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. Following the ideas of Feng et al. [3], a new Newton method is developed to improve these classical algorithms and numerical experiments are presented to show that these methods are faster than the previous ones and provides results with a better quality.

Introduction

This is a first draft of a paper that will be submitted in a near future.

The paper is organized as follow: in the next part, we present the equations to be solved for the Discrete Element Method, and the frictional contact law considered. In the third part, we first present two classical methods to numerically solve the full problem, the first one based on the bi-potential theory, and the second one on the Augmented Lagrangian theory. Then, we show how these methods can be enhanced using an appropriate Newton method. The last part on this article is devoted to the numerical experiments in order to show the main properties of these algorithms.

2 Problem Setting 2.1 The equations of motion of a multi-contact system Classically (see for example [START_REF] Jean | The non smooth contact dynamics method[END_REF][START_REF] Jean | Unilaterality and dry friction in the dynamics of rigid bodies collection[END_REF][START_REF] Moreau | Unilateral contact and dry friction in finite freedom dynamics[END_REF]), the motion of a multi-contact system is described using a global generalized coordinate q (for N p particles, q ∈ R d×Np , where d = 6 for a 3D problem and d = 3 for a 2D problem). Due to the possible shocks between particles, the equations of motion has to be formulated in term of differential measure equation:

Md q + F int (t, q, q)dt = F ext (t, q, q)dt + dR [START_REF] Alart | A mixed formulation for frictional contact problems prone to Newton like solution method[END_REF] where

• M represents the generalized mass matrix;

• F int and F ext represent the internal and external forces respectively;

• dR is a non-negative real measure, representing the reaction forces and impulses between particles in contact.

For the sake of simplicity and without lost of generality, only the external forces are considered in the following. The internal forces are neglected because the general case can be easily derived through a linearizing procedure.

Then, for the numerics, the equation ( 1) is integrated on each time interval [t k , t k+1 ], and approximated using a θ-method with θ ∈] 1 2 , 1] for stability reason (see [START_REF] Renouf | Conjugate gradient type algorithms for frictional multicontact problems: applications to granular materials[END_REF]). Therefore, the classical approximation of equation (1) yields M( qk+1 -qn ) = ∆t(θF k+1 + (1 -θ)F k ) + R k+1 q k+1 = q k + ∆tθ qk+1 + ∆t(1 -θ) qk

(2)

We will denote qfree k = qk + M -1 ∆t(θF k+1 + (1 -θ)F k ) the free velocity (velocity when the contact forces vanish). Then, the first equation in [START_REF] Saxcé | New inequality and functional for contact with friction: the implicit standard material approach[END_REF] becomes

qk+1 = qfree k + M -1 R k+1 . (3) 
In order to write the contact law, for a contact c between two particles (1 ≤ c ≤ N c , where N c is is the total number of contact), we define the local-global mapping

u c = P * (q, c) q R = P (q, c)r c (4) 
where u c is the local relative velocity between the two bodies in contact and r c is the local contact forces (u c , r c ∈ R d where d is the dimension of the problem, and P * is the transpose of matrix P ). We also denote P(q) the total-global mapping, for u and r in R d×Nc (vectors composed of all relative velocity and contact forces respectively):

u = P * (q) q R = P(q)r (5) 
In the discretization, a prediction of q is computed to estimate the mapping P(q) (see equations [START_REF] Renouf | Numerical simulation of twodimensional steady granular flows in rotating drum: On surface flow rheology[END_REF] and [START_REF] Rockafellar | Convex Analysis[END_REF] in the following).

Using the equations ( 2) and ( 5), the discretization of the motion of a multi-contact system, with frictional contact between particles can be written:

ũk+1 = ũfree k + Wr k+1 law c (ũ c k+1 , r c k+1 ) = .true. ∀c ∈ {1, 2, ..., N c } (6) 
where W = P * M -1 P is the Delassus operator, and ũfree k = P * qfree k is the relative free velocity. Notice that a Newton impact law is also considered (see [START_REF] Moreau | Unilateral contact and dry friction in finite freedom dynamics[END_REF] and equation [START_REF] Ramaniraka | Thermomémcanique des contacts entre deux solides déformables[END_REF] in the following), that modify u k and u f ree k by ũk and ũfree k respectively.

The second equation in [START_REF] Fortin | Numerical Simulation of Granular Materials by an improved Discrete Element Method[END_REF] is the implicit frictional contact law that is in our case the classical Signorini condition and Coulomb's friction law.

The frictional contact law

In the local coordinates system defined by the local normal vector n and the tangential vector t ⊥ n, any element u and r can be uniquely decomposed as u = u n n + u t and r = r n n + r t respectively. In these coordinates, the unilateral contact law can be stated using the Signorini's conditions (see figure 1 for a graphical representation):

u n ≥ 0, r n ≥ 0, u n r n = 0. (7) 
u n

Contact

No contact r n

Figure 1: The Signorini conditions

On the other hand, the Coulomb's law of friction can be stated using the algorithmic form (see figure 2 for a graphical representation):

      If r n = 0 then u n ≥ 0 ! No contact
Else if r n > 0 and r t < µr n then u = 0 ! Sticking Else r n > 0 and r t = µr n then ∃λ ≥ 0 such that u t = λ rt rt ! Sliding For a given friction coefficient µ, let K µ be the isotropic Coulomb's cone, which defines the set of admissible forces (see figure 3):

K µ = {r = r n n + r t : r t -µr n ≤ 0} (9) R R n t K µ K µ * Figure 3: The Coulomb's cone
The previous law can be also written:

      If r n = 0 then u n ≥ 0 ! No contact Else if r ∈ I(K µ ) then u = 0 ! Sticking Else r n > 0 and r ∈ B(K µ ) then ∃λ ≥ 0 such that u t = λ rt rt ! Sliding ( 10 
)
where I(K µ ) and B(K µ ) are respectively the interior and the boundary of the cone K µ .

Numerical Resolution of the contact/friction problems

We will describe in this section the numerical algorithms that will be considered in the following. Generally, to solve the problem (6), the numerical algorithms considered are based on two levels: the global level where the equations of motion are solved, and the local level devoted to the resolution of the contact law.

Resolution of the global problem : the Non Linear Gauss Seidel Method (NLGS)

In this paragraph, we describe the algorithm used at the global level to solve the problem [START_REF] Fortin | Numerical Simulation of Granular Materials by an improved Discrete Element Method[END_REF]. Following the ideas of Jean and Moreau [START_REF] Jean | The non smooth contact dynamics method[END_REF][START_REF] Moreau | Unilateral contact and dry friction in finite freedom dynamics[END_REF], we use the non-linear Gauss-Seidel algorithm which is the most commonly used. It consists in considering successively each contact until the convergence. The numerical criterion used to state the convergence will be studied latter in the paper. This method is intrinsically sequential but it is possible to used a simple multi-threading technique which consists in splitting the contact loop into several threads. This method has been studied in [START_REF] Renouf | A parallel version of the Non Smooth Contact Dynamics algorithm applied to the simulation of granular media[END_REF] in the case where the local algorithm is based on the Augmented Lagrangian method.

Notice that it is also possible to consider at this stage more sophisticated method such as a conjugate gradient type method (see for example [START_REF] Renouf | Conjugate gradient type algorithms for frictional multicontact problems: applications to granular materials[END_REF]).

The standard bi-potential based method (SBP)

In this paragraph, we provide a first method to solve the contact problem, at the local level (contact point between two particles). The method is based on the notion of bi-potential, introduced by de Saxcé et al. [START_REF] Saxcé | New inequality and functional for contact with friction: the implicit standard material approach[END_REF].

Using the bi-potential framework, it can be shown (see for example [START_REF] Saxcé | New inequality and functional for contact with friction: the implicit standard material approach[END_REF][START_REF] Fortin | Simulation numérique de la dynamique des systèmes multicorps appliquée aux milieux granulaires[END_REF][START_REF] Fortin | Numerical Simulation of Granular Materials by an improved Discrete Element Method[END_REF][START_REF] Sanni | Modélisation et simulation bi et tri-dimensionnelles de la dynamique unilatérale des systèmes multi-corps de grandes tailles: application aux milieux granulaires[END_REF]) that a couple (u, r) verifies the Signorini-Coulomb contact rules if

b c (v, s) + v • s ≥ b c (u, r) + u • r = 0 ∀v, s (11) 
where b c is the bi-potential

b c (-u, r) = Ψ R + (u n ) + Ψ Kµ (r) + µr n u t ( 12 
)
and Ψ C stands for the indicatrix function of the set C:

Ψ C (x) = 0 if x ∈ C, Ψ C (x) = +∞ if x / ∈ C.
Consequently, the contact law can be written in a compact form of an implicit subnormality rule (or a differential inclusion rule):

-u ∈ ∂ r b c (-u, r). (13) 
Then, for a contact c, at a NLGS iteration i, knowing the relative velocity ũc,i , the algorithm to compute r c,i+1 from r c,i is based on the minimization of the bi-potential (see for exemple [START_REF] Fortin | Simulation numérique de la dynamique des systèmes multicorps appliquée aux milieux granulaires[END_REF], page 51), using the inequality:

b c (-ũ c,i , r) + ũc,i • r ≥ b c (-ũ c,i , r c,i+1 ) + ũk,i • r c,i+1
∀r ∈ K µ [START_REF] Renouf | Conjugate gradient type algorithms for frictional multicontact problems: applications to granular materials[END_REF] or g(r) ≥ g(r c,i+1 ), ∀r ∈ K µ , if we denote

g(r) = Ψ R + (ũ c,i n ) + Ψ Kµ (r) + µr n ũc,i t + ũc,i • r. ( 15 
)
The minimization of ( 14) is classically realized using a projected gradient projection (Uzawa method) without considering the singular term Ψ R + (ũ c,i n ). This minimization can also be viewed as the proximal point of the augmented force r -ρũ, with respect to the function r → ρb c (-ũ, r) (see for example [START_REF] Saxcé | New inequality and functional for contact with friction: the implicit standard material approach[END_REF][START_REF] Fortin | Simulation numérique de la dynamique des systèmes multicorps appliquée aux milieux granulaires[END_REF][START_REF] Fortin | Numerical Simulation of Granular Materials by an improved Discrete Element Method[END_REF]):

r = prox(r -ρũ, ρb c (-ũ, r)).
More precisely, the Uzawa method leads to compute the augmented force τ c,i+1 = r c,i -ρ∇g(r c,i ), where g is the differential part of g:

∇g(r c,i ) = ∇ r (µr n ũc,i t + ũc,i • r) = µ ũc,i t n + ũc,i ,
and to consider the force at next step as a projection of the augmented force onto the set of admissible force r c,i+1 = proj(τ c,i+1 , K µ ), that provides equations ( 21) and (22) in the resolution algorithm of the global problem. The proj(τ c,i+1 , K µ ) stands for the orthogonal projection over the convex K µ , that can be computed exactly (see [START_REF] Fortin | Simulation numérique de la dynamique des systèmes multicorps appliquée aux milieux granulaires[END_REF]).

This algorithm will be referred as the SBP (Standard Bi-Potential) method above and throughout.

For a sake of simplicity, we denote hereafter the descent direction

D c,i = µ ũc,i t n + ũc,i .
Remark 1 A first improvement of this method could be to compute the optimal step ρ c,i . To do so, we have to minimize

ρ → g(r c,i -ρD c,i ), (16) 
or, more precisely,

ρ → Ψ R + (ũ c,i n ) + Ψ Kµ (r c,i -ρD c,i ) + µ(r c,i n -ρD c,i • n) ũc,i t + ũc,i • (r c,i -ρD c,i ) = Ψ R + (ũ c,i n ) + Ψ Kµ (r c,i -ρD c,i ) -ρD c,i • (µ ũc,i t n + ũc,i ) + Cte = Ψ R + (ũ c,i n ) + Ψ Kµ (r c,i -ρD c,i ) -ρ D c,i 2 + Cte. ( 17 
)
We can observe that this method do not permit to choose an optimal parameter ρ since g, as a function of ρ, is linear, excepted in the case where D c,i / ∈ K µ . A solution could be to modify the function g, for example by replacing ũc,i by a prediction of ũc,i+1 using the equations of the dynamics. Unfortunately, this method do not provides good numerical results.

Then, the standard bi-potential based algorithm (SBP) can be written (see [START_REF] Sanni | Modélisation et simulation bi et tri-dimensionnelles de la dynamique unilatérale des systèmes multi-corps de grandes tailles: application aux milieux granulaires[END_REF] for example):

• Loop on the step time k -Prediction of a position (for the computation of the local-global mapping):

q k+ 1 2 = q k + ∆t 2 qk ; (18) 
-Initialization of the motion: q0 k+1 = qfree k (initialization of the contact forces with R = 0).

-Loop on i ≥ 0 (NLGS), until convergence * Loop on the contacts c:

• Computation of the local-global mapping u-= P * (q k+ 1 2 , c) qk ; uc,+i = P t (q k+ 1 2 , c) qi k+1 (19) 
• Newton shock law

ũc,i n = u c,+i n + e n u - n 1 + e n ; ũc,i t = u c,+i t + e n u - t 1 + e t (20) 
• Prediction of the reaction:

τ c,i+1 = r c,i -ρ ũc,i t + (ũ c,i n + µ ũc,i t )n (21) 
• Correction of the reaction:

r c,i+1 = proj(τ c,i+1 , K µ ) (22) 
• Actualization of the generalized displacement:

qi+1 k+1 = qfree k + M -1 ( α≤c P (q k+ 1 2 , α)r α,i+1 + α>c P (q k+ 1 2 , α)r α,i ) (23) * End of the loop on contacts c.
-End of the loop on i of NLGS when the convergence is reached: qk+1 = qi+1 k+1 -Actualization of the generalized displacements:

q k+1 = q k+ 1 2 + ∆t 2 qk+1
• End of the loop on the step time k.

Remark 2 Notice that only one iteration of the Uzawa algorithm at the local level is considered. Various previous studies (see for example [START_REF] Joli | Uzawa and Newton algorithms to solve frictional contact problems within the bi-potential framework[END_REF]) show that there is no significant improvement of the method if several iterations of the Uzawa algorithm are considered at this stage.

Newton method and enhanced bi-potential method (EBP)

We introduce in this section a Newton method in order to speed up the convergence of the computation of the solution. This method has been already used, especially in the case of the augmented lagrangian method developed by Alart et al. [START_REF] Alart | A mixed formulation for frictional contact problems prone to Newton like solution method[END_REF], and the ideas presented in this article follows those of Feng et al. [START_REF] Feng | The bi-potential method applied to the modeling of dynamics problems with friction[END_REF] and have been adapted to the problem of the discrete element method. The main idea of this technique is to find the solution of the optimization problem, not as a minimum of a functional, but rather as a zero of a function, using the Euler equation of the problem. Then a standard Newton method can be developed to solve this Euler equation. The technique is first described in the case of the bi-potential framework, and will adapted to the augmented lagrangian method farther.

We recall that the local problem that has to be solved, for each contact c can be written

     ũc k+1 = ũc,free k + Nc α=1 W cα r α r c = proj(τ c , K µ ) ∀c = 1, ..., N c (24) 
where τ c = r c -ρ(µ ũc t n + ũ) is the augmented reaction (see 21), and W cα = P * (q k+ 1 2 ,c )M -1 P (q k+ 1 2 ,α ) is the local Delassus operator. This problem can be written equivalently

         ũc k+1 -ũc,free k - Nc α=1 W cα r α = 0 r c -proj(τ c , K µ ) = 0 ∀c = 1, ..., N c (25) 
Reminding now that we want to use a Newton algorithm to solve theses equations inside the Non Linear Gauss Seidel loop on the variable i, we define now, for each contact c = 1, ..., N c , the function

f i c (χ) =      ũc,i -ũc,free k - Nc α=1 W cα r α,i Z c,i     
where :

• the vector Z c is the error on the prediction of the reaction

Z c,i (r c,i , ũc,i ) = r c,i -proj(τ c,i , K µ ), (26) 
• χ c = (r c,i , ũc,i ) t , • χ = (χ 1 , χ 2 , ..., χ Nc ) t
Remark 3 The first equality in the relation f (χ) = 0 is the equation of motion for the bodies in contact, and the second relation is the frictional Coulomb law between the bodies in contact, written within the bipotential framework.

Then we have to write a Newton algorithm to solve the problem f (χ) = 0. This algorithm can be written, for a contact c, by substituting equations ( 21) and ( 22) in algorithm (SBP) by the followings:

• Initialization: χ 0 c = r 0 = r c,i , v 0 = ũc,i t , = 0
• Loop on , until convergence:

-τ c = r -ρ(µ v t n + v ) -Resolution: ∂f c ∂χ c (χ ) ∆χ c = -f c (χ ) (27) 
-Actualization:

χ +1 c = χ c + ∆χ c
• End of the loop on until convergence, ũc,i+1 = v and r c,i+1 = r .

Remark 4 This algorithm needs more than one iteration at each Non Linear Gauss Seidel iteration to be efficient. As a consequence and compared to the Uzawa algorithm, the solution in the Newton algorithm is controlled by both the local (iteration ) and global convergence criteria (iteration i, see [START_REF] Feng | The bi-potential method applied to the modeling of dynamics problems with friction[END_REF][START_REF] Joli | Uzawa and Newton algorithms to solve frictional contact problems within the bi-potential framework[END_REF]).

The local convergence criterion for the Newton algorithm is defined by:

ε c N ewt (χ ) = v -u c,f ree k -W r + r -proj(r , K µ ) (28) 
This criterion measure f c (χ ) that has to be sufficiently small.

The matrix ∂fc ∂χc (χ) represents the tangential matrix of the local equations for the contact c. This matrix is of dimension 6 × 6 for a 3 dimensional problem, and 3 × 3 for a 2 dimensional problem. For a 3 dimensional problem, the general form of this matrix is the following:

∂f c ∂χ c (χ) = -W Id 3×3 A c B c (29) 
where

A c = ∂Z c ∂r n ∂Z c ∂r t 1 ∂Z c ∂r t 2 B c = ∂Z c ∂v n ∂Z c ∂v t 1 ∂Z c ∂v t 2 (30) 
The matrices A c and B c takes different forms according to the contact status:

• First case: sliding contact.

In that case, we have

µ τ t ≥ -τ n τ t ≥ µτ n then P roj(τ, K µ ) = τ - τ t -µτ n 1 + µ 2 τ t τ t -µn and 
Z c = ρ(µ v k t n + v k ) + τ t -µτ n 1 + µ 2 τ t τ t -µn
The computation of the derivatives of Z c provides the matrices A c and B c :

- ∂Z c ∂r n = - µ 1 + µ 2 τ t τ t -µn - ∂Z c ∂r t 1 = τ t 1 (1 + µ 2 ) τ t τ t τ t -µn + τ t -µτ n 1 + µ 2 t 1 τ t - τ t 1 τ t 3 τ t - ∂Z c ∂r t 2 = τ t 2 (1 + µ 2 ) τ t τ t τ t -µn + τ t -µτ n 1 + µ 2 t 2 τ t - τ t 2 τ t 3 τ t - ∂Z c ∂v n = ρn + ρµ 1 + µ 2 τ t τ t -µn - ∂Z c ∂v t 1 = ρ t 1 + µ v t 1 v t n - ρ 1 + µ 2   τt 1 τt - µ 2 vt 1 vt τt τt -µn + ( τ t -µτ n ) t 1 τt - τt 1 τt 3 τ t   - ∂Z c ∂v t 2 = ρ t 2 + µ v t 2 v t n - ρ 1 + µ 2   τt 2 τt - µ 2 vt 2 vt τt τt -µn + ( τ t -µτ n ) t 2 τt - τ t 2 τt 3 τ t  
For a 2D problem, these computations yields:

-

∂Z c ∂r n = µ 1 + µ 2 (µn -θ r t) - ∂Z c ∂r t = 1 (1 + µ 2 ) (-µθ r n + t) - ∂Z c ∂v n = ρ 1 + µ 2 (n + µθ r t) - ∂Z c ∂v t = ρµ 1 + µ 2 (θ v + θ r )n + µ(1 -θ r θ v )t
where θ v = sign(v t ) and θ r = sign(τ t ).

• Second case: sticking contact.

In that case, we have

µ τ t ≥ -τ n τ t < µτ n then Z c = ρ(µ v k t n + v k
) and the computation of the derivatives of Z c reads:

-A c = 0 3×3 - ∂Z c ∂v n = ρn - ∂Z c ∂v t 1 = ρµ v t 1 v t n + ρt 1 - ∂Z c ∂v t 2 = ρµ v t 2 v t n + ρt 2
For a 2D problem, these computations leads to:

-A c = 0 2×2 - ∂Z c ∂v n = ρn - ∂Z c ∂v t = ρµθ v n + ρt
• Third case: no contact.

In that case, the matrices A c = Id 3×3 and B c vanishes, and

χ +1 c = 0 v k

Resolution of the linear system

Generally, the drawback of a Newton is the computational cost of the linear system to be solved at each iteration. Here, the particular form of the tangent matrix allows the use of a condensation technique. More precisely, the linear system to be solved can be written:

-W Id 3×3 A c B c δr δv = -f -g . ( 31 
)
The first equation yields δv = -f + W δr, and introducing this equality is the second equation leads to solve the linear system

(A c + B c W )δr = -g + B c f . ( 32 
)
This properties halves the size of the linear system to be solved.

Remark 5 A drawback of the bi-potential framework is that, due to is specificity, it is rather difficult to consider fully coupled problems, where the contact law and another phenomena, such as electricity or thermic effects are strongly coupled. The other method presented in this paper has a better property from this point of view because it is based on a more standard mathematical background in the theory of optimization.

Newton method and enhanced augmented lagrangian method, (SAL) and (EAL)

In [START_REF] Alart | A mixed formulation for frictional contact problems prone to Newton like solution method[END_REF], Alart et al. propose another method to solve the frictional contact problem. This method has been also used with various improvement (parallelization, conjugate gradient method for example) to solve multi-contact problems [START_REF] Renouf | Conjugate gradient type algorithms for frictional multicontact problems: applications to granular materials[END_REF][START_REF] Renouf | Gradient type algorithms for 2d/3d frictionless/frictional multicontact problems[END_REF][START_REF] Renouf | A parallel version of the Non Smooth Contact Dynamics algorithm applied to the simulation of granular media[END_REF][START_REF] Renouf | Comparison of algorithms for collisions, contact and friction in view of real-time applications[END_REF][START_REF] Renouf | Numerical simulation of twodimensional steady granular flows in rotating drum: On surface flow rheology[END_REF]. Even if the coupled frictional contact problem is not an optimization problem anymore, it is always possible to formally formulate a "quasi"-optimization problem, for which the constraint set depends on the normal components of the solution as a parameter. The solution is then searched as a saddle point of a "quasi" augmented Lagrangian of the problem. More precisely, the global problem on all unknowns that has to be solved at each time step (in place of equation ( 24)) has the following form:

   u = u f ree + Wr r ≥ 0, u ≥ 0, r • u = 0. (33)
In order to solve this problem, for a given r ∈ R 3×Nc , one can define the cartesian product of infinite half cylinder with section equal to the ball B(0, µr c ) of radius µr c by:

C(µr) = Nc c=1 R + × B(0, µr c )
and then, the granular type frictional contact problem is given by r ∈ argmin r∈C(µr)

1 2 r • Wr + u f ree • r = argmin r∈C(µr) J(r), (34) 
and the projected gradient method the minimize this problem reads (for each iteration i of the NLGS algorithm):

r i+1 = proj(r i -ρ(u f ree + Wr i ), C(µr i+1 )), (35) 
or r i+1 = proj(τ i+1 , C(µr i+1 )), with τ i+1 = r i -ρu i , u i = u f ree + Wr i . This algorithm will be referred to hereinafter as the SAL (Simple Augmented Lagrangian) method.

Notice that this method is very closed to the SBP method. More precisely, for a contact c, only the descent direction ũc,i + µ ũc,i t n in ( 21) is replaced by ũc,i and the projection r c,i+1 = proj(τ c,i+1 , K µ ) in ( 23) is replaced by

     r c,i+1 n = max(0, τ c,i+1 n ) r c,i+1 t = τ c,i+1 t τ c,i+1 t µr c,i+1 n .
Remark 6 On the contrary, it is possible to see the algorithm developed from the bipotential formalism as a slight modification of the algorithm above. Indeed, it is only necessary to change the set C(r) by K = Nc c=1 K µ , and to change the descent direction ũc,i by ũc,i + µ ũc,i t n which remains a descent direction for the SAL method, since

∇J(r c,i+1 ) • D c,i = -ũc,i 2 -ũc,i • (µ ũc,i t )n = -ũc,i 2 -µu c,i n ũc,i t which is negative since µ ∈ [0, 1].
Then, acting by analogy, we can develop a Newton method to find the minimum of J by seeking the solution as a zero of the function f (χ) where, for a contact c

fc (χ) =      ũc k+1 -ũc,free k - Nc α=1 W cα r α Zc     
, the vector Zc is the error on the prediction of the reaction

Zc (r c , ũc k+1 ) = r c -proj(τ c k+1 , C c (µτ c k+1 )), (36) 
and the set C c (µr c ) is the set of admissible forces C c (µr c ) = R + × B(0, r c ). This method will be refered as the EAL (Enhanced Augmented Lagrangian) method hereafter.

Then, as bellow, we have three cases in the computation of the tangent matrix ∂ f ∂χ c (χ ) :

• First case: sliding contact (τ n > 0, τ t ≥ µτ n )

We have: proj(τ c , C c (µτ c )) = τ n n + τt τt µτ n t and Zc = ρv n nτt τt µτ n + r t . The computation of the derivatives of Zc provides the matrices A c and B c :

- ∂ Zc ∂r n = -µ τ t τ t - ∂ Zc ∂r t 1 = t 1 -µτ n t 1 τ t - τ t 1 τ t 3 τ t - ∂ Zc ∂r t 2 = t 2 -µτ n t 2 τ t - τ t 2 τ t 3 τ t - ∂ Zc ∂v n = ρ n + µ τ t τ t - ∂ Zc ∂v t 1 = -ρµτ n t 1 τ t - τ t 1 τ t 3 τ t - ∂ Zc ∂v t 2 = -ρµτ n t 2 τ t - τ t 2 τ t 3 τ t
For a two dimensional problem, these computations yields

A c = 0 0 -µθ r 1 B c = 1 0 µθ r 0 .
• Second case: sticking contact (τ n > 0, τ t < µτ n ) proj(τ c , C c (µτ c )) = τ c and the computation of the derivatives of Z c reads 

-A c = 0 3×3 -B c = ρId 3×3 • Third case: no contact (τ n ≤ 0) proj(τ c , C c (µτ c )) = 0,

The global stopping (convergence) criterion

We present in this paragraph the convergence criterion on the global non linear Gauss-Seidel iterations. This criterion, developed from that proposed in [START_REF] Fortin | An improved discrete element method based on a variational formulation of the contact law[END_REF] has been extended in the case of the Newton and bi-potential (EBP) method, where some term are naturally vanishing in the original Uzawa and bi-potential (SBP) method. This criterion ε glob has been written in such a way that if the solution verify that ε glob is sufficiently small, then this solution has good properties on the equation of motion and Signorini Coulomb contact law. Consequently, this criterion stays valid for the methods developed with the augmented lagrangian (SAL and EAL methods). This criterion can be stated:

ε glob = 1 N c Nc c=1 ε c motion + ε c proj + ε bc + ε c pen ( 37 
)
where:

• ε c motion = ũcũc m where ũc m = ũc,i + Nc α=1 W cα r α , so ε motion measures the error on the equation of motion (see equation ( 24), this term vanishes for the SBP and SAL method);

• ε c proj = r c -proj(r c , K µ ) 2
is the error for the projection on the Coulomb cone (vanishing for the SBP method);

• ε bc = ũc • r c + µr c n ũc t
is the absolute value of the bi-potential that has to vanish if and only if the couple (ũ c , r c ) verifies the Signorini Coulomb contact law (see formula 11);

• ε c pen = -min(0, ũc n ) is the value of the penetration.

Remark 7

One can notice that is absolutely necessary to verify in the criterion that there is no penetration, because nothing in the presented algorithm ensures that is condition is verify at the end of the loop. Moreover, if this condition is not satisfied, the rest of bipotential can be negative or equal to zero, even if the couple (ũ, r) is not a solution.

Numerical results

We present in the section three numerical examples with an increasing complexity. In these computations, the descent parameter ρ is taken in such a way that the result is optimal, in terms of time computing. Denoting ρ = m i m j m i +m j 1 ∆t , for the SBP and the SAL methods, we have chosen ρ = 0.6ρ, whereas for the EBP and the EAL methods, it is better the take ρ = ρ. We recall that it has been show that, for the the bi-potential method (see for example [START_REF] Feng | The bi-potential method applied to the modeling of dynamics problems with friction[END_REF]) and the augmented lagrangian method (see for example [START_REF] Renouf | Conjugate gradient type algorithms for frictional multicontact problems: applications to granular materials[END_REF]), the parameter ρ has to verify ρ < 2ρ in order to ensure the convergence. Generally, for these two methods, the convergence is very sensitive on this parameter. We will show in the last paragraph of this study that for the EBP method, the parameter ρ can be taken in a large range around the value ρ without changing dramatically the convergence of the method.

At each iteration of the NLGS algorithm, the Newton algorithm is stopped either if the convergence is obtained (ε c N ewt ≤ 10 -5 ), or if the number of iteration of the Newton algorithm reached 100 when there is no convergence.

Ball sliding on a plane

In this first example, we consider a ball placed on a table with an initial horizontal velocity equal to 1.5 m• s -1 . The ray of the ball is equal to 5 • 10 -3 m, and the friction coefficient between wall and ball is equal to µ = 0.7. The time step of discretization is equal to 10 -4 s. In this experiment, the ball first slides on the table, and then the ball rolls without sliding. The global stoping criterion is equal to ε glob = 10 -10 . Figure 4: Example 1 -A ball is launched with an initial horizontal velocity (left). First, the ball slides. Then, the ball rolls without slipping (right).

We can observe from these numerical results that the error coming from the projection is very small for the four methods. The Standard Bi-Potential (SBP) method and the Standard Augmented Lagrangian method (SAL) give very closed results, both in term of quality (see figures 5 and 6) and in term of time computing (see table 1). Nevertheless, we can notice that the time computing is smaller with the SAL method, because there is less computations at each iteration (no term such as ũt and projection easier to compute for example). The Enhanced Bi-Potential method provides better results, both in term of quality (see figure 7) and in term of time computing (6.5% better). The Enhanced Augmented Lagrangian method converges after the first Non Linear Gauss Seidel iteration for every time steps, and consequently, this is the faster method on this example (7% faster than the SBP method). 

Method

Sedimentation of 4 balls in a box

In this second experiment, we consider the sedimentation of 4 balls of radius ranging from 4 • 10 -4 m to 5 • 10 -4 m. For the computations, the time step of discretization is equal to ∆t = 10 -4 s., and the Non linear Gauss-Seidel loop is stopped either if the the global stopping criterion on the NLGS method is equal to ε glob = 10 -10 , or after 5000 iterations if there is no convergence (this case never occurs in this experiment). The friction coefficient between the balls and between the balls and the walls is equal to µ = 0.3. Like in the previous simulation" the SBP and the SAL method methods provide very similar results (see figures 9 and 10). For these two methods, we can notice that here the global error is essentially due to the penetrations. The SAL method is 2% faster than the SBP method (table 2).

Results obtained by the EBP method are better (figure 11), and here the overall error is governed by the error on the equations of the motion. The EBP method is 11% faster than the SBP method, and the penetration is 5 times smaller. In this example the EAL is the faster method (16,8% faster than the SBP method), and the penetration is very small (see figure 12).

Sedimentation of 500 balls

In this example, we consider the sedimentation of 500 balls (see figure 13) of radii ranging from 2.5•10 -4 m to 5•10 -4 m, the time step of discretization is equal to ∆t = 5•10 -5 s, and the Non linear Gauss-Seidel loop is stopped if the global estimator (37) verifies ε glob ≤ 10 -12 or after after 5000 iterations if there is no convergence. The friction coefficient between the balls and between the balls and the walls is equal to µ = 0.3. The results in table 3 are obtained after 1000 time steps.

In this example, the difference between methods SBP and SAL on the one hand, and the method EBP and EAL on the other hand is larger (see table 3). We can notice that the SAL method is 10.95% faster than the SBP method, and the EBP is 21.83% faster than the SBP method. Here, the EAL method is no longer the faster one, but the penetration is very small. Again, for the two first methods the global error is essentially due to the penetrations whereas the two last methods, the error is essentially due to the failure to follow precisely the equations of motion.

Discussion on the descent parameter ρ

We consider again the third example solved by the Newton and bi-potential method (ε tot = 10 -8 , maximal number of iterations of Newton method equal to 100, ε N ewt = 10 These results show one of the main advantage of the EBP method. Indeed, one can notice that in table 4, the CPU time and the quality of the solution are very similar if α is equal to 1 or 2. Even if α is equal to five, the convergence is not to damaged. In that case, one remain the the SBP and the SAL are no longer convergent. If the parameter α is small, the method converges but the convergence rate is very small. One can notice that the EAL method is much more sensitive about the parameter α, essentially in the convergence of the Newton method.

Conclusion

The results presented show that, using an appropriate Newton method, it is possible to improve the computational time over that 20% compared to the standard methods. Moreover, one principal drawback of that type of methods, that is the dependance of the results on the parameter ρ does not exist anymore.

In the future, this method will be extended to the case of a contact law with adhesion. This improvement will be realized in a near future.
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 2 Figure 2: The Coulomb conditions

  then the matrices A c = Id 3×3 and B c vanishes, and χ +1 c
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 56 Figure 5: Example 1 -Convergence for the standard bi-potential based method, 5 th iteration
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 7 Figure 7: Example 1 -Convergence for the Newton and bi-potential method, 5 th iteration
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 8 Figure 8: Example 2 -Sedimentation of four balls under the gravity effect.
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 9 Figure 9: Example 2 -Convergence of the non-linear Gauss-Seidel iterations for the standard bi-potential based method (1000th time step) The two last curves overlaps, showing that the global error is governed by the error of penetration.
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 1011 Figure 10: Example 2 -Convergence of the non-linear Gauss-Seidel iterations for the standard augmented lagrangian method (1000th time step). The two last curves overlaps, showing that the global error is governed by the error of penetration.

Figure 12 :

 12 Figure 12: Example 2 -Convergence of the non-linear Gauss-Seidel iterations for the Newton and Augmented Lagrangian method (1000th time step). The two last curves overlaps, and the other ones does not appear on the figure because the corresponding errors are lower than 10 -16 .
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 13 Figure 13: Example 3 -Zoom on balls falling under the gravity effect. Initial configuration on the left, final configuration on the right.
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 14 Figure 14: Example 3 -Convergence of the non-linear Gauss-Seidel iterations for the standard bi-potential based method (1000th time step). The two last curves collapse.
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 15 Figure 15: Example 3 -Convergence of the non-linear Gauss-Seidel iterations for the standard augmented lagrangian method (1000th time step). The two last curves collapse.
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 16 Figure 16: Example 3 -Convergence of the non-linear Gauss-Seidel iterations for the Newton and bi-potential method (1000th time step). The two last curves collapse.

Figure 17 :m i m j m i +m j 1 ∆t

 171 Figure 17: Example 3 -Convergence of the non-linear Gauss-Seidel iterations for the Newton and Augmented Lagragian method (1000th time step). The two last curves collapse.

Table 1 :

 1 Comparison of the results obtained by the four methods on the first example (after the 2000th time step).

		Number of	Error	Total
		NLGS iterations	ε glob	CPU time (s)
		(last time step) (last time step)	
	SBP	18	0.384 • 10 -10	9.44
	SAL	18	0.384 • 10 -10	9.28
	EBP	1	0	8.83
	EAL	1	0.175 • 10 -13	8.78

Table 2 :

 2 Comparison of the results obtained by the four methods on the second example (after the 1000th time step)

	Method	Number of	Error	Maximal	Total
		NLGS iterations	ε glob	penetration	CPU time (s)
		(last time step) (last time step) (last time step)	
	SBP	305	0.949 • 10 -12	0.310 • 10 -11	2.92
	SAL	301	0.980 • 10 -12	0.340 • 10 -11	2.87
	EBP	161	0.635 • 10 -12	0.641 • 10 -12	2.59
	EAL	158	0.973 • 10 -12	0.208 • 10 -19	2.43

Table 3 :

 3 -5 , 500 th Comparison of the results obtained by the four methods on the third example (after the 1000th iteration, N max = 5000 iterations)

	Method	Number of	Error	Maximal	Total
		NLGS iterations	ε glob	penetration	CPU time (s)
		(last time step) (last time step) (last time step)	
	SBP	5000	0.119 • 10 -6	0.213 • 10 -5	1092.95
	SAL	5000	0.135 • 10 -6	0.533 • 10 -5	973.31
	EBP	5000	0.156 • 10 -6	0.286 • 10 -6	854.31
	EAL	5000	0.101 • 10 -6	0.390 • 10 -17	916.65

Table 4 :

 4 Comparison of the results obtained for various values of ρ = αρ on the third example (after the 500th iteration, N max = 5000 iterations)

	α Number of NLGS	Maximal	Total CPU
		iterations	penetration	time (s)
		(last time step)	(last time step)	
	5	652	0.110 • 10 -6	65.08
	2	414	0.177 • 10 -6	55.86
	1	750	0.149 • 10 -6	53.95
	1 2 1 5	812 667	0.634 • 10 -6 0.219 • 10 -5	78.43 176.14
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