini [13] developed a hierarchic family of finite
elements according to the Reissner-Mindlin theory. The model
of ESDT plate is the simplest plate model that accounts for the
transverse shear strains, which are assumed constant through the
plate thickness. This model requires shear correction coefficients
to compute transverse shear forces. To avoid this difficulty, sev-
eral authors proposed the higher-order shear deformation theory
and applied it to FGM. Reddy [14] developed the Navier’s solu-
tions for functionally graded plates using the Third-order Shear
Deformation plate Theory (TSDT) and an associated finite ele-
ment model. Cheng and Batra [ 15] also used the theory of Reddy
(TSDT) for studying the buckling and steady state vibrations of a
simply supported functionally graded polygonal plate. Ferreira
et al. [16] have presented results from a static analysis of FG
plates by using the Reddy’s plate theory and a meshless method.
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Moreover, the Sinusoidal Shear Deformation Theory (SSDT)
of Zenkour [17, 18] was used for FG plates. By using the the-
ory himself, Zenkour [19] presented Navier’s analytical solu-
tion of FG plates. In the higher-order shear deformation theory,
the transverse shear stresses are more correctly approximated
throughout the thickness and consequently no transversal shear
correction factors are needed. For the thick FG plates whose
thickness is not negligible,when compared to the side length, the
three-dimensional model for static and dynamic problem can be
used. Cheng and Batra [20] studied thermomechanical deforma-
tions of the FG plates. A discrete layer approach was proposed
by Ramirez [21] for the static analysis of three-dimensional FG
plates.

The model based on the first-order shear deformation theory
(FSDT) is very often used owing to its simplicity in analysis and
programming. It requires however a correct value of the shear
correction factor. In practice, this coefficient is equal to 5/6 for
homogeneous plates. But, this value is a priori no longer appro-
priate for FG plate analyses due to the position dependence of
FGM material properties. The primary objective of this paper is
thus to identify the shear correction coefficients for functionally
graded Reissner-Mindlin plates. The influence of this factor on
the static responses of FG plate is then presented. A numerical
test is performed on a simply supported FG ceramic-metal plate.
The material properties are supposed to be isotropic and varying
through the thickness according to a power-law distribution in
terms of the volume fractions of the components.

2. THEORETICAL FORMULATION

2.1. Functionally Graded Materials

Let us consider a Reissner-Mindlin plate having a thickness
h which is located within a domain Q = wx] — % 4[, h € R*.
o € R? is adomain having a boundary with a suitable regularity
dw. The top and bottom surfaces of the plate are denoted by
rt=owx {:t%} = {\ yYEQ = i%}.The plate is made of
functionally graded materials which is constituted by a mixture
of ceramic and metallic components. The material properties

vary through the plate thickness according to the volume frac-

Geometry of the functionally graded plate.

tions of the constituents. All formulations are performed under
the assumption of a linear elastic behavior and small deforma-
tions of materials. The volume forces are not taken into account.

For a plate made of two constituents, effective properties of
the materials by the thickness of the plate is defined by a power-
law relation:

E(z) =V(2)E, +[1 = V.(2)]Ep (1)

P
z+4
Ve(z) = ( ') (2)
h

where p is a material parameter which takes on non-negative
values, h plate thickness and z € [-h/2, h/2], E, and E, the
Young’s modulus at the top and bottom surface of the plate. It
is well-known that such a relation is not exact and many more
precise approximations may be found within the literature [2,
22-24]. The distribution of the materials under consideration

with,

05 T T T T T T T T

04f p=10 i
0af e E
02 p=4 L
s
2
2 o1 E
ﬁ p=2
]
g 0.1 ]
T p=1
£ o ]
p=05
-03 i
02
04 P g
-8 : L ) . L .
(] 0.1 02 03 04 05 06 07 08 09 1
Volume fraction, Ve
FIG. 2. Variation of V, through plate thickness for various values of p.



through the plate thickness (2) is of the form illustrated in Figure
2, where the variation of V. in terms of the power-law parameter
is presented.

We note that the volume fraction changes rapidly near the
lowest surface for p < 1 and increases quickly near the top
surface for p > 1. To investigate the effect of the Poisson’s ratio
on the response of the plate, a variation of this ratio through the
plate thickness corresponding to a similar power-law distribution
will be used:

V(z) = Ve(2)ve +[1 = Ve(2)]vp (3)

where v, and v, are the Poisson’s ratio at the upper and lower
surface of the plate.

2.2. Stress Fields

The displacement field of the first-order shear deformation
theory (FSDT) and the basic equations of the Reissner-Mindlin
plate can be found in [10, 11, 25]. This section presents the
steps used in order to calculate shear correction factors. In the
following paragraph, the Greek index is assumed to range over
{1,2} while the Latin index takes {1,2,3}.

The generalized stresses associated to in-plane stress field
O'aB(N. M) can be defined as follows:

Nap(x,y) = f_hf/z Oaplx, v, 2)dz

2 (4)
Mqp(x,y) = ffé;z z0ap(x, v, 2)dz
The generalized strains are given by,
€5p(x, y) = 5(ap + up,a)(x, y) 5

Xap(X, ¥) = 3(Bap + 0p.0)(x, ¥)

where the comma indicates partial differentiation with respect
to the coordinate subscript that follows, u and 6 the displace-
ment and rotation of the Reissner-Mindlin model. The strain is
supposed to be linear through the thickness of the FG plate,

Explx, y,2) = egﬁ(.\', V) + Z2xap(x, y) (6)

The membrane strains and in-plane stresses are related by the
constitutive equation,

Tap (X, ¥, 2) = Capys(2)€ys(x, ¥, 2) = Capys(2)(eys(x, ¥)
+2xys(x,y) (7

where C 45 are the components of the reduced stiffness tensor.
By replacing eq. (7) into eq. (4), we obtain

Naﬂ(-\" ‘) = Acx[}yé 6;:8(.\'. \) + Baﬁy& XyE(-"v ,\')

8)
Map(x, y) = Bapys €75(x, ¥) + Dapys Xys(x, ¥) :

where Aypys, Bagyss Dapys are the stiffnesses of the plate which
are given by :

h2

(Axpys» Ba(}y6~ Daﬁy&) b / (1, z, 32)Ca[§y6(3)d~7 )

—h/2

Notice that, unlike a homogeneous isotropic plate where the
coupling stiffnesses Bapgys do not exist, the Bpys are present
in the constitutive equation for a functionally graded plate. This
arises because of material properties asymmetry about the mid-
plane. The expressions of the membrane strains are finally,

GZB(X- y) = Aa[}yéNyE(xv y)+ BaByéMyb(-"‘ y)

Xap(X, y) = BaByBNyé(-L )+ Do(By&Myé(-\" y) (10)

where (A, B, D) are the components of the compliance matrix.
Replacing Eq. (10) in Eq. (7) leads to,

Ouaplx, ¥, 2) = napys(2)Nys(x, ¥) + mapys(2)Mys(x, y)(11)

where 7143,5(2), M 4py5(2) are the components of the localization
tensor:

Napys(z) = C(xﬂup(z)(Aewyé + ZBupyé)

Mapys(z) = Caﬁeq)(:)(gs(pyﬁ + Zbupyé) (12)

The transverse shear stresses 043 are obtained from the equilib-
rium equation and from the following conditions,

0, =0, 0.=0 in Q (i, j=123)
Oap(X, ¥, 2) = Napys(2)Nys(x, v) + mapys(2)Mys(x, ¥) (13)

h/2
0O« =f_£/2 Oaadz

The equilibrium condition in 2 enables us to determine the shear
stresses 043 from the integral:

0a3=_f. O-aB.Bdf- (14)
—h2

where the integration coefficients are selected to satisfy the
boundary condition of the shear stresses at the upper and lower
faces of the plate. By replacing Eq. (11) into Eq. (14), we obtain
the following relationship

O3 = Mapys(2)Nys,p(x, ¥) + Mapys(2)Mys p(x, y)  (15)
where
’.'a[}'yé(z) =- fj;,/z Caﬁe(p(&) [;‘etpyé + E‘thpy5] dé-
maﬁyé(z) = - f—:h/l C(xﬁup(&) [Bupyé + &Dupyé] dg (16)

Napys = Mysap = Npayss  Mapys = Mysap = Mpays



For finite element models, a direct computation of the transverse
stresses within Eq. (14) will require the second order derivatives
of the displacement. Several authors (K. Lee [26], K. Y. Sze [27],
Zenkiewicz and Zhu [28], Rolfes and Rohwer [29, 30]) used a
method of postprocessing based on the three-dimensional equi-
librium equations or a predictor-corrector approach or simplified
assumptions. The third method [29, 30], which is used thereafter,
enables the computation of shear stresses from transverse shear
forces. This process allows to comply to boundary conditions
involving the transverse stresses and saves an order of deriva-
tion. Other contributions on this topic for thickness plates can
be found in [31, 32].

2.3. Shear Correction Factors

As known that the FSDT model requires a correct value
of the shear correction factors for calculating the transversal
shear forces. Several authors investigated this subject in order
to improve the FSDT. Noor et al. [33-36] proposed predictor-
corrector procedures to correct the shear correction factors by us-
ing iteration process. The shear correction factors obtained from
this method depend on boundary conditions, plate geometry and
loading conditions, and hence they cannot be directly applied for
other plate configuration. Energy consideration for calculating
the shear correction coefficients widely used for composite lam-
inates can be found in [37, 38, 39]. In practice, the shear factor
obtained is equal to 5/6 for isotropic homogeneous plates. But,
this value is a priori no more appropriate for the FG plate anal-
yses due to continuous variation of FGM material properties.
In this paper, the shear correction factors for the FGM are ob-
tained by comparing the strain energies of the average shear
stresses with those obtained from the equilibrium (see Whitney
[37]. Berthelot [39], Nguyen et al. [40]). To do this, we assume
a cylindrical bending around the axis y and suppress the effect
of the weak terms (N2 and Mj, ;) on the shear stresses, that
leads to

Oy = 11(2) Qs (17)

with /,;,(z) defined in Eq. (16). Shear forces are related to
average shear strains by the shear stiffnesses,

0Oy — Hyy Hys Y}’-: (18)
0, Hys Hss | | 9.
where H;; (i,j = 4.5) are the shear stiffnesses. For isotropic
materials, there is no coupling between the shear deformations

in two directions, i.e Hys = 0 and Hyy = Hss. Therefore, it is
sufficient to identify one component Hss or Hyy for the shear
stiffnesses.

The shear deformation energy per unit middle surface area is
thus given by the following expression:

1 R h/2 R
[ = ;Q}/ Sss(2) [mnn(2)]” dz (19)

h/2

2(1 z .
2@ — _L G(z)is the transverse shear modulus

with S55 = o = 6o
at location z. Furthermore, the shear deformation energy per
unit middle surface area is expressed by using the average shear

deformation,

1, . _ 102
nxm = EQ.\“Y;; = 5 H55 (20)
The balance of the shear energy enables us to deduce,
h/2 5 -1
H55 = (/ 555(:) [ﬁl“”(:)]“ ll:) (21)
—h2

where Hss is the improved shear stiffness for FG Reissner-
Mindlin plates. The shear correction coefficients are finally ob-
tained by the following relation,

h/2
kss = ([ 555(-')11-'> Hss (22)
—h/2

The shear correction factors is equal to 5/6 for homogeneous
plates and a priori relations Eqns. (22, 21, 16) will lead to dif-
ferent values for the FGM. Moreover, the use of the improved
shear stiffnesses in Eq. (21) will provide a better evaluation of
transverse shear forces in (18) and transverse shear stresses in
Eq. (17).

3. NUMERICAL RESULTS

In this part, the effect of changing the shear correction factors
on the deflection and stress of the plate will be shown. More-
over, some results for the static analysis of a simply supported
square FG plate under uniformly distributed load of intensity
¢, are presented. They are compared with the third-order shear
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o—o—0—0—0—1

o—0—0———
——0 o—0—0—0— o—3

$——0—0—0—

o0

o o
075k ~o—p—0—o0—0°

Shear correction factor, k
o
a
T

[
&

0.5H

0.45H

04
[}

L L L L L L L L
2 4 6 8 10 12 14 16 18
Material parameter, p

FIG. 4. Variation of the shear correction factor according to p.

deformation plate model (TSDT) of Reddy [14], the sinusoidal
shear deformation plate model (SSDT) of Zenkour [19] and a
discrete three-dimensional finite element model. The follow-
ing parameters are used for numerical computations, v = 0.3,
a=b=1,q-0=10*% The Poisson’s ratio is firstly supposed to
be constant, we will then consider the effect of changing Pois-
son’s ratio within the range [0.2-0.4]. The deflection and stress
fields of the plate will be determined by the Navier’s solution
[11] and the shear stress will be calculated by the relation (17)

with the improved shear stiffnesses given in (21). The following
non-dimensional parameters are used: W w/h, G = oh?/
(([a(lz).

Figures 3 and 4 present the variation of the shear correction
factors according to the ratio of elastic modulus n,=E,/E), and
the power-law parameter p where n,, is changed in range of [ 1—-
20] and p is in range of [0-20]. The values of the correction
coefficients for every couple (p, n,) are captured in Table 1.
It is noted that the shear correction factors k depend strongly
on the values of p and specially n,. Indeed, we see that the
correction factors will decrease as n, increases. They take the
value k = 5/6 as the homogeneous plate for p = O or n, =1
and approximately this usual value for p = 1. Furthermore, it is
higherthan5/6 for p < 1. To consider the effect of changing the
correction coefficients on the deflection of the plate, we consider
firstly the value k = 0.6595 which corresponds to p = 6 and
E./JE, = 6 (SiC, E, = 420 GPa and Aluminum, £, = 70
GPa) and k = 0.576 corresponds to p = 7, E, = 696 GPa
(Monotungsten carbide-WC), E, = 70 GPa (Aluminum). The
obtained deflection from these cases are used to compare with
the deflection of the models using k = 5/6 and k = 1.

The measurement of “relative error” is defined by the rela-
tionship:

r_Mm

—— x 100%
Mm

error (%) = (23)

where M, is the value obtained from the present model, and M.
the value obtained from other models.

TABLE 1
Shear correction factors
E/Ep
p | 2 3 4 5 6 8 10 15 20
0 5/6 5/6 5/6 5/6 5/6 5/6 5/6 5/6 5/6 5/6
0.2 5/6 0.8396 0.8418 0.8429 0.8435 0.8440 0.8445 0.8448 0.8453 0.8455
04 5/6 0.8411 0.8439 0.8453 0.8462 0.8467 0.8474 0.8478 0.8483 0.8486
0.6 5/6 0.8396 0.8420 0.8433 0.8441 0.8446 0.8453 0.8457 0.8461 0.8463
0.8 5/6 0.8364 0.8374 0.8381 0.8386 0.8389 0.8395 0.8399 0.8404 0.8406
1.0 5/6 0.8320 0.8309 0.8305 0.8304 0.8305 0.8308 0.8312 0.8319 0.8323
2.0 5/6 0.8095 0.7924 0.7804 0.7720 0.7662 0.7593 0.7563 0.7555 0.7580
3.0 5/6 0.7961 0.7666 0.7433 0.7247 0.7099 0.6882 0.6738 0.6556 0.6498
4.0 5/6 0.7905 0.7547 0.7248 0.6997 0.6786 0.6451 0.6203 0.5810 0.5599
5.0 5/6 0.7891 0.7506 0.7175 0.6890 0.6643 0.6238 0.5923 0.5381 0.5046
6.0 5/6 0.7899 0.7507 0.7163 0.6861 0.6595 0.6150 0.5794 0.5158 0.4741
7.0 5/6 0.7917 0.7530 0.7183 0.6875 0.6600 0.6132 0.5751 0.5053 0.4581
8.0 5/6 0.7940 0.7563 0.7221 0.6912 0.6634 0.6155 0.5759 0.5020 0.4508
9.0 5/6 0.7964 0.7602 0.7267 0.6962 0.6685 0.6202 0.5799 0.5032 0.4492
10.0 5/6 0.7989 0.7642 0.7316 0.7017 0.6743 0.6262 0.5856 0.5073 0.4513
15.0 5/6 0.8090 0.7820 0.7551 0.7293 0.7048 0.6602 0.6210 0.5419 0.4823
20.0 5/6 0.8157 0.7947 0.7729 0.7511 0.7300 0.6902 0.6540 0.5780 0.5183




TABLE 2

Relative error of the non-dimensional deflection of the plate (wy,q./ h),WC-Al

a/h =k =1 ki =k =5/6 ki =k, = 0.576 E./E» n

5 2.2177e-06 (—9.68%) 2.2823¢-06 (—7.05%) 2.4554e-06 99426 7
10 3.1608¢-05 (—2.92%) 3.1866¢-05 (—2.13%) 3.2559¢-05 99426 7
20 4.9023¢-04 (—0.77%) 4.9126e-04 (—0.56%) 4.9403¢-04 99426 7
50 0.018980 (—0.13%) 0.018986 (—0.091%) 0.01900 99426 7

Table 2 gives the relative error measurement of the non-
dimensional maximum deflection in terms of the various side-
thickness ratio of the plate for WC-Al FGM. Note that it is not
the case which carries out the correction factors at least. It can be
seen in this case that the variation of the correction factor does
not affect the deflection of the FG plate for thin and medium-
thick plates. That is due to the fact that contribution of the shear
deformation energy is negligible compared to bending deforma-
tion energy. The influence is only visible for the thick plate (a/h
< 10). However, the correction factors will become meaningful
when the ratio of elastic modulus increases and thus its influence
on the deflection can become more significant (about 11% for
n, =20, p = 8,a/h = 5) as Figure 6. The difference of the
deflection in this case also shows that shear forces in a one-layer
Reissner-Mindlin FG plate did not affect the deformation of the
plate. It could be more significant for the case of sandwich FG
plates for which the stiffness of the medium part of the plate is
significantly lower than the upper and lower parts of the plate.

Figure 7 represents the deflection at the center line (x, y =
b/2) for various shear correction factors and Figure 8 presents a
comparison between the results of different models. The three-
dimensional finite element computation using Abaqus software
with elements C3D8R, is performed by using a appropriate mesh

comprising 8 layers in the thickness direction. It can be seen that
the deflection obtained from the present model is identical to the
results of Abaqus three-dimensional finite element model and
the higher-order shear deformation models (TSDT, SSDT). The
difference between these results and the result obtained from
the model using the shear correction factor k = 5/6 is approxi-
mately 5% for the case of SiC-Al FGM material (Figure 8). This
deviation will become bigger as n, increases (Figures 5 and 6).
The variation of the plane stress oy, at the center of the FG
plate along the thickness direction is depicted in Figure 9. It is
compared with the models of Reddy (TSDT) [14] and Zenkour
(SSDT) [19]. It is noted that, for the case of p = 6, the in-plane
stresses of the FSDT model can be represented by a 7th order
function of z and the transversal shear stresses have the form
of the 8th order of z. We note that there is no significant dif-
ference of the membrane stress between the different models.
There is only one small variation on the maximum compressive
stress between the model of first order shear deformation and
the models of higher order shear deformation.

Figure 10 presents the variation of the plane stress o, at
the center of the plate according to the various values of the
power-law material parameter. It can be seen that the maximum
compressive stress at the center of the FG plate is at the top
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surface and increases as the material parameter p increases. In
comparison, the maximum tensile stress is located inside the
plate for p < 1. This is a significant difference compared to
usual homogeneous composite laminate.

The transverse shear stress defined in (17) near the boundary
edge (x = 99a/100, y = 49b/100) is compared to that of model
admitting k = 5/6 and shown in Figure 11. As for the in-plane
stress, no significant differences can be seen by its appearance.
This can be explained due to the one-layer Reissner-Mindlin FG
plate model, which carries out a negligible influence of the varia-
tion of the FGM material properties on the secondary variables.
The shear stress within the plate given by the present model
(FSDT) is now compared with the higher-order shear deforma-
tion models in which the shear stresses are obtained from the
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FIG. 15. Effect of Poisson’s ratio on the maximum deflection, a/h = 10,
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constitutive law [11, 14, 19]. The variation of the shear stress
near the boundary edge of the plate (x = 99a/100, y = 49b/100)
through the plate thickness is represented in Figures 12, 13 and
14. We note that the shear stress of the FSDT model and the
three-dimensional element finite model is nearly the same. In
comparison with the higher-order models, it can be seen in this
case that the curves are clearly different for the three models
(FSDT, TSDT, SSDT). The relative difference between the val-
ues of shear stresses can reach 25% at some locations within the
plate for (n, = 6, p = 6). It also shows us that this distinction
depends on the ratio of the Young’s modulus and the material
parameter. Indeed, the difference between the FSDT model and
the higher-order models (TSDT, SSDT) is small for the small
values of (n,, p) (see Figure 12). Finally, the transversal stress
of the present model is adapted with the three-dimensional finite
element solution.

The results of the FG Reissner-Mindlin plate in the previ-
ous part is based under the assumption that the Poisson’s ratio is
constant. Toinvestigate the effect due to this coefficient, a contin-
uously graded Poisson’s ratio through the thickness of the plate
is considered, as given by relationship (3), with v, = 0.2 and
v, = 0.4. The maximum deflection according to the variation of
the material parameter thus obtained is shown in Figure 15. The
results can be compared with those related to constant values of
the Poisson’s ratio and show that the deflection of the FG plate is
affected by the variation of Poisson’s ratio through the thickness
of the plate for p > 2.

4. CONCLUSIONS

The improved shear stiffnesses and the shear correction coef-
ficients for the functionally graded Reissner-Mindlin were pre-
sented. With this modification, the Navier’s solution for a sim-
ply supported square FG plate based on the first-order shear



deformation (FSDT) was computed. The obtained results enable
us to note that the shear correction factor is not the same for the
FG plate as for a homogeneous plate and is a function of the ma-
terial distribution, especially ratio of elastic moduli through the
plate. However, this variation does not affect the stress fields of
the Reissner-Mindlin FG plates. This correction is only effective
on the deflection of thick plates and it can become remarkably for
the medium-thick plates when the ceramic-metal elastic mod-
ulus’s ratio is taken more than 10. The maximum tensile stress
of the functionally graded plate is located within the plate, in
opposition to the case of an homogenous plate. The variation of
the shear stress through the thickness of the FG plate given by
the FSDT model is however different from the variation given
by higher order shear deformation models.
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