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This paper investigates the conditions in the design param-

eter space for the existence and distribution of the cusp lo-

cus for planar parallel manipulators. Cusp points make pos-

sible non-singular assembly-mode changing motion, which

increases the maximum singularity-free workspace. An ac-

curate algorithm for the determination is proposed amend-

ing some imprecisions done by previous existing algorithms.

This is combined with methods of Cylindric Algebraic De-

composition, Gröbner bases and Discriminant Varieties in

order to partition the parameter space into cells with con-

stant number of cusp points. These algorithms will allow us

to classify a family of degenerate 3-RPR manipulators.

Keywords: kinematics, parallel manipulator, singulari-

ties, cusp, discriminant variety, cylindric algebraic decom-
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1 Introduction

In the past, singularities were believed to physically sep-

arate the different assembly modes, meaning that for fixed

joint values one could not find a path going from one assem-

bly mode to another without crossing a singular configura-

tion. So the interest relied on considering the widest con-

nected non-singular domain, called aspect. Innocenti and

Parenti-Castelli pointed out in [1] that non-singular changes

of assembly mode are possible, and McAree and Daniel

showed in [2] that such changes are possible when triple

roots of the Forward Kinematic Problem (FKP) exist. In [3]

Zein, Wenger and Chablat showed that for the case of 3-RPR

manipulators a non-singular change of assembly mode can

be accomplished by encircling a cusp point, and Husty re-

cently proved in [4] that the generic 3-RPR parallel manipu-

lators without joint limits always have 2 aspects.

From the algebraic point of view, the locus of cusp

points can be described by means of symbolic equations. In

order to avoid long symbolic-algebraic manipulations, these

equations are usually solved by numerical approximation at

an early stage, which may lead to small deviations that can

be propagated along the process. However, there exist effi-

cient symbolic-algebraic techniques that may leave the use

of numerical methods to the last step. In particular, we will

apply Gröbner bases [5] in order to adopt a more suitable

equivalent system defining the same solution points.

Lazard and Rouillier introduced the mathematical no-

tion of Discriminant Variety (DV) [6], which is a variety of

codimension 1 in the chosen parameter space whose com-



plement satisfies the property that over each connected com-

ponent the given system has a constant number of solutions.

The complement of this DV will be partitioned into cells by a

Cylindric Algebraic Decomposition [7], also known as CAD.

This paper is intended to illustrate both the performance

of the new algorithm for the determination of the locus of

cusp points and its combination with the forementioned al-

gebraic techniques in the analysis of existence conditions

and distribution along a 2-dimensional parameter space. Al-

though the method can be applied to more general manip-

ulators (see [8]), such performance will be exemplified on

a family of degenerate 3-RPR manipulators, detailed in Sec-

tion 2. The algorithm for the cusp point determination, which

is one of the main contributions of the paper, is given in Sec-

tion 3, where it is compared to other previous algorithms.

Section 4 outlines some of the exploited algebraic objects

such as the DV. In Section 5 the previous procedures are

combined with the CAD to partition a 2-dimensional space

with regard to the associated number of cusp points, which

leads us to analyze a complete family of degenerate 3-RPR

manipulators that depend on one geometric parameter. This

section also illustrates some applications of the presented

strategy to robot design. The paper concludes in Section 6.

2 A class of degenerate 3-RPR

Let us describe the family of manipulators on which the

strategies presented along the paper will be exemplified. A

general 3-RPR manipulator is a 3-degrees-of-freedom pla-

nar parallel mechanism that has two platforms connected by

three RPR rods, with the prismatic joints being actuated and

the revolute ones being passive. Without loss of generality

we can assume the absolute reference frame to be such that

the base points of the leg rods are A1 = (0,0), A2 = (A2x,0)
with A2x > 0, and A3 = (A3x,A3y). If B1, B2 and B3 are the

corresponding points on the moving platform, then the geo-

metric parameters associated to this manipulator are the val-

ues A2x, A3x, A3y, the lengths d1 = ‖B1B2‖, d3 = ‖B1B3‖, and

the angle β = B̂2B1B3. The input-space is then formed by

ρρρ = (ρ1,ρ2,ρ3) ∈ R3, where ρi ≥ 0 are the leg rod lengths,

and the output-space is formed by the poses of the moving

platform x = (x,y,α), where B1 = (x,y) and α is the angle

of vector B2 − B1 relative to A2 − A1. We define (sα,cα),
(sβ,cβ) and (sα+β,cα+β) to denote the sines and cosines of

α, β, and (α+β), respectively. Then the forward kinematics

of a general 3-RPR manipulator is defined by the system of

equations

x2 + y2 −ρ2
1 = 0

(x+ d1 cα −A2x)
2 +(y+ d1 sα)

2 −ρ2
2 = 0

(x+ d3 cα+β −A3x)
2 +(y+ d3 sα+β −A3y)

2 −ρ2
3 = 0.

(1)

For these manipulators, Hunt showed that the FKP ad-

mits at most 6 assembly modes [9], and several authors [10,

11] proved independently that the system associated to the

FKP can be reduced to a polynomial of degree 6. The 3-

RPR manipulators for which the degree of this characteris-
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Fig. 1. Example of degenerate 3-RPR.

tic polynomial decreases are known as analytic or degener-

ate [12,13], because the Cramer system in Gosselin’s method

degenerates. In this paper we will focus on a class of degen-

erate 3-RPR manipulators whose base and moving platforms

are congruent triangles, with the moving triangle being re-

flected with respect to the base one, as that of Fig. 1. This

class of manipulators was first studied by Wenger, Chablat

and Zein in [14]. Their mathematical description requires

the addition to the initial Eqn. (1) of the following geometric

constraints:

d1 = A2x

cos(β) = A3x/d3

sin(β) = −A3y/d3.
(2)

Therefore, the system of equations defining this family of de-

generate 3-RPR manipulators, formed by Eqns. (1) and (2),

will be denoted as

F(ρρρ,x) = 0.

Generically, we will refer to this system by F . Whenever

concrete values for the geometric parameters are considered,

these will be specified. Finally, the notation |(ρρρ,x) will stand

for the evaluation on real values (ρρρ,x).

3 Cusp locus determination

In this section we describe the cuspidal locus and an-

alyze the usual methods for their determination. After that

we propose a more accurate approach and compare it to the

previous ones in a simple example.

Let us assume that a specific manipulator, whose geo-

metric parameters have been set into F , has been designated.

Then, we denote the associated configuration space by

C (F) = {(ρρρ,x) ∈ R6 : F |(ρρρ,x) = 0}.

The Jacobian matrix of F with respect to the output vari-

ables is denoted as Jx(F) =
(

∂F
∂x

∂F
∂y

∂F
∂α

)
. The configura-



tions where its determinant is zero are called parallel singu-

lar configurations, or type 2 singularities. On these configu-

rations the manipulator shows a loss of control. The parallel

singular locus of our manipulator is a 2-dimensional space

that can be described (see [15]) as

Σ(F) = {(ρρρ,x) ∈ C (F) : Jx(F)|(ρρρ,x) is rank deficient}.

For simplicity, we will refer to this set as the singular locus.

With this setting we now define the cuspidal locus as

κ(F)= {(ρρρ,x)∈C (F) : ρρρ root of exact multiplicity 3 of F},

i.e. the triple roots of the FKP. Observe that κ(F) ⊂ Σ(F),
since the Jacobian Jx(F) is rank deficient on the roots of mul-

tiplicity three of F . It is known that in the proximity of cusp

points a non-singular change of assembly mode can be made.

Figure 2 shows a cusp point κ and a non-singular path con-

necting two different assembly modes (p1 and p3). We shall

note, however, that both the singular and the cusp locus are

quite difficult to visualize in the 6-dimensional (ρρρ,x)-space.

So for mechanisms with at most one inverse kinematics so-

lution, as is the case for the 3-RPR, we will actually project

them onto the input-space instead.

3.1 Usual methods for the cusp computation

Let us revise the two main algorithms that have been

more commonly used in the determination of the locus of

cusp points for a given manipulator. The following method,

introduced by Wenger and Chablat in [13], and anallytically

derived in [16], has been used for the degenerate 3-RPR ma-

nipulators. It was inspired on an approach developed by

Hernández et al in [17] for other robots.

Algorithm 1 by Wenger and Chablat [13]

1. Reduce F (by successive resultants) to a single equation

g(t) = 0, with t = tan(α/2) and coefficients in ρρρ.

2. Equations of triple roots of g

G = {g = 0, ∂g
∂t

= 0, ∂2g

∂t2 = 0}.

3. Equations of strictly triple roots of g

G = G∪{ ∂3g

∂t3 6= 0}.

4. G̃= Eliminate t from G and solve the remaining system

for real values of ρρρ.

5. Solve G̃.

This strategy reduces the problem to the computation of

the strictly triple roots of one single univariate polynomial g.

However, the constraint added in step 3 makes the computa-

tion quite hard, and thus this step is often removed.

Another commonly used method, described by McAree

and Daniel in [2], makes use of the series expansion of F .

p1

p2

p3

κ

πρ(pi)

πρ(κ)

Fig. 2. Cusp point κ as a triple root of the FKP and non-singular

path linking upper and lower solutions of the FKP.

Algorithm 2 by McAree and Daniel [2]

1. Series expansion of F

∆F = ∂F
∂x

∆x+ ∂F
∂ρρρ

∆ρρρ+ 1
2
∆xT

(
∂2F
∂x2

)
∆x+∆xT

(
∂2F
∂x∂ρρρ

)
∆ρρρ+

1
2
∆ρρρT

(
∂2F
∂ρρρ2

)
∆ρρρ+ . . .

2. Compute configurations where 1st and 2nd order con-

straints are rank deficient, i.e. solve

vT
(

u ∂2F
∂x2

)
v = 0, where v is a unit vector in right kernel

of ∂F
∂x

, and u is a unit vector that spans left kernel.

This second strategy reduces the problem to the resolu-

tion of some quadratic equations, but it also requires to find

the unit vectors u and v, which may hinder the computation.

These algorithms are commonly used in the cusp locus

determination. However, both have drawbacks related to the

non-cuspidality of some resulting points:

• Since the polynomial g obtained by Algorithm 1 is the

result of several projections, some of the obtained points

may correspond to the projection of complex (not real)

solutions, as we will see later on.

• Step 3 usually needs to be removed from Algorithm 1 in

order to avoid slow-processing.

• Algorithm 2 does not constrain the multiplicity of the

solutions to be exactly 3, so it may obtain higher multi-

plicity ones. Regardless of that, in [3] it is shown that ad-

ditional spurious solutions may be produced for generic

3-RPR manipulators.

Therefore, both methods can only provide sufficient condi-

tions for the cuspidal locus but not always necessary ones.

3.2 Improved method

Despite the fact that the formulation of the cusp locus

is quite simple, the associated system of equations usually

contains many equations in many unknowns, whose resolu-

tion can take long computations and even lead to abnormal

termination for not too complex examples. So the methods

described previously were introduced as simple, though not

accurate, alternatives to the symbolic resolution. However,

we can now get over some of these difficulties with current

powerful symbolic algebra tools that fix the deficiencies of

the algorithms detailed above.



The approach that we propose is an evolution of [18]

by Moroz et al., inspired on the results of [19]. The main

difference of the proposed method compared to that of [18]

is the introduction of the saturation operator to remove the

quadruple roots.

Algorithm 3 Proposed method

1. Equations of double roots of F w.r.t. ρρρ
DF = F ∪{det(Jx(F)) = 0}

2. Equations of triple roots of F w.r.t. ρρρ
TF = DF ∪{det(m) : m maximal minors of Jx(DF)}

3. Equations of quadruple roots of F w.r.t. ρρρ
QF = TF ∪{det(m) : m maximal minors of Jx(TF)}

4. Saturate TF by QF

CF = sat(TF ,QF)
5. Solve CF for real values of (ρρρ,x)

Given the system defining the mechanism F , it computes

iteratively the equations TF and QF of triple and quadruple

roots ρρρ of F , respectively. Then, we use saturation. Given

two polynomial systems S1 and S2, sat(S1,S2) is an algebraic

operator that returns a polynomial system whose solution set

is the closure of the solutions of the first system after remov-

ing those of the second one. If V (Si) denotes the solution set

of Si, it is satisfied that

V (sat(S1,S2)) =V (S1)\V(S2). (3)

In general, the saturation ensures that all roots of S2 are re-

moved. However, in specific cases, some points can remain

due to property of Eqn. (3) for which we can only obtain

V (S1)\V(S2) instead of V (S1)\V(S2), which can differ by a

null-measure set that can easily be removed afterwards. Fur-

ther details on the saturation and its geometric interpretation

can be found in [5].

Although we are only interested in real (feasible) solu-

tions, we shall note that the polynomial system obtained after

saturating has real coefficients and thus its solution set could

contain some complex (not real) roots. For this reason we

need to solve the final cusp system CF in the real field. This

is done by using the RootFinding Maple package.

With Algorithm 3 the previous drawbacks are amended:

• When computing the saturation of TF by QF , the points

of multiplicity 4 or higher are removed, and so we can

guarantee that only the cusp locus is obtained.

• By solving CF for (ρρρ,x), instead projecting onto the ρρρ-

space, we avoid having biased points produced by the

projection of complex (not real) solutions.

• Furthermore, solving CF in the real field ensures that no

other spurious complex solutions are considered.

3.3 Case study comparison

Let us now compare the performance of both Algo-

rithm 1 without step 3 and the proposed Algorithm 3 on a

simple case of degenerate 3-RPR in order to contrast their

results. However, let us clarify that both the formulation

and the proposed algorithm apply to other more general ma-

nipulators (see [8]). We set the geometric parameter values

A2x = 1, A3x = 0, A3y = 1, β =−π/2, d1 = 1, and d3 = 1.

The characteristic polynomial for Algorithm 1 is

g(t)= (ρ2
3−ρ2

1)t3+(ρ2
2−ρ2

1−4)t2+(ρ2
3−ρ2

1−4)t+ρ2
2−ρ2

1

After eliminating t from G we get G̃= {P1,P2,P3} as follows

ρ4
2 +ρ4

3 − 2ρ2
2 ρ2

3 + 6ρ2
1 − 3ρ2

2 − 3ρ2
3− 12 = 0

2ρ4
1 + 2ρ4

3 − 4ρ2
1 ρ2

3 + 4ρ2
1 + 3ρ2

2 − 7ρ2
3− 16 = 0

ρ4
3 +ρ2

1 ρ2
2 −ρ2

1 ρ2
3 −ρ2

2 ρ2
3 + 3ρ2

1 +ρ2
2 − 4ρ2

3 − 6 = 0.

(4)

Observe that these equations are not independent. Indeed, P2

is a combination of the other two:

P2 =
(ρ2

1 −ρ2
3 + 1)

3
P1 +

(ρ2
3 −ρ2

2 + 6)

3
P3.

Additionally, there are solutions of G̃ that do not correspond

to the real cusp locus. For instance, if we set ρ1 = 1/3, the

system G̃|ρ1=1/3 has two solutions with both ρ2 and ρ3 pos-

itive. But the FKP evaluated on these two solutions only

has complex solutions (x,y,α). So, for ρ1 = 1/3 the c-space

C (F) has no cusp points, though Algorithm 1 obtained two

mistaken candidates.

We now test Algorithm 3 on the same example. The

equations of the cusp locus CF are:

6cα +ρ2
2 −ρ2

3 = 0

2s2
α + sα − 1 = 0

2c2
α − sα − 1 = 0

2cα sα − cα = 0

3cα + 3sα +ρ2
1 −ρ2

3 + 1 = 0

3cα + 3sα + x2 + y2 −ρ2
3 + 1 = 0

2xsα + 2ysα − 4sα − x− y+ 2= 0

2sα ρ2
3 − 3cα − 6sα − 4xy− x− y= 0

2xcα + 2ysα + cα − 3sα − 2x+ 1= 0

2ycα + 2ysα + cα − sα − x+ y+ 1= 0

4ysα − sα + 2(cα − 1)ρ2
3 + 4y2 − 3y+ x+ 1= 0

2sα (2y2 − 4y− 1)− 3cα− 4xy− 2y2+ 3y

−x+ρ2
3− 2 = 0

6sα (2y+ 1)+ 12cα− 8y2 x+ 8y3+ 12xy

+x− 3y+ 2xρ2
3− 6yρ2

3− 6ρ2
3 + 8 = 0

18sα (18y− 1)+ 36cα+ 32y4 + 20y2+ 44xy

+13x− 47y+ 4ρ4
3− 8ρ2

3 yx− 32y2 ρ2
3

−6xρ2
3 − 6yρ2

3− 32ρ2
3 + 40 = 0.

(5)
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ρ3

Fig. 3. Singular curve for ρ1 =
1
3

on (ρ2,ρ3)

Here if we try to solve CF |ρ1=1/3, we get no real solutions.

Figure 3 shows a section in the (ρ2,ρ3)-plane of the singular

locus of F for ρ1 =
1
3
. As can be observed, there is no cusp

point in this plot. This phenomenon is not casual. Actually,

the value 1/3 for ρ1 has not been randomly picked as we will

see in next section. In fact, Algorithm 3 describes the cusp

locus more accurately than Algorithm 1, in general.

4 Discussion on the joint space

We now extend our improved method to partition a pa-

rameter space with regard to the associated cusp locus. So,

we want to discuss the solutions of a parametric system.

Among the numerous possible ways of solving paramet-

ric systems, we focus on the use of Discriminant Varieties

(DV) [6] for two main reasons: it provides a formal decom-

position of the parameter space through an exactly known

algebraic variety (no approximation), and it has been suc-

cessfully used in similar problems [20].

Let us consider a general parametric polynomial system

F = {p1(v) = 0, . . . , pm(v) = 0,q1(v)> 0, . . . ,ql(v)> 0},

where p1, . . . , pm,q1, . . . ,ql are polynomials with rational co-

efficients depending on v = (U1, . . . ,Ud ,X1, . . . ,Xn) with Xi

being unknowns and Ui parameters. For instance, the system

describing the cuspidal configurations our manipulator CF is

parametric if some of the geometric parameters are initially

left free in F . The DV associated to system F is described

by a polynomial equation. This DV partitions the parameter

space into several regions such that over each open region

delimited by the DV the number of real solutions of F is

constant. Prior to defining the DV associated to F , we need

to specify a solver of 0-dimensional systems that will be used

as a black box.

4.1 Basic black-boxes

Let us describe the global solver for 0-dimensional sys-

tems that will be used as a black box in the general algorithm.

We mainly use exact computations, namely formal elimina-

tion of variables (resultants, Gröbner bases) and resolution

of 0-dimensional systems, including univariate polynomials.

We first compute a Gröbner basis of the ideal

〈p1, . . . , pm〉 for any ordering, which will help us detect if

the system has or has not finitely many complex solutions. If

yes, then compute a so called Rational Univariate Represen-

tation (RUR) of 〈p1, . . . , pm〉 (see [21]), which is an equiva-

lent system of the form

{ f (T ) = 0,X1 =
g1(T )
g(T)

, . . . ,Xn =
gn(T )
g(T )

},

where T is a new variable independent of X1, . . . ,Xn,

equipped with a so called separating element (injective on

the solutions of the system) u ∈Q[X1, . . . ,Xn] and such that :

V (p1, . . . , pm)
u−→ V ( f )

u−1

−−→ V (p1, . . . , pm)

(x1, . . . ,xn) 7→ β = u(x1, . . . ,xn) 7→
(

g1(β)
g(β) , . . . ,

gn(β)
g(β)

)

defines a bijection between the (real) roots of the system and

the (real) roots of the univariate polynomial f .

We then solve f = 0, computing so called isolating in-

tervals for its real roots, i.e. non-overlapping intervals with

rational bounds that contain a unique real root of f (see [22]).

Finally, interval arithmetic is used in order to get isolating

boxes of the real roots of the system (non-overlapping prod-

ucts of intervals with rational bounds containing a unique

real root of the system), by studying the RUR over the iso-

lating intervals of f .

In practice, we use the function RootFinding[Isolate]

from Maple software, which performs exactly the compu-

tations described above.

4.2 Discriminant varieties

Consider now the constructible set

S = {v ∈ Cn : p1(v) = 0, . . . , pm(v) = 0,
q1(v) 6= 0, . . . ,ql(v) 6= 0},

and let us assume that for almost all the parameter values

this S is a finite set of points. Then, a discriminant variety of

S with respect to (U1, . . . ,Ud) is a variety V ⊂ Cd such that

over each connected open set U not intersecting V (U∩V =
/0), S defines an analytic covering. In particular, the number

of points of S over any point of U is constant.

Discriminant varieties can be computed using basic and

well-known tools from computer algebra such as Gröbner

bases [6]. A full package is available in Maple software

through the RootFinding[Parametric] package, which pro-

vides us with a polynomial DV (S ;U1, . . . ,Ud) whose associ-

ated discriminant variety is V .

4.3 Case study comparison

Let us consider again the degenerate 3-RPR with the

same geometric parameter values as those specified in sec-

tion 3.3, i.e. A2x = 1, A3x = 0, A3y = 1, β = −π/2, d1 = 1,

and d3 = 1, and consider the systems G̃ (Eqn. 4), and CF

(Eqn. 5), obtained by Algorithm 1 without step 3 and by Al-

gorithm 3, respectively. We will regard as a parameter one

of the leg lengths ρ1 of the manipulator. The discriminant
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Fig. 4. Comparison of both discussions on ρ1

variety will provide us with a polynomial in ρ1 whose roots

will delimit some open intervals such that for whatever value

of ρ1 within one interval, the number of cusp points of F |ρ1

will be the same. We compute the DV for each system with

respect to ρ1, and analyze the results.

In the first case, we get the polynomial DV(G̃;ρ1) =
ρ1 (ρ

2
1 −2)(2ρ4

1+10ρ2
1−1), whose roots describing the dis-

criminant variety are

r0 = 0, r1 =

√
2
√

27−10
2

and r3 =
√

2.

Since the number of cusp points is kept constant between two

consecutive roots, we can compute the associated number of

cusps by picking one single value of ρ1 inside each open

interval and solve G̃|ρ1
. In this case we obtain

• 0 cusp configurations for ρ1 ∈ ]0, r1[,
• 2 cusp configurations for ρ1 ∈ ]r1,r3[, and

• 3 for ρ1 ∈ ]r3,∞[.

Substituting ρ1 = ri into G̃ we obtain the number of cusps on

the borders of the intervals.

• 0 cusps on ρ1 = 0,

• 2 cusps on ρ1 = r1, and

• 3 on ρ1 = r3.

In the second case, a similar analysis for CF gives

DV (CF ;ρ1) = ρ1 (ρ
2
1 − 2)(8ρ2

1 − 1)(2ρ4
1+ 10ρ2

1 − 1),

which has one more root than DV (G̃;ρ1)

r0 = 0, r1 =

√
2
√

27−10
2

, r2 =
√

2
4

and r3 =
√

2.

The intervals and the numbers of cusps for CF differ a bit

from those obtained for G̃:

• 0 cusps for ρ1 ∈ ]0, r1[,
• 0 cusps for ρ1 ∈ ]r1,r2[,
• 4 cusps for ρ1 ∈ ]r2,r3[,
• 6 cusps for ρ1 ∈ ]r3,∞[.

• 0 cusps on ρ1 = 0,

• 0 cusps on ρ1 = r1,

• 2 cusps on ρ1 = r2,

• 5 cusps on ρ1 = r3.

The results obtained in both cases are compared in

Fig. 4. We can observe that the first two intervals do not

exactly coincide, and that for the second system the obtained

numbers of cusps appear doubled for all intervals (compared

to those obtained for the first system). Both phenomena can

be explained as a consequence of the projection map used to

compute the system G̃. Let us remind the reader that G̃ is

obtained after several reductions of the initial system, each

of which applying also a projection on the ρρρ-space. For this,

there can be complex configurations of the manipulator that

project onto real roots ρρρ of G̃. This is the case for the values

of ρ1 ∈]r1,r2[.
The same can be done for any other parameter and the

same phenomena can be observed.

5 Higher-dimensional discussion by means of a CAD

By construction we know that over any connected open

region not intersecting the DV the system has a constant

number of real roots, for whatever chosen parameters. But

if we want to discuss larger parameter spaces, then the open

regions will no longer be as simple as 1-dimensional inter-

vals. So the goal of this section is to provide an accurate

description of the regions with constant number of solutions.

For this we will use the Cylindric Algebraic Decomposition

(CAD) [7, 23].

5.1 The complementary of a discriminant variety

Let Pd ⊂ Q[U1, . . . ,Ud ] be the set of polynomials de-

scribing the DV. Then for each i = d−1, . . . ,0, we introduce

a new set of polynomials Pi ⊂ Q[U1, . . . ,Ud−i] defined by a

backward recursion:

• Pd = the polynomials defining the DV,

• Pi = { DV(p;Ui), LeadingCoefficient(p,Ui),
Resultant(p,q,Ui), p,q ∈ P

i+1
}

Each Pi has an associated algebraic variety of dimension

at most i − 1, Vi = V (∏p∈Pi
p). The Vi are used to recur-

sively define a finite union of simply connected open subsets

∪ni

k=1Ui,k ⊂ Ri of dimension i such that Vi ∩Ui,k = /0.

Before defining the sets Ui,k, we introduce some nota-

tion: for a univariate polynomial p with n real roots,

root(p, l) =






−∞ if l ≤ 0,
the lth real root of p if 1 ≤ l ≤ n,
+∞ if l > n .

Moreover, if p is a n-variate polynomial, and v is a (n− 1)-
tuple, then pv denotes the univariate polynomial where the

first n− 1 variables have been replaced by v.

The recursive process defining the Ui,k is the following:

• For i = 1, let p1 = ∏p∈P1
p.

Taking all U1,k =] root(p1,k); root(p1,k + 1)[ for k =
0, . . . ,n, where n is the number of real roots of p1, one

gets a partition of R that fits the above definition. More-

over, one can arbitrarily chose one rational point u1,k in

each open interval U1,k.

• Then, for i = 2, . . . ,d, let pi = ∏p∈Pi
p.

The regions Ui,k and the points ui,k are of the form:

Ui,k ={(v1, ...,vi−1,vi) | v := (v1, ...,vi−1) ∈ Ui−1, j,
vi ∈] root(pv

i , l), root(pv
i , l + 1)[}

ui,k = (β1, ...,βi−1,βi), with{
(β1, ...,βi−1) = ui−1, j

βi ∈] root(p
ui−1, j

i , l), root(p
ui−1, j

i , l + 1)[ ,
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Fig. 5. Plot of the DV of CF with respect to (ρ1,d1)

where j, l are fixed integers.

With this recursive procedure we get a full description

of the complementary of the DV for the system to be solved:

the cells Ud,k and a test point ud,k ∈ Ud,k (with rational co-

ordinates). The number of solutions associated to each open

cell Ud,k is obtained by solving the given system restricted to

ud,k using a 0-dimensional solver. Both the cell decomposi-

tion and the test points can be obtained by the Maple function

RootFinding[Parametric][CellDecomposition].

5.2 Open CAD for a class of degenerate 3-RPR

Let us see the performance of this CAD on a 2-

dimensional discussion. We consider now a family of degen-

erate 3-RPR manipulators with A2x = 1, A3x = 0, A3y = 1,

β =−π/2, and d3 = 1, and regard as parameters both ρ1 and

d1, constrained by d1 ≥ 0. Now, the system CF describing

the cusp locus associated to this family of manipulators has

18 polynomials, its DV is plot in Fig. 5, and the polynomial

DV(CF ;ρ1,d1) factors as follows:

d1 ρ1 (d
2
1 + 1)(−4ρ6

1 − 12ρ4
1+ 27ρ2

1 d2
1 + 15ρ2

1 − 4)

(4ρ6
1 + 12ρ4

1 d2
1 − 15ρ2

1 d4
1 + 4d6

1 − 27ρ2
1 d2

1)

(256ρ6
1 d2

1 + 81ρ2
1 d6

1 − 288ρ4
1 d4

1 + 256ρ6
1− 576ρ4

1 d2
1

+ 51ρ2
1 d4

1 − 16d4
1 − 288ρ4

1+ 51ρ2
1 d2

1 + 81ρ2
1).

The complement of this DV produces 90 cells with as-

sociated numbers of cusps varying among 0, 2, 4 and 6, as

shown in Fig. 6, where black vertical lines delimit intersec-

tion points of the DV. Let us notice that although all cells

must be considered disconnected, it is apparent that cells

are naturally grouped with regard to their number of cusps.

Additionally, cells with different number of cusps are exclu-

sively separated by curves of the discriminant variety. Fur-

thermore, this distribution is consistent with that obtained for

d1 = 1 in Section 4.3, as can be seen in Fig. 7. However,

here the section is divided into many more smaller intervals

whose borders we cannot apriori ensure to be associated to

a specific number of cusp points. In fact, let us also observe

that the cells with 2 cusp points (in blue) degenerate into one

ρ1

d1

0 cusps
2 cusps
4 cusps
6 cusps

Fig. 6. Cell Decomposition for (ρ1,d1)

ρ1

d1

Fig. 7. Zoom in of the cell decomposition for (ρ1,d1). Line d1 = 1

in white.

single point for d1 = 1. So we could claim that the case with

d1 = 1 is a very special degenerate 3-RPR manipulator.

5.3 Study of the cusp points on the borders of the CAD

At this point we can only certify the number of cusp

points in the open cells. This excludes the cell borders. The

union of all these borders consists of the DV plus the delim-

itation of intersection points of the DV. However, by defini-

tion, changes in the number of solutions can only happen on

the DV. So, we just need to analyze the DV.

We could try executing a further iteration of the CAD on

the DV, but the system to be solved turns out to be too com-

plex and we cannot obtain any results after long computa-

tions. It is clear that not all points on the DV will correspond

to the same number of solutions. But we can expect the num-

ber of solutions to be preserved along the DV between two

consecutive auto-intersection points of the DV. And although

it has not yet been proven, many tests have been run on sev-

eral examples with random points on the DV and all the re-

sults confirm what the following conjecture infers.

Conjecture 1. Given a polynomial system F , let V be the

DV of F w.r.t two parameters U1,U2, and let A be the set of

its auto-intersection points. Then, the number of solutions of

F is constant on each connected component of V \A .

The following algorithm analyzes the to study the num-

bers of solutions on the DV based on the previous conjecture.
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Fig. 8. Distribution of cusp points on DV (CF ;ρ1,d1) (a), and

zoom in view on [0,1.5]× [0,1.5] (b).

Algorithm 4 Number of solutions of F on the DV

V = variety of DV (F ;U1,U2)
A = {auto-intsersection points of V }
for each connected component Ui of V \A do

pi = random point on Ui

Compute the number of solutions on Ui as

the number of solutions of F|pi

end for

for each point q ∈ A do

Compute the number of solutions of F |q
end for

5.4 Complete analysis and applications

From the results exposed in the previous subsections and

by joining all the different pieces together we obtain a com-

plete partition of the 2-dimensional parameter space.

The execution of Algorithm 4 on DV (CF ;ρ1,d1) pro-

vides the distribution of cusp points shown in Fig. 8. The

integral picture of the 2-dimensional distribution is given in

Fig. 9. It is interesting to notice that there is a continuity on

the transitions between cells having the same number of cusp

points, since their common border inherits that same number

of cusp points.

Observe also that this distribution has been obtained

thanks to the DV associated to the chosen parameters d1 and

ρ1, which depends exclusively on these two parameters. In

particular, DV (CF ;ρ1,d1) does not depend on ρ2 nor ρ3. This

tends to be erroneously interpreted as:

“if we pick a (ρ1,d1)-point with associated number of

cusps k, then whatever the values ρ2 and ρ3 may take,

CF |(ρ1,ρ2,ρ3,d1) has k solutions”.

Instead, it should be read as follows:

“if we pick a (ρ1,d1)-point with associated number of cusps

k and fix these values then, among the reachable configura-

tions there are k cuspidal ones, i.e. CF |(ρ1,d1) has k solu-

tions”. However, the number of associated cusp points does

establish a maximum of cuspidal configurations for any val-

ρ1

d1

Fig. 9. Complete analysis of the cusp points for (ρ1,d1)

ues ρ2 and ρ3. For example, in yellow regions we can have a

maximum of 4 cuspidal configurations, but depending on the

values of ρ2 or ρ3 there can even be none. In particular, for

the red regions there are 0 cusp points for all possible values

ρ2 and ρ3.

Some applications can be derived which may be inter-

esting from the designer’s point of view:

• It can be helpful in deciding the most suitable architec-

ture of the mechanism. Let us assume that we want to

design a 3-RPR manipulator with some given geometric

constraints such that for a specific task one of the legs

has to be blocked to a fixed length ρ1, but the job re-

quires a large singularity-free workspace. Therefore, we

may be interested in finding a range ∆d1 of parameter

values for which the manipulator is cuspidal.

• It can also be useful for deciding the most suitable

ranges of leg lenghts for each possible architecture,

given a specific task. For instance, let us assume that the

job is set for a non-cuspidal manipulator with parameter

values A2x = 1, A3x = 0, A3y = 1, β =−π/2, and d3 = 1,

but it requires the largest possible range of the leg length

ρ1. Then, the value d1 can be optimized with this crite-

rion. Figure 10 details both the optimal valule d1 and the

largest possible range ∆ρ1 for our problem.

Let us just notice that in both cases the obtained ranges

can be of varied topology (open, closed, semi-closed, open

and closed, connected, or even a union of these types). This

is due to the combination of both the CAD and the study of

the cusp locus on the DV.

6 Conclusions

This paper has introduced both an efficient method for

the computation of the cuspidal configurations of a mecha-

nism, and a reliable algorithm that partitions a given param-

eter space into open regions with constant number of associ-

ated cusp points.

The first one is based on a symbolic-algebraic approach

able to describe the roots of exact multiplicity 3 and a cer-

tified numerical algorithm that isolates among them the real
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Fig. 10. Optimal d1 and ∆ρ1 for non-cuspidal degenerate 3-RPR.

(i.e. not complex) ones. This symbolic-numeric approach is

more efficient than other previously existing methods, which

mainly relied on the approximation of roots of multiplicity at

least 3 after reducing the initial system to a simpler one and

projecting it onto the ρρρ-space.

This new method is combined with some algebraic

tools such as the discriminant variety (DV) and the cylin-

dric algebraic decomposition (CAD) in order to analyze a 2-

dimensional parameter space with respect to the associated

number of cusp points. This second algorithm provides a

partition of the parameter space into cells with constant num-

ber of cusp points, which is certified for whatever values are

picked inside each open cell but not on their borders. Cell

borders are further analyzed by Algorithm 4 based on Con-

jecture 1, which still remains unproved.

Both algorithms have been applied to the analysis and

distribution of the cusp locus for a family of degenerate 3-

RPR manipulators, and some applications to robot design are

also derived. This does not mean that the two given algo-

rithms are specially designed for this type of 3-RPR mecha-

nisms. Indeed, they are suitable for more general examples

since they do not rely on any ad-hoc formulation. Neverthe-

less for some examples the obtention of results within rea-

sonable time may not be feasible yet, since there is an im-

portant symbolic-algebraic part, and thus the more complex

the initial system is the harder it will be to compute a parti-

tion on the parameter space.
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recte des manipulateurs parallèles plans à trois degrés

de liberté”. Mechanism and Machine Theory, 27(2),

pp. 107–119.

[11] Pennock, G., and Kassner, D., 1990. “Kinematic anal-

ysis of a planar eight-bar linkage: application to a

platform-type robot”. In ASME Proc. of the 21st Bi-

ennial Mechanisms Conf., pp. 37–43.

[12] Kong, X., and Gosselin, C., 2001. “Forward displace-

ment analysis of third-class analytic 3-RPR planar par-

allel manipulators”. Mechanism and Machine Theory,

36, pp. 1009–1018.

[13] Wenger, P., and Chablat, D., 2009. “Kinematic analysis

of a class of analytic planar 3-RPR parallel manipula-

tors”. In Proceedings of the 5th International Workshop

on Computational Kinematics, pp. 43–50.

[14] Wenger, P., Chablat, D., and Zein, M., 2007. “Degen-

eracy study of the forward kinematics of planar 3-RPR

parallel manipulators”. ASME J. Mechanical Design,

129(12), pp. 1265–1268.

[15] Gosselin, C., and Angeles, J., 1990. “Singularity analy-

sis of closed-loop kinematic chains”. IEEE J. Robotics

and Automation, 6(3), pp. 281–290.

[16] Urı́zar, M., Petuya, V., Altuzarra, O., and Hernández,

A., 2011. “On the cuspidality of the analytic 3-RPR”.



In IFToMM 13th World Congress in Mechanism and

Machine Science.

[17] Hernández, A., Altuzarra, O., Petuya, V., and Macho,

E., 2009. “Defining conditions for nonsingular transi-

tions between assembly modes”. IEEE Transactions on

Robotics, 25, pp. 1438–1447.

[18] Moroz, G., Rouillier, F., Chablat, D., and Wenger, P.,

2010. “On the determination of cusp points of 3-RPR

parallel manipulators”. Mechanism and Machine The-

ory, 45.

[19] Moroz, G., 2008. “Sur la décomposition réelle et
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