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ABSTRACT

A numerical model coupling boundary and finite elements suitable for dynamic dam-reservoir
interaction is presented herein. This model involves standard finite element idealization of the dam
structure displacements and a new symmetric boundary element formulation of the unbounded
reservoir domain leading to an equivalent symmetric stiffness matrix for the discretized pressure field.
These two basic parts of the computation are directly coupled by imposing an equilibrium condition at
the fluid-structure interface, then the resulting algebraic system is reduced by localizing the coupled
terms in the global mass matrix such as usually achieved in the added-mass formulation. Finally, the
performance and the accuracy of this model are examined by comparing its results to those obtained

from three other numerical models.
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1. Introduction

Two key aspects must be taken into account when dealing with
the development of a numerical model for a dynamic problem
involving fluid-structure interaction such as the seismic response
of concrete gravity dams. The first one is related to the inclusion
of dissipative effects due to viscous and radiation damping
associated with material properties and domain boundaries,
respectively. The second one concerns the choice of the basic
variables to be retained for the analysis in order to avoid some
typical numerically undesirable properties for the resulting
algebraic system such as symmetry loss, zeros diagonal terms,
ill-conditioned or non-positive definite matrices.

Traditionally, the structural displacements and the fluid
hydrodynamic pressures are used as nodal variables in the finite
element modelling of fluid-structure systems [1,2]. In the case of
a compressible fluid, the resulting algebraic system involves non-
symmetric coupled matrices. To overcome this drawback, various
symmetrization techniques are proposed, but practically all of
them imply either inversion of large matrices or some changes of
variables inducing static condensation or zero diagonal handling
[1,3-5]. Over the available techniques, a performed one [4,7] is
recommended which avoids at the same time the change of
variable and the matrix inversion process.

* Corresponding author.
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Other ideas make use of two variables to describe the fluid
behavior by mixed formulations based on “pressure and displace-
ment-potential” or “pressure and velocity-potential”, while many
researchers formulated the governing equations of the fluid in
terms of displacements only. A description of these models can be
found in Ref. [6]. In these cases too, besides increasing the size of
the matrices, zero diagonal terms may be introduced and a special
care must be taken when coupling with the structural displace-
ment equation.

Furthermore, even with the symmetry problem efficiently
solved, the unbounded reservoir domain still remains a serious
source of difficulty for the complete finite element modelling of
both structure and water. Indeed, it is well known that this
method is a very powerful tool for finite domains which may
include inhomogeneities or nonlinearities, but when it is applied
to unbounded domains, an artificial truncation boundary is
unavoidable and some way of handling boundary conditions at
infinity becomes necessary. For this purpose, and in order to take
into account the radiation damping, several techniques are
employed including absorbing elements, radiating boundaries,
infinite elements. A lot of works have been done in this field and a
wide literature can be found (see e.g. [1,7-13]).

On the other hand, the boundary element method [14,18] is
particularly effective for unbounded domains. It is very popular
and largely applied in acoustics and dynamic interaction of
soil-structure and fluid-structure systems; soil and fluid un-
bounded mediums involved in these problems can efficiently be
handled [19,20]. The other well known advantage of this method



is that it reduces by one the problem dimension. Memory capacity
and computational time can thus be saved. However, most of the
boundary element analyses are carried out in the frequency
domain. Transient solutions are often obtained from the frequency
solutions by using Fourier transformations; they are thus
restricted to the cases of linear material behavior.

Moreover, in addition to singular integrals induced in this
method, the non-symmetric property of the resulting matrices,
considered above against complete finite element modelling of
both the structure and the fluid domains, is typical and usual in
classical collocation boundary element modelling. Several kinds of
methods and diverse numerical schemes have been proposed to
overcome difficulties related to the problem of singularity [21,22],
but for improving the properties of the resulting algebraic system,
complete symmetric boundary element formulations are devel-
oped particularly for numerical models coupling finite and
boundary elements [23,24].

The idea of coupling these two methods is strongly motivated
by combining their advantages and reducing their disadvantages.
A lot of studies are carried out by using different formulations for
the boundary integral part of the problem, such as: Galerkin
method [24,25], dual reciprocity boundary elements [2627],
variational principals [28], special Green's functions [29], direct
coupling via a transformation matrix [30], discontinuous bound-
ary elements [31], etc. Even though the great part of the coupling
techniques enforces one of the two methods to be in the same
format as the other to make them compatible, a number of
researchers, however, prefer to preserve the nature of both
methods by using an interface relaxation algorithm or some other
iteration scheme to satisfy the equilibrium condition at the
fluid-structure interface [32,33].

In the present paper, an indirect regularized boundary integral
formulation [18] is used to discretize the equation of the potential
energy supplied by a repartition of potential sources in the
fluid domain. An equivalent positive definite and symmetric
stiffness matrix is then obtained leading to a linear algebraic
system for the pressure variable similar to that of the standard
static displacement finite element formulation. This equivalent
stiffness matrix for boundary integral formulation is introduced
by Bonnet et al. [34]. It looks like a finite element matrix and can
easily be assembled or coupled to a finite element model. For the
case of the dam-reservoir system under consideration, a direct
coupling is achieved by using an interaction matrix linking
the pressure and displacement variables. It leads to the well
known added-mass model [2,35,36] for the dam structural
displacements.

2. The dam finite element model

The finite element discrete system of differential equations
describing the dam structure displacements can be written as
follows:

MsU + CsU + KsU = Fg + F, (1)

where Ms, Cs and K are the classical mass, damping and stiffness
matrices. The unknown vector of basic nodal variables U
represents the relative displacements at the nodal points of the
finite element model of the dam and the dot symbol (') denotes
differentiation with respect to time t.

The global damping matrix, characterizing the energy dissipa-
tion within the dam, is most effectively constructed by applying
the concept of Rayleigh damping and may be computed from the
equation

Cs = oMs + fKs (2)
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Fig. 1. Dam-reservoir coupled model.

where z and 8 are proportionality constants selected to control
the damping of the lowest and highest modes expected to
contribute significantly to the response.

The forcing vector

Fg = —Mglilg(t) (3)

contains the driving force components generated by the time
varying prescribed ground accelerations iig(t) applied at the
structure nodal points via the unit influence vector I

The additional forcing vector

F, - QP (4)

of hydrodynamic forces acting on the upstream face of the dam is
related to the unknown vector of nodal pressures P through the
transformation matrix Q given by

Q=/I_IN.T,andl“ (5)

This expression arises from the discretization of the boundary
condition

Gy =pn; |l (6)

which represents the equilibrium of the normal forces acting in
the i direction between stress vector and pressure at the
fluid-structure interface I'y of unit normal vector n (Fig. 1).

The two vectors Ny and Np in Eq. (5) contain shape functions
used for the nodal interpolation of the displacement and of
the pressure fields, respectively. It is worthwhile to notice that the
vector P of the nodal pressures can as well be derived from a finite
element model, from a boundary element model, or from other
discretizing processes.

3. The reservoir boundary element model
3.1. Governing equation and boundary conditions

Under the assumptions of incompressible and inviscid water
with a two-dimensional small amplitude motion, it can be
shown that the hydrodynamic pressure field p in the reservoir
unbounded domain, relative to a Cartesian coordinate system
(0x1Xx3), complies with Laplace’s equation

Pp_ @p

Vip_EL CE
P=a "

(7)
with the following boundary conditions:

(i) At the fluid-structure interface I'j, the boundary condition in
Eq. (6) is now expressed in terms of equilibrium between



pressure gradients and normal accelerations

d .
£=_pu-n (8)

where p is the mass density of the fluid and it is the
acceleration vector of points located at the interface.

(ii) At the reservoir bottom I, the same condition as above
applies, but in the present case the normal forces are due to
the soil. This cancels the pressure gradients for a horizontal
bottom surface hypothesis with horizontal ground motion

ap
o= (9)

(iii) At the reservoir free surface I's, the most common assump-
tion is to set the hydrodynamic pressure at the atmospheric
pressure value. This is equivalent to neglecting surface wave
effects [1,2]

p=0 (10)

(iv) At the far away from the upstream face of the dam, the
reservoir extends theoretically to infinity. A truncation
boundary with an appropriate condition can be used to
terminate the infinite domain at some distance intended
close to the fluid-structure interface in order to minimize the
size of the vector P. It is also possible with the boundary
element method to leave the domain opened and to mesh
only the free surface and the bottom of the reservoir till a
certain distance to be evaluated numerically. Therefore, the
boundary I'g in Fig. 1 can simply be removed from the
boundary discretization.

It must be pointed out here that because of incompressible
water hypothesis, this mathematical description of the reservoir
by Laplace’s equation does not take into account the propagation
effects. The hydrodynamic pressures caused by the motions of the
dam structure and computed by using the incompressibility
assumption decrease instantaneously along the upstream direc-
tion of the reservoir. However, the assumption of incompressible
fluid is widely used in the seismic engineering computations
involving fluid-structure interaction, because in the main fre-
quency range involved in the seismic motion, the compressibility
effects are negligible [15-17].

3.2. Boundary integrals equations

The integral equation giving the pressure value p(x) at a point x
of coordinates (x1,x2) on the boundary 8@ delimiting the fluid
domain Q can be expressed as [18]

coop = [ [amGmy) - pwHexy1ds, an
Joy

where q(y) = dp(y)/én(y) is the normal derivative of the pressure
p() at a point y of coordinates (y;.y,) on the boundary.

The point x denotes the source point and y the current point.
Functions G(x.,y) and H(x,y) are the fundamental solution for
Laplace’s equation (or Green’s function) and its normal derivative,
respectively. They are usually given as functions of the radius
r(x,y) between the two points x and y as follows:

-1 oar

1 1
G(x.y):EInF. H(X.y)=2—m_T(y)

(12)

The free term c(x) is defined as the following limit when a
small surface S; of radius ¢ surrounding the point x on 6Q¢ tends
to zero:

c(x) = lim / H(x.y)dS, (13)
&0 Js,

It takes the values 1 or 0 depending on whether the point x is
within or outside the domain, and % if ¥ is on a smooth part of the
boundary.

Writing Eq. (11) for the complementary domain Q¢ = R? - QF,
where R? is the Euclidian two-dimensional space, and denoting
by p. and q. the solutions of Laplace’s equation in €, one can
write for a point X within Qg:

px) = /ﬂ (199 + 4 WICEY) — [P®) — pWIHEYNAS,  (14)
Al

Taking into consideration the continuity of the pressure field
(p =p.) between both sides of the fluid boundary 4Qr and
introducing the flux jump:
¢W) =q.y) —qW) = ~[Vpy) — Vp@)] - ny) (15)
leads to the integral representation of p by the single layer
potential of density ¢
p(x) = / . dWG(X.y)dS, (16)

M
and hence, the flux g(x) can be obtained by simple derivation with
respect to the normal n(x)

_ P _
Tonx) Lo

qx) dWH(y.x)dS, (17)

3.3. Energy boundary integral equation

The external energy supplied by the flux along the whole
boundary can be written as

w= [ ao-pwas, (18)
J Qe

In order to avoid the singular integrals involved in this
expression, it is rewritten in the following regularized form (some
changes in the variables are also made, see [34] for complete
details):

W= / b / H®.y)[py) — p@)] dS, ds, (19)
J Qe o

The difference in the pressure values between the two points x
and y is given according to Eq. (16) by

p@®) — py) = [ﬂ P@(Gz.y) - Gz.0]dS, (20)

where z is a dummy variable introduced to represent points of
coordinates (z1.2z2) on éQp.

3.4. Energy boundary element discretization

In order to make this boundary element formulation easy for
the coupling with the finite element model of the dam structure
by matching the corresponding meshes, it is preferred to make
use of linear boundary elements rather than constant or higher
order ones.

The unknown single layer potential ¢ is approximated using
nodal interpolation by

n=2

$®) = > _NiX)p; = Ne, 1)
i

where N; are the two shape functions of contour elements
and ¢; are the nodal values of potential ¢ at point x; within the
element e;.

Using the subscript j for the discrete values of ¢; at points z; in
an element e;, the discrete expression of the energy given by the



two equations (19) and (20) is

Ne Mg
w=3"%" / Nebe, QN b, S, dS; (22)
e=1gj=1"6 /&
The summation sign is regarded here as an assembly operator
over the ne elements constituting the boundary éQf like in the
finite element assemblage. The term J(£2f) is given by

Q) = L  HEYIGEY) - Gz 0]ds, (23)
Jok

These two last equations lead, for a pair of elements (e;.e;), to
the following expression of the elementary energy W}j"’:
) IG)
Wi = ¢; A7 &, (24)
where A is a 2 x 2 element matrix. If each linear element is
defined by two nodes named 1 and 2, this matrix can be explicited
as

M. X; Z; Vi
ag =3 [ 7 [ i@ Na@Heey)

k=1"% %, ¥y

G x| as, ds.as (25)
z.y)—G(z.x
x(G(z.y) ( ) Na(x) y Uz Uoy

Assembling for all elements of the reservoir boundary gives the
discrete expression of the total energy

W= ¢'A¢ (26)

It is worthwhile to precise here that even if the element matrix
A}f' does not appear symmetric, the global assembled matrix A is
symmetric due to the equality of the contributions coming from
pairs of elements (e, €)) and (ej.€;).

Expressing now the values of the potential density vector ¢ by
using the discretized form of Eq. (16) as

¢=G'P, Gj= / NTG(x;,y) dSy (27)
o 2'

and replacing in Eq. (26), the discrete expression of the total
energy becomes

W = (P[] AIIG 1P} (28)

3.5. Equivalent stiffness matrix

By discretizing now Eq. (18) for the total energy W over the
entire fluid boundary, the following expression arises:

W= / P'N"q(y)ds, (29)
J Q¢

Comparing these two later expressions ((28) and (29)), one can
write the following equality by suppressing the row vector PT
from the left sides:

(G 'ai6 P - [ L Nawas, (30)

which is an equivalent finite element static equation for the
reservoir pressure field:

KiP =F;, K =[G '"[AIG "] (31)

Compared to the standard boundary element formulation, this
expression can easily be coupled with a finite element model
without symmetry loss. In addition, according to [18], the
singularity properties in the boundary integral equations tend to
make the resulting matrices diagonally dominant. This is the same
situation as in Eq. (25). The above produced algebraic system is
consequently well conditioned.

4. The dam-reservoir coupled model

In the case of the reservoir under consideration, the force
vector Fg is due to the accelerations it at the upstream face of the
dam. The right-hand side of Eq. (30), associated to the four
boundary conditions of the reservoir model (Section 2), gives the
expression of the force vector Fg as

Fo = —/ Nl i ndr (32)
Jry

Replacing the acceleration vector by its nodal approximation
it = N,U, the above equation leads exactly to the transposed
matrix Q" of Eq. (5) multiplied by the fluid density p. Hence,
Eq. (30) becomes

KiP =—pQ'U (33)

from which the pressure vector P can be computed

P=—pK;'U (34)
and replaced in expression (4) of the hydrodynamic forces F, to
give the following dynamic equation for the structure displace-
ments:

[Ms + pQK;'Q"U + CsU + KsU = F (35)

This is the well known added-mass expression usually obtained
in finite element modelling of fluid-structure interaction. All
matrices here are symmetric and positive definite if the structure
is fixed somewhere. The system can thus be handled by the
standard finite element solution procedures.

5. Case study and numerical results

The performance and the accuracy of the present symmetric
boundary element model are demonstrated through the evalua-
tion of the dynamic response of the Pine Flat dam which is
extensively analyzed in several previous studies. Ref. [37] is
especially used here for comparison. Referring to Fig. 1, the
dimensions of the dam-reservoir system are given in Table 1 with
the material properties of the dam concrete, where E is Young's
modulus in 10°N/m? p is the mass density in kg/m® and v is
Poisson’s ratio.

The horizontal length Lg of the reservoir domain corresponds
to the position of the truncation boundary which is fixed for a first
analysis at three times the total height Hg of the dam. This
position is shown, in several previous studies, to be far enough
from the fluid-structure interface to make unnecessary the use of
a radiating boundary. After that, it is moved closer to the interface
in order to assess the position at which the numerical models
used here still remain effective. Results corresponding to Ly =
0.25Hg are reported hereafter as an example of a close position.

In all the parametric study conducted in this work, the dam
structure is modelled by four-nodes linear elements of element
size fixed approximatively to 5m. This gives a dam mesh that
consists in a total of 600 elements and 651 nodes resulting in 1260
degrees of freedom (DOFs). Whereas, the unbounded reservoir

Table 1
Geometry and material properties of the Pine Flat dam.

Dimensions (m) Material properties

Hy He Ly Te Iy Hy E v p

1220 185 960 975 366.0 116.0 3447 02 2440




domain is idealized in four different ways leading to the four
following coupling models for the entire dam-reservoir system:

(1) FE-AM: the reservoir is represented by the added-mass
concept using Westergaard's simplified approach [38]. In this
model, an equivalent concrete mass of parabolic shape
representing the part of the reservoir affected by the
vibrations of the dam structure is added to the mass matrix
of the finite element equation (1). The expression of this
parabolic shape is %\/H;(HF —y) where y is the vertical
coordinate along the upstream face of the dam measured
from the bottom. It is clear that this model does not take
explicitly into account the fluid-structure interaction.

FE-FE: the reservoir is modelled by finite elements in the
same manner as the dam, but with one degree of freedom per
node representing the pressure. No boundary conditions are
used to handle the truncation effects. The resulting system of
finite element equations is the same as Eq. (35) but the matrix
K¢ is constructed following the finite element discretization of
Laplace’s equation.

FE-IE: here the finite part of the reservoir is modelled by using
finite elements like in the previous model, but the infinite
truncated part is represented by appropriate infinite elements
based on the direct approach with exponentially decaying
shape functions. Details of this model and its application to a
dam-reservoir system can be found in Refs. [7,13].

FE-BE: in this model, the reservoir is modelled by the present
symmetric boundary element formulation as described above.
Linear two-nodes elements are used to discretize the reservoir
boundary. The infinite part of the reservoir is simply handled
by leaving the geometry opened at the upstream side.

(2

(3

(4

In the last three numerical models, the height of the fluid
elements is taken exactly equal to the height of the solid ones in
order to easily match the corresponding meshes at the fluid-
structure interface. The submodels are directly coupled by using
the continuity condition.

For L = 3Hp, the finite element model of the reservoir domain
consists in 925 elements and 988 nodes. This gives 950 DOFs after
the boundary condition is applied. This number of elements is
reduced to 125 when Lg = 0.25Hg. The unbounded truncated part
is represented in FE-IE model by 25 infinite four-nodes elements
adding a supplement of 52 DOFs to the model. The FE-BE model
consists only in 100 elements when Ly =3Hg which gives
62 DOFs. This is reduced to 34 elements and 28 DOFs when
Lg = 0.25H3.

5.1. Modal analysis

Modal analysis of the dam alone and of the dam-reservoir
coupled system are firstly performed to obtain the free vibration
modes by solving Egs. (1) and (35) without the forcing vectors and
the dissipative matrices. Table 2 summarizes results obtained for
periods of the first five free vibration modes using the four above
described numerical models and for the two cases of the reservoir
truncation boundary position.

It can be clearly noticed from this table that when the reservoir
domain is truncated at a distance Ly = 3Hg, the three variants of
the numerical models (FE-FE, FE-IE and FE-BE) yield practically
identical values of periods for the complete range of vibration
modes retained in the analysis. In addition, these results do not
differ sensibly from those obtained by applying the simplified
Westergaard’s added-mass approach. However, when the reser-
voir truncation boundary is moved close to the dam-reservoir
interface (Ly = 0.25H3), results obtained by the numerical model

Table 2
Periods (s) of the dam alone and of the dam-reservoir system.

Mode number 1 2 3 4 5
Dam alone
FE 0.2558 0.1241 0.0921 0.0705 0.0466
Dam with added-mass approach
FE-AM 0.2943 0.1415 0.0934 0.0837 0.0571
Dam-reservoir system with numerical models (Ly = 3Hy)
FE-FE 0.2810 0.1375 0.0930 0.0762 0.0486
FE-IE 0.2807 0.1372 0.0929 0.0762 0.0485
FE-BE 0.2806 0.1385 0.0930 0.0766 0.0487
Dam-reservoir system with numerical models (Ly = 0.25Hy)
FE-FE 03073 0.1520 0.0937 0.0798 0.0508
FE-IE 0.2785 0.1353 0.0928 0.0758 0.0484
FE-BE 0.2730 0.1313 0.0927 0.0832 0.0523
Table 3
Modal mass participation ratios (%).
Mode number 1 2 3 4 5 Cumul.
Dam alone
FE 35.61 25.42 11.46 9.75 8.30 90.52
Dam with added-mass approach
FE-AM 4230 25.92 8.69 7.64 5.61 90.17
Dam-reservoir system with numerical models (Lg = 3Hg)
FE-FE 4533 26.21 7.01 8.70 5.56 92.81
FE-IE 4531 26.20 6.99 8.67 557, 92.75
FE-BE 4582 26.43 6.91 8.41 5.26 92.82
Dam-reservoir system with numerical models (L¢ = 0.25Hg)
FE-FE 57.95 2417 512 4.58 1.80 93.62
FE-IE 4385 25.86 7.27 9.35 6.14 92.47
FE-BE 32.09 23.74 10.95 14.32 8.41 89.52

coupling dam finite elements and reservoir finite elements
(FE-FE) diverge somewhat from those obtained when infinite
elements are coupled to the reservoir finite elements (FE-FI) or
when the reservoir is formulated differently with the present
boundary element technique (FE-BE). These two last models lead
practically to the same results without quality loss compared to
the case of Ly = 3Hj.

Overall, these results agree with those given in [37] for the first
three vibration periods of the dam alone (0.2530, 0.1223,
0.0907s.) and of the dam-reservoir system (0.2980, 0.1372,
0.0915s.). The authors in [37] simulated the Pine Flat dam-re-
servoir system by a complete finite element model using both
Eulerian and Lagrangian approaches for the reservoir subdomain.

In addition, complementary modal analysis results are given in
Table 3 where are reported the modal mass participation ratios of
the first five vibration modes. The cumulative contributions of the
whole five modes are also included for each model.

In this case too, a good agreement between the results of the
three numerical models can be noticed when Ly = 3Hg. Most
important, the total contributions of modal mass participation
ratios of the five modes show that the added mass does not affect
the dam behavior in the same way as does the fluid-structure
interaction. The increasing in the cumulative modal mass ratios
seems due to a larger contribution of the five modes when
considering the interaction between the two subsystems rather
than reducing the reservoir effects to a simple dead mass added to
the dam structure.

When the reservoir truncation boundary is positioned close to
the fluid-structure interface, the four models lead to different
values of mass participation ratios especially for the first mode.



Only the model which uses coupling finite and infinite elements
for the reservoir does not alter the values of the far position of the
truncation boundary. Contrarily to FE-FE, FE-BE tends to increase
the modal mass contribution of the higher modes and to decrease
the contribution of the first ones. Concerning the cumulative
contribution, it is shown that it is not as affected by the position of
the truncation boundary as do the modes themselves.

On this basis, it can be concluded that the symmetric boundary
element formulation presented in this work does not only allow to
derive an equivalent finite element stiffness matrix very attractive
for coupling finite and boundary elements, but also is an accurate
tool for assessing the dam-reservoir modal analysis. It provides
the same results as those of models based on finite elements.

From a numerical point of view, the efficiency of this new
technique compared to classical boundary element methods
consists essentially in its flexibility to be coupled with finite
elements, besides the fact that it does not need to compute
hypersingular integrals.

Compared to finite elements, the method can make large
computer's memory saving due to the mesh reduction. The main
supplementary cost in the construction of the stiffness matrix by
the symmetric BEM is due to a computation of multiple integrals,
similarly to SGBEM. However, this construction time can be
drastically reduced by using parallelized computation of matrix
elements with widely used multiprocessors.

The gain on computation time may be assessed for example
during the computation of the modal results. The computation
time is reduced from 1.02 to 0.42s when passing from FEM to
BEM. Another difference lies in the computation of the inverse
of the stiffness matrix, which is useful during the process (see
Eqs. (34) and (35)). The finite element matrix is banded, but its
inverse is full and its size is around 15 times the size of the BEM
stiffness matrix.

5.2. Frequency response analysis

The accuracy and the performance of the present boundary
element formulation applied to the reservoir unbounded domain
can furthermore be examined by evaluating the frequency
response of the dam-reservoir system.

For a ground harmonic excitation ilg(t) = et of unit accelera-
tion and varying frequency  in the range of 0-200 rad/s, Eq. (35)
is solved to get harmonic dam nodal displacements U = U paxe®
by using a damping ratio ¢ = 5%.

The nodal acceleration vector Uy = —?Upa is then computed
and used to evaluate the pressure vector P following Eq. (34) in
which the matrix K must correspond to the model used for the
reservoir as indicated in the above description of the four considered
models. In the case of the added-mass model, the pressure is not
computed because its closed-form expression (Westergaard's for-
mula [6,38]) is based on the assumption of a rigid dam.

Figs. 2 and 3 represent the maximum dam horizontal
displacements u and accelerations i, respectively, and Fig. 4
shows the corresponding maximum hydrodynamic pressures
acting at the bottom of the dam expressed as a ratio of the
maximum hydrostatic pressures C, = p/(pgHg).

In this analysis too, it is seen that when the reservoir
truncation boundary is placed at Ly = 3Hg, the three numerical
models give, for all range of the excitation frequencies, the same
results for the dam response and hydrodynamic pressures. When
the truncation boundary is moved to Lz = 0.25Hg, the results
become different, and especially, inaccurate pressures can be
computed by using the FE-FE model due to substantial amplifica-
tions caused by lack of a transmitting boundary condition. In
addition, it can also be seen that unlike accelerations and
pressures, displacements are less affected by the position of the
truncation boundary.
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Fig. 2. Frequency response of the maximum dam displacements.
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5.3. Time history analysis

Finally, a time history analysis of the dam with and without
reservoir effect is performed using the four numerical models
described above in order to get more information on the accuracy
of the present symmetric boundary element formulation. Re-
corded horizontal components of the ground accelerations during
the Taft earthquake (S69E) shown in Fig. 5 are used in the analysis.
Only the first 10s, which appear to be critical for the response of
the dam-water system, and that can show plainly the differences
between the results, are considered. The solutions are computed
using the modal superposition method with 30 modes and the
same damping ratio ¢ =5% is used for all the modes. The
computation produced the time histories of the dam nodal
displacements and of the reservoir nodal pressures. The results
are reported for the dam crest and bottom.

N

-

|
-

|
N

Acceleration (m/sec.z)
o

<)
-
N
w
ES
2]
o
~
@
©
-
=)

Time (sec.)

Fig. 5. Horizontal ground acceleration record of the Taft earthquake.

Figs. 6a and b show the time history response of the dam crest
displacements and accelerations, respectively, obtained for the
dam alone (FE model) and for the dam with the reservoir added
mass (FE-AM model).
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Fig. 6. Time history response of the horizontal displacement and acceleration at the dam crest (dam alone: FE, dam with added mass: FE-AM).
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Fig. 7. Time history response of the dam crest horizontal displacement and acceleration (dam-reservoir system with numerical models, Ly = 3Hg).
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Fig. 8. Time history response of the dam crest horizontal displacement and acceleration (dam-reservoir system with numerical models, Ly = 0.25Hg).
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Fig. 9. Time history response of the hydrodynamic pressures acting at the bottom of the upstream face of the dam.

It can be seen from this figures that the response of the dam, when the mesh of the reservoir is large enough to reduce the
mainly in terms of displacements, is modified by the added mass. effects of the domain truncation.
Some amplifications in the peak values and a lowering of the However in Figs. 8a and b, where results are obtained
response frequency content can be noticed. for the case of a close position of the truncation boundary

Similar results (Figs. 7a and b) are obtained when the dynamic (Lg = 0.25Hg), the discordance between the FE-FE model and
dam-reservoir interaction is taken into account by applying the the two other models (FE-IE and FE-BE) is clearly apparent.
three numerical coupling models for the case of a far position of It is to recall that no transmitting boundary condition is used in
the reservoir truncation boundary (Lg = 3Hg). These results show this model (FE-FE) in order to examine the capability, against
again how the three numerical models are closely equivalent infinite elements, of the present symmetric boundary element
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Fig. 10. Hydrodynamic pressure envelope acting on the upstream face of the dam.

formulation to handle the unbounded part of the reservoir
domain.

Furthermore, time history response of the pressures acting at
the bottom of the upstream face of the dam is evaluated for the
two positions of the reservoir truncation boundary and displayed
in Fig. 9. It is clearly shown here that the differences between the
solutions derived from the FE-FE model and those derived from
the two other models are significant. In addition, it appears that
the reservoir pressures are largely more sensitive to the applied
model than the dam displacements and accelerations. This
observation can also be pointed out from the envelop of the
pressures acting along the depth on the upstream face of the dam
as shown in Fig. 10, where the distribution of hydrodynamic
pressures at the dam-water interface is normalized by the
maximum hydrostatic pressure (pgHg) and represented versus
the reservoir height ratio (y/Hg).

6. Conclusion

In this study, a numerical model suitable for the evaluation of
the dynamic response of concrete gravity dams including
fluid-structure interaction has been introduced. It involves a
standard finite element modelling of the dam structure and the
idealization of the unbounded reservoir domain by a special
symmetric boundary integral formulation.

The finite and boundary elements coupling is here greatly
simplified by the nature of the resulting boundary element matrix
which is equivalent to the finite element stiffness matrix. It is
symmetric and can easily be assembled, coupled or subjected to
any other finite element treatment.

Results obtained by the application of this numerical model to
evaluate the dynamic response of the Pine Flat concrete gravity
dam-reservoir system have clearly shown that the unbounded
reservoir domain is effectively idealized without any treatment of
the infinite part. The model produced results similar to those of a
complete finite element modelling of both the dam and the
reservoir subdomains.

The agreement between the two kinds of models is reinforced by
taking a large reservoir mesh. However, when the reservoir
truncation boundary is placed at a distance close to the fluid-struc-
ture interface, the complete finite element model fails particularly in
evaluating hydrodynamic pressures while the present boundary
element formulation still produces accurate results.
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