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Evaluating the L-MEB model from long

term microwave measurements over a
rough field, SMOSREX 2006

Arnaud Mialon, Jean-Pierre Wigneron, Senior Member 03, IEEE, Patricia de Rosnay, Maria
Jose Escorihuela, Yann H. Kerr, Member 88, Senior Member 01, IEEE

Abstract—The present study analyses the effectso
of the roughness on the surface emission at L-band,
based on observations acquired during a long term,
experiment. At the SMOSREX (Surface Monltormg
Of the Soil Reservoir EXperiment) site near Toulouse;’
France, a bare soil was ploughed and monitored over'4
more than a year by means of a L-band radiometers
profile soil moisture and temperature sensors as wel],
as a local weather station, accompanied by 12 rough-
ness campaigns. The aim of this study is (1) to present
this unique database, and (2) to use this datasef’
to investigate the semi-empirical parameters for the
roughness in L-MEB (L-Band Microwave Emissiono
of the Biosphere), that is the forward model used,
in the SMOS (Soil Moisture and Ocean Salinity) sonl
moisture retrieval algorithm. In particular, we studie
the link between these semi empirical parameter§’
and the soil roughness characteristics expressed in
terms of standard deviation of surface height () ands
the correlation length (LC). The dataset verifies that,
roughness effects decrease the sensitivity of surface
emission to soil moisture, an effect which is most
pronounced at high incidence angles and soil moisturé®
and at horizontal polarization. Contradictory to pre=
vious studies, the semi-empirical parameter Qr waso
not found to be equal to 0 for rough conditions. A,
linear relationship between the semi-empirical param-
eters N and ¢ was established, while Ny and Ny
appeared to be lower for a rough (Ngy ~ 0.59 and®
Ny ~ -0.3) than for a quasi-smooth surface. This
study reveals the complexity of roughness effects ands
demonstrates the great value of a sound long-term;
dataset of rough L-band surface emissions to 1mprove

our understanding on the matter.
68

Index Terms—SMOS, Roughness, Passive Mi;,
crowave, L-band, L-MEB model.

70
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I. INTRODUCTION 72

OIL moisture is a key parameter controlling’
air-land interface exchanges. Although very’
75
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important in many applications (climate models,
agriculture, water resources management), it
is difficult to monitor this variable at a global
scale. The SMOS (Soil Moisture and Ocean
Salinity) satellite mission [1; 2], successfully
launched in November 2009, is the first mission
to deliver global surface soil moisture fields at a
high temporal resolution of 3 days. The retrieval
scheme to derive soil moisture [3] is based
on multi-angular passive microwave brightness
temperatures (f=1.4 GHz) as measured by the
instrument [4] and on surface emission models at
L-band (L-MEB, L-band Microwave Emission of
the Biosphere [5; 6; 7]).

Land surface emission at this wavelength is mainly
controlled by soil moisture but important issues
are still to be tackled [8] such as roughness, which
is the focus of this paper. Roughness influence
on surface emission is complex as it implies
3-D geometric soil surface features as well as
soil moisture heterogeneity, in particular between
peaks and hollows. Its major effect is to decrease
the sensitivity of L-band brightness temperatures
to soil moisture [9; 10]. Shi et al. [11] found by
the use of an Integral Equation Model (IEM) that
roughness influence is more significant at high
incidence angles and high soil moisture content
as well as a function of polarization. They noted
an increase in emissivity with roughness at the
horizontal polarization at low incidence angles. For
dry soil, the emissivity of the vertical polarization
(typically higher than ~0.8) shows a decrease
compared with that of a flat surface, whereas for
wet soil (emissivity lower than ~0.8) an increase
is observed.

Using complex models as the IEM approach to
compute the surface emissivity is not possible
in the SMOS soil moisture algorithm as it
needs many inputs and its computation is time
demanding. Instead the SMOS level2 retrieval
algorithm [3] wuses semi-empirical approaches
[7; 8] to compute the emission of the surface.
The correction for a rough surface [9; 10; 12; 13]



83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

929

100

101

102

103

104

105

106

107

108

109

110

iah

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

is based on empirical parameters (Hr, Ny, Ngw
Qr) that have to be calibrated with in-situ datas
reflecting local surface characteristics (soil texturess
level of roughness). Most recent studies on Lo
band emission [14; 15; 16] have retrieved these:
parameters to best fit the observations, but more:
investigations are needed on roughness to relate thes
soil L-MEB parameters to the surface roughness.
characteristics. 145
The roughness analyses conducted so far have all
been either restricted to short investigation periods:
[17; 13] or to almost flat surface conditions [18]s
only. These have motivated the present study whichs
for the first time focuses on a rough soil observeds
over a long time period at the SMOSREX (Surface:
Monitoring Of the Soil Reservoir EXperiment) site:
in 2006/07. A bare soil was ploughed creating as
very rough surface and its roughness evolved fos
over more than a year naturally due to climaties
events (rainfalls, wind). 156
157

The aim of this study is twofold. First, thiss
unique database (referred to as SMOSREX-2006
is presented and the L-band observations over
the rough surface covering a wide range of soik
moisture conditions (from very wet to very dry) are:
analysed over a long period of time (14 monthsjes
Second, the SMOSREX-2006 is used to evaluates
the roughness parameters of the semi empiricals
model used in the L-MEB model. Qr, Hr and Ngs
(p for the polarization horizontal or vertical) are
retrieved in this evaluation and compared with thes
surface roughness characteristics. 169
170

171
II. MATERIAL
A. Database and experimental site 172

In preparation of the SMOS mission, thes
experimental site of SMOSREX (Surface:
Monitoring Of the Soil Reservoir EXperiment [19])s
has been set up near Toulouse in the Southwests
of France. Operating since 2003, the database has
been used to improve the models implemented ins
the SMOS soil moisture retrieval [3; 20; 18]. 179
It is equipped with the LEWIS (L-band radiometeso
for Estimating Water in Soil) radiometer [2L
which has been continuously monitoring the:
emission of the surface. The instrument, placeds
on a 15m high tower can monitor two fieldss
one with grasscover and a bare soil. It acquiress
brightness temperatures at vertical and horizontals
polarizations (commonly referred to as V and Hy
at the same frequency as SMOS, i.e. 1.4 GHz, at
several incidence angles (i.e. 20, 30, 40, 50 ands
60°) every 3 hours (i.e. 2h30, 5h30, 8h30, 11h30s

14h30, 17h30, 20h30, 23h30 UTC).

Additionally, ground measurements are available.
Soil texture was analysed and the bare soil was
found to be 17% clay , 36% sand and 47% silt [19].
The SMOSREX site is equipped with a weather
station, which has been monitoring meteorological
data (air temperature, pressure, precipitation,
wind) and soil moisture and temperature profiles
are measured on each field every 30 minutes.
Temperatures measured at different depths, i.e. at
lem, Scm, 20cm, 50cm and 90cm with one probe
per depth, at the same location as the soil moisture
probes, are used to compute the soil temperature.

Surface soil moisture is obtained by averaging data
from 5 probes placed at the surface (top 0-6 cm
layer) on the bare soil field. Soil moisture probes
are calibrated from gravimetric measurements [22],
from which soil density is estimated.

It is important to note that obtaining an accurate
estimation of soil moisture is difficult and can
be slightly different from what contributes to
the brightness temperatures measured by the
radiometer. Due to surface heterogeneity, some
differences can occur between the surface covered
by the probes (~4m?) and LEWIS field of view
that covers a wider surface [19]. Moreover, peaks
and hollows imply strong heterogeneity in the
surface soil moisture conditions, as soil water
content is generally higher in hollows than on
peaks. Finally, soil moisture probes measure the
dielectric constant over the 0-6 cm top soil layer,
whereas the surface emission in L-band is expected
to be correlated to the soil moisture of the top 2-3
cm soil layer [23].

B. Roughness measurements

The roughness experiment took place on the
bare soil field. On January 13th, 2006 the field was
ploughed in a deep manner to ensure a distinct row
structure parallel to LEWIS plane of incidence.
Thereafter, surface roughness changed naturally
over time in response to climatic events, mainly
rainfalls and wind.

Surface roughness is measured by means of a
two meter long needle board with 201 needles
at 1 cm spacing. The needles move freely in the
vertical direction and were allowed to fall til they
touched the surface reproducing surface variations.
Twelve measurement campaigns were conducted
over the following 14 months (see Table I), each
consisting in the acquisition of several roughness
profiles (up to 6), in both directions, i.e. parallel
and perpendicular to the plane of incidence of
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the LEWIS instrument. Pictures of each verticalk
profiles were taken with a digital camera to obtain:
the corresponding numerical profiles of the heights
variation. These were then used to derive two statig=
tical parameters describing the surface, the standargs
deviation of heights -6- and the correlation lengths
-LC [24]. The daily ¢ are obtained by averaging the;
variance, i.e. 62, of the different samples acquiregs
in both directions. LC was derived from the autess
correlation function C(x), Eq. 1 [24; 25], whicho
measures the correlation between two heights seps

arated by a distance x: 252
253
ZN+1_jZ Ziv1 254
_ L=l iLj+1—i
C(x) = — <N 2 (b
i=1%i 256

where z(i) is the height of the needles; j aw
integer > 1; the spatial displacement x=(j-1).0x; dxe
being the distance between 2 needles, i.e. 1 cm; Ne
the number of needles N=201. The LC correspondso
to the distance x where the correlation functiosm
(Eq. 1) has decreased to l/e, i.e. beyond which
two heights are no longer statistically correlated,
[24]. The auto-correlation function is commor}llz}é3
approximated by the function C(x):exp(zlcf,‘ bes
where n=1 for the Exponential model or n=2
for the Gaussian model [26; 25; 27]. For eaczkge
day of measurement LC is simply the average of
the different profiles, mixing both directions. chga
example, a flat surface is characterized by a low g
and a high LC. .
Data acquired before this campaign, i.e. in February,
and April 2004 [18] and in January 13th just beforg,
ploughing the soil, are also used as they providg,
additionnal information concerning a quasi-smooth,
surface. Roughness was also measured in 2010 sg,
that the soil roughness temporal variation could bg,
estimated at interannual scale.

277

278

III. METHODOLOGY
A. Observations

The first part of our study is dedicated to surfaces
emission at L-band as observed by the LEWISo
radiometer. All cases such as freezing, snow (snowvé
storm on January 28-30 2006) that may introduce:
artefacts are excluded from the dataset. It is mores
pertinent to study surface emissivity than brightness.
temperature as the latter is also influenced by thes
soil temperature. The emissivity € of a bare soils
is obtained from the measured brightness temperass
tures by removing surface temperature and the skxs
contributions by applying the following €, =(TBgs
- TBg,) / (Teff - TBgy), where the subscript o
stands for the polarization (H or V), and Teff s

the effective soil temperature [28] as computed
from measured temperatures at all depths based on
[19; 29]. The sky contribution Ty, is quite low at L-
band and set to a constant value of 3.7 K according
to [21; 30].

To study the effect of surface roughness on the
measured signal, the prevailing surface conditions
are divided into four classes of differing 6. Ranges
of ¢ are defined from a trend of measured ¢ (Eq. 5)
to better emphasize the effect of roughness on the
signal. The evolution of ¢ with time (Table I and
Fig. 1) suggests the following ranges : ¢ < 16 mm
relative to smooth surface, i.e. before the campaign
; © belonging to the range 16-20 mm characterizing
the steady state reached by the surface at the end of
the campaign, from the end of April 2006 to March
2007 ; o between 20 and 24 mm for the transition
between very rough and steady state surface, from
February to April 2006 ; and a last case concerning
a very rough surface characterized by a ¢ higher
than 24 mm, just after ploughing.

B. Surface modeling

This database is also used to retrieve and study
the semi-empirical parameters in the L-MEB that
account for the effect of a rough surface [3; 7]. The
emission of a flat surface is obtained by computing
its dielectric constant from soil conditions, i.e.
texture, temperature and surface soil moisture. The
model developed by Mironov et al. [31; 32] is
used as it has been shown to be more relevant for
our experiment site [23] than the Dobson’s model
[33; 34]. The reflectivity I = 1-¢, is then derived
using Fresnel’s law for a flat soil. The surface
emission, or reflectivity, must then be corrected
to take into account a rough air-soil interface.
This roughness contribution is estimated by the
following semi-empirical approach [10; 17; 18]:

[,(8) = [(1— 0r).I(6) + QrI)(8)] e Hree’™®)

@)
where I' is the reflectivity with the subscripts p
and q = V or H for the Horizontal and Vertical
polarizations; the index O stands for reflectivity
of a flat surface computed from the Fresnel’s
law; 6 being the incidence angle; Qr, Hr, N,
are the roughness parameters to be calibrated
[10; 17]. Qr is a mixing factor that allows us to
take into account the polarization mixing caused
by the rough surface, N, allows us to account
for the incidence angle [35] and depends on the
polarisation [18] and Hr is the effective roughness
parameter.
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A first attempt to relate these empiricak
parameters to surface roughness suggested that
Hr = (2ko)? [9]. Hr was also found to depends
on soil moisture [17; 18; 14] but as it has not
been confirmed [23], it is not considered in thes
present study. This dependence could be partiallys
explained by a mismatch between sampling depth,
of soil moisture sensors and the actual depths
of the surface emission layer in L-band [23}.
N, (p = H or V for horizontal and verticak
polarization) was found to be different for the twae:
polarizations and Ny=1 and Ny=-1 were found
for our SMOSREX site [18]. Qr is generallﬁy
considered to be negligible [14; 15; 13; 18] at
L-band but in reality a rough surface implies @s
mixing in polarization [10; 26] that can only be:
simulated by setting Qr > 0 [11]. a5

356

Parameter retrieval: a7
4 parameters are unknown in Eq. 2, that are Qr, His
Ny and Ny. The retrieval is done in two steps. Thes
first one is based on a relationship between Nppo
and Ny [18]. Indeed, both theory using Fresnel’s
law and observations over a flat surface show that
the reflectivity at H and V polarizations are relateds
by the following approximate equation (see [18])sws+

365

I (8) = 3)

For a smooth surface, AN (Eq. 3), i.e. thg,
difference (Ny - Ny), was found to be equal tg,
2 [18] which is not relevant for a rough surfacg,
[11]. Ty(8) and T'y(0) are extracted from oug,
database (i.e. LEWIS measurements) for each day,
of the roughness campaign (see Table I, left hang,
column) allowing us to compute AN for rough,
conditions. The second step uses Eq. 2 from Lewis,
brightness temperatures, where Ny - Ny are linkegds
together as a results of the first step. 76
The retrieval consists of minimizing a cost functiog,
that computes the quadratic differences betweep,
measured emissivities (€;s at incidence angles,
of 6 = 20, 30, 40, 50° and both polarizationsy,
and simulated emissivities (€,,,4¢;).- This sets thg,
best values of parameters (Eq. 2) that fit thg,
observations [3] [5]. The cost function to bg,

[Ty (6)] ™"

minimized is: 384

385

386

€ € let P 2 387

CF = Z( lewis — mndel Z > z) (%)8
6(£lems i P

where €p,;; at all angles and polarizationso
are used; O(€jyis) being the error in emissivity:
measured by LEWIS instrument [21]; P; are.

the retrieved parameters (Qr, Hr, and N,), Pf””
the initial values of the retrieved parameters
(respectively Qr" = 0.1, Hr'™" = 0.75, N, = 1);
and &(P;) the standard deviation of the retneved
parameters (8Qr = 1, 8Hr = 2, 0Ny = 1).

As Qr was found to be = 0 [13], two cases are
considered here: A) where Qr = 0 and Hr, Ny and
Ny are retrieved and B) all the 4 parameters Qr,
Hr, Ny and Ny are retrieved.

IV. RESULTS AND DISCUSSION

This section presents the results obtained from
the SMOSREX-2006 campaign. Firstly, roughness
measurements are presented for 14 months and
secondly, the emissivities measured by the LEWIS
instrument are analyzed to better understand
the effect of roughness on the L-band surface
emission. Finally, this database is used to study the
semi empirical model that accounts for roughness
in L-MEB. The parameters of the semi-empirical
model are derived and related to surface roughness
conditions.

A. Measured roughness

Table I presents the means and standard
deviations of ¢ and LC as well as the ratio 6/LC
acquired during each day of the campaign. Mean
values are obtained considering samples at both
orientations, i.e. parallel and perpendicular to
LEWIS plane of incidence. Before ploughing,
the surface was almost flat characterized by
6=4.73£1.31 mm and a correlation length LC =
94.11 + 38.81 mm. As a comparison, previous
measurements of the SMOSREX site [18] reported
6 = 11.09 mm in February 2004 and 6 = 9.12 mm
in April 2004, indicating a smooth surface. After
ploughing, the surface was characterized by a
standard deviation height ¢ of 34.58 mm + 10.29
mm and a correlation length of 62.424+26.68 mm.
The auto-correlation functions (Eq. 1) suggest that
the surface is closer to an exponential one than a
gaussian one [26; 27].

The time variations of ¢ (top panel), the cor-
relation length (2"¢ panel from the top), the soil
moisture (3’ panel from the top) from the end of
2005 to March 2007 and the emissivity monitored
at an incidence angle of 40 at both polarizations
(bottom panel) are given in Fig. 1. The effects
of the soil ploughing can be clearly distinguished
on January 13/ (top panel) and is characterized
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TABLE I
STANDARD DEVIATION OF HEIGHTS, G, AND THE CORRELATION LENGTH, LC, FOR EACH DAY OF THE CAMPAIGN. 6 AND LC
ARE AVERAGED FROM EVERY SAMPLES ACQUIRED AT BOTH DIRECTIONS. THE RIGHT-HAND COLUMN IS THE RATIO 6/LC

date Roughness Characteristics

Year Standard Deviation correlation length  o/LC
mm/dd/yy  of surface height 6 (mm) LC (mm) (mm)
02-07-03* 11.51%F £ 2.72 59.56* + 35.90 0.19%
02-04-04* 11.09* + 3.59 101.22* + 4220  0.11*
04-02-04* 9.12% + 2.18 70.67* £ 33.70 0.13*
01-13-06* 473" £ 1.31 94.11* + 38.81 0.05*
01-13-06 34.58 £ 10.29 62.42 £ 26.68 0.55
01-20-06 29.67 £ 9.66 70.21 £ 29.55 0.42
02-01-06 26.85 £ 11.17 60.99 £+ 16.90 0.44
02-20-06 25.58 £ 5.86 65.26 £+ 22.88 0.39
03-16-06 23.10 £ 6.61 76.06 £+ 33.78 0.30
04-03-06 25.44 £+ 6.76 87.78 £ 34.97 0.29
05-04-06 20.93 £ 7.05 96.08 £ 56.66 0.22
05-30-06 20.32 £ 7.22 82.39 + 31.60 0.25
06-29-06 18.05 £+ 4.84 105.19 £ 43.16 0.17
11-24-06 19.25 £+ 5.99 118.21 £ 33.12 0.16
03-12-07 17.43 +£ 5.72 115.32 £ 42.66 0.15
10-06-10 12.31 + 3.19 122.68 + 62.42 0.10

* Measurements before ploughing

by a sharp increase in ¢ followed by a notices.
able decrease in ¢ from January to May. Then @
decreases more slowly, reaching a quasi-constanis
value by July 2006. After 14 months ¢ was abouts
17.4 mm. In June 2010 the soil roughness was meazs
sured (Table I) and presented a level of roughnesss
comparable with the value measured in April 2004
as 6=12.31£3.19 mm and LC=122.68+62.42 mms;
This trend is well reproduced using an exponential.
fit function (dashed line top panel Fig. 1) as: s

434

)

with DOE being the Day of the Experiment (dashet®
line top panel Fig. 1). The correlation length
LC- presents an opposite behaviour, showing a lo#*
value after ploughing and increasing with time as
the surface becomes less and less rough. A fit
function was used to represent its trend (dasheﬁ9
line, 2nd panel from top Fig. 1) and is defined asz

(67

The effect of ploughing leads to a decrease in.
soil moisture as shown in Fig. 1 (2™ Fig. froms
the bottom) in January 2006. This effect could bes
explained by a redistribution of the water contents
within the soil. Consequently, the emissivitys
(bottom panel of Fig. 1) increases whereas thes
difference of polarization, €y-€y, decreases. I
should be noted that ploughing changes also the:
bulk density: the soil density decreasing froms.
1.5 kg/m?® in 2005, to 1.39 kg/m’ in February
20th, 2006. Weather conditions then compact the
surface, decreasing ¢ and increasing the density tes
1.57 kg/m?® in November 2006. Thus, ploughings
the surface modifies the soil properties (bulks

o = 38.35xDOE 126

LC = 48.67xDOE"13?

density, soil moisture redistribution) impacting the
dielectric constant and so the surface emissivity
[17].

¢ and LC are correlated as seen in Fig. 2, which
reports the relation existing between LC, 6/LC and
62/LC as a function of 6. Estimating LC from field
measurements is difficult (i.e. the measurements
are noisy) but a modeling study [36] has shown
that it has a very low influence on brightness
temperature, especially at H polarization. The
results of ¢ and LC are slightly different to what
was obtained with the same database [26] as their
methodology to compute ¢ and LC is different.

B. Observations of surface emissivities

Fig. 3 presents the emissivity calculated from
LEWIS measurements as a function of soil mois-
ture at 4 incidence angles, from 6=20° (top row)
to 6=50° (bottom row) and for both polarizations
(V black dots and H grey dots). The different
columns correspond to the four roughness classes
from quasi-smooth on the right to rough surfaces on
the left. Emissivity computed from Fresnel’s law is
plotted (grey and black lines Fig. 3) characterizing
the emission of a perfectly smooth surface with
identical surface conditions (i.e. with the same
soil moisture, density, temperatures). As expected,
emissivity decreases with increasing soil moisture
at both polarizations and all angles. The effect of
roughness is to decrease the sensitivity of surface
emission to soil moisture. This can be observed
especially at wet conditions (i.e. > 0.25m3/m?),
where the emissivity increases with roughness. The
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Fig. 1.

Time series of surface parameters from December 2005 to March 2007. Top Fig. is ¢ (in mm) and its standard deviation

; The surface was ploughed the 13th of January 2006. 2nd from the top: the correlation length ; 3rd panel: soil moisture (black x,
left hand y-axis) and precipitation (grey sticks, right hand y-axis, note that it is inversed for graphical convenience) ; Bottom figure
is the emissivities at V (black dots) and H (grey dots) polarizations monitored by Lewis radiomater at an incidence angle of 40°.
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Fig. 2. LC, 6/LC and 6%/LC as a function of G. For each case are displayed: the measured ¢ and LC (Table I), “0” symbols and
referred to as *“ measured ” in the legends; ¢ and LC obtained from Eq. 5 and 6, +” symbols and referred to as “modeled” in the
legends. Measured and model data are similar for data acquired before ploughing the surface.

difference between the emissivities at H and V paes
larization increases with increasing incidence angles
for each wetness conditions but is decreased witho
roughness. Furthermore, the impact of roughness:
on the emissivity is more pronounced at H than:
V polarization. At the incidence angle of 40°, thes
emissivity at H pol. is ~ 0.56 at a soil moisture.
content of 0.3m3/m> and for a smooth surface (3rds
line, right hand side Fig. 3) whereas it is ~ 0.8 for a
rough surface (left hand side Fig. 3). It corresponds

to an increase in the emissivity of 0.24, whereas for
the V polarization this increase is ~ 0.145, from an
emissivity of ~ 0.72 for flat condition to ~0.865 for
a rough surface. The decrease in the emissivity with
soil moisture has a linear trend for rough conditions
and for each incidence angle (left-hand columns
Fig. 3), the effect being again more pronounced at
H polarization than at V polarization.
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Emissivity at V (black x) and H (grey +) polarizations, monitored at 4 incidence angles as a function of soil moisture :

207 (top row figures), 30° (2nd row), 40° (3rd row) and 50 ¢ (bottom row). The 4 columns correspond to roughness conditions,
from a very rough surface -1st column from the left- to quasi-smooth condition (right hand side column). Emissivity computed
from Fresnel’s law (flat surface) is shown as black (V pol.) and grey (H pol.) continuous lines.

C. L-Meb model calibration 496

The second objective of this paper is to use th¥’
database to study the roughness parameters (Qf%®
Hr, Ny and Ny) as defined in Eq. 2. 499

500

1) Relation between Ny and Ny: AN is derivedr
from Eq. 3 and presented in Fig. 4 as a function ot
¢ values estimated by the fit function (Eq. 5 ands
grey dashed line Fig. 1). The use of the fit insteads
of actual values is done to limit errors caused bys
sampling limits in characterizing the field (2me
board and ~ 8 samples per day). Fig. 4 clearly
shows a decreasing trend of AN with ©, wells
represented by the linear function defined as AMe
= Ny-Ny =-0.049 . ¢ + 2.188 (R = 0.90, RMSE»
= 0.16, bias=0). Smoother surface, i.e. ¢ < 16
mm, is characterized by a AN of ~ 1.8, which
in agreement with AN = 2 found previously [18§
whereas it is ~0.5 for very rough surface, i.e. G
35mm. This trend is close to that obtained in [13]s

(AN = -0.036 x 6+2.24) over another agricultural
site.

2) Retrieved parameters: N, (p= H or V), Qr
and Hr (Eq. 2) were derived from Eq. 4, for every
day over the period November 2005-April 2007.
The emissivity computed using these parameters,
leads to an RMSE=0.022 (R%*=0.95) when com-
pared to LEWIS emissivity, whereas an RMSE =
0.053 (R%=0.69) is encountered when applying the
parameters found by Escorihuela et al. [18] over a
flat surface. Fig. 5 presents the retrieved roughness
parameters Qr (top Fig.), Hr (middle Fig.) and Ny
and Ny (bottom Fig.) for case B as a function of
time. The time variation in ¢ and its best fit trend
(Eq. 5) are also showed for comparison. Hr presents
a high variability, but in general it decreases as ¢
decreases.

The high variability in the retrieved values of
Hr could be linked to the fact that this parameter
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570

571
tends to compensate for the difference betweep,

the sampling depth [23] [37] of the in-situ sojl,
moisture sensors (~ 0-6 cm top soil layer),
and of the LEWIS observations (~ 0-2/3 cm),
For example after a rain event following dry,
soil moisture conditions, the LEWIS observations,
immediately show a clear decrease in the monitored,
brightness temperatures whereas the in-situ probg,
still measures a low water content. Whilst LEWIS,
is sensitive to the first 0-2/3 cm, which is wet afteg,
a rain event, the probe integrates the soil moisturg,
between the surface layer which is wet and g,
deeper layer which is dryer. In this case, the soj],
moisture estimated by the probe is underestimateg,
in comparison to the soil moisture seen by LEWIS,,
The L-MEB model uses this underestimated soj],
moisture and compensates this effect by adjusting,
Hr to fit the LEWIS observations. Such effects,
may explain the high variability in the retrieved,
values of Hr obtained in May, July, September,
2006. The opposite situation is also observed,
(dry surface over the 0-2/3 cm surface layer and
rather wet conditions over the 0-6 cm surfaces
layer) and could explain high retrieved valugg,
of Hr obtained in March 2004 and November 2003,,
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The results of the retrieval are presented as @
function of the estimated ¢ (Eq. 5, dashed lines
top Fig. 1) and LC (Eq. 6) in Fig. 6 and Fig. s
(grey markers for the case A with Qr=0 and blacko
markers for the case B where Qr is retrievedgo
We also studied the derived parameters with the:
quantity o/LC (not shown here), but the resultss
are very similar to the results presented in Fig. G
Qr (case B, it is retrieved, black e Top left Fig. G
increases significantly from values around 0.05 fas

a flat surface to 0.3 for a rough surface. A Low Qr
value for a quasi-smooth surface is in agreement
with both theory (no polarization mixing, [11])
and observations [13] [18]. It confirms also that
Qr is not equal to O for rough surface and needs
to be taken into account to model the signature
of rough soils. Retrieved values of Hr (Top right
Fig. 6) show more variability as mentioned earlier.
They evolve on average from ~ 0.2-0.3 for a
smooth surface to ~ 1 for a rough surface. The
relation Hr=f(c) obtained in [13] is represented by
the dashed line, fitting the results of the presented
study. It is interesting to note that this relationship
obtained for different conditions over a different
site and a variety of soil roughness conditions
provide a good general fit to the results obtained in
this study. These results confirm that the empirical
relationship Hr = (2kc)? [9] (dotted line Fig. 6)
is not applicable, also found in [13]. Retrieved
values of Hr when Qr, Hr and Np (p = H or V)
are retrieved are higher than when Qr is set equal
to 0. Qr and Hr variations seem to be correlated to
variations in 6 whereas no clear correlation with
o could be found for Ny and Ny (bottom left
Fig. 6) confirming the observations of [13]. Ny
and Ny are found on average to be equal to 2.8
and 1 respectively for a smooth surface whereas
the authors of [18] set them to lower values of 1
and -1. For rough surface however, Ny and Ny do
not vary and can clearly be set to Ny= 0.59 and
Ny=-0.30. Q seems related to Hr (bottom right
Fig. 6) by the relation H=2.69*Q (R=0.71). Eq. 2
imposes the conditions Q=0 for H=0, meaning the
emissivity of a flat surface is that from Fresnel’s
law.

The retrieved parameters show the opposite
behavior when studied as a function of LC (Fig. 7)
with Hr and Q decreasing with increasing LC. Ny
and Ny present less variations for a rough surface
(low LC) than in Fig. 6.

V. CONCLUSIONS AND PERSPECTIVES

Roughness effects at L-band are complex and
need more investigations to be fully understood
and modeled [13; 38]. This paper presents the
unique  SMOSREX-2006 experimental database
dedicated to study the effect of roughness at
L-band over 14 months. A bare soil has been
significantly ploughed at the SMOSREX site
and continuously monitored by LEWIS L-band
radiometer. It has been found that the influence
of roughness is more important at high incidence
angles (about 40 to 50?), high soil moisture values
and at H polarization.
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figure shows Qr, middle figure shows Hr and the bottom figure

presents Ny (x) and Ny (+). © and its fit trend (Eq. 5) are also depicted (with right hand side y-axis). The time series are split in
two panels (left and right hand columns) as the time series are not continuous (no roughness measurement in 2005).

The soil moisture derived from the SMO&s
mission is based on a semi-empirical approach,
[8] and the roughness effect is taken into accounts
by the Q-H model [9; 13; 18]. The presenteds
database is also used to study the semi-empirical
parameters of the L-MEB emission model as a
function of surface characteristics represented:
by ¢ and LC. The results of this study suggests
that for a rough surface Qr=0.3, Hr~=1, Ny=
0.59 and Ny =-0.30, whereas a smooth surfaces
is characterized by Qr~0.05, Hr~0.2/0.3, Npgs
~2.8 and Ny ~1. It is different from most of
the previous works on the subject which set Q=0
even for rough conditions. A simple model can
not have been found to represent the dependences
of the semi-empirical parameters with ¢ and L€
due to their high variability, especially in case
of Hr. However, it is interesting to note that
the o-Hr relation proposed by [13] seems to be?
applicable here over SMOSREX conditions. A
linear relationship between Ny and Ny is alsg,
found, with the difference Ngy-Ny decreasing
with ©. The variations of these semi-empirical
parameters can be explained by the difference’
in sampling depth between the sensors that are
not sensitive to the same surface layer. ThiS’
difference can be reduced by selecting somg’
certain weather and soil moisture conditions”

After an important rainfall the soil reaches ifs'
661

field capacity and is more homogeneous in terms
of soil moisture content as both the 0-2/3 cm
top layer (as monitored by LEWIS) and the top
0-6cm (as monitored by the probes) should have
the same soil moisture content. After a drying
period, the soil reaches its lower soil moisture
content and both the probes and LEWIS monitor
the same amount of soil moisture. By extracting
those specific periods, it is expected to reduce the
variability of the derived parameters.
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