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ABSTRACT

The “boundary stiffness matrix” characterizing in a discretized form the response of the boundary to
given Dirichlet boundary conditions allows the coupling between BEM and FEM. The paper presents an
approach based on the direct computation of the stiffness matrix from the potential function related
to a given Dirichlet boundary condition. The method produces a symmetric stiffness matrix as for the Sin-
gular Galerkin boundary element method, but does not need to compute hypersingular integrals. In addi-
tion, the method uses only the nodal values of the boundary potential, but does not need discretized
values of the normal gradient at the boundary, as for usual boundary element methods, which reduces
the number of matrices to be constructed. The regularization of the integrals is achieved by means used
for (simply) singular integrals introduced for the collocation boundary element method. An example of

application is produced in the case of the solution of Laplace equation within a plane domain.
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1. Introduction

The approximate solution of boundary value problems using
boundary integral equation and boundary elements uses very often
the popular method of collocation. It is well known that such a
method leads to non-symmetrical linear discretized systems. Such
a situation is unsatisfactory for the following reasons: First, when
coupling with finite elements, it is necessary to use a method of
solution of the discretized linear system of equations which has
no symmetry properties. The main unsatisfactory consequence is
however that the stiffness matrix deduced from the linear system
being unsymmetrical, it is no more possible to comply to the
reciprocity theorem, both properties being closely related
[1,6,7,17,21]. This situation led to the formulation of the “Symmet-
ric Galerkin Boundary Element Method” [4,6,22,24,25,27,28]. This
method induces numerical difficulties when applications are in
view, because the kernels involved in the integrals produced by
this formulation are strongly singular, using second derivatives of
the Green's function, so that, even now, results are produced by
using the usual collocation method [2]. The same can be said of
the method proposed by [10,20], where strongly singular kernels
appear. From another point of view, the non-singular methods
using sources outside the domain [12,31] lead to other kinds of
numerical problems.

Evenifitis possible to reduce the singularity by a convenient reg-
ularization [4,5], or by using closed-form expressions [3,8,23,30],
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the presence of a hypersingular kernel remains a serious difficulty
and led for example toimagine the use of Fourier transforms to com-
pute the matrix elements [11].

Taking into account the numerical efficiency of the finite ele-
ment method, it seems that the best field of application of bound-
ary element methods is to modelize infinite domains containing a
material characterized by linear properties coupled with a finite
domain. For example, recent works were produced to achieve this
objective [16,29] by specific methods to perform this kind of cou-
pling without matrix inversion. In this context, it seems that a
main objective is to build the boundary stiffness matrix character-
izing the boundary response to a Dirichlet boundary condition
applied to the boundary of the infinite domain. This is the point
of view adopted when using the “Dirichlet to Neumann Finite
Element Method” (DtN FEM) [13-15,18,19]. A “Dirichlet to
Neumann operator” built from the first Green’s function of the infi-
nite domain produces directly the boundary stress field induced
within the infinite domain by a given Dirichlet boundary condition.
The condensation of that operator on the nodes of the boundary
produces directly the stiffness matrix, without matrix inversion,
which is a main advantage when boundary discretization points
on the boundary are numerous. However, the main difficulty is
that the DIN-FEM needs the first Green's function, which is known
only for some specific types of boundary shapes and operators,
while other boundary element formulations need only the Green's
function for the overall space and can be used for any shape of the
boundary.

The purpose of the paper is to present a method allowing to
build a symmetric boundary element formulation leading to a



discretized symmetrical boundary stiffness matrix. The method is
intermediate between the classical “Singular Galerkin Boundary
Element Method” and the “Dirichlet to Neumann Finite Element
Method”. The proposed method uses the classical fundamental
solution of the operator (Green’'s function for the infinite domain)
as for the SGBEM, but, instead of using a Galerkin approach, the
normal gradient at the boundary induced by a given boundary field
along the boundary (Dirichlet boundary condition) is estimated by
using an indirect method. It allows to estimate a potential function
induced by a given Dirichlet condition, from which the stiffness
matrix can be obtained. The method is presented in the case of La-
place operator.

2. Computation of the potential function related to a given
Dirichlet boundary condition

Let us consider the solution u of the Laplace equation within a
domain D, related to a given Dirichlet boundary condition u = u,
where u is known. Using an indirect approach, the harmonic func-
tion u inside D is sought by using a repartition of sources located
along the boundary by:

u(y) = /w Glz.y)P(2)dS(2). )

Taking the derivative of this relation allows the obtaining of:
_ouly) _ [ Gxy)
on(y)  Jop on(y)

From this, it is possible to define a potential function equal to
the supply of energy W when the boundary condition increases
smoothly from 0 to u, given by:

1
W=5 AD q(y)u(y)ds(y). (3)

q(y)

B(x)dS(x). (2)

Finally, W is given by:

1 3G(x.y)
W=7l [ o only)

It is easily seen that the formulation involves a singular integral,
due to the term 3G(x,y)/on(y). It is however possible to get a reg-
ularized formulation along the lines of [6,26] introduced for the
classical collocation boundary element method, as described
below. The interior and exterior problems are successively treated.

P(x)dSX) /mca.yw(z)dsa) dsty). (4)

2.1. Regularization for the interior problem

Let us consider that the sources @(x) are continuous and
defined not only on the boundary @D of D, but also within its neigh-
bourhood. For the interior problem, the integral in (4) may be
considered as the limit of a similar expression W, the sources
being external to the domain. As a consequence, let us consider
that the sources are located on the boundary of a domain D, con-
taining D.

Eq. (4) becomes:

1 aG(x,y) ]
W, = 3 /m [-/abo n(y) di(x)dS(x)./aDo G(z,y)®(z)dS(z) | dS(y).
(5

Let us denote by uy the field induced by the repartition of
sources along @Dy. Eq. (5) becomes:

1 G(x.y) A
W= [, S e0dse) oty asty) ®)

Exchanging the order of integration between @D and 2D, leads
to:

Wi

[ G(x,y)
Jop Om(y)

The limit of that expression when @D, tends to aD is now sought
along the following lines. The Green’s function G can be integrated
even if the source is on the integration contour. The limit of (7)
when @Dy tends to @D is therefore the limit of:

1 oG(x.y)
W; =5 D(x
172, Dy [ o0 on(y)

: Uo(Y)dS(Y)] ds(x). (7)

2 Jep,

. u(y)dS(y)]dS(xy (8)

Let us now consider the integral on @D, denoted by I, where
aoG(x,y)/en(y) is denoted by H(x,y)

I= / H(x,y) - u(y)ds(y). 9)
Jab

That integral is singular when x is on @D. It can be regularized as
in [6,26], if the function u presents sufficient regularity conditions.
The regularization proceeds as follows: The point X is external to D
and therefore:

/ H(x,y)dS(y) = 0. (10)
Jab

Substracting that expression from (9) after multiplication by
u(x) leads to:

1= / H(x,y)[u(y) — u(x)ds(y). (11)
oD

Such an integral is now regular when x is on @D. Finally, the po-
tential function W can be obtained from the following expression,
using similar arguments as those used by [5]

W= Jim, Wi = Jim, W 2
-1 [ o [ Hx,y)[uly) - u(x)]dS(y) | dsex). (13)
Jab oD

Where the difference u(y) — u(x) is given from Eq. (1) by:

u(y) - u(x) = /mlc(z.w - G(z,X)]P(2)dS(2). (14)

2.2. Regularization for the exterior problem

In this case, the same considerations can be applied, taking into
account that, for the exterior problem, the sources are now within
the interior part D; of the domain delimited by the boundary &D. In
addition, the normal to the exterior domain D delimited by aD is
now directed along the direction which is the opposite to the
external normal to D;, which allows to replace Eq. (10) by:

/ H(x,y)dS(y) — 1= 0. (15)
Jab
It leads to:
1
W=3 [ 00/ux) + [ Hoxy)uy) - uidsy)|dsw.  (16)
Jab Jap

Finally, the expression of the potential function related to a gi-
ven Dirichlet boundary condition u(y) (in absence of sources exist-
ing within D) is given by Eq. (16) where the sources @ are related to
the boundary potential by Eq. (1).

3. Symmetry of the operator appearing in the potential function

As explained before, one of the main problems when dealing
with boundary element formulations is to keep the properties of
symmetry which are basically related to the Maxwell-Betti
reciprocity theorem. It is straightforward to show that the present



formulation does not affect the symmetry. The conservation of the
symmetry is indeed fundamentally due to the compatibility be-
tween the function u and its normal gradient which are computed
from the same sources as pointed by [4,17]. The symmetry results
directly from the symmetry of the operator used to compute the
potential function W, as shown below.

Let us start from Eq. (5), but let us consider this time the poten-
tial function coming from surface sources @, = @(x) and from the
surface fluxes induced by the sources @, = ®(z). This potential
function can be written as:

W(dy,d;) :% / K(x,z)®,@,dS(x)dS(z), (17)
Japy Jan,
where the kernel appearing in that equation is given by:
oG(x.y)
K(x,z) = G(z,y)dS(y). 18
x2) = [ TG Ydsy) (18)

Using Green's theorem leads to:

K(x,2) = / Gz,y) - AG(x, y)dV + / Lx.y) @Y gy (q9)
D Jo 0y ay

where A denotes Laplace operator. Point x being outside the domain

D, the first integral is equal to zero and finally:

_ [ 9G(x.y) oG(z.y)
K(x.z)fl/D 5 v, (20)

This integral is obviously symmetric with regard to x and z, and
hence:

K(x,z) = K(z,Xx). (21)
Introducing this result within Eq. (17) leads to the symmetry of

w:

W(d,,d,) = W(D,, Py). (22)

This result is in fact a direct application of the “Maxwell-Betti"
theorem of reciprocity in the case of Laplace equation.

4. Discretization of the potential function and determination of
the stiffness matrix

The aim of this section is to approximate Eqs. (13) and (14) for
the interior problem and Eqs. (14)-(16) for the exterior problem in
order to obtain a discretized form of the work W as a function of
the nodal values of u at boundary nodes. Such an expression of
W being a second order polynomial of the nodal values of the har-
monic function along the boundary will lead naturally to the stiff-
ness matrix which characterizes the boundary coupling. The
method is displayed for the case of plane problems, beginning with
the exterior problem.

4.1. Case of the exterior problem

4.1.1. Discretization of the potential function

The discretization of expression (16) leads to the discretized
stiffness matrix by using the following linear boundary interpola-
tion functions:

2
y=)> Ny, (23)
s=1
and
2
Dy) = > Np(H)P(Y,), (24)
p=1

where y, denotes discretization points on the surface D and ¢
denotes curvilinear coordinates.

In the following, linear boundary elements e, are used. It means
that p and s take the values 1 and 2.

w33 [ o [u(x) + 3 [ Hoxy)uty) - utojas) | asto
(25)

and
uy) - ux) = Y [ 6z.y) - Gz.0|o(@ds(2) (26)

Relations (25) and (26) show that three integrals must be per-
formed on the boundary, meaning that three different curvilinear
coordinates must be used.

Discretization on ey, e, and e; involves the global variable x, y
and z, and the curvilinear coordinate &, 1, {, leading to:

w=33 [ o)

x [u(X)+§n: / H(x,y)[u(y) — u(x)]dS(y(n)) [dS(x(¢)), (27)
u(y) — u(x) = Z ‘/h[C(Z‘y) —G(z,x)]@(z(())dS(z(0)), (28)
where  @(Xx(¢)) = Ni(&) - @(Xm) + N2(&) - @(Xmi1), and a similar

expression is taken for @(z({)).
This sum can be expressed as:

W =1 3 Mas0u, = 2 (0 M), (29)
where @, and @, are the values of the source @ at the different
discretization points. [@] is the column vector where the values
@, are stored.

The symmetry of the matrix M results directly from the symme-
try of W. Indeed, introducing two discretized boundary fields &,
and @, within the reciprocity property (22) leads to:

1 1
W =53 Mu®iabs =5 3 MaPubi
1
:7 ZMbad)Zbd’la« (30)

where the discretized values of the sources @; are denoted by
@y, Dy, 1t leads finally to the symmetry of the matrix Mgp.

The computation of the matrix elements M,;, proceeds as fol-
lows: the contributions of all triplets (em.en.e;) to the partial ma-
trix element My, are given below.

(A) For the free terms, it means the terms corresponding to u(x)
alone in (16) the contributions are:

Mgy = My(em,er,p,q)
-/ N,,(gy(:)a;[ [ G x@maudl. (31)

where | is the Jacobian of the transformation induced by the inter-
polation function: a=m+p—1, b=r+q-1, with p=1,2 and
q=1,2. m,n,r take the values from 1 to the number of elements
N. a and b vary also from 1 to N.

In addition, for a closed contour, a, b take the values a’ =a - N
and b’ =b—-Nwhena>Nandb > N.

£.1. ¢ are the local coordinates on the elements ey, e, e;.

Ni(&) = (1-¢)/2, Na(¢) = (1 +¢)/2.

The contribution of one couple of elements (en.e;) can be syn-
thetized within the following matrices

When e, and e, have no common points, the following matrix is
obtained, related to the lines and columns (m,m-+1,r,r+1):



0 0
0 0
%M] (em.er,1,1)
%Ml (ém.er,1,2)

LMy (em.€r,2,1) 0 0
LMy (em.e€r,2,2) 0 0

When e, and e, have one common point and r = m + 1 the con-
tribution is a matrix related to lines and columns (m,m+ 1,m+ 2):

0 IMi(en e, 1,1) IM(ey.e.1.2)
M (em.e.,1,1)  M(em.e.,2,1) IMi(en.e.2,2)
LM, (€m.e,.1,2) L1M(ey.e.2,2) 0

When e, and e, have one common point and r = m — 1 the con-
tribution is a matrix related to lines and columns (m — 1,m,m+1):

0 M (em.e,,1,1) IM(en.e.,2.1)
M (en.e,,1,1) M(en,e.,1.2) IMi(en.€:.2,2)
LMy (ener,2,1) LM(en,e;,2,2) 0

When e, and e, are identical, the contribution is a matrix re-
lated to lines and columns (m,m + 1):

M (ey.e.1,1)
Ml(em»ehzvz)

(M (em.er,1,2) + My(ep.€,,2,1))

(B) For the current matrix elements the contributions are:
Mab = M2 (8,,..8,,, erp, q)
= [ mcuae] [ Hexeoryon)| [ Gtz .von)
- Gl XN IO soman . (32)

witha=m+p-landb=r+q-1.

The contribution of each triplet of elements e,,, e,, e, is built as
previously by replacing M (em, e-,p.q) by Mz(em, e, er,p.q).

The integrals M, contain a term where H can be singular when
m=n, m=n+1,or m=n-1.In fact, due to the regularization
process, this singularity is removed by the term (G(z({).y(n)—
G(z({),x(¢))) which tends to zero when y(17) = x(¢). The problem
is just that the numerical computation of the related terms con-
tains undetermined terms. The cases m=n+1orm=n-1is
related to a localized undetermined term at the contact between
the elements e, and e, which is not a Gauss point and which
therefore does not affect the numerical integration. The case
e, = e, can be treated numerically as explained in (Bonnet, 1995).

The integration of G on e; is obtained in a closed form:

Let us consider the interaction between point O(y(1)) and the
segment AB(e,).

The integral of G on e, can be written as:

-1
[ 2 MOV xP NG00 33)

where V = ﬁ/z and X, is the relative position between y(1) and
the center of AB let us consider the integral | defined by:

J= / NIV + X] )N (0)dC. (34)

iMi(em.er,1,1) IMi(em, e, 1,2)
IMi(em.er,2,1) IMi(em.e:.2,

)

That integral is equal to:
=1
= / 2Ny In(|IV][) + Ng - In( = 2 - cos(0)d.0) + P)de,  (35)
Ji=a1

where 6 is the angle between X, and V and d = [|x||/||V]|.
The function under the right part of the integral is the derivative

of the function F({)/2 where F is given by:
F = —2®sin(0)(q, - cos(0).d — 1).d + (q,%/2 + q,.d*/2

— q,.d% cos?(0) + { + cos(0).d) In((? + 2 cos(0).d.{ + d?)

—q,.3%/2 + qy.d.Lcos(0) — 2, (36)
where Ny = 1/2(1 + q,{) and the angle @ is given by:
{+cos(0).d

tan(®) = W

(37)

L(Mi(en.er,1,2) +M1(em.e,.2.n)>

from this last result, the right integral is equal to L(F({=1)—
F({=-1)).

4.1.2. Computation of the potential function from the value of the
harmonic function at boundary nodes

The nodal boundary values of u may be obtained from the dis-
crete form of (1) by:

[u] = [C][@], (38)

where [G] is the (regular) interaction matrix computed by discreti-
zation of (1).

Finally, the approximated potential function W can be written
as:

1
W= E[u]’[lq[u]. (39)
where the stiffness matrix [K] is given by:
K] =[G "' M[G). (40)

This last relation allows the obtaining of the stiffness matrix as
soon as the matrix G has an inverse. It is known that, for plane
problems, the existence of such an inverse needs some attention,
which may lead in some cases to a scaling of the problem (see
e.g. [9]) Under that form, the boundary harmonic function is ob-
tained at collocation points, but its variation along the boundary
is not known, because it is the repartition of the sources which is
linear along each element. If the formulation is aimed at the con-
struction of a boundary condition outside a finite element network,
it does not seem that the boundary function u thus obtained is the
best solution. It seems better to look for an interpolation of the
boundary potential which represents at the best the boundary po-
tential induced by the sources and which is the best compatible
with the interpolation used to compute the potential within the fi-
nite element mesh (linear for example).



a cos(ay)
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Fig. 1. Problem definition and BE discretizations for the two examples.

From Eq. (1), the value of the boundary potential can be ob-
tained at any point along the boundary, for a given discretization
of @. Using the discretization (23), Eq. (1) becomes:

u(y) = [M(y)][¥]. (41)
where the matrix [M(y)| is obtained by combination of (1) and
(23).

The nodal values of the linearized boundary potential are the

values forming the matrix U] which contains the nodal values of

the potential. For a given set of nodal values of the potential the
approximate boundary linearized field is given by:

ui(y) = [N(y)][U].

The best choice of [U] in [? is such that the integral I is minimal,
where

(42)

= [ (aty) - u)?as) 43)
It leads to:
[PI[U] = [Q][®], (44)
where [P] and [Q] are given by:
Py = / NiN,ds (45)
[
and
Q- / N:Mds. (46)
Jep
The matrix P is easy to construct.
The different matrix elements of Q are given by:
Q= [ [ GO xNEN©SE - ds(). 7)
em Jer

These terms are equal to the free terms of the matrix My given
by Eq. (30).

4.2. Case of the interior problem

In the case of the interior problem, the formulation is exactly
the same, just dropping the “free terms” obtained from (27) and
changing the sign of the normal.

5. Numerical examples

Two numerical test examples are treated here in order to illus-
trate the effectiveness and the accuracy of the present symmetric
boundary integral formulation. In the first one, the formulation is
applied to an internal problem defined on a square domain while
the second one concentrates on an external problem defined by

an imposed flux over a circle. Fig. 1 shows the definition of the
problems and their boundary element models.

5.1. Example 1

The main objective of this work is to build the stiffness matrix
of a given domain, which is related, as explained before, to Dirich-
let conditions. However, having built the stiffness matrix allows to
deal with any kind of boundary condition and to check the ability
of the stiffness matrix to produce a convenient relation between
nodal potentials and fluxes. The function u considered in this
example is defined on the square domain D = [0,1] x [0, 1] with
the following boundary conditions:

acos(ay)
—ae " cos(ay)

on left edge x=0,
on right edge x=1,
on bottom edge y=0.

ou
on

The constant a is taken equal to 37/2 so that the potential func-
tion is null on the remaining top edge of the domain (u(x.y = 1) =
0). The boundary conditions related to given variations of g(y) in-
duce values of nodal fluxes whose matrix [F] is given by a conden-
sation on nodes using interpolation functions as:

F= [ aw)Nw)dst).
D

It must be noticed that this approximation is perfectly compat-
ible with the nodal condensation used in the FEM.

Dirichlet boundary conditions are taken into account by cancel-
ing the nodal values of u at points located on the upper part.

The exact solution of this problem is u = e % cos(ay).

A numerical boundary element model is built by dividing the
squared boundary into linear elements of 0.04 element-length
witch gives 25 elements per edge and a total of 100 elements for
the whole closed boundary. The resulting assembled matrix K is re-
duced to a 74 x 74 square matrix after applying the boundary con-
dition u(x,y = 1) = 0 and the right hand side vector F is assembled
in the same way as it is done for the usual finite element assembly
technique.

The approximated numerical solution on the left and bottom
edges is shown in Fig. 2 with the corresponding exact curves,
showing the good agreement between numerical and theoretical
solutions.

5.2. Example 2

The problem in this second example concerns the determina-
tion of the potential field in a domain exterior to a circle of radius
R =1 submitted to an imposed flux.
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Fig. 2. u(x.y) on the bottom edge and the left edge.

=0)

u(x, y

2r

Fig. 3. Comparison of the numerical and exact solutions for the entire circle model.

au(r =1,0)
on
where the angle 6 = arctan(y/x) is measured from the x-axis and
r = /x% + y2. The exact solution is u = cos(26)/r.
The aim of this example is to test the free term in Eq. (16)

/ BX)u(x)dS(x),
Jab

q(0) = = cos(20),

which corresponds to the sum of single integrals over elements de-
noted by en in Eq. (27):

¥ [ ox@uex)axs).

These free terms produce the matrix M. The stiffness matrix
related to the external problem is then given by M = M, + Mpee,
where M, is the stiffness matrix for the interior problem.

The theoretical and computed solutions are shown in Fig. 3 dis-
playing again a good agreement.

6. Conclusion

The method presented in this paper made it possible to build di-
rectly the boundary stiffness matrix related to a given domain for
the Laplace operator. This result was obtained by expressing the
potential function produced when a given boundary condition is
applied at the boundary (Dirichlet boundary condition) and using
a suitable repartition of sources at the boundary. This method is
intermediate between the SGBEM method and the DtN FEM meth-
od. The first advantage of the method is to produce a symmetric
stiffness matrix by avoiding the need to use as intermediate vari-
ables the boundary nodal fluxes at the boundary, which are not

needed when the boundary stiffness matrix is required: the bound-
ary stiffness matrix is indeed directly related to the potential func-
tion related to given boundary values of the potential. The second
advantage is to produce a natural regularization method by using
the classical regularization process introduced for the collocation
method by [26] and to avoid the hypersingular kernels appearing
in the SGBEM. In addition, the number of matrices to build in view
to produce the final stiffness matrix is reduced. An example of
application of the method in the case of Laplace equation within
a plane domain has been provided, showing that the method leads
to a convenient numerical solution of boundary value problems.
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