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Abstract: 

Most methods for system diagnosis are based on analysis of three-dimensional physical 

quantities. For example, electrical system monitoring is based on three-phase electrical 

measurements and 3D vibration analysis involves studying three-dimensional mechanical 

measurements. In three-dimensional space, such quantities follow a trajectory whose 

geometric characteristics are representative of the state of the monitored system. Usual 

techniques for diagnosis analyze such quantities component by component, without taking 

into account their three-dimensional nature or the geometric characteristics of their trajectory. 

A significant part of the information that may be useful for diagnosis is thus ignored. The 

main objective of this work is to estimate the geometric characteristics and trajectories of 

three-dimensional quantities using basic differential geometry concepts with the aim of 

developing tools for processing and analyzing 3D data. Such tools provide additional 

information for system diagnosis with respect to conventional methods and therefore increase 

their performance in terms of fault detection and localization. Simulated and experimental 

data concerning electrical power systems will be used to demonstrate the usefulness of this 

approach. 
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Abstract 
 

Most methods for system diagnosis are based on the analysis of three-dimensional or 

three-component physical quantities or signals. For example, electrical system 

monitoring is based on three-phase electrical measurements and three-dimensional 

vibration analysis involves studying three-directional mechanical measurements. In 

three-dimensional space, such physical quantities follow a trajectory whose geometric 

properties are representative of the state of the monitored system. Usual techniques for 

diagnosis analyze these signals component by component, without taking into account 

their three-dimensional nature or the geometric properties of their trajectory. A 

significant part of the information that may be useful for diagnosis is thus ignored. The 

main objective of this work is to estimate the geometric properties of three-dimensional 

physical quantities using basic differential geometry concepts with the aim of 

developing tools for processing and analyzing three-dimensional signals. Such tools 

provide additional information for system diagnosis with respect to conventional 

methods and therefore increase their performance in terms of fault detection and 

localization. Simulated and experimental data concerning electrical power systems are 

used to demonstrate the usefulness of this approach. 

 

1. Introduction 
 

Most condition monitoring techniques rely on the characterization of inherently three-

component physical quantities. A classic example is the monitoring of three-phase 

electrical systems, based on three-phase electrical measurements or three-dimensional 

magnetic stray field measurements. Another common example is the monitoring of 

mechanical systems, based on triaxial or three-dimensional vibration measurements. 

When represented in a three-dimensional space (or Euclidean space), such quantities 

follow a curve whose geometric characteristics contain information concerning the state 

of the monitored system. However, conventional condition monitoring methods most 

often analyze such quantities as three separate components, without taking into account 

the three-dimensional geometric characteristics of their trajectory. As a consequence, a 

significant part of the diagnostic information is ignored. 

 

This work aims to fill this gap by presenting a method to estimate geometric 

characteristics or geometric indicators of three-component signals. This method relies 

on basic differential geometry concepts such as the Frenet frame, curvature, and torsion, 
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and leads to local geometric descriptors of the three-dimensional curves followed by 

three-component signals. There are three main parts in this paper. The basic differential 

geometry tools used in this study are presented in Section 2, along with useful local 

geometric descriptors of three-dimensional curves. In Section 3, an algorithm is 

proposed to estimate such descriptors from three-component measurements. Finally, an 

application example concerning the monitoring of three-phase voltage dips in power 

networks is presented in section 4. 

 

2. Definition of three-dimensional geometric indicators 
 

In this section, the measured components ,  and  of a three-component 

signal are considered as the Cartesian coordinates of a particle moving with respect to 

time  along a trajectory in the Euclidean space. These three components form a vector-

valued function  of class  (i.e.  times continuously differentiable), and which 

depends on the parameter . , also known as the position vector, is then defined by: 

 

 

 

(1)  

 

This function can be viewed as a parametric three-dimensional  (  3) curve with 

parameter , and with interesting geometric properties we want to study. In the rest of 

this section, classical differential geometry quantities which allow efficient analysis of 

the geometric properties of 3D curves are presented. See for example the classical books 

on differential geometry [1]-[4] to obtain a more formal description of these quantities. 

 

2.1 Frenet frame 
 

 
(a) (b) 

Figure 1. The Frenet frame. (a) Tangent, normal and binormal vectors ,  

and  of a curve at point . (b) Osculating plane of a curve containing the 

tangent and normal vectors. 

 

The Frenet frame is a moving reference frame on three orthogonal vectors used to 

locally describe a curve at each point. It is the main tool in differential geometric 
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processing and analysis of curves, since it is far easier and more natural to describe local 

geometric properties in terms of a local reference system than using a global one like 

the Euclidean coordinates. 

 

The Frenet frame can be directly defined from the position vector  as follows: 

 

 

 

 

 

(2)  

 

where “ ” denotes the vector product or cross product and “ ” denotes the vector 

norm.  is the first derivative of  at time  or  and is also called the velocity 

vector. Similarly,  is the second derivative of  at time  or  and is also referred 

to as the acceleration vector. 

 

As can be seen in Figure 1(a), the three unit orthogonal vectors defining the Frenet 

frame are: 

•  the tangent vector, 

•  the normal vector, and 

•  the binormal vector. 

 

The tangent vector  can be seen as the direction that a point is following as it moves 

along a curve. The normal vector  represents the direction of change in the tangent 

vector as it changes with respect to time. The binormal vector  is used to 

characterize the orientation of the plane which contains the curve. This plane is also 

known as the osculating plane, and an example is represented in Figure 1(b). When the 

binormal vector of a curve changes, it means that at the same time the osculating plane 

changes its orientation. 

 

2.2 Frenet-Serret formulas 
 

The Frenet-Serret formulas describe the kinematic properties of  which moves 

along a curve in three-dimensional Euclidean space, and leads to the geometric 

properties of the curve itself. More specifically, the formula describes the derivatives of 

the unit tangent, normal, and binormal vectors in terms of each other as follows: 

 

 

 

(3)  
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where  is the curvature and  the torsion of the curve at the point . This 

equation clearly shows that the quantities ,  and  are sufficient to 

completely describe the kinematic properties of the trajectory followed by , and that 

these three quantities contain the whole geometric information necessary to describe the 

corresponding curve. 

 

2.3 Curvature and torsion 
 

There are several ways to express the curvature and the torsion of a curve. The two 

following equations give these expressions directly as a function of : 

 

  

 

(4)  

 

where “ ” denotes the dot product. 

 

Every point of a circle has a curvature  which is constant and equal to the reciprocal of 

its radius . For example, smaller circles bend more sharply, and thus have greater 

curvature. The torsion of a curve is the rate of change of the orientation of the 

osculating plane. It measures how sharply a curve is twisting. When a curve stays in the 

same plane, the osculating plane is then constant and the torsion is zero. The torsion is 

nonzero when the curve twists into a different osculating plane, i.e. with a different 

orientation and thus a different binormal vector. 

 

2.4 Preliminary assumptions on signals 
 

In order to obtain simple three-dimensional trajectories, several assumptions are made 

about the measured signals: 

• Each component ,  and  is composed of a sine wave with the same 

constant frequency . 

• The amplitude and phase of each sinusoidal component are either constant or slowly 

varying. 

 

Under these assumptions, it can be shown that the trajectory followed by the position 

vector is locally plane, and that the corresponding curve can only be in the shape of a 

circle or an ellipse. Moreover, the geometric properties of this curve are directly related 

to the values of the amplitude and phase of each sinusoid. Finally, each of the 

continuous-time signals ,  and  are sampled with sampling rate  which 

satisfies the sampling theorem and verifies  2 . We then obtain , the discrete-

time version of the position vector given in Eq. (1). 

 

In this section, Eqs. (2) and (4) show that the geometric properties of a three-

dimensional curve such as the tangent, normal and binormal vectors as well as the 
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curvature and torsion at any point of the curve can be easily computed with the first 

three derivatives of . In the next section, we present the algorithm relying on these 

two equations and we show that it is possible to estimate these geometric indicators 

from the discrete position vector . 

 

3. Estimation of three-dimensional geometric indicators 
 

Eqs. (2) and (4) give us the geometric properties that are to be estimated. The algorithm 

used to estimate these geometric indicators is explained in this section. It is made up of 

three main steps as shown in the block diagram in Figure 2. The three-component signal 

is first lowpass filtered to remove high-frequency noise and to select the component of 

frequency . It is then differentiated three times with a simple differentiation method 

and finally, the computation of the various geometric properties of the corresponding 

curve is carried out thanks to Eqs. (2) and (4). Each of these steps is explained in the 

following. 

 

3.1 Lowpass filtering 
 

The three-component signal must be filtered of any high-frequency components before 

differentiation because this last operation significantly amplifies such components 

possibly present in the signal
[5]

. The signal is also filtered to limit its frequency content 

to  and to select only the corresponding sine wave. In the proposed algorithm, this 

filter is a simple lowpass linear-phase finite impulse response filter designed using the 

classical Kaiser window method
[6][7]

. 

 

 
Figure 2. The proposed algorithm to estimate the geometric properties of three-

component signals. 
 

3.2 Differentiation method 
 

Eqs. (2) and (4) show that differentiation is needed to estimate the geometric properties 

of curves. There are many different methods of differentiation
[5]

 but a simple and 

intuitive method is chosen for this study. The derivative of a point of a curve is equal to 

the slope of the curve at this particular point, which corresponds mathematically to: 
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(5)  

 

This approximation is sufficient to compute the derivative of the signal because the 

frequency  of the sinusoidal component is very low compared to the sampling 

frequency . In the proposed algorithm, the signal is differentiated three times using 

Eq. (5) to obtain ,  and  before moving on to the next step which is to 

compute the desired geometric indicators. 

 

3.3 Computation of geometric indicators 
 

When the derivatives of the position vector ,  and  have been obtained, 

the geometric properties of the curve , , ,  and  can finally be 

computed using Eqs. (2) and (4) with a combination of basic mathematical tools such as 

the dot product, the cross product and the modulus. 

 

The previous three steps form the proposed algorithm to estimate the geometric 

properties of three-component signals. They rely on simple signal processing tasks such 

as linear and time-invariant filters, differentiations and products and can therefore be 

easily implemented in real-time if necessary. 

 

However, some precautions must be taken to use this algorithm. The discrete filter 

described in Section 3.1 must have sufficient performance to efficiently cancel out the 

high-frequency content of the signals before differentiation. If necessary, this filtering 

operation can be improved by using a better filter design method, or by using an infinite 

impulse response filter. Moreover, the derivative estimate given in Eq. (5) is only valid 

if the frequency content of the signals is very low with respect to the sampling 

frequency . If this is not the case, more accurate estimation of derivatives should be 

used such as in [5]. 

 

The next section gives an example of application of the previous algorithm on simulated 

and three-phase voltage signals. 

 

4. Application: Analysis of three-phase voltage dips 
 

As an example, the previous method is applied to the study of voltage dips in three-

phase power networks. These phenomena are the most common type of power-quality 

disturbances, and lead to important economic losses and distorted quality of industrial 

products. Thus, voltage dips monitoring has become an essential requirement for power 

quality monitoring
[8]

, and several methods have been developed to accurately detect and 

characterize such disturbances. However, most of these techniques consider three-phase 

measurements as three separate one-dimensional quantities, and process each phase 

voltage independently of each other
[9][10]

. In [11], a first step is taken since the three-

phase quantities are considered two-dimensional after a Clarke transform, and are 

processed as complex-valued signals. In this paper, we propose to apply the method 
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described in the previous sections in order to consider the three-phase voltages as a 

single three-dimensional quantity. The objective is not to obtain better results than 

previously proposed methods, but to adopt a different and complementary point of view 

by considering three-phase quantities as a whole. 

 

The first three-phase voltages used in this section are the simulated data represented in 

Figure 3, and consist of a sine wave with fundamental frequency  = 50 Hz sampled at 

sampling rate  = 20 kHz. It is clear from this figure that this three-phase voltage 

system undergoes a voltage dip on the blue voltage between  = 0.05 s and  = 0.15 s. 

 

 
 

Figure 3. Simulated three-phase voltage signal. 
 

The corresponding position vector  is constructed with the three previous voltages 

as described by Eq. (1).  is then represented as a moving point in an Euclidean 

space, and the corresponding curve is shown in Figure 4 its low-pass filtered version in 

Figure 5. This figure shows that  mainly rotates around the frame origin with 

frequency  = 50 Hz. It can also be noticed that the three-dimensional trajectory 

followed by the position vector changes during the voltage dip. This remark justifies the 

use of the proposed method to analyze the geometric changes in this trajectory, and to 

eventually detect and/or characterize this voltage dip. 

 

 
 

Figure 4. Three-component position vector in three-dimensional space. 
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Figure 5. Three-component position vector in three-dimensional space after 

lowpass filtering. 
 

 
 

 
 

 
 

Figure 6. Simulated three-phase voltage signal, torsion and binormal vector. 
 

The torsion corresponding to this curve is estimated thanks to the algorithm presented in 

the previous section, and represented in Figure 6 along with the three voltages. It can be 

noted that this torsion has large values only at the beginning and at the end of the 

voltage sag. Apart from these special moments, this quantity remains small and close to 

zero. Geometrically, this means that the three-dimensional curve followed by the point 

 belongs to a fixed plane, except at these precise moments during which the 
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osculating plane changes significantly. We also notice that the osculating plane 

containing the trajectory during and outside the voltage dip is not the same. This is 

highlighted by changes in the binormal vector, which is orthogonal to this plane. The 

Cartesian coordinates of this vector are also plotted in Figure 6, and they clearly take 

different values during and outside the dip. 

 

The curvature is also estimated by this algorithm, and is represented in Figure 7. This 

geometric quantity leads to different information, related to the shape of the trajectory 

followed by . Outside the dip, the curvature remains constant and the trajectory is 

then circular. During the dip, the curvature varies with frequency 2  = 100 Hz, i.e. 

twice per revolution. If this quantity is compared to the magnitude of the position vector 

 also represented in Figure 7, it is clear that when the point  is close to the 

frame origin, the curvature is small and vice versa. This corresponds to a trajectory with 

an ellipse shape. Finally, the time evolution of the curvature shows that the point  

changes from a circular trajectory outside the dip to an ellipse-shaped one during the 

dip. 

 

 
 

 
 

 
 

Figure 7. Simulated three-phase voltage signal, magnitude of position vector and 

curvature. 
 

The results obtained through simulated data show that geometric quantities such as 

curvature and torsion lead to important geometric information concerning the three-

dimensional trajectory followed by , and similarly to information about the state of 

the corresponding three-phase system. 
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Figure 8. Experimental three-phase voltage signal. 

 

The same method has also been applied to experimental three-phase voltages sampled at 

 = 3200 Hz. These data are represented in Figure 8, and clearly undergo a voltage dip 

between  = 0.05 s and  = 0.12 s, the dip being more important for the blue voltage. 

The corresponding three-dimensional trajectory is shown in Figure 9, with estimated 

torsion and curvature in Figure 10 andFigure 11 respectively. These experimental 

results are very similar to the previous ones obtained with simulated data. The main 

difference is visible in Figure 11 where it can be noticed that the magnitude of the 

position vector and the curvature keep oscillating after  = 0.12 s. This shows that the 

three-phase system still undergoes a small dip even after this moment. 

 

 
 

Figure 9. Three-component position vector in three-dimensional space. 
 

From a practical point of view, the previous geometric indicators can be used to study 

and analyze voltage dips encountered in three-phase systems. For example, the modulus 

of the torsion can be used to detect the occurrence of such perturbations since it has 

important values at the beginning and at the end of dips. The detected dips can then be 

characterized thanks to the osculating plane given by the binormal vector coordinates, 

along with the curvature leading to information about the shape of the trajectory during 

the dips. However, this particular application is not finalized in this paper as this is not 

the main purpose of this work. 
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Figure 10. Experimental three-phase voltage signal, torsion and binormal vector. 
 

 

 

 

 

 
 

Figure 11. Experimental three-phase voltage signal, magnitude of position vector 

and curvature. 
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5. Conclusion 
 

This paper presents a method dedicated to the monitoring of systems and based on the 

estimation and the analysis of geometric characteristics of three-component signals. It 

relies on classical differential geometry tools such as the Frenet frame and the curvature 

and torsion of three-dimensional curves. A simple and efficient algorithm realizing the 

estimation of these geometric indicators is also proposed and its application to 

simulated and experimental data leads to encouraging results. We can conclude from 

these results that the proposed method is useful as it gives different and complementary 

information to existing condition monitoring methods. 

 

Of course some aspects of future work need to be addressed. For example, this method 

has to be extended to more complex deterministic signals (signals of arbritrary 

frequency  or containing more than only one sinusoidal component), or even to 

random signals. These tools could also be applied to other types of three-component 

data such as triaxial vibrations, where the geometric characteristics are directly 

connected to those of three-dimensional movements in such systems and thus have clear 

physical significations. 
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