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NEW INTEGRAL REPRESENTATIONS IN THE DYNAMIC
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New integral representations of homogeneous 3D uncoupled dynamic thermoelasticity
Sor semi-infinite cylindrical domains with curvilinear surfaces placed at infinity and
subject to mixed boundary conditions on the plane boundaries are obtained. The
representations are given in the form of integral convolutions involving a Green’s
Sunction for the parabolic heat conduction equation, as well as Green’s function for the
isothermal elastodynamics. A multi-integral representation of solution to a particular
initial-boundary value problem for an infinite wedge is included.

Keywords:  Canonical cylindrical domains; Green'’s integral formula; Heat flux; Heat source: Influence
functions; Temperature: Theorem on dilatation; Wedges

INTRODUCTION

Green’s function plays a leading role in finding solutions in integrals for
boundary value problems (BVP) in the different fields of mathematical physics. The
theory of thermoelasticity, which is a synthesis of the theory of heat conduction and
the theory of elasticity, is one of such fields. By our days a number of theories of
thermoelasticity have been developed and described in literature [1-6]. But many
new developments of thermoelasticity, and many references are included in the
book [7]. The best developed theory, which is widely used in practical calculations,
is the theory of thermal stresses, i.e. the theory of uncoupled thermoelasticity,
when the temperature field does not depend on the field of elastic displacements.
The advantages that the solutions of BVP of thermoelasticity have in the form
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of integrals are well known. In the theory of thermal stresses, the following
observations are worth mentioning. In the theory of uncoupled heat conduction,
that is, a constitutional part of the theory of thermal stresses, to solve a BVP, a
Green’s integral formula provides the temperature field resulted from a thermal
exposure.

The analogous Green’s integral formula determines the field of elastic
displacements produced by the known mechanical actions. In the heat conduction
problems and in the linear dynamic elasticity problems the integral formulas
include the initial data, inner heat sources, boundary temperature, body forces
and boundary tractions. In the case of the integral Maysel’s formula, the desired
solution (the thermoelastic displacements) is not represented directly in terms of
the given data, but in terms of a temperature field, which is to be found. This fact
introduces certain inconvenience in application of Maysel’s formula except for the
case when the temperature field is known a priori. Hence, to obtain Green’s integral
formula it is necessary to construct either Green’s functions or Green’s tensors. To
obtain the integral Maysel’s formula in uncoupled dynamic thermoelasticity, a two-
stage procedure is applied. First, we find a temperature field, and in the second
stage we construct a function of influence corresponding to a unit body force and
representing a volume dilatation.

Finding the influence function in the second stage is not a trivial problem. This
is why obtaining such a function, especially in a closed form, is highly appreciated
by the specialists in the field. So, for some particular BVP’s such influence
functions have been obtained in [8-11], and the associated integral formulae for
thermoelastic displacements have been found. For static thermoelasticity the integral
representations are obtained in [9-12]. The general influence function formulas
corresponding to an inner point heat source, or to a unit point temperature, or a
unit point heat flux on a boundary in uncoupled dynamical thermoelasticity have
been obtained in [13, 14]. In [13], a generalization of Maysel’s and Green’s integral
formulae onto dynamical uncoupled thermoelasticity is obtained for domains, the
surfaces of which are planes parallel to the Cartesian coordinate planes. Analogical
results in static thermoelasticity, for a number of boundary conditions have been
obtained in [15]. The results obtained in the Cartesian coordinates can be used to
derive Poisson’s type integrals of uncoupled dynamic thermoelasticity.

In this paper, new integral representations for a wide class of BVP’s in
uncoupled dynamical thermoelasticity in the cylindrical system of coordinates
is obtained. This class of problems deals with the canonical cylindrical (polar)
domains, whose surfaces (boundaries) are planes (or straight lines) on which
particular mixed boundary conditions are prescribed, but the curvilinear surfaces
(boundaries) are placed at infinity. To obtain the results, a volume dilatation
theorem of isothermal elastodynamics is proved. The general integral formulae for
influence functions as well as for the general Green’s type integral formula obtained
in [13-15] are used to obtain the results in cylindrical system of coordinates. As
an example, Green’s type integral formula for displacements for a particular initial
boundary value problem of uncoupled dynamical thermoelasticity for an infinite
wedge is obtained.



FORMULATION OF THE PROBLEMS AND THE WAYS TO SOLVE THEM
The main objectives of this paper are:

I. To obtain the integral influence function formulae for a wide class of
particular BVP’s of uncoupled dynamical thermoelasticity for so-called canonical
cylindrical domains. By a canonical cylindrical domain we mean a domain,
whose surfaces are the coordinate planes with equations I7,(0 <r < o0; 0 <
p<o,:z=a;) and/or I, :(0<r<oip=0.:0<z<a): [,n=0, and/or
[,n=1 — in cylindrical system of coordinates (r, ¢,z) and coordinate lines
I,0<r<oc;po=u0,) - in polar system of coordinates (r, ¢), where 0 < 2, <
2n: a; = 0. The curvilinear surfaces (boundaries) of this kind of cylindrical (polar)
domain are placed at infinity. As examples of such domains are:

a. space, half-space, quarter of space, eighth part of space or octant, layer,
semi-layer, quarter of layer, wedges, semi-wedges with the different angles o,
including 0 <o =n/n<n/2:n=3,4,5,...,:

b. Plane, half-plane, quarter of plane (quadrant) and also different plane wedges,
it means the canonical polar domains described by equations 0 < r < o0; 0 <
¢ <o:0 < o <27 By an influence function we mean a solution to a particular
initial boundary value problem of uncoupled dynamic thermoelasticity
corresponding to an inner unit point heat source, or a unit point temperature
or a unit point heat flux on the boundary.

2. To obtain the influence functions in explicit form and the closed form solution
in a form of Green’s type integrals for a mixed BVP in uncoupled dynamical
thermoelasticity for an infinite wedge with the angles o = n/n; n=2,3,4,...,.

To this end, we transform the results for Cartesian coordinates obtained in

[13-15] onto the cylindrical ones. Next, we use the following steps.

I. We determine the functions of influence corresponding to an inner unit

concentrated force and representing a dilatation of isothermal elastodynamics.

To achieve this, it is sufficient to use the integral representations for a volume

dilatation via the respective Green’s function.

We formulate a parabolic heat conduction problem to derive the desired influence

function corresponding to an inner unit point heat source.

. We introduce the derived volume dilatation and Green’s function for
temperature in the general integral formula for the function of influence
corresponding to an inner unit point heat source of uncoupled dynamic
thermoelasticity and obtain the desired integral formula. The integral formula is
to be presented in a form of the convolution over time and volume of product of
two Green'’s functions. One of the Green’s functions corresponds to a parabolic
heat conduction problem while the other is the Green’s dilatation function
corresponding to a problem of isothermal elastodynamics.

[§]
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To obtain an explicit form of the influence functions and of Green’s type
integral formula for displacements for a mixed BVP of uncoupled dynamical
thermoelasticity for a wedge with the angles « = n/n: n =2.3,4, ..., we follow the



following steps:

a. We find an analytical expression for Green’s function that satisfies a non-
stationary heat conduction problem for the wedge.

b. We find an analytical expression for the influence functions that satisfy a volume
dilatation initial boundary value problem of isothermal elastodynamics for the
wedge.

c. We compute a convolution over time and volume of the product of the analytical
expressions from points
a. and b. to obtain the desired result.

d. We derive the Green’s type integral formula that represents a solution to an
initial boundary value problem of uncoupled dynamic thermoelasticity for the
wedge.

INFLUENCE FUNCTIONS AND GREEN'S TYPE FORMULA
IN DYNAMICAL UNCOUPLED THERMOELASTICITY

The Basic Equations of Dynamical Thermoelasticity
in Cylindrical Coordinates

In this section, we recall the formulae for influence functions and for the
general Green’s type integral formula, as well as the necessary equations to
determine them, obtained before in Cartesian system of coordinates in [13]. These
results are rewritten in the cylindrical system of coordinates. The influence functions
are given in the form of a convolution over the body volume V and the time ¢
of the two Green’s functions. The first is the Green’s function G(M, N; r —s) for
an initial-boundary value heat conduction problem. The second is a function of
influence corresponding to a unit point temperature in a BVP of elastodynamics.
The second influence function represents a volume dilatation @9 (N, N: s — 1), (s =
r, @, z) of elastodynamics corresponding to a unit concentrated body force. Thus,
the displacement corresponding to an inner unit point heat source F(M, 1) = (M —
N)o(t — 1) and representing a solution to an initial-boundary value problem of
dynamic uncoupled thermoelasticity is determined by the following integral formula

U(I(M.N:r—r)zg'/,

ds [ G(M.N; 1= s)0O(N, N: s —0)dV(N) (1)
Jo Jv

where (¢=p.,&): y=0o,2u+34) is the thermoelastic constant; «, is the
coefficient of the linear thermal expansion: A, are Lame’s constants of
elasticity. Unlike traditional Green’s functions, the introduced influence functions
U,(M,N;t—1) do not possess the symmetry.

Note that the main difficulties in solving a BVP of dynamical uncoupled
thermoelasticity, using Eq. (1), consist in:

(1) Constructing the influence function corresponding to a unit concentrated body
force and representing a volume dilatation ®? (N, N: s — 1) of elastodynamics.

(2) Constructing Green’s function G(M, N: t — ) for an initial boundary value heat
conduction problem.

(3) Calculating the integrals in Eq. (1) to determine the influence functions
U,(M, N: t — 7).



So, to construct the functions ®“ (M, N: s — 7) we need to solve the initial boundary
value problem of elastodynamics which is described by:

(a) the displacement equations of elastodynamics in terms of the Green’s tensor
components Uy”:

0@
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(b) the homogeneous initial conditions

UP(M. Nt —1=0)

U (M, N: t — 1 =0) = 0; .
ct

0 (3)

written at an inner point M € V, and
(¢) the homogeneous boundary conditions

UM, N;t—1) =0, MeTy; P;")(M. Nit—1)=0; P;") = (r;‘,”n,:
Mel, BUPM.N:t—1)+ pP"(M.N:t —1)=0. MeTl,

written at points M of the surface I' =1, + I, + I,p. In Eq. (4), I,. T, and
I';p denote the surfaces on which the boundary conditions for displacements,
tractions, or mixed (for displacements and tractions at the same points, but
in different directions) are prescribed: p, is the density of the body: o, is
Kronecker’s symbol.

According to point (2), to construct Green's function G(M, N; t — s) we need
to solve an initial boundary value heat conduction problem described by:

(a) the non-stationary heat conduction equation

A

(; - av§4>G(M. Nit—1) = (M — N)o(t — 1):
ot

M,NeV M= (r,¢,2);: N=(p,,&); t,1=>0,t>1 (5)
(b) the initial homogeneous conditions, written at an inner point M € V,

GM,N;t—7)|,_.cg=0 (6)



(¢) the homogeneous boundary conditions

G(M,N:t—1)=0; MeTl,: 0G(M,N;t—1)/dn;; =0. MeT)
. (7)
(1,(—+(l)(A7.N:r—r)=0; ME(?.(P.E)GFM

Onyg

)

Iy, denote the surfaces on which the boundary conditions of Dirichlet’s,
Neumann’s, or mixed type (mixed boundary conditions describing the heat
exchange with the external medium) are prescribed. In Egs. (5) and (7) « is the
coefficient of convective heat conductivity; « is the coefficient of temperature
conductivity.

written at points M of surface I'=1, + Iy +1,,. In Eq. (7). I},,Ty and

Clearly, the influence functions U, (M, N;t — 1) represent an influence of
the internal unit point heat source onto the desired dynamical thermoelastic
displacements [13-15]. This is why the influence functions U,(M, N:t— 1) are
expressed in terms of both the thermal and the mechanical fields.

Boundary Value Problem that Determines the Influence Functions

As in the Cartesian system of coordinates [13] the influence functions
U,(M,N; t — 1) corresponding to a unit heat source F(N,t)=0d(M — N)o(t — 1)
satisfy at a point N = (p, ¥, &) the equations of dynamic uncoupled thermoelasticity

N U, 2 U, . 30) U, 0G
ﬂ(V;rU,,——i——, = “>+(/-+/t)(. — = — 7= =0
pe pe oY ap at* ap

V’U Ul{'/ + 2 (’\'Up +(. + )1 o
| vyu, — —+ — At W) —— — po—ic — =
H\ "W P2 pr oy ; p oY P on “p oy
5 . 0 PU. oG
MW Ue+ (G )= =posy =157 =0
¢ oz o2 B

S

00 2, 1 oG
- sl=0 (®)

subject to the homogeneous mechanical initial and boundary conditions of the type
presented in Eqs. (3) and (4). In Eq. (8), G = G(M, N; t — t) represents Green’s
function for the heat conduction problem (5)—(7). With respect to the variables
M = (r, ¢, z), the influence functions U, (M, N;t— 1) satisfy the following heat
conduction equation

(:_r - an,)Uq(M. N;t—1)=7909(M,N; t — 1);
D
M,NeV.M=(r,¢,2);: N=(p,,&):; t,t=>0,t>1 (9)

subject to the respective initial and boundary conditions as in Eqs. (6) and (7).

In the following section, the functions U (M, N:t — 1) are to be called the
main influence functions, because the other influence functions follow from them.
On the basis of these influence functions, the integral formula of Green’s type can
be deduced.



Generalization of the Green’s Integral Formula
onto Dynamical Thermoelasticity

To transform the integral Green’s type formula from Cartesian system of
coordinates [13] onto cylindrical one, first we need to rewrite the respective influence
functions. So, the desired formulae can be rewritten in the cylindrical system of
coordinates:

(a) The formula for the influence functions corresponding to a unit point heat flux
aléT(M,7)/ing] = o(M — N)o(t — 7) on the surface I'y and representing the
dynamical thermoelastic displacements

U,,N(/VI. Nit —1) = lim U/(M,N: t—1)
M—-M

= lim 7 [ dg/ G(M, N: t — )0 (N, N: s — 1)dV(N):
Jy

M—=M Y0

M,N.NeV, MeTl, (10)

(b) The formula for the influence functions corresponding to a unit point
temperature 7(M, r) = —0(M — N)o(t — 1) on the surface I', and representing
the dynamical thermoelastic displacements

U M. N:t—1) U (M. N:t—71)
= lim =
ong M—M Ny,

t G(M,Nit—s) . — _
=~,-[ dc/‘ (M. ) @ (N, N: s — ) dV(N):
J0O Jv

ong

M,NNeV, Mel, (11)

(¢) The formula for the influence functions corresponding to an initial unit
temperature field 7,(M) = (M — N), described by Dirac’s delta function ¢ and
representing the dynamical thermoelastic displacements

U,(M,N:;t) = l_ing U,(M,N:t—1)
= limy / ds / GM,N: 1 —)OD(N, N; s — 1)dV(N)  (12)
—0 Jy Jv

(d) The formula for the influence functions corresponding to a unit point heat
exc~hzmge of the body with exterior medium aT(M, 1)+ oy [CT(M, 7)/ing| =
O(M — N)o(t — 7) through the surface I';, and representing the dynamical
thermoelastic displacements

UqM(A~/I. Nit—1) = lim U/(M,N;t—1)

M—=M

t — — —
= lm y [ ds [ GOM.N:1—)0D(N. N: s — )dV(N):
.0 Jy

M—=M

M.NNeV. MeTl, (13)



So, from the definitions of the influence functions in Egs. (10)—(13) it follow
that the function U (M, N; t — 1), defined by Eq. (1), is the main influence function,
because other influence functions are obtained from it. The theory of constructing
such main influence function in Cartesian coordinates is given in [13]. A number of
applications of this theory for particular static and dynamic BVP’s in the Cartesian
and other systems of coordinates have been presented in [8-17]. In the case of
classical uncoupled dynamical thermoelasticity we have to solve the following
problems:

(1) The non-stationary heat conduction problem which consists of:

(a) the non-homogeneous non-stationary heat conduction equation [18]
(ﬁ—' - clv;;)r(M. )=FM,t); MeV,M=(r¢,z) (14)
ot

(b) the non-homogeneous initial condition
T(M.t =0) = T,(M) (15)

written at an inner point M € V, and
(¢) non-homogeneous boundary conditions

~ ~ T '
T|FD =T(M,t); Mely,, a—| =a

OT(M. 1)  ~
‘ s M
Cny iy, ongy

ely

(1; + a) T(M, 1)

cony,

= (1‘— +a)T(1T4. 0, M=(F83) (16)
-

[y nyg

written at points M of the surface I'= T}, + I, + I,
(2) The BVP of dynamical thermoelasticity, which consist of:

(a) the non-homogeneous dynamic equations for the displacements Us:s =

rQ, 2
N u, 207U, . 00 U, T
MVv,-—=—-—5=—)+Ul+w=——pr—=3 —1=-=0
ot de or or or
R U, 20U, i 100 U, | oT
l‘(V'U¢__f+_a - )'f‘(/-‘i‘/l)—« —po—=m —7—5-=0 (17
re re e r dg are rée
N . o0 U oT
pVU + e+ ) —— —py—5 — 7= =
0Z ct= cZ
(b) the homogeneous initial conditions
UM, 1 =0)
UM, t=0)=0, ———— =0 (18)

ot

written at an inner point M € V, and



(c) the homogeneous boundary conditions

UM, 1)=0; Mely,;
PS(M. t)=0; PS =ogn,; M e FP: (19)

written at points M of the surface I' = I';, 4+ I', + I,. Here the thermoelastic
stresses o, are determined by the Duhamel-Neumann law

0g =2ueg+ 020 —yT); s, l=r, ¢,z (20)

Next, using the superposition principle, on the basis of the formulae in Egs.
(1) and (10)—(13), we obtain the following Green’s type integral solution of the
non-homogenecous BVP of dynamical uncoupled thermoelasticity described by
Eqs. (14)—(19):

U,(N, 1) = /‘ Ty(M)U, (M, N: 1)dV(M) + fol dr /‘ F(M, ©)U,(M, N; t — 7)dV(M)

‘ . UM,N.t—1 -
—a[ dr/ (M, 7) oM. )er(M)
<0 I

I, ong

T(M, - ~
a/ dt/ oM, ) U (M, N; t = 7)dT (M)
Iy (n
y ~ T(M, 7) ~ -
+[ dr[ aT(M, 7) + a2 | U (M, N; £ = 1)dTy (M) (21)
Jo o Un, ing,

Clearly, Eq. (21) represents a generalization of the well-known Green’s integral
formula of heat conduction theory or of elasticity onto an uncoupled dynamical
thermoelasticity in the cylindrical coordinates. Equation (21) can also be trated
as a generalization of the classical integral Maysel's formula onto the uncoupled
dynamical thermoelasticity. Moreover, Eq. (21) is a generalization of Maysel's
formula [2, 4-6] for cases when the temperature field satisfies the heat conduction
equation corresponding to the heat sources prescribed above. So, we have obtained
a new general integral formula of Green’s type to determine the displacements
in a dynamical uncoupled thermoelasticity written in cylindrical coordinates. The
advantage is that it allows us to unite the two-stage process of solving a BVP in
the theory of thermal stresses, described by Egs. (14)—(19), into one single stage
described by Eq. (21). The first stage covers determination of a temperature field
described by Eqs. (14)—(16). The second stage deals with determination (on the
basis of already known temperature) of the thermoelastic displacements, described
by Egs. (17)=(19). As a result, for a particular BVP the new general integral
formula (21) may be used to obtain an integral solution of the dynamic uncoupled
thermoelasticity.



VOLUME DILATATION AND FUNDAMENTAL SOLUTIONS
FOR A CLASS OF PROBLEMS

General Integral Representation for Volume Dilatation

As was mentioned before, to construct the functions @9 (M, N; s —1) we
need to solve the boundary value problem of dynamical elasticity described by
Eqs. (2)=(4). To this end, to construct the influence function corresponding to a
unit concentrated body force and representing a volume dilatation ®%, we use the
differential equation

I:po(}. + 2;:)";, - Vﬁ,]@"”(M. Nit—1)= (A4 20)'LOS(M — N)o(r — 1)
ot

M,NeV,.M=(r,¢,z); N=(p,¥,&: t,1>0,t>1 (22)
02 1 ¢ 1 ¢ 02 : G Oy, 0 G
Vi=agt-mt5rgtas LO9=0,—+—F— 4+
orr  rdr o rrde? 072 or r oo S

and the homogeneous initial conditions
‘-
O M N;t —1)|_g=0: —OYM, Nt —7)|,_..g=0 (23)
ot

Clearly, the boundary conditions for the functions % depend on a BVP of the
dynamical thermoelasticity and may have the form described by Eq. (4). Also,
note that Eq. (22) is obtained from Eq. (2) by differentiation with respect to the
coordinates of the point M = (r, ¢, z) and by summation over the subscript, s =
r, ¢, z, using the rule

. oUW yw 1oU  ou9
(!)(q) — r + r ¢ + 4

—— - (24)
r r do 0z

The solution to Eq. (22) with initial conditions given by Eq. (23) can be represented
in the integral form

1

ODNM, Nt —1) = ——
L4221

L9Go(M, N: t — 1)

+ / dp[ OO, N p— 1) — 0D (M N p— 1)
Onyp Cnyg

x Go(M, M: t — p)dT'(M) (25)

Here Green’s function Go(M, N; t — 1) satisfies equation [see Eq. (22)]:

~2

I:;)O(). +2u)7! ft, - V‘;]GO(M. Nit —1) = (A4 2p)7'0(M — N)o(t — 1)
o

M. NeV.M=(r.¢.2): N=(p.y.&): t,1>0, t>1 (26)



subject to the initial conditions [see Eq. (23)]

]

Go(M, N; 1 — 7|,y = 0; :—rG@(M. Nt =)y =0 27)
-

Also note that the functions ©®“ and 0 /cng on the surface I' depend
on the specific boundary conditions similar to those in Eq. (4). In a general case,
to obtain those functions, a boundary integral equation is to be solved. However,
there is a number of BVP’s of the dynamical uncoupled thermoelasticity for which
the values of ©@ or 0¥ /dngy are determined directly from the relationship
(24), Hooke’s law, equilibrium equations and prescribed boundary conditions. In
the following, we present an example of determination of the functions ®? or
009 /ny; on the surface I and of the influence function ®“ for a class of BVP's
in the cylindrical coordinates without solving a boundary integral equation.

A Theorem About Volume Dilatation and Fundamental Solutions

Theorem. Let on the plane surfaces 1, and T, of a cylindrical body V, those
curvilinear surfaces are placed at infinity, the following mixed boundary conditions are
prescribed: 1) normal stresses and tangential displacements, or 2) normal displacements
and tangential stresses. Also, let the above conditions be interrelated with the boundary
conditions for Green’s function G g by

69 = U9 = UD = 0; Gy=0 (28)
U = ai‘r/’ - aiig =0; 0Gg/in,; =0 (29)

on the surfaces I' (0 <r < o000 <@ <u,;z=aq,), and

O'gg =UY =UY =0, Gg=0 (30)

@ — 5@ — 5@ —0- 2 0 —
U/ =0l =0l =0. 0Gg/in,, =0 (31)
on the surfaces I'y, (0 <r <ot =2,0<z<a):l,n=0,1
Then for the homogeneous initial conditions, as in Eq. (23), the influence functions
for volume dilatation ®\9 are represented in terms of Go(M, N: t — 1) by

|
ODM Nt —1)=——L9PG(M,N: t — 1 32
( ) Pt ol ) (32)

In addition, the influence functions corresponding to an inner unit point heat source and
representing the thermoelastic displacements [the fundamental solutions| of uncoupled
dynamical thermoelasticity, are determined by:

f — — —
U, (M, N; t — 1) = —p(3+ 20)"' L9 [ ds [ GIM,N: 1= §)Gg(N, N; 1 — 1)dV(N)
Jo Jy
(33)

‘\ ) A

C - (
L@ — O 0 i

q;) '\ ‘) (l// :

N
cC



In Eq. (32), the function G(M, N: t — ) is Green’s function described by Egs. (5)—(7),
while the function Gg(N, N:t — 1) is Green's function described by Egs. (26)—(31).

Proof. To obtain Eq. (32) we use the generalized Hooke’s law

0, =208, +0,.0; s,p=r¢z (34)

5

and the relationship between strains and displacements

au.. au, 1/aU, ‘ | fou.  ou,
> Efr = T +U, ) e, ~ el 0z

o) o)
cZ or r cQ

1 /U, . ou. IT1 /U, AT au,
£, = g, ==-|=—-
¢ 0z op T2 r\ dp ¢ or

as well as the formula for the volume dilatation in Eq. (24) written in cylindrical
coordinates (r, ¢, z) for the points of surfaces I (0 <r<oc;0 <@ <u,:z=a,)
and I',,(0 <r <ooip=2,0=<z<a). First, we have to prove that from the
mixed boundary conditions given in Egs. (28) and (30) it follows that on
the sides I (0 <r<o0;0<¢ <o z=qa) and I, (0<r<oip=12,:0<z<a)
the dilatation vanishes, that is, ®@(M, N, t— 1) =0. To this end, taking into
account the relationship in Eq. (24), written in the form

£ =

19|

17 @D A — @@ A17@) /0, —lAar@ /0 —lrr(q
U0z =0T = (U /cr+r=cU7 [Co+r7 U") (36)
and using Hooke’s law, as in Egs. (34) and (35) written for stresses ¢, we obtain

4 Ar7(9) /N 7 (4 ] (9@ _ Arr(q) /N, —lAri(@) /0 —1rr(g
ol = 210U )0z + 709 = (2 +20)0 = 2u(eUP Jor + r~' U Jo@ + rT U
(37)

Also, using in Eq. (37) the conditions ¢ = 0; U\? = 0; 0U? /ér = 0; cUY [rop =
0, which follow from the boundary conditions Eq. (28), we find that on
the sides I (0<r<o:0<¢@<ua,:z=a,) the volume dilatation vanishes:
ODM,N;t—1)=0,M = (7.9, a,) €I,

In an analogous way, taking into account the Eq. (24) in the form

—learr@ g n @y — @@ Ar7@ 0, Ar7@) o
ro (U e+ UT) = 09 — (cU7 /dr + 0U" [ Cz) (38)
and using Hooke’s law, as in Eqs. (34) and (35), written for stresses afp‘Q. we obtain

o) =2ur=' (U Jop + UP) + 209 = (4 + 2p)0' = 2u(U [ or + 0U? /éz)
(39)

Also by wusing (39) with the conditions o) =0;dU\"/dr =0; U9 oz =0,
which follow from the boundary conditions (30), we find that on the sides
I, (0 = r<ooip=2,0=<z=<a) the volume dilatation is zero:

n?

OOM,N;t—1)=0; M=(70,.3)el, (40)



In addition, the mixed boundary conditions from Eqs. (29) and (31) imply that the
derivatives of the volume dilatation along the external normal on the sides I',, and
I, vanish, that is, on these sides ¢0?/dn_, =0 and ¢0©'?/én_, = 0. For example,
for the sides I, (0 < r < 00; 0 < ¢ < 2,: 2= q;), by substituting the relations

oo/or=0: r7'el? =0; 0@ =0, r7'(06\?/0¢) =0 (41)

which follow from the boundary conditions in Eq. (29), into the stresses equilibrium
equation

(’\‘O'(_‘,’) 0-51’/) (‘wo-gz) (.O.(q)
; - —+—=—=0 (42)

Y a
cr r reg cZ

we obtain that on this side Paif_()/?‘: = 0. So, from Eq. (37) and the last result, we
obtain

de'? dc'? . 0 VO Wi uy v
£ S SY SV ki iy ] R/ L [ St | [ RS
0z on, 0z ardz  r\ Oglz 0z

Next, using the boundary conditions from Eq. (29) and Hooke’s law for
the tangential stresses ¢ and o7, it can be shown that on the sides
I (0<r<o0;0<¢ <a,z=a,) the following results hold true

U@ >u GRS
L =0; —— =0, —— =0 (44)
oz arez cpez

The result (44) can be proved by using the following relations:

U U
U9 =0= —F =0, — =10
: or o

oUW U oy
o =0, ——=0=ul——+—")=0;
v cr cr cz

(?Ur(q) _ 0 (“2Ur(q)

— =0, ———=0 (45)
CZ corez
pu_(q) (“.U_(q) oy
O'SZ):O. — =O=>/l< — + “p ):O.
: ¢ o 0z

ﬁu(ﬁq) QPu@

=> ‘\‘r = 0‘ A f = 0
z dodz

Finally, by combining (44) with (43) and by using the boundary conditions
(29), we find that on the sides I (0 < r < 00; 0 < ¢ < 2,: 2 = q) there is (O /0z =
0 or 009 /dn_, = 0.

In an analogous way, we prove that the boundary conditions (31)
imply that on the sides I',,(0 <7 < o0j¢p=12,:0<z<a,) lead to the following
equality 0©'?/dn,, = 0. Having substituted the relationships ¢\ = 0: do\?/0r =



0; (’af;{__’/(’: = 0, which follow from the boundary conditions in Eq. (31), into the
equation of equilibrium in stresses

R (7) By e Y N9 40 N9 /- 7~ (9
dagy /0r + dagy/roe+ dol/0z+2r7 e, =0 (46)

we obtain that on the sides I, (0 <r<ooip=12,:0=<z=<gq), the relation
?‘afp‘g/("(p = 0 holds. Using this result in Hooke’s law (39) in the form

06(@ 5@ Py Py
-\_W=(/q.+2/l)(-\ —2,1l<(.\ = +%)=0 (47)
oo o arde 0z0¢

and the boundary conditions (31), as well as Hooke’s law for the tangential
stresses ¢ and ¢, we find that on the sides I',,,(0 < r < c0;¢ = %,; 0 < z < @) the
following relations hold:

[ZU,(")/(A/'F‘(p =0; (AZU;")/(“;(ﬁ(p =0 (48)

Equation (48) can be obtained by the following operations:

oyUa) U9
Ué"):()=> ﬂ‘p =0, ﬂ‘p =0
or 0z
~r7(q) Ar7(9) Ar7(q)
o =0, UY =0, df*” =0=u ! ‘I,J" —UY )+ —(l{" =0;
@ ¢ or r ol ¢ or
oU@ QU9
= =0, —— =0 (49)
cp corde
oUW ("U_(‘” oUW
ol =0, ¢ :O:>u( =4 £ ):O:
N 0z op 0z
(“. U_(q) (“.2 U_((/)
=5 ——=0, —=0
cp apcz

Finally, by substituting the results (48) into (47) we find that on the sides
I, (0<r<oip=0,:0<z=<a) there. is (’@“”/&g =0or d09/én,, =0.
As a result we come to the following conclusions:

1. If on the boundary of a cylindrical body V + I' the normal zero stresses as well
as tangential displacements vanish (the boundary conditions from Eqs. (28) and
(30)), then on this side O = G, = 0.

ii. If on a boundary of the cylindrical body V 4+ I' the normal displacements as well
as tangential stresses vanish (the boundary conditions from Eqs. (28) and (30)).
then on this boundary d0% /én = ¢Gg/dn = 0.

Finally, taking into account the definition of the boundary I'= ¥|_, I+ Y%_, +1g
as well as conclusions i and ii, we find that Eq. (32) for volume dilatation holds true.

By introducing (32) into (1) we obtain the desired formula (33) for the
fundamental solutions U (M, N: t — 1) (the influence functions corresponding to
an inner unit point heat source and representing thermoelastic displacements)



of a wide class of BVP’s of dynamical uncoupled thermoelasticity. Clearly, the
functions U, (M, N; t — t) are the main influence functions, because other influence
functions can be obtained from it. The class of problems includes BVP's of
dynamical uncoupled thermoelasticity for the domains described in the cylindrical
and polar coordinates whose surfaces are the coordinate planes with equations
I(0<sr<o;0<¢=<uo,:z=aq) and/or [, (0<r<ojp=0,:0<z=<a) in
cylindrical system of coordinates, and coordinate lines I',, (0 < r < o0} ¢ = ¢,)—in
the polar system of coordinates. The curvilinear surfaces (boundaries) of such kind
of cylindrical (polar) domain are placed at infinity. As examples of these domains
the following could serve: (1) 3-D BVP for: quarter of space, eighth part of space
or octant, layer, semi-layer, quarter of layer, various wedges, semi-wedges and
limited wedges with the different angles «, including 0 < o =n/n;n=2,3,4,...:
(2) 2-D BVP for half-plane, quarter of plane (quadrant) and also for different
plane wedges, that is, for the canonical polar domains described by equations
0<ep=<=w0<au<2m0<r< oo

EXAMPLE OF THE INFLUENCE FUNCTIONS AND GREEN'S TYPE
INTEGRAL FORMULA IN DYNAMICAL UNCOUPLED THERMOELASTICITY
FOR AN INFINITE WEDGE

In this section, a general integral formula (21) is to be specified for a particular
initial boundary value problem of uncoupled dynamic thermoelasticity for an
infinite wedge.

The infinite wedge is described by: V(0 < r < 00,0 < ¢ < o, —00 < 7 < ), o =
(n/n);n=2,3,4,.... with the sides (0 <7 < o0, =0,—00 <Z <o0) and
I'py(0 <7 <00, o =2, —00 <7 <o0) and a dynamical thermoelastic process in
the wedge corresponds to an internal heat source F(M,t),M = (r, ¢, z);: M €V,
a temperature 7(r, ¢ =0,2), M =(r,=10,2) € I;; on the side I';p and by the
heat flux a[éT(F, o =o,2)/in,|. M =(F,p=02,2) € I'y, on the side I',,. On the
boundary planes I'), and I';, of wedge V, the following homogeneous mechanical
boundary conditions of the type of sliding and non-homogeneous thermal boundary
conditions are postulated

o) =U"=U"=0; T=T #0 (50)
on the side I'yy — (¢ = 0), and
UYW =0 =0 =0; a[T/n,] = a[dT,/in,] #0 (51)

on the side I',, — (¢ = ).

The mechanical initial conditions for the problem are homogeneous as in (18),
while the thermal initial conditions are non-homogeneous as in (15):7,(M) # 0. To
solve this problem in accordance with a traditional scheme it is necessary to solve
the heat conduction equation (14) subject to the initial conditions (15) and the
non-homogeneous boundary conditions (50) and (51). Next, with temperature 7
already found, it is necessary to solve the non-homogeneous equations of dynamical
thermoelasticity (17) subject to the homogeneous initial conditions (18) and the



boundary conditions (50)—(51). Clearly, a solution to the problem is represented by
the integral formula

U,(N, 1) = [v Ty(M)U,(M, N; 1)dV(M) + /O’dr /v F(M, ©)U,(M, N; t — 1)dV(M)

oU,(M,N;t—1)

t — [
—a /0 dt [r ) 7,(M. 7) - dT, (M)
' 0T, (M. © _ _
+a/ dt/ (zfi)U(,N(M. N t — T)dT,, (M) (52)
Jo o, Ong

The formula (52) is obtained from (21), in which I', =1, Iy =1,,, I, =
0, T, =0. In Eq. (52) the influence function U (M, N;t — 1) is determined by the
integral formula (1).

To obtain U,/(M,N;t—r1), Green’s function G(M,N;t—1) should be
constructed first by solving the following initial boundary value heat conduction
problem for the wedge V with the boundaries I, and I,

(:_t — (JVL)G(M. N;t—1)=0(M— N)o(t —1);
P

M,NeV.M=(r.¢,2): N=(p.y.l): t,t>0,1r>71 (53)
subject to the homogeneous initial and boundary conditions on the sides I',; and I,

GM,N:t—1)|_.g=0: GM.N;t—1)=0: M eTl,;
OG(M,N;t—1)/on, =0; Me I, (54)

This is a particular case of the general BVP described by Eqs. (5)—(7).
A solution to the BVP (53)—(54), that is, the desired Green’s function G,
obtained by the method of reflection [19], takes the form:

9

n—1 2
GM,N:t—7) = [8ymBad(t—1)| 'Y (—1)“>(e—% — 7w )
k=0

2km

R, = \/;'3+p3—2rpcos ((p—t//——> +(z— 9% (55)

n

, N 2kn s
Ry =\r+p>=2rpcos| e+ ¥ — —= |+ (2= ¢)°

Next, to construct the influence functions ©@, we are to solve Egs. (2)
subject to the homogeneous initial conditions (3) and non-homogeneous boundary
conditions (50)—(51). Using the theorem on dilatation, we conclude that the
functions O satisfying the BVP, described by Egs. (2). (3). and (50)~(51). are



determined by Eq. (32), wherein the influence function G satisfies Eq. (26) subject
to the following homogeneous initial and boundary conditions:

0Go(M, N: 1 — 1)
ot

Go(M,N;t—1)=0: MeTl,: 0Go(M.N:t—1)/in,=0; MEe I,

GG)(M' N: r— T)II—T=O = 0:

0o=0

li—e=

(56)

Equation (56) follows from a comparison of the homogeneous initial conditions (18)
and boundary conditions (50)—(51) with the corresponding conditions (23) and (30)-
(31) of the theorem on volume dilatation.

Finding the influence function Gg for the BVP, described by Eqs. (26) and
(56), by the method of reflection, and substituting G into Eq. (21), we obtain the
function ®? in the form:

| n—}
oM Nt =) =~ H R Y

X |:6<& —(t— r))R[‘ — 6(ﬂ —(t— r))Rk‘J]; (57)
C C
c=/pi'(Z+2p)

where ¢ is the velocity of propagation of longitudinal waves in an elastic medium.

Finally, if Eq. (57) is substituted into Eq. (1) and the volume integral is
calculated, then the influence functions corresponding to an internal unit point
heat source F = (M — N)o(t — 1) and representing the dynamical thermoelastic
displacements, are obtained in the form

t oo oo ox - -
UM.Nt—0) =7 [ ds [ a3 [ d7 [ GM.N:1— )00 N. N:s —1)dg
Jo J—o Jo Jo
n—1

=LY (=D)(d,—dy); N=(F8.3)eV (58)
(=0

Here the functions @, are determined by the formula

D, = O (M, N: 1 — 1)
_om
4R,

- [Uk(n. (" — %)) — w:fc(w%)“ (59)

in which the first and second terms represent elastic and diffusion fields, respectively,
and the functions U,(r, t — 1) are defined by:

{(()(y'—r')—’k _ I)HA((t. _ T.) _ rk)

o t*—1° r
Uk(r. r— T) = ¢ 5 |:(,"k (;’-f(.(’)i“ + V1 — T')
RAVES

. _1°



+ e er f(r(iz t:.k— = m)]

Iy = (a"c)Rk: =t ="' —-1): m= ;'c‘lpg' (60)

In Eq. (59), the Heaviside function H is defined by the formula

H =H((1"=1")—r) =

0O (r*—1)<nror(t—1)<R/c 61
I (r*—=1*)>r,or(t—1)> R, /c ©h

The functions &, k=0,1,..., n—1: n=2,3,4,..., in Eq. (58) are
obtained from the functions ®, by replacing ¥ by y* = —i.

Finally, calculating the limits lim,,_ 5 U, (M. N:t — 1) = U,y(M. N:t —1): M €
ViMel, and  limy 3 cU/ (M, Nt —1)/Cny = CU,(M,N:t—71)/Cng: M €
V.M € I'yy: and using (52), the following integral formula of Green’s type for the
thermoelastic dynamical displacements is obtained

n—1

U (p. . & 1) = yL@ ‘—lk{ md: mrdr IT re.z
P, & 1) Y0 de ) rdr [T
X (D(r, @,z &opapit) = P (r 0,238 po s 1))de
+ [ drt ‘d: mrdr 1Fr., , 4 T
fyae ] e rar | Fore.zo
X (Op(rop.z&opohit —1) =D (r @, 2 & st —1))de
—a ks 1z T.(r,0o=0,7:1
[, e[ dz ]} iGe =050
0

X =—[P(r, =0,z & pohit — 1)
ng

Lp Yt —1)|dr

N
0Ny,

AN

— (I)W(;' ¢=0,2z;

X [P(roe=o. & popit —1) =D (Fo o=, 2 & p s t — 1) ]dF

(62)
The functions given by Eq. (62) satisfies to equations
2 u 20a, . aC] U, T B
VU, — — — 5 +(At W= —po—=m — V) =
2 rtde or or? 01
U, 20U . 1 0O U, L oT
/I(V2U¢— L+ == ’>+(/.+,u)— — — pp—2 —7)—— =0 (63)
Pt de rde or? r o
a0 U T

uV2U, + (2 + 1)

A
— —Po—=; — 7 =0
czZ ot 1z



subject to the homogeneous initial conditions in Eq. (18) and the non-homogeneous
boundary conditions of the type described in Egs. (50) and (51).

Note that the integrals over infinite intervals (62) exist if the thermal data
comply with the conditions:

(/_m dz /0 rdr .[) |To(r. @. 2)|de < oc; ‘/_m dz /0 |F(r, . z: T)|rdr < oo

(64)
T, (ro=a,2:7)] _
= dr < o

Ny,

‘/_”" (/E/Oﬁc |T|(’_'. Q= 0,z T)ld)_‘ < 00; /w ‘IE.

o

It can be proved that the conditions (64) are satisfied if:

1. The thermal data are prescribed on the bounded domains; and
2. The thermal data vanish at infinity.

In both these cases the displacements U, (p, ¥/, £, 1) defined by (62) are finite,
that is, |U,(p, . <, 1)| < oo, and because the kernels in (62) vanish at infinity, the
functions U, (p, ¥, &, 1) also vanish at infinity.

The authors believe that the solution to dynamic uncoupled thermoelasticity,
described by Eqs. (58)—(62) has been obtained for the first time in the literature. In
the particular case when o = 7/2, the wedge is transformed to a quarter of space and
the formula (62) is transformed to the integral formula for thermoelastic dynamical
displacements for a quarter of space obtained in Cartesian coordinates [13].

Also, influence function formulae, as well as the general integral formula
obtained in the present paper, constitute a generalization of Green’s and Mayzel's
formulae to include an uncoupled dynamic thermoelasticity in the cylindrical
and polar coordinates. The generalized formulae can be used to solve a number
of BVP’s of the uncoupled dynamical thermoelasticity in terms of elementary
functions for canonical domains in polar and cylindrical coordinates, such as:
an infinite plane, an infinite 3D space, a half and a quarter of plane, a half
and a quarter of the 3D space, an eighth of a 3D space, a 3D wedge and a
semi-infinite wedge, and so on. The solutions of the particular BVP’s play an
important role in the numerical analysis of general initial boundary value problems
of uncoupled thermoelasticity. Also, the method of solving the particular initial
boundary value problems of uncoupled thermoelasticity for canonical domains in
polar and cylindrical coordinates proposed in this paper can be extended to include
the domains described in other orthogonal coordinate systems, such as the spherical.
Note that the crucial problem of this extension is to prove new theorems on
dilatation. This could be done for wide classes of the BVP for particular semi-infinite
domains of each orthogonal system of coordinates. Partially, this possibility follows
from the results obtained in [8, 12, 13, 20-22].

NOMENCLATURE

2, — coefficient of the linear thermal expansion
/s 1t — Lame’s constants of elasticity

7 = o,(21t + 34) — thermoelastic constant

po — density of the body



o — coefficient of convective heat conductivity

a — coefficient of temperature conductivity

¢ — velocity of propagation of longitudinal waves in an elastic medium

0, — Kronecker’s symbol

7 — time of application of the source

t — time of observation

V — body volume

I' — surface of the body V

(r, ¢, z) and (r, ¢) — cylindrical and polar coordinates

M(r, ¢, z)M € V — inner point of the body V

F(M, t) — inner heat source

T(M, t) — inner temperature

T,(M) — initial inner temperature

Ug(M, t) — inner displacements

£} 8, p =T, ¢, 7 — strains

O — volume dilatation, ® = ¢U,/dr + U,/r + ¢U,/rde + ¢U./ iz

0y, =2ue, +0,/0;s, p=r, ¢,z - Hooke’s law for elastic stresses

0y =2ue,+0,(40 —yT);s,l=r, ¢,z — Duhamel-Neumann law for elastic
thermal stresses

M = (7, . z) — point of surface I'= T}, + [, + [

I, I'p and 1"y, — the surfaces on which the boundary conditions for displacements,
tractions, or mixed are prescribe

Us(M, t); M € T, — displacements prescribed on the surface I,

Py(M,t) = 0; Py = agn;; M € I, — tractions prescribed on the surface I,

n; — are the directory cosines on the surface I

PLUGM. t) + B, Ps(M, 1) = 0; M € I, — linear combination of the displacements
and tractions prescribed on the surface I,

p, and f, — constants that depend on the mechanical characteristics of the

__ contacting bodies

M = (7, @, Z) — point of the surface I'=1,+ 1y + 1},

I, I'y and I'y, — the surfaces on which the boundary conditions of Dirichlet’s,
Neuman'’s, or mixed type are prescribed

T(M.7);: M € TI',, — temperature prescribed on the surface I,

a[0T(M. 1)/dn5)M € T'y — heat flux prescribed on the surface Iy

(x(¢/lng) + (1)T(A~/I. t); M e Iy, — law of the heat exchange of the body with
exterior medium prescribed on the surface I,

N(p,, &) N €V — an inner point of application of the unit point source (heat
source, body force etc)

(p. . &) and (p, ) — cylindrical and polar coordinates of the point of application
of the source

(M — N) and o(M — N)o(t — t) — Dirac’s delta functions

G(M,N;t—1);t,t>0;t>1-Green’s function for an initial-boundary value heat
conduction problem

OW(M, N;t—1);t,7 > 0;t> 1 —influence function represents a volume dilatation
in an inner point Mof elastodynamics problem corresponding to a unit
concentrated body force, applied in an inner point N in the direction of the axix

(g=p. 4.0



Go(M,N;t—1);t, 1> 0;t>1 — Green’s function in an inner point M for an
initial-boundary value elastodynamics problem for dilatation

US(.‘”(M. Nyt —1):t, 7> 01> 1 — displacements in an inner point of observation
M in the direction of the axis (s = r, ¢, z) corresponding to an inner unit point
body force applied in an inner point N in the direction of the axis (¢ = p, ¥, &)
(components of the elastodynamics Green’s tensor)

U;."’(ﬁ. N:t—1)it,t>0:t>1 M e, — values of the displacements U;.")(M. N:
t — 1) on the surface [,

P;‘”(M. Nit—1)=0:t,t>0;¢t>1 — tractions created by the displacements
U(;‘”(M. N; t — 1) on the surface I,

BLUS (M, Nt — ) + P (M. N:t — 1) = 0; 1.1 > 0: 1 > 1: M € I — linear com-
bination of the displacements

U;."’(M. N;t—1);t,7 > 0;t > tand tractions P;"’(M. Nit—1)=0;t,t>0;t>71—
prescribed on the surface I'yp

UM, N;t—1);t,7> 0;¢ >t — displacements in an inner point of observation M
in the direction of the cylindrical axis (¢ = p, ¥, &) corresponding to an inner
unit point heat source applied in an inner point N

U‘IN(IVI. N:t—1):t, 7> 0; 1> t - influence functions corresponding to a unit point
heat flux on the surface I'y and representing the dynamical thermoelastic
displacements

[Uq(/Vl. N:t—1)/lng:t,1>0; 1> 1 — influence functions corresponding to a
unit point temperature on the surface 1, and representing the dynamical
thermoelastic displacements

U,(M, N: t) — influence functions corresponding to an initial unit temperature field
and representing the dynamical thermoelastic displacements

U (M, N;t —1); 1,7 > 0: 1 > 7 — influence functions corresponding to a unit point
heat exchange of the body through the surface I'y, and representing the dynamic
thermoelastic displacements

LY'=34,,0/0p+0,,0/pdy+9,.0/6¢ — differential operator in cylindrical coor-
dinates

Vi =032/0r + 0/rdr + 32 r2dg?* + 0% /0z> — Laplace differential operator with
respect to the cylindrical coordinates of the inner point M

H, — Heaviside function
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