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ADAPTIVE REGULARIZATION, LINEARIZATION,

AND DISCRETIZATION AND A POSTERIORI ERROR

CONTROL FOR THE TWO-PHASE STEFAN PROBLEM

DANIELE A. DI PIETRO, MARTIN VOHRALÍK, AND SOLEIMAN YOUSEF

Abstract. We consider in this paper the time-dependent two-phase Stefan
problem and derive a posteriori error estimates and adaptive strategies for its
conforming spatial and backward Euler temporal discretizations. Regulariza-
tion of the enthalpy-temperature function and iterative linearization of the
arising systems of nonlinear algebraic equations are considered. Our estima-
tors yield a guaranteed and fully computable upper bound on the dual norm
of the residual, as well as on the L2(L2) error of the temperature and the
L2(H−1) error of the enthalpy. Moreover, they allow us to distinguish the
space, time, regularization, and linearization error components. An adaptive

algorithm is proposed, which ensures computational savings through the online
choice of a sufficient regularization parameter, a stopping criterion for the lin-
earization iterations, local space mesh refinement, time step adjustment, and
equilibration of the spatial and temporal errors. We also prove the efficiency
of our estimate. Our analysis is quite general and is not focused on a specific
choice of the space discretization and of the linearization. As an example, we
apply it to the vertex-centered finite volume (finite element with mass lump-
ing and quadrature) and Newton methods. Numerical results illustrate the
effectiveness of our estimates and the performance of the adaptive algorithm.

1. Introduction

The two-phase Stefan problem models a phase change process which is governed
by the Fourier law; cf. Friedman [22]. The two phases, typically solid and liquid, are
separated by a moving interface, whose motion is governed by the so-called Stefan
condition. Let Ω ⊂ R

d, d ∈ {2, 3}, be an open bounded polygonal or polyhedral
domain, not necessarily convex, and let T > 0. The mathematical statement of the
problem is as follows: given an initial enthalpy u0 and a source function f , find the
enthalpy u such that

∂tu−∇·(∇β(u)) = f in Ω× (0, T ),(1.1a)

u(·, 0) = u0 in Ω,(1.1b)

β(u) = 0 on ∂Ω× (0, T ).(1.1c)
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2 DANIELE A. DI PIETRO, MARTIN VOHRALÍK, AND SOLEIMAN YOUSEF

For the sake of simplicity, we assume that u is normalized so that the (specific)
enthalpies of the two phases are 0 and 1, respectively, and only consider the homo-
geneous Dirichlet boundary condition (1.1c). The temperature β(u) is expressed as
a function of the enthalpy u. In what follows, we assume that β(·) is a nondecreas-
ing Lipschitz continuous function which vanishes in the interval (0, 1). The latter
condition reflects the latent heat in the phase change.

The numerical analysis of the Stefan problem has been considered in several
works. A finite difference method for the multi-dimensional Stefan problem is dis-
cussed in Meyer [32]. The author presents a convergent numerical scheme which is
the implicit analogue of the method of Kamenomostskaja [27]. In Ciavaldini [12],
the numerical approach is based on finite elements of the first order. The author
describes the different schemes used and the nature of their convergence. Elliott [16]
presents a finite element approximation of an elliptic variational inequality deduced
from a semi-discretization in time of the weak formulation of the two-phase Ste-
fan problem. Discretization schemes for regularized versions of the Stefan problem
based on piecewise linear Lagrange finite elements in space and backward differ-
encing in time are presented by Jerome and Rose [25]. Jäger and Kačur [24] use
the enthalpy formulation and a variational technique to analyze the convergence of
linearized semi-discrete-in-time and fully discrete schemes for nonlinear degenerate
parabolic systems of porous medium type. In Amiez and Gremaud [2], a numerical
scheme based on the approximation of the enthalpy formulation by semi-implicit
finite differences in time combined with continuous piecewise linear finite elements
in space is presented. Nochetto [33] employs the regularization technique to derive
a priori error estimates in L2(0, T ;L2(Ω)) for the enthalpy and temperature errors
of, respectively, one half and first order for an implicit finite element scheme, under
suitable conditions on the data and relation of the space and time steps.

More recently, attention has been paid to finite volume methods which can be
used on a large variety of meshes. The framework of semigroup theory has been used
by Baughman and Walkington [4] for the study of the co-volume method, which is
a special instance of the finite volume method. The analysis predicts one half order
rates of convergence for approximate solutions of the enthalpy in L∞(0, T ;H−1(Ω))
and of the temperature in L2(0, T ;L2(Ω)). In Eymard et al. [21], the authors give
a convergence proof in the case that a finite volume scheme on a general mesh
is used for the space discretization. Weak-∗ convergence for u in L∞ and strong
convergence for β(u) in L2 is shown by means of a priori estimates in L∞ and
use of the Kolmogorov theorem on relative compactness of subsets of L2. Half
order error estimates via regularization have also been obtained in Pop et al. [42],
whereas extensions to degenerate hyperbolic–parabolic equations can be found in
Andreianov et al. [3].

A technique often used in various numerical approaches (cf. Nochetto [33], No-
chetto and Verdi [37], Picasso [40], Beckett et al. [6], or Pop et al. [42]), employs a
regularization of the nonsmooth and nonstrictly increasing function β by a smooth
and strictly increasing one. This allows, in particular, to use the Newton method
for the solution of the arising system of nonlinear algebraic equations, albeit its use
without regularization has been advocated in Wheeler [52] or in Baughman and
Walkington [4] and studied in Kelley and Rulla [28]. Alternative approaches such
as transformation of dependent variables of Čermák and Zlámal [10] have also been
proposed.
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TWO-PHASE STEFAN PROBLEM 3

An inevitable tool in practical simulations seems to be an a posteriori error
estimate-driven adaptive mesh refinement. One of the first works on a posteriori
error estimates for the steady Stefan problem is that of Picasso [40]. Therein, the
author derives estimates based on the residual equation for a two-dimensional reg-
ularized Stefan problem and proposes a space adaptive finite element algorithm.
A posteriori indicators for unsteady phase change problems were derived by No-
chetto et al. in [34, 35], together with an adaptive algorithm which equilibrates
space and time discretization errors. Many other adaptive refinement algorithms
such as that of Beckett et al. [6] have also been proposed. Rigorous a posteriori
error estimates for nonlinear parabolic problems seem much less developed. In non-
degenerate cases, Verfürth [46, 47] was able to obtain an estimator which is both
reliable and efficient. A pioneering contribution for degenerate parabolic problems
has been obtained by Nochetto et al. in [36]. Therein, L∞(0, T ;H−1(Ω)) estimates
for the error in the enthalpy and L2(0, T ;L2(Ω)) estimates for the error in the tem-
perature are obtained. The approach is based on the relation of these errors to
the residual of (1.1a) obtained through the corresponding dual partial differential
equation and subsequent use of the Galerkin orthogonality of the finite element
discretization. Recently, rigorous a posteriori error analysis in a space–time dual
norm, including some degenerate cases, was given in [14].

The aim of this paper is to derive fully computable a posteriori error esti-
mates and adaptive strategies for the two-phase Stefan problem (1.1) for con-
forming spatial discretization schemes such as finite element, co-volume, or vertex-
centered finite volume schemes with backward Euler time stepping. As in No-
chetto et al. [36], our approach is based on the dual norm of the residual. How-
ever, we proceed differently in order to have fully and easily computable esti-
mates not featuring any undetermined constants. This is achieved by introduc-
ing H(div;Ω)-conforming and locally conservative flux reconstructions following
Prager and Synge [43], Ladevèze [29], Destuynder and Métivet [13], Luce and
Wohlmuth [30], Braess and Schöberl [8], Repin [45], and [14, 15, 18, 19, 50]; see
also the references therein.

In Section 2 we give a weak formulation, introduce a regularized problem with
a regularization parameter ϵ > 0, and fix the notation for temporal and spatial
meshes. In Section 3, we identify the residual and its dual norm and we derive
an a posteriori error estimate on this problem-dependent error measure. We next
split this estimate into estimators characterizing the space, time, regularization,
linearization, and quadrature errors.

Section 4 subsequently presents a criterion for the choice of the regularization pa-
rameter ϵ and a stopping criterion for an iterative linearization such as the Newton
method. The former is designed to facilitate the treatment of the degeneracy while
not spoiling the accuracy, whereas the latter is designed to avoid performing an
excessive number of nonlinear solver iterations. These criteria are inspired mainly
from [15, 19, 26]. We then propose an adaptive algorithm which uses these criteria
while simultaneously performing the usual local mesh refinement and equilibration
of the spatial and temporal errors. This algorithm is inspired from [6, 34–36, 40]
and from the work [14, 18, 19, 23]. We conclude Section 4 by proving that, under
these criteria, our estimators are also efficient while representing a lower bound for
the dual norm of the residual.
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4 DANIELE A. DI PIETRO, MARTIN VOHRALÍK, AND SOLEIMAN YOUSEF

In Section 5, we show how to bound the L2(0, T ;H−1(Ω))-type error in the
enthalpy and L2(0, T ;L2(Ω))-type error in the temperature by the above dual norm
of the residual. In particular, we focus on the use of the Gronwall lemma with as
small an overestimation as possible and no appearance of the exponential term eT

other than in the approximation of the initial condition. Guaranteed and fully
computable a posteriori error estimates on these natural norms immediately follow.

Section 6 presents the application of all these developments to the vertex-centered
finite volume (or, equivalently, finite element with mass lumping and numerical
quadrature) discretization in space, backward Euler discretization in time, and
Newton linearization. Illustrative numerical results fill up Section 7 and, finally,
Appendix A collects the more involved proofs of the various theorems of the paper.

2. Continuous and discrete settings

This section fixes the basic continuous and discrete settings. More precisely,
Section 2.1 presents the continuous problem and the regularization, whereas the
basic assumptions on the discretization are introduced in Section 2.2.

2.1. Continuous setting.

2.1.1. The continuous problem. The starting point for our a posteriori analysis is
the weak form of problem (1.1). To give it, we need to introduce the assumptions on
the data and set up some notation. We suppose that: (i) the enthalpy-temperature
function β : R → R is a Lipschitz continuous function such that

β(s) = 0 in (0, 1),

β is strictly increasing in R
− and R

+ \ (0, 1), and there exist c, C > 0 such that,
for all s ∈ R \ (0, 1), sign(s)β(s) ≥ c|s| − C (see Figure 1); the Lipschitz constant
of β is denoted by Lβ ; (ii) the initial enthalpy u0 is such that u0 ∈ L2(Ω); (iii) the
source term is such that f ∈ L2(0, T ;L2(Ω)).

We will repeatedly use throughout the paper the two following spaces:

(2.1) X := L2(0, T ;H1
0 (Ω)), Z := H1(0, T ;H−1(Ω)).

We will also need the dual space X ′ of X,

X ′ = L2(0, T ;H−1(Ω)),

and equip the space X with the norm

∥ϕ∥X :=

{

∫ T

0

∥∇ϕ(·, t)∥2L2(Ω)dt

}
1
2

.

We denote by ⟨·, ·⟩ the duality pairing between H−1(Ω) and H1
0 (Ω), while (·, ·)S

is the usual scalar product in L2(S) or [L2(S)]d, with the subscript omitted when
S = Ω.

The weak formulation of problem (1.1) can now be stated. It reads: find

(2.2a) u ∈ Z with β(u) ∈ X

such that

(2.2b) u(·, 0) = u0 in Ω

and, for a.e. s ∈ (0, T ),

(2.2c) ⟨∂tu(·, s),ϕ⟩+ (∇β(u(·, s)),∇ϕ) = (f(·, s),ϕ) ∀ϕ ∈ H1
0 (Ω).
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Figure 1. An example of a function β and of its regularization βϵ

Existence and uniqueness of the solution to this problem are known [1, 7, 22, 38].

2.1.2. A regularization. An important feature of the problem (2.2) is that, as a
result of the assumptions on β, the normal component of the temperature flux
−∇β(u) may jump across the interface

I(t) := {x ∈ Ω : β(u)(x, t) = 0} .

This fact may hinder both the design and the convergence analysis of a discretiza-
tion method. Additionally, the lack of smoothness in the dependency of the solution
on the problem data can severely affect the convergence of nonlinear iterations. A
possible and often employed approach [6, 33, 37, 40] to overcome these difficulties
consists in regularizing the problem (2.2) by replacing the function β by a smooth,
strictly increasing regularized function βϵ ∈ C1(R), β′

ϵ ≥ ϵ, for a parameter ϵ > 0;
see Figure 1 for an example.

The regularized problem reads as follows: find

(2.3a) uϵ ∈ Z with βϵ(u
ϵ) ∈ X

such that

(2.3b) uϵ(·, 0) = β−1
ϵ (β(u0)) in Ω,

and, for a.e. s ∈ (0, T ),

(2.3c) ⟨∂tu
ϵ(·, s),ϕ⟩+ (∇βϵ(u

ϵ(·, s)),∇ϕ) = (f(·, s),ϕ) ∀ϕ ∈ H1
0 (Ω).

2.2. Discrete setting. We describe here the basic discrete setting that will be suf-
ficient for the developments of Sections 3–5. Further details are given in Section 6.

2.2.1. Time mesh. Our focus is on first-order time discretizations based on the
backward Euler scheme. Let {τn}1≤n≤N denote a sequence of positive real numbers

corresponding to the discrete time steps such that T =
∑N

n=1 τ
n. We let t0 := 0

and, for 1 ≤ n ≤ N , we introduce the discrete times tn :=
∑n

i=1 τ
i and the time

intervals In := (tn−1, tn).
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6 DANIELE A. DI PIETRO, MARTIN VOHRALÍK, AND SOLEIMAN YOUSEF

2.2.2. Space meshes. Let {Kn}0≤n≤N denote a family of matching simplicial meshes
of the space domain Ω. The initial mesh K0 is used to approximate the initial
condition u0, while Kn is used to march in time from tn−1 to tn. The meshes can
be refined or coarsened as time evolves. For the developments of Section 4.3 below,
we are led to suppose that Kn, 1 ≤ n ≤ N , is obtained from Kn−1 by refining some
elements and coarsening (a limited number of times) some other ones. We denote
by Kn−1,n the coarsest common submesh (overlay) of both Kn and Kn−1 and, once
again for the developments of Section 4.3, suppose that the meshes {Kn−1,n}1≤n≤N

are shape-regular in the sense that there exists a constant κK > 0 such that

min
K∈Kn−1,n

ρK

hK

≥ κK

for all 1 ≤ n ≤ N , where ρK denotes the diameter of the largest ball inscribed in
the element K and hK the diameter of K. For 0 ≤ n ≤ N , we denote by Π

n
0 the

L2-orthogonal projection onto the space of piecewise constant functions on Kn.
For 0 ≤ n ≤ N , let Fn denote the set of mesh faces. Boundary faces are collected

in the set Fb,n := {F ∈ Fn;F ⊂ ∂Ω} and we let F i,n := Fn \ Fb,n. For a given
face F ∈ F i,n we fix an arbitrary orientation and denote the corresponding unit
normal vector by nF ; for F ∈ Fb,n, nF coincides with the exterior unit normal nΩ

of Ω. A similar notation for the faces Fn−1,n of the meshes Kn−1,n will also be
used.

3. An a posteriori error estimate for the dual norm of the residual

In this section we derive an a posteriori estimate for the error measured by the
dual norm of the residual that we first identify. We then give a basic estimate that
we subsequently refine to distinguish the space, time, linearization, regularization,
and quadrature errors.

3.1. Dual norm of the residual. As in Picasso [40] or Nochetto et al. [36], our
key for deriving a posteriori error estimates for the Stefan problem (1.1) will be the
residual and its dual norm. Recall that u denotes the weak solution of the Stefan
problem given by (2.2) and the definition of the space X (2.1). Let uhτ ∈ Z such
that β(uhτ ) ∈ X is arbitrary. In practice, uhτ will be the result of the numerical
simulation. We define the residual R(uhτ ) ∈ X ′ such that

⟨R(uhτ ),ϕ⟩X′,X(3.1)

:=

∫ T

0

{⟨∂t(u− uhτ ),ϕ⟩+ (∇β(u)−∇β(uhτ ),∇ϕ)} (s)ds, ϕ ∈ X.

Using (2.2c), we can infer the following alternative expression for (3.1):

⟨R(uhτ ),ϕ⟩X′,X =

∫ T

0

{(f,ϕ)− ⟨∂tuhτ ,ϕ⟩ − (∇β(uhτ ),∇ϕ)} (s)ds, ϕ ∈ X.

The norm of the residual in the dual space X ′ is then given by

(3.2) ∥R(uhτ )∥X′ := sup
ϕ∈X, ∥ϕ∥X=1

⟨R(uhτ ),ϕ⟩X′,X .

The key problem-specific measure of the distance between uhτ and u that we will
use in this paper is given by

(3.3) ∥R(uhτ )∥X′ + ∥u0 − uhτ (·, 0)∥H−1(Ω).
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TWO-PHASE STEFAN PROBLEM 7

It follows from (2.2) that the measure (3.3) is zero if and only if the function uhτ

coincides with the exact solution u. As we shall see below in Section 5, it in fact
controls the energy error between u and uhτ and β(u) and β(uhτ ). Moreover, this
quantity can be easily bounded in terms of error estimators based on H(div;Ω)-
conforming flux reconstructions for piecewise affine-in-time uhτ that we show next.

3.2. General assumptions. In order to proceed with the analysis further, without
the necessity to specify at this point any details on how the approximate solution
uhτ was obtained, we are lead to make the following assumption. It requires Z- and
X-conformity and uhτ to be piecewise affine and continuous in time on the time
mesh {In}1≤n≤N of Section 2.2.1:

Assumption 3.1 (Approximate solution). The function uhτ is such that

uhτ ∈ Z, ∂tuhτ ∈ L2(0, T ;L2(Ω)), β(uhτ ) ∈ X,

uhτ |In is affine in time on In ∀1 ≤ n ≤ N.

Note that, consequently, the function uhτ is uniquely determined by the N + 1
functions un

h
:= uhτ (·, t

n), 0 ≤ n ≤ N , and ∂tu
n
hτ := ∂tuhτ |In = (un

h − un−1
h )/τn,

1 ≤ n ≤ N . We will also employ the abridged notation un
hτ for uhτ |In .

The second assumption that we make is the existence of a piecewise constant-
in-time H(div;Ω)-conforming flux reconstruction thτ , locally conservative on the

meshes Kn of Section 2.2.2. Let us first denote by f̂ the piecewise constant-in-time
function given by the time-mean values of the source function f on the intervals
In, 1 ≤ n ≤ N .

Assumption 3.2 (Equilibrated flux reconstruction). For all 1 ≤ n ≤ N , there
exists a vector field tnh ∈ H(div;Ω) such that

(∇·tnh, 1)K = (f̂n, 1)K − (∂tu
n
hτ , 1)K ∀K ∈ Kn.

We denote by thτ the space–time function such that thτ |In := tnh for all 1 ≤ n ≤ N .

In Section 6 below, we show how to construct an equilibrated flux reconstruction
thτ in the context of vertex-centered finite volume (finite element with mass lumping
and quadrature) spatial discretization.

3.3. A basic a posteriori error estimate. We now give an a posteriori error
estimate in the general setting of Assumptions 3.1 and 3.2. Note that the regular-
ization of Section 2.1.2 is not used at the present stage.

We will estimate the error measure (3.3) by the local residual expressed with
the flux thτ and by the difference of thτ and the temperature flux, in the spirit
of [8, 13, 29, 30, 43, 45] and [14, 15, 18, 19, 50]. More specifically, for 1 ≤ n ≤ N , tnh
as in Assumption 3.2, and K ∈ Kn, we define the residual estimator ηnR,K and the
flux estimator ηnF,K as follows:

ηnR,K := CP,KhK∥f̂n − ∂tu
n
hτ −∇·tnh∥L2(K),(3.4a)

ηnF,K(t) := ∥tnh +∇β(uhτ (·, t))∥L2(K) t ∈ In.(3.4b)

Here, CP,K is the constant from the Poincaré inequality

(3.5) ∥ϕ− Π
n
0ϕ∥L2(K) ≤ CP,KhK∥∇ϕ∥L2(K) ∀ϕ ∈ H1(K).
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8 DANIELE A. DI PIETRO, MARTIN VOHRALÍK, AND SOLEIMAN YOUSEF

It holds that CP,K = 1/π as the simplices K are convex; see [5, 39]. Finally, we
define the initial condition estimator by

(3.6) ηIC := ∥u0 − uhτ (·, 0)∥H−1(Ω).

We then have:

Theorem 3.3 (A posteriori estimate for the error measure (3.3)). Let u be the
weak solution given by (2.2) and let uhτ and thτ fulfill Assumptions 3.1 and 3.2,
respectively. Then, there holds

(3.7) ∥R(uhτ )∥X′ + ∥u0 − uhτ (·, 0)∥H−1(Ω) ≤ η + ηIC,

where

(3.8) η :=

{

N
∑

n=1

∫

In

∑

K∈Kn

(

ηnR,K + ηnF,K(t)
)2

dt

}

1
2

+ ∥f − f̂∥X′ .

Proof. Let ϕ ∈ X with ∥ϕ∥X = 1 be given. Then, adding and subtracting (thτ ,∇ϕ)
and using Green’s theorem, it holds that

⟨R(uhτ ),ϕ⟩X′,X

=

∫ T

0

{(f − ∂tuhτ −∇·thτ ,ϕ)− (thτ +∇β(uhτ ),∇ϕ)} (s)ds

=

∫ T

0

{

(f − f̂ ,ϕ) + (f̂ − ∂tuhτ −∇·thτ ,ϕ)− (thτ +∇β(uhτ ),∇ϕ)
}

(s)ds

= : T1 + T2 + T3.

For the first term we infer T1 ≤ ∥f − f̂∥X′∥ϕ∥X = ∥f − f̂∥X′ . The second term
can be rewritten as follows:

T2 =
N
∑

n=1

∫

In

(f̂n − ∂tu
n
hτ −∇·tnh,ϕ)(s)ds.

For all 1 ≤ n ≤ N and t ∈ In, there holds (the dependence of ϕ on the time variable
is omitted for brevity),

(f̂n − ∂tu
n
hτ −∇·tnh,ϕ) =

∑

K∈Kn

(f̂n − ∂tu
n
hτ −∇·tnh,ϕ)K

=
∑

K∈Kn

(f̂n − ∂tu
n
hτ −∇·tnh,ϕ−Π

n
0ϕ)K

≤
∑

K∈Kn

∥f̂n − ∂tu
n
hτ −∇·tnh∥L2(K)∥ϕ−Π

n
0ϕ∥L2(K)

≤
∑

K∈Kn

CP,KhK∥f̂n − ∂tu
n
hτ −∇·tnh∥L2(K)∥∇ϕ∥L2(K)

=
∑

K∈Kn

ηnR,K∥∇ϕ∥L2(K),
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TWO-PHASE STEFAN PROBLEM 9

where we have used the regularity of the arguments, Assumption 3.2, the Cauchy–
Schwarz inequality, and the Poincaré inequality (3.5). For the third term, an ap-
plication of the Cauchy–Schwarz inequality yields

T3 ≤
N
∑

n=1

∫

In

∑

K∈Kn

ηnF,K∥∇ϕ∥L2(K)(s)ds.

Collecting the above estimates, using the definition (3.2) of the dual norm of the
residual, and using the Cauchy–Schwarz inequality yields (3.7). !

3.4. An a posteriori error estimate distinguishing the space, time, reg-

ularization, linearization, and quadrature errors. Our next goal is to dis-
tinguish the different error components. This is an instrumental step to design an
adaptive algorithm where the time step, the space mesh, the regularization parame-
ter, and the stopping criterion for the linearization iterations are chosen optimally.
We start by localizing in time the error measure introduced in Section 3.1. For
1 ≤ n ≤ N , we let

Xn := L2(In;H
1
0 (Ω)), Zn := H1(In;H

−1(Ω)).

We localize in time the dual norm of the residual (3.2) by setting

∥R(uhτ )∥X′

n

(3.9)

:= sup
ϕ∈Xn, ∥ϕ∥Xn=1

∫

In

{⟨∂t(u− uhτ ),ϕ⟩+ (∇β(u)−∇β(uhτ ),∇ϕ)} (s)ds.

Note that, consequently,

∥R(uhτ )∥
2
X′ =

N
∑

n=1

∥R(uhτ )∥
2
X′

n

for any uhτ ∈ Z with β(uhτ ) ∈ X.
Suppose now that we are marching in time from time tn−1 to time tn with a

given time step τn, starting from the approximation un−1
h . We also suppose that

the regularization of Section 2.1.2 has been used for a given value of the parameter
ϵ, and that we are on the k-th step of some iterative linearization algorithm. We

denote by un,ϵ,k
h the approximation of the solution u at time tn and prescribe the

space–time function un,ϵ,k
hτ by the value un−1

h at time tn−1, by the value un,ϵ,k
h at

time tn, and by affine behavior in time on In, i.e.,

(3.10) un,ϵ,k
hτ (·, t) = (1− ρ(t))un−1

h + ρ(t)un,ϵ,k
h , ρ(t) :=

t− tn−1

τn
.

We summarize our general requirements in the following:

Assumption 3.4 (Adaptive setting). For all 1 ≤ n ≤ N , a regularization param-
eter ϵ ≥ 0, and a linearization step k ≥ 1:

(i) un,ϵ,k
hτ is the approximate solution given by (3.10), un,ϵ,k

hτ ∈ Zn with ∂tu
n,ϵ,k
hτ ∈

L2(In;L
2(Ω)) and β(un,ϵ,k

hτ ) ∈ Xn;

(ii) there exists an equilibrated flux t
n,ϵ,k
h ∈ H(div;Ω) such that

(3.11) (∇·tn,ϵ,kh , 1)K = (f̂n, 1)K − (∂tu
n,ϵ,k
hτ , 1)K ∀K ∈ Kn;
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10 DANIELE A. DI PIETRO, MARTIN VOHRALÍK, AND SOLEIMAN YOUSEF

(iii) l
n,ϵ,k
h ∈ [L2(Ω)]d is the available approximation of the flux ∇βϵ(u(·, t

n));
(iv) Π

n is an operator used for interpolatory numerical integration.

An example of the approximate solution un,ϵ,k
hτ , the linearized flux l

n,ϵ,k
h , and the

operator Πn in the context of the implicit vertex-centered finite volume discretiza-
tion and Newton linearization is provided in Section 6.3 below.

Proceeding as in Theorem 3.3, it is immediately inferred that

(3.12) ∥R(un,ϵ,k
hτ )∥X′

n
≤

{

∫

In

∑

K∈Kn

(

η
n,ϵ,k
R,K + η

n,ϵ,k
F,K (t)

)2

dt

}
1
2

+ ∥f − f̂∥X′

n
,

where

η
n,ϵ,k
R,K

:= CP,KhK∥f̂n − ∂tu
n,ϵ,k
hτ −∇·tn,ϵ,kh ∥L2(K),

η
n,ϵ,k
F,K (t) := ∥tn,ϵ,kh +∇β(un,ϵ,k

hτ (·, t))∥L2(K), t ∈ In.

For allK ∈ Kn, we next define the local spatial, temporal, quadrature, regularization,
and linearization estimators as follows:

η
n,ϵ,k
sp,K := η

n,ϵ,k
R,K + ∥ln,ϵ,kh + t

n,ϵ,k
h ∥L2(K),(3.13a)

η
n,ϵ,k
tm,K(t) := ∥∇(Πnβ(un,ϵ,k

hτ (·, t)))−∇(Πnβ(un,ϵ,k
h ))∥L2(K), t ∈ In,(3.13b)

η
n,ϵ,k
qd,K(t) := ∥∇(β(un,ϵ,k

hτ (·, t)))−∇(Πnβ(un,ϵ,k
hτ (·, t)))∥L2(K), t ∈ In,(3.13c)

η
n,ϵ,k
reg,K := ∥∇(Πnβ(un,ϵ,k

h ))−∇(Πnβϵ(u
n,ϵ,k
h ))∥L2(K),(3.13d)

η
n,ϵ,k
lin,K := ∥∇(Πnβϵ(u

n,ϵ,k
h ))− l

n,ϵ,k
h ∥L2(K).(3.13e)

Global versions of these estimators are given by

(ηn,ϵ,ksp )2 := τn
∑

K∈Kn

(

η
n,ϵ,k
sp,K

)2

,(3.14a)

(ηn,ϵ,ktm )2 :=

∫

In

∑

K∈Kn

(

η
n,ϵ,k
tm,K(t)

)2

dt,(3.14b)

(ηn,ϵ,kqd )2 :=

∫

In

∑

K∈Kn

(

η
n,ϵ,k
qd,K(t)

)2

dt,(3.14c)

(ηn,ϵ,kreg )2 := τn
∑

K∈Kn

(

η
n,ϵ,k
reg,K

)2

,(3.14d)

(ηn,ϵ,klin )2 := τn
∑

K∈Kn

(

η
n,ϵ,k
lin,K

)2

.(3.14e)

Using the inequality (3.12) followed by the triangle inequality we obtain the follow-
ing estimate:

Corollary 3.5 (Distinguishing the space, time, quadrature, regularization, lin-
earization, and data oscillation errors). Let u be the weak solution given by (2.2),

let 1 ≤ n ≤ N , ϵ ≥ 0, and k ≥ 1, and let un,ϵ,k
hτ , tn,ϵ,kh , ln,ϵ,kh , and Π

n be as described
in Assumption 3.4. Then there holds

∥R(un,ϵ,k
hτ )∥X′

n
≤ ηn,ϵ,ksp + η

n,ϵ,k
tm + η

n,ϵ,k
qd + ηn,ϵ,kreg + η

n,ϵ,k
lin + ∥f − f̂∥X′

n
.
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Remark 3.6 (Time oscillation of the source term). The error due to the time oscil-

lation of the source term ∥f − f̂∥X′

n
is zero provided that the source function f is

piecewise constant in time.

4. Balancing and stopping criteria, adaptive algorithm,
and efficiency

The individual error component estimators of Corollary 3.5 are used in this sec-
tion to define adaptive criteria to stop the iterative linearizations, to select the value
of the regularization parameter ϵ, to locally adapt the quadrature rule, to adjust
the time step, and to select the mesh elements to refine/derefine. These criteria
are incorporated in a fully adaptive algorithm detailed in Section 4.2. Finally, in
Section 4.3 we show the efficiency of our estimators when the adaptive balancing
and stopping criteria are used.

4.1. Balancing and stopping criteria. Following [15, 19, 26], this section in-
troduces stopping criteria for the iterative algorithms based on the estimators of
Corollary 3.5. The goal is to stop the iterations as soon as the corresponding error
component no longer affects significantly the overall error. We assume in what fol-
lows that we are marching in time from time tn−1 to time tn. Let three user-given
parameters Γlin, Γreg, Γqd ∈ (0, 1) be given. The criteria are:

(i) Linearization. The linearization iteration is pursued until step kn such that

(4.1) η
n,ϵ,kn

lin ≤ Γlin

(

ηn,ϵ,kn

sp + η
n,ϵ,kn

tm + η
n,ϵ,kn

qd + ηn,ϵ,kn

reg

)

.

(ii) Regularization. The regularization parameter ϵ is reduced until the value ϵn
such that

(4.2) ηn,ϵn,kn

reg ≤ Γreg

(

ηn,ϵn,kn

sp + η
n,ϵn,kn

tm + η
n,ϵn,kn

qd

)

.

(iii) Quadrature. The quadrature rule is improved until

(4.3) η
n,ϵn,kn

qd ≤ Γqd

(

ηn,ϵn,kn

sp + η
n,ϵn,kn

tm

)

.

Note that all the linearization, regularization, and quadrature errors may be clas-
sified as subsidiary as they can be made as small as desired by increasing the com-
putational effort for fixed mesh and time step; it is thus reasonable to expect that
the above criteria will be attained. Local, element by element, versions of the crite-
ria (4.1)–(4.3) can be formulated using the local estimators (3.13) (see [15,19,26]),
and require that the inequalities hold for all K ∈ Kn; cf. (7.4) for an example.

In the spirit of [36, 41, 48] and [14, 18, 23], we also propose the usual space–time
adaptivity:

(iv) Space–time error balancing. The space and time error components should be
equilibrated by selecting the time step τn and adjusting the spatial meshes
Kn in such a way that

(4.4) γtmη
n,ϵn,kn

sp ≤ η
n,ϵn,kn

tm ≤ Γtmη
n,ϵn,kn

sp .

Above, Γtm > γtm > 0 are again user-given parameters, typically close to 1.
(v) Adaptive mesh refinement. The error in space should be evenly distributed

throughout the domain Ω by local adaptation (refinement, coarsening) of the
space mesh Kn in such a way that, for all K1, K2 ∈ Kn,

η
n,ϵn,kn

sp,K1
≈ η

n,ϵn,kn

sp,K2
.
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12 DANIELE A. DI PIETRO, MARTIN VOHRALÍK, AND SOLEIMAN YOUSEF

In contrast to (4.1)–(4.3), the goal is to make ηn,ϵn,kn
sp and η

n,ϵn,kn

tm of comparable
size as these error components are substantial and cannot be made arbitrarily small
for a given choice of the mesh and of the time step.

4.2. Adaptive algorithm. In this section we propose an adaptive algorithm that
implements the balancing and stopping criteria of Section 4.1. Moreover, for a
prescribed ζ > 0, we aim at satisfying the relation

(4.5)

∑N

n=1∥R(uhτ )∥
2
X′

n
∑N

n=1∥l
n,ϵ,k
h ∥2

L2(In;L2(Ω))

≤ ζ2,

i.e., to bring the relative error under the user-given precision ζ. To account for
limited computing resources, we fix refinement thresholds h, τ > 0 for both the
mesh size and the time step and require, for all 0 ≤ n ≤ N ,

(4.6) min
K∈Kn

hK ≥ h, τn ≥ τ .

Note that, in particular, because of (4.6), the attainment of (4.5) is not guaranteed.

Recall that un,ϵ,k
h stands for the approximation of the solution un

h at discrete
time tn obtained after k linearization iterations using a regularization parameter ϵ.

At each linearization iteration k, the new approximation un,ϵ,k
h is obtained solving

the linear problem written schematically as un,ϵ,k
h = Ψ(un,ϵ,k−1

h , τn,Kn). For the
sake of simplicity, in what follows we neglect the quadrature and data oscillation
estimators. Our adaptive algorithm is the following:

Algorithm 4.1 (Adaptive algorithm).

Fix the fractions of cells to refine, cref , and to derefine, cderef
Choose an initial mesh K0, regularization parameter ϵ0, and a tolerance ζIC > 0
u0
h ← Π

0(β−1
ϵ0

(β(u0)))
repeat {Initial mesh and regularization parameter adaptation}
Compute ηIC
Refine the cells K ∈ K0 such that ηIC,K ≥ cref maxL∈K0

{

ηIC,L

}

in accordance

with (4.6) and adjust the regularization parameter ϵ0
u0
h ← Π

0(β−1
ϵ0

(β(u0)))

until ηIC ≤ ζIC∥∇(βϵ0(u
0
h))∥L2(Ω)

Choose an initial time step τ0

ϵ ← ϵ0, t
0 ← 0, n ← 0

while tn ≤ T do {Time loop}
n ← n+ 1
Kn ← Kn−1

τn ← τn−1

un,ϵ,0
h ← un−1

h

repeat {Space refinement}
repeat {Space and time error balancing}
repeat {Regularization}
k ← 0
repeat {Nonlinear solver}
k ← k + 1
un,ϵ,k
h = Ψ(un,ϵ,k−1

h , τn,Kn)

Compute ηn,ϵ,ksp , ηn,ϵ,ktm , ηn,ϵ,kreg , ηn,ϵ,klin
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until (4.1) is satisfied
kn ← k
if (4.2) does not hold then

ϵ ← ϵ/2
end if

until (4.2) is satisfied
ϵn ← ϵ

if η
n,ϵn,kn

tm < γtmη
n,ϵn,kn
sp then

τn ← 2τn

else if η
n,ϵn,kn

tm > Γtmη
n,ϵn,kn
sp and τn ≥ 2τ then

τn ← τn/2
end if

until (4.4) is satisfied or τn = τ

Refine the cells K ∈ Kn such that η
n,ϵn,kn

sp,K ≥ cref maxL∈Kn

{

η
n,ϵn,kn

sp,L

}

in

accordance with (4.6)

until ηn,ϵn,kn
sp +η

n,ϵn,kn

tm +ηn,ϵn,kn
reg +η

n,ϵn,kn

lin ≤ ζ∥ln,ϵn,kn

h ∥L2(In;L2(Ω)) or (hK =
h, for the marked cells)

Derefine the cells K ∈ Kn such that ηn,ϵn,kn

sp,K ≤ cderef maxL∈Kn

{

η
n,ϵn,kn

sp,L

}

un
h ← un,ϵn,kn

h

tn ← tn−1 + τn

ϵ ← 2ϵ
end while

4.3. Efficiency of the a posteriori error estimate. In this section we inves-
tigate the global efficiency of the estimators of Corollary 3.5 under the stopping
and balancing criteria of Section 4.1. Hence, the quantities at discrete time tn

are those obtained after performing kn linearization iterations to meet the crite-
rion (4.1), using a regularization parameter ϵn and a quadrature rule such that,
respectively, (4.2) and (4.3) are satisfied, and a time step ensuring the time and
space error balance (4.4). As usual, in order to use the argument of equivalence of
norms on finite-dimensional spaces, we need to assume here:

Assumption 4.2 (Polynomial approximations). For all 1 ≤ n ≤ N , the function

un,ϵn,kn

hτ is affine in time on the time interval In and piecewise polynomial of order

m in space on the mesh Kn−1,n; the functions l
n,ϵn,kn

h and t
n,ϵn,kn

h are piecewise
polynomial of order m in space on Kn−1,n.

For 1 ≤ n ≤ N , we introduce the standard residual-based a posteriori error
estimators, cf. [48]:

(

ηnres,1
)2

:= τn
∑

K∈Kn−1,n

h2
K∥f̂n − ∂tu

n,ϵn,kn

hτ +∇·ln,ϵn,kn

h ∥2L2(K),(4.7a)

(

ηnres,2
)2

:= τn
∑

F∈F i,n−1,n

hF ∥[[l
n,ϵn,kn

h ]]·nF ∥
2
L2(F ).(4.7b)

Let C be a generic constant only depending on the shape regularity parameter κK of
the meshes Kn−1,n, 1 ≤ n ≤ N , the space dimension d, and the polynomial degree
m. In order to still proceed generally, without the specification of a particular
spatial discretization scheme, we will suppose the following:
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14 DANIELE A. DI PIETRO, MARTIN VOHRALÍK, AND SOLEIMAN YOUSEF

Assumption 4.3 (Approximation property). For all 1 ≤ n ≤ N , there holds

(4.8) τn
∑

K∈Kn−1,n

∥ln,ϵn,kn

h + t
n,ϵn,kn

h ∥2L2(K) ≤ C
(

(

ηnres,1
)2

+
(

ηnres,2
)2
)

.

This property will be verified in Section 6 below for the vertex-centered finite

volume spatial discretization and specific constructions of the fluxes t
n,ϵn,kn

h and

l
n,ϵn,kn

h .
Under these assumptions, we have the following result, showing the equivalence of

the error ∥R(un,ϵn,kn

hτ )∥X′

n
and the estimators of Corollary 3.5, up to data oscillation:

Theorem 4.4 (Global efficiency). Let, for all 1 ≤ n ≤ N , the stopping crite-
ria (4.1)–(4.3) as well as the second inequality in the balancing criterion (4.4) be
satisfied with the parameters Γlin, Γreg, Γqd, and Γtm small enough. Let Assump-
tions 4.2 and 4.3 hold true. Then

ηn,ϵn,kn

sp +η
n,ϵn,kn

tm +η
n,ϵn,kn

qd +ηn,ϵn,kn

reg +η
n,ϵn,kn

lin ≤C
(

∥R(un,ϵn,kn

hτ )∥X′

n
+ ∥f − f̂∥X′

n

)

.

The proof of this result follows the techniques of [49] and the approach of [15].
It is given in Appendix A.1.

5. An a posteriori error estimate for the error
in temperature and enthalpy

In the previous sections we have given a posteriori error estimators for the dual
norm of the residual. In this section we prove that these same estimators also bound
an error in temperature and enthalpy. We rely on a duality argument which proves
to be simpler than using the dual partial differential equation as in [36].

5.1. Bounding the error of the temperature and enthalpy by the dual

norm of the residual. For brevity of notation, for t ∈ (0, T ], we let

Qt := L2(0, t;L2(Ω)), Xt := L2(0, t;H1
0 (Ω)), X ′

t := L2(0, t;H−1(Ω)).

It is convenient to stress that the result of this section applies to all functions
uhτ ∈ Z such that β(uhτ ) ∈ X. We first state the following bound:

Lemma 5.1 (Simple bounds for the temperature and enthalpy errors). Let u be
the solution of (2.2) and let uhτ ∈ Z be such that β(uhτ ) ∈ X. Then there holds

Lβ

2
∥u− uhτ∥

2
X′ +

Lβ

2
∥(u− uhτ )(·, T )∥

2
H−1(Ω) + ∥β(u)− β(uhτ )∥

2
QT

≤
Lβ

2
(2eT − 1)

(

∥R(uhτ )∥
2
X′ + ∥u0 − uhτ (·, 0)∥

2
H−1(Ω)

)

and
Lβ

2
∥(u− uhτ )(·, T )∥

2
H−1(Ω) + ∥β(u)− β(uhτ )∥

2
QT

≤
Lβ

2
eT

(

∥R(uhτ )∥
2
X′ + ∥u0 − uhτ (·, 0)∥

2
H−1(Ω)

)

.

The results of Lemma 5.1 are classical; we obtain them as a byproduct in the
proof of Theorem 5.2 in Section A.2 below. These results are, however, not suffi-
ciently precise. In particular, the use of the Gronwall lemma in its proof implies the
appearance of the term eT on the right-hand sides, which grows exponentially with
the final time T . The purpose of the following theorem is to improve considerably
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this point. Indeed, note that, in Theorem 5.2, the term eT does not appear other
than in the approximation of the initial condition ∥u0 − uhτ (·, 0)∥

2
H−1(Ω) which

can be made sufficiently small. Theorem 5.2 takes a more complicated form than
Lemma 5.1 but the numerical results based on its use (see Section 7) prove to be
excellent, which is not the case for the framework of Lemma 5.1:

Theorem 5.2 (An improved bound for the temperature and enthalpy errors). Let
u be the solution of (2.2) and let uhτ ∈ Z be such that β(uhτ ) ∈ X. Then there
holds

Lβ

2
∥u− uhτ∥

2
X′ +

Lβ

2
∥(u− uhτ )(·, T )∥

2
H−1(Ω) + ∥β(u)− β(uhτ )∥

2
QT

+ 2

∫ T

0

(

∥β(u)− β(uhτ )∥
2
Qt

+

∫ t

0

∥β(u)− β(uhτ )∥
2
Qs

et−sds

)

dt

≤
Lβ

2

{

(2eT − 1)∥u0 − uhτ (·, 0)∥
2
H−1(Ω) + ∥R(uhτ )∥

2
X′

+ 2

∫ T

0

(

∥R(uhτ )∥
2
X′

t
+

∫ t

0

∥R(uhτ )∥
2
X′

s
et−sds

)

dt

}

.

The proof of this result is given in Section A.2.

5.2. The a posteriori error estimate. The upper bound in Theorem 5.2 can be
combined with the results of Section 3.3 to obtain an a posteriori estimate for the
temperature and enthalpy errors.

Theorem 5.3 (A posteriori estimate for the temperature and enthalpy errors).
Let u be the solution of (2.2) and let uhτ and thτ fulfill Assumptions 3.1 and 3.2,
respectively. Then there holds

(5.1)

Lβ

2
∥u− uhτ∥

2
X′ +

Lβ

2
∥(u− uhτ )(·, T )∥

2
H−1(Ω) + ∥β(u)− β(uhτ )∥

2
QT

+ 2

∫ T

0

(

∥β(u)− β(uhτ )∥
2
Qt

+

∫ t

0

∥β(u)− β(uhτ )∥
2
Qs

et−sds

)

dt

≤
Lβ

2

{

(2eT − 1)η2IC + η2

+ 2

(

N
∑

n=1

τn
n
∑

l=1

(ηl)2 +

N
∑

n=1

n
∑

l=1

Jnl

{

l
∑

i=1

(ηi)2

})}

,

with ηIC defined by (3.6), η defined by (3.8), ηn, 1 ≤ n ≤ N , defined by

(5.2) ηn :=

{

∫

In

∑

K∈Kn

(ηnR,K + ηnF,K(t))2dt

}
1
2

+ ∥f − f̂∥X′

n
,

and setting, for 1 ≤ n, l ≤ N ,

Jnl :=

∫

In

∫

Il

et−sdsdt.
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Proof. To prove the result, we rely on Theorem 5.2. Applying Theorem 3.3, it
follows that ∥R(uhτ )∥X′ ≤ η, so we are left to estimate the following right-hand
side contributions in terms of the a posteriori error estimators:

T1 :=

∫ T

0

∥R(uhτ )∥
2
X′

t
dt, T2 :=

∫ T

0

(
∫ t

0

∥R(uhτ )∥
2
X′

s
et−sds

)

dt.

As in Theorem 3.3, it is readily inferred that ∥R(uhτ )∥X′

l
≤ ηl for all 1 ≤ l ≤ N ,

so that

∥R(uhτ )∥
2
X′

tn

=
n
∑

l=1

∥R(uhτ )∥
2
X′

l
≤

n
∑

l=1

(ηl)2.

Using the fact that ∥R(uhτ )∥X′

t
is a nondecreasing function of the time t together

with the above inequality yields for the first term

T1 ≤

N
∑

n=1

∫

In

∥R(uhτ )∥
2
X′

tn

dt ≤

N
∑

n=1

∫

In

n
∑

l=1

(ηl)2dt =

N
∑

n=1

τn
n
∑

l=1

(ηl)2.

Proceeding in a similar way, for the second term T2 we obtain

T2 ≤
N
∑

n=1

∫

In

n
∑

l=1

∫

Il

∥R(uhτ )∥
2
X′

tl

et−sdsdt

≤

N
∑

n=1

∫

In

n
∑

l=1

{

∫

Il

l
∑

i=1

(ηi)2et−sds

}

dt

=

N
∑

n=1

n
∑

l=1

{
∫

In

∫

Il

et−sdsdt

}

×

{

l
∑

i=1

(ηi)2

}

=

N
∑

n=1

n
∑

l=1

Jnl

{

l
∑

i=1

(ηi)2

}

,

whence the conclusion follows. !

Remark 5.4 (Simplified versions of the a posteriori estimate). In the spirit of
Lemma 5.1, the following simplified versions of the a posteriori estimate of Theo-
rem 5.3 hold:

Lβ

2
∥u− uhτ∥

2
X′ +

Lβ

2
∥(u− uhτ )(·, T )∥

2
H−1(Ω) + ∥β(u)− β(uhτ )∥

2
QT

≤
Lβ

2
(2eT − 1)

(

η2 + η2IC
)

,

Lβ

2
∥(u− uhτ )(·, T )∥

2
H−1(Ω) + ∥β(u)− β(uhτ )∥

2
QT

≤
Lβ

2
eT

(

η2 + η2IC
)

.

Remark 5.5 (An a posteriori error estimate distinguishing the different error com-
ponents). While relying on Corollary 3.5 instead of Theorem 3.3, equivalents of
Theorem 5.3 and of the bounds of Remark 5.4, distinguishing the different error
components can immediately be obtained.

6. Application to a vertex-centered finite volume discretization

In this section, we consider the vertex-centered finite volume spatial and back-
ward Euler temporal discretization of the Stefan problem (1.1). The regularization
of Section 2.1.2 is considered and the Newton linearization is used. We show how to
construct the equilibrated flux t

n,ϵ,k
h , the linearized flux l

n,ϵ,k
h , and the interpolation

operator Πn of Assumption 3.4 (in generalization of Assumptions 3.1 and 3.2) and
verify Assumptions 4.2 and 4.3. Thus, all the results of Sections 3–5 will apply.
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T n

Dn

D

KD

Figure 2. Simplicial mesh T n and the associated vertex-centered
dual mesh Dn (left) and the fine simplicial mesh KD of D ∈ Dn

(right)

6.1. Dual and tertial space meshes. The vertex-centered finite volume method
is defined using a sequence of dual meshes {Dn}0≤n≤N of the space domain Ω.
For a given family of matching simplicial primal meshes {T n}0≤n≤N , we construct
{Dn}0≤n≤N as follows: for any 0 ≤ n ≤ N and with every vertex a of the mesh T n,
we associate one dual volume D, constructed by connecting the barycenters of the
simplices sharing a through edge (and face for d = 3) barycenters (see Figure 2, left)
for d = 2. We split every set Dn into interior dual volumes Dn,i and boundary dual
volumes Dn,b. The simplicial mesh Kn appearing in Sections 2–5 is constructed by
dividing each D ∈ Dn into a mesh KD as indicated in Figure 2, right, if d = 2 and
similarly for d = 3.

6.2. The vertex-centered finite volume scheme. Let, for 0 ≤ n ≤ N ,

V n
h :=

{

ϕh ∈ C0(Ω);ϕh|K ∈ P1(K) ∀K ∈ T n
}

and let

(6.1) Π
n : C0(Ω) → V n

h be the Lagrange interpolation operator

(cf. Ciarlet [11]), which to a function ϕ ∈ C0(Ω) associates a function ϕh ∈ V n
h by

setting ϕh(a) := ϕ(a) for any vertex a of the mesh T n.
Let u0

h ∈ V 0
h be a suitable approximation of the regularized initial enthalpy

β−1
ϵ (β(u0)); see Algorithm 4.1. Next, let 1 ≤ n ≤ N , un−1

h ∈ V n−1
h , and a mesh T n

(and consequently Dn) be given. The vertex-centered finite volume scheme for the
regularized Stefan problem (2.3) reads: find un,ϵ

h ∈ V n
h such that βϵ(u

n,ϵ
h )(a) = 0

for all vertices a of T n on ∂Ω and such that

(6.2)
1

τn
(un,ϵ

h − un−1
h , 1)D − (∇Π

n(βϵ(u
n,ϵ
h ))·nD, 1)∂D = (f̂n, 1)D ∀D ∈ Dn,i.

Then the continuous and piecewise affine-in-time function uhτ appearing in the
previous sections is given by uhτ |In := un,ϵ

hτ ,

(6.3) un,ϵ
hτ (·, t) = (1− ρ(t))un−1

h + ρ(t)un,ϵ
h , ρ(t) :=

t− tn−1

τn
t ∈ In.

Remark 6.1 (Regularization). It is also possible to consider the vertex-centered
finite volume discretization without any regularization, i.e., use β in place of βϵ

in (6.2), with u0
h ∈ V 0

h an approximation of the initial enthalpy u0.

Remark 6.2 (Links to the discretizations of [4,21,36]). Let for simplicity the meshes

T n (and consequently Dn) do not move in time and let f̂n be piecewise constant on
Dn. Consider the case without regularization. Then the second and third terms of
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18 DANIELE A. DI PIETRO, MARTIN VOHRALÍK, AND SOLEIMAN YOUSEF

the scheme (6.2) coincide with that of [36, equation (4.4)], because of the links of the
vertex-centered finite volumes and finite elements with mass lumping/quadrature
for the source term. Similarly, in two space dimensions and when all the angles
of T n are smaller than or equal to 90◦, replacing the triangle barycenters by the
triangle circumcenters in the construction of Dn, the second and third terms of the
scheme (6.2) coincide with that in the co-volume method of [4]. More generally,
whenever T n is Delaunay and the mesh Dn is its Voronöı dual, the same link holds
true with the cell-centered finite volume scheme of [21]; cf., e.g., [4, 21,36], [11,20],
or [51, Section 3]. Hence the only slight difference between (6.2) and these schemes
is in the treatment of the time evolution term which is not mass-lumped herein.

Remark 6.3 (Assumption 3.1). By the definition of uhτ by (6.2)–(6.3) and by the
fact that uhτ lies in a finite-dimensional space, uhτ ∈ Z and β(uhτ ) ∈ X, so that
Assumption 3.1 is satisfied. A uniform bound could also be obtained by a priori
stability analysis such as those in [4, 21, 36], but is not necessary in our setting.

6.3. Newton linearization. Let 1 ≤ n ≤ N and the mesh T n (and Dn) be fixed.
Let the vector Gn−1 be given by its components associated with the dual volumes

D ∈ Dn,i, Gn−1
D

:= (un−1
h , 1)D, and similarly for the vector Fn, Fn

D := (f̂n, 1)D. Let

ub,n,ϵ
h ∈ V n

h take the values β−1
ϵ (0) (0.5 for the example of Figure 1) at the boundary

vertices of T n and the value zero at the other vertices of T n. The last vector that
we need is Hn,ϵ, Hn,ϵ

D
:= (ub,n,ϵ

h , 1)D. Let, for a given dual volume E ∈ Dn,i,
φE stand for the hat basis function of the space V n

h associated with E; this is a
function that takes the value 1 in the vertex associated with E and the value 0 at
all other vertices of T n. We also define two matrices, with the components on the
line associated with the dual volume D ∈ Dn,i and on the column associated with
the dual volume E ∈ Dn,i given by M

n
D,E := (φE , 1)D, Kn

D,E := (∇φE ·nD, 1)∂D.

All the vectors are of size R
|Dn,i| and the matrices of size R

|Dn,i|×|Dn,i|, with |Dn,i|
the number of dual volumes in Dn,i (equal to the number of interior vertices of T n).
The equation (6.2) can be written in matrix form as follows: find the vector Un,ϵ

such that

(6.4) M
nUn,ϵ − τnKnβϵ(U

n,ϵ) = τnFn +Gn−1 −Hn,ϵ,

where (βϵ(U
n,ϵ))D := βϵ(U

n,ϵ
D ). We have un,ϵ

h =
∑

E∈Dn,i U
n,ϵ
E φE + ub,n,ϵ

h .
The algebraic system (6.4) is nonlinear. Its solution is approximated using the

Newton linearization. Let Un,ϵ,0 be fixed; typically, Un,ϵ,0 := Un−1. Then, for
k ≥ 1, we approximate

(6.5) βϵ(U
n,ϵ,k) ≈ βϵ(U

n,ϵ,k−1) + β′
ϵ(U

n,ϵ,k−1)
(

Un,ϵ,k − Un,ϵ,k−1
)

.

Since the regularized enthalpy-temperature function βϵ is continuously differen-
tiable, the Newton linearization (6.5) is well defined. At every Newton iteration k,
we are thus lead to solve the following system of linear algebraic equations: find
the vector Un,ϵ,k such that

(

M
n − τnKnβ′

ϵ(U
n,ϵ,k−1)

)

Un,ϵ,k = τnFn +Gn−1 −Hn,ϵ(6.6)

− τnKn
(

β′
ϵ(U

n,ϵ,k−1)Un,ϵ,k−1 − βϵ(U
n,ϵ,k−1)

)

.

At each linearization step k, we set

(6.7) un,ϵ,k
h

:=
∑

E∈Dn,i

Un,ϵ,k
E φE + ub,n,ϵ

h ,
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which is the function appearing in Section 3.4. The corresponding linearized flux
of Assumption 3.4 is given by

(6.8) l
n,ϵ,k
h

:= ∇

(

∑

E∈Dn,i

{

βϵ(U
n,ϵ,k−1
E ) + β′

ϵ(U
n,ϵ,k−1
E )

(

Un,ϵ,k
E − Un,ϵ,k−1

E

)

}

φE

)

.

We perform the Newton iterations until we meet the convergence criterion discussed
in Section 4.1.

6.4. Flux reconstruction. Let a time step 1 ≤ n ≤ N , a regularization parameter
ϵ > 0, and a Newton linearization step k be fixed. We now show how to construct

the flux t
n,ϵ,k
h of Assumption 3.4. For this purpose, we will solve a local Neumann

problem by mixed finite elements on every dual volume, following [17, 30, 51]. For
a given D ∈ Dn, we introduce the spaces

RTN(KD) := {vh ∈ H(div;D);vh|K ∈ [P0(K)]d + xP0(K) ∀K ∈ KD},

RTNN(KD) := {vh ∈ RTN(KD);vh·nF = −l
n,ϵ,k
h ·nF ∀F ∈ ∂Ki

D},

RTNN,0(KD) := {vh ∈ RTN(KD);vh·nF = 0 ∀F ∈ ∂Ki
D},

where ∂Ki
D stands for all the faces of the submesh KD which are on the boundary

of the dual volume D but not on the boundary of Ω. We will also need the space
P
∗
0(KD) which consists of piecewise constants functions on KD; when D ∈ Dn,i, we

additionally impose a zero mean value over D. The local problem consists in finding

t
n,ϵ,k
h ∈ RTNN(KD) and qh ∈ P

∗
0(KD), the mixed finite element approximations of

local Neumann problems on D ∈ Dn,i and local Neumann/Dirichlet problems on
D ∈ Dn,b:

(tn,ϵ,kh + l
n,ϵ,k
h ,vh)D − (qh,∇·vh)D = 0 ∀vh ∈ RTNN,0(KD),(6.9a)

(∇·tn,ϵ,kh ,φh)D − (f̂n − ∂tu
n,ϵ,k
hτ ,φh)D = 0 ∀φh ∈ P

∗
0(KD).(6.9b)

Note that the problem (6.9) is well-posed and one can take all φh ∈ P0(KD) as the
test functions in (6.9b). Indeed, it follows from (6.6) and (6.8) (compare to (6.2))
that

(6.10)
1

τn
(un,ϵ,k

h − un−1
h , 1)D − (ln,ϵ,kh ·nD, 1)∂D = (f̂n, 1)D ∀D ∈ Dn,i.

From (6.10), we see that the Neumann boundary condition encoded in RTNN(KD)

is in equilibrium with the boundary datum f̂n − ∂tu
n,ϵ,k
hτ of (6.9). We have the

following key result:

Lemma 6.4 (Assumptions 3.4, 4.2, and 4.3). Let 1 ≤ n ≤ N , ϵ > 0, and k ≥ 1

be fixed. Let un,ϵ,k
h be given by (6.6)–(6.7), ln,ϵ,kh by (6.8), tn,ϵ,kh by (6.9), and Π

n

by (6.1). Then Assumptions 3.4, 4.2, and 4.3 hold true.

Proof. The equilibrium property (3.11) follows immediately from (6.9b), so that As-
sumption 3.4 is easily satisfied. Whereas Assumption 4.2 is trivial, Assumption 4.3
is obtained by proceeding exactly as in [51, proof of Theorem 5.5] or [15, proof of
Lemma 5.3]. !

7. Numerical experiments

We illustrate in this section our theoretical results on a series of numerical exper-
iments for the vertex-centered finite volume discretization approach of Section 6.
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20 DANIELE A. DI PIETRO, MARTIN VOHRALÍK, AND SOLEIMAN YOUSEF

7.1. Setting. We consider the two-dimensional test case proposed by Nochetto et
al. [34, 35] on the space–time domain Ω × (0, T ) with Ω = (0, 5)2 and T = π/1.25.
The function β(·) is given by β(u) = u⊖ + (u − 1)⊕. The exact temperature has
the following expression:

(7.1) (β(u))(x, y, t) =

{

0.75(r2 − 1), if r < 1,
(

1.5− ρ′(t) y−ρ(t)
r

)

(r − 1), if r ≥ 1,

where r2 := x2+(y− ρ(t))2 and ρ(t) := 0.5+ sin(1.25t). The exact interface I(t) is
a circle with center (0, ρ(t)) and radius 1. The motion of the interface is governed
by the Stefan law which prescribes that the normal velocity v satisfies

(∇β(u)+ −∇β(u)−)·n = v on I(t),

where ∇β(u)+ and ∇β(u)− denote the values of the temperature gradient on each
side of the interface, while n is the unit normal to the interface with suitable
orientation. The enthalpy u on Ω \ I(t) can be obtained from the expression (7.1)
of β(u). The homogeneous Neumann condition ∇β(u)·n = 0 is enforced at x = 0,
whereas Dirichlet boundary conditions on the temperature are prescribed at y = 0,
y = 5, and x = 5 using (7.1). The initial enthalpy u0 and the source term f are
likewise imposed using (7.1). The vertex-centered finite volume discretization of
Section 6 is considered. No adaptation of the quadrature rule is performed; this is
a reasonable simplification since the enthalpy-temperature function β(·) is piecewise
affine.

7.2. Computing approximately the negative norms. In practice we cannot
compute the negative norms as the initial data indicator ηIC , the data oscillation

∥f− f̂∥X′ , and the dual norm of the residual ∥R(uhτ )∥X′ , even if the exact solution
u is known. For numerical experiments below, the dual norms are approximated
by solving auxiliary problems. More specifically, for a function v ∈ X ′ to compute
the negative norm ∥v∥X′ we consider for a.e. t ∈ (0, T ) the problem: find ψ(·, t) ∈
H1

0 (Ω) such that

(7.2) (∇ψ(·, t),∇ϕ) = ⟨v(·, t),ϕ⟩, ∀ϕ ∈ H1
0 (Ω).

Then

∥v∥2X′ =

∫ T

0

{

sup
ϕ∈H1

0 (Ω), ∥∇ϕ∥
L2(Ω)=1

⟨v(·, t),ϕ⟩

}2

dt

=

∫ T

0

{

sup
ϕ∈H1

0 (Ω), ∥∇ϕ∥
L2(Ω)=1

(∇ψ(·, t),∇ϕ)

}2

dt

=

∫ T

0

∥∇ψ∥2L2(Ω)(t)dt = ∥∇ψ∥2L2(0,T ;L2(Ω)).

We obtain an approximation of the function ψ by solving the problem (7.2) numer-
ically by the vertex-centered finite volume scheme on a refined spatial mesh and on
discrete times which refine the given temporal mesh. We suppose that the ensuing
discretization error is small and can be ignored. The computation of ηIC is easier
as it only involves the initial time t = 0.
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Figure 3. Evolution of the spatial, temporal, regularization, and
linearization error estimators (3.14) as a function of Newton iter-
ations for a fixed mesh, time step, and regularization parameter

7.3. Stopping criteria. We start by assessing the performance of the balancing
and stopping criteria introduced in Section 4.1. Figure 3 depicts the evolution of the
spatial (3.14a), temporal (3.14b), regularization (3.14d), and linearization (3.14e)
error estimators as a function of the number of Newton iterations for a fixed mesh
K with hK = 0.25, time step τ = 0.1, and regularization parameter ϵ = 0.05.
As expected, the linearization error steadily decreases, while the other components
stagnate starting from the second iteration. The stopping criterion (4.1) with Γlin =
10−2 allows us to profit from this behavior by stopping the Newton algorithm after
the second iteration, while a classical criterion based on a fixed threshold,

(7.3) η
n,ϵ,k
lin ≤ ζlin, ζlin = 10−7,

would require 10 iterations to converge. The overall gain for an entire simulation
in terms of linearization iterations can be appreciated considering the results in
Figure 4, left. We use the adaptive Algorithm 4.1 with different choices for the
linearization stopping criterion: the classical criterion (7.3) then the stopping cri-
terion (4.1) with Γlin = 0.01 and Γlin = 0.1. The other parameters used in the
Algorithm are: Γreg = 0.1, ζ = 1, ζIC = 1, hK0 = 0.1, τ0 = 0.1, ϵ0 = 0.25,
h = 10−2, τ = 10−2, cref = 0.7, cderef = 0.2, γtm = 0.7, and Γtm = 1.3. For the sake
of completeness we also add a comparison with the local version of the stopping
criterion (4.1), namely

(7.4) η
n,ϵ,kn

lin,K ≤ Γlin,loc

(

η
n,ϵ,kn

sp,K + η
n,ϵ,kn

tm,K + η
n,ϵ,kn

qd,K + η
n,ϵ,kn

reg,K

)

∀K ∈ Kn.

Even with this more stringent criterion, Figure 4, right, shows that a considerable
gain in terms of number of linearization iterations can be achieved, whereas the
precision on each time step (expressed by our error estimator ηn (5.2)) is basically
unchanged.
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Figure 5. Evolution of the spatial, temporal, and regularization
error estimators (3.14) as a function of ϵ−1 for a fixed mesh and
time step

Figure 5 shows similar results concerning the criterion (4.2) for the choice of
the regularization parameter ϵ for a fixed mesh K with hK = 0.25 and time step
τ = 0.1. For each value of ϵ, the Newton iterations are stopped according to (4.1)
with Γlin = 0.1. The regularization error estimator decreases as expected when
ϵ decreases, while the space and time error estimators stagnate starting from the
third iteration. The criterion (4.2) with Γreg = 0.1 leads to stopping the iterations
after the fourth step.
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Figure 6. Effect of the time step adaptation strategy on the
global error estimator (3.8). Violations of the balancing cri-
terion (4.4) by space over-refinement (top left) and time over-
refinement (top right). Time step refinement honoring (4.4) (bot-
tom left). Overall comparison (bottom right)

7.4. Balancing criteria. The next series of numerical experiments aims at assess-
ing the space–time balancing criterion (4.4) by showing its impact on the estimated

error (3.8) as a function of the total number of space–time unknowns
∑N

n=1 |D
n,i|.

In Figure 6, bottom left, we started by an initial mesh K0 with hK0 = 0.4 and a
time step τ0 = 0.1. Then the time step is adapted in order to satisfy (4.4), with
γtm = 0.7, Γtm = 1.3. As a result, the spatial (3.14a) and temporal (3.14b) error es-
timators stay equilibrated during the whole simulation. Figure 6, top, on the other
hand, shows two possible disequilibrated patterns corresponding to space and time
over-refinement. In the top left we started by an initial mesh K0 with hK0 = 0.2
and a time step τ0 = 0.2, we fixed also γtm = 2 and Γtm = 3, while in the top right
we started by an initial mesh K0 with hK0 = 0.5 and time step τ0 = 0.05 and we
fixed γtm = 1

3 and Γtm = 1
2 . Finally, Figure 6, bottom right shows the effect of this

violating of the balancing criterion (4.4) on the total error. These results make it
apparent that the performance of an adaptive code may be considerably reduced
when time and space errors are not balanced, and advocate the use of (4.4).

Next, we compare in Figure 7 the actual and predicted error distributions using
the adaptive Algorithm 4.1 with Γlin = Γreg = 0.1, ζ = 1, ζIC = 1, hK0 = 0.25,
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Figure 7. Actual (left) and estimated (right) error distribution
for Γlin = Γreg = 0.1, adaptive Algorithm 4.1, entire domain (top),
interface zoom (bottom)

τ0 = 0.05, ϵ0 = 0.25, h = 10−2, τ = 10−2, cref = 0.7, cderef = 0.2, γtm = 0.7,
and Γtm = 1.3. We present the results at time t = 0.1. We see that the actual
and predicted error distributions match very nicely. The corresponding exact and
discrete enthalpies are depicted in Figure 8.

7.5. Overall performance. In this section we assess the overall performance of
the adaptive algorithm of Section 4.2 in terms of precision vs. the number of un-
knowns.

In Figure 9, left, we depict the error and estimates as a function of the total
number of space–time unknowns in the fully adaptive case and in the uniform
case. In the adaptive case, we use Algorithm 4.1 with the parameters detailed
in Section 7.4. In the uniform case, the temporal and spatial meshes as well as
the regularization parameter are fixed during the simulation, and linearization is
stopped when (7.3) is satisfied. The error is measured in the dual norm (3.3)
and estimated by Theorem 3.3 in the top part of Figure 9, whereas the energy-
like norm (5.1) and the estimate of Theorem 5.3 are used in the bottom part of
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Figure 8. Exact (left) and approximate (right) enthalpy corre-
sponding to the results of Figure 7

Table 1. Comparison of the experimental orders of convergence
(e.o.c.) in the uniform and fully adaptive cases. The total num-
ber of space–time unknowns is denoted by Nst. The actual error
∥R(uhτ )∥X′ and the estimated error η are defined by (3.2) and (3.8)
respectively.

(a) Uniform case

Nst ∥β(u)− β(uhτ )∥QT
e.o.c. ∥R(uhτ )∥X′ e.o.c. η e.o.c.

7020 7.13e-02 – 3.75e-01 – 1.22e-00 –
66906 6.02e-02 0.224 3.30e-01 0.172 8.65e-01 0.455
915840 5.07e-02 0.197 2.48e-01 0.364 6.50e-01 0.392

1.12963e+07 2.19e-02 0.221 1.60e-01 0.115 2.40e-01 0.261

(b) Adaptive case

Nst ∥β(u)− β(uhτ )∥QT
e.o.c. ∥R(uhτ )∥X′ e.o.c. η e.o.c.

9360 6.55e-02 – 3.51e-01 – 1.51e-00 –
35370 5.28e-02 0.486 3.07e-01 0.303 1.08e-00 0.751
224082 4.06e-02 0.427 2.19e-01 0.546 6.32e-01 0.868

1.53329e+06 1.10e-02 0.392 1.18e-01 0.186 2.23e-01 0.312

Figure 9. In both cases the adaptive strategy yields much better results than the
uniform one, as expected. The right part of Figure 9 displays the corresponding
effectivity indices, given by the ratio of the estimates over the error. These are
remarkably close to the optimal value of one for the dual norm (3.3), even for the
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Figure 9. Comparison between adaptive and uniform refinement.
Dual norm (3.3) (top), energy-like norm (5.1) (bottom). Error and
estimators (left), effectivity indices (right)

present time-dependent, degenerate problem with a moving free boundary. We
regard the effectivity indices corresponding to Theorem 5.3 as likewise excellent;
there are, in particular, several orders of magnitude smaller than the effectivity
indices corresponding to the setting of Remark 5.4 that we have also assessed (not
presented).

A quantitative evaluation of the performance in terms of precision vs. the number
of unknowns can be obtained by computing the experimental order of convergence
(e.o.c.), defined as follows:

e.o.c :=
log(eNst

)− log(eMst
)

− 1
3 (logNst − logMst)

,

where e denotes the chosen error measure while Nst and Mst are the total num-
ber of space–time unknowns corresponding to two subsequent levels of refinement.
The results for the uniform and adaptive cases are collected in Tables 1a and 1b,
respectively. We evaluate the dual norm of the residual (3.2), the L2(0, T ;L2(Ω))
error in the temperature, and the estimator η of (3.8). We observe roughly twice
faster convergence in the adaptive case in comparison with the uniform one.
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Appendix A. Proofs

In this appendix, we collect the more involved proofs of some theorems of the
paper.

A.1. Proof of Theorem 4.4. In this section, we will use the notation a " b for the
inequality a ≤ Cb with a generic constant C only depending on the shape regularity
parameter κK of the meshes Kn−1,n and on the maximal level of coarsening between
Kn−1 and Kn, 1 ≤ n ≤ N , the space dimension d, and the polynomial degreem. Fix
1 ≤ n ≤ N . We start by observing that, owing to the stopping criteria (4.1)–(4.3)
and to the second inequality in the balancing criterion (4.4),

(A.1) ηn,ϵn,kn

sp + η
n,ϵn,kn

tm + η
n,ϵn,kn

qd + ηn,ϵn,kn

reg + η
n,ϵn,kn

lin " ηn,ϵn,kn

sp .

Recall that we have supposed in Section 2.2.2 that the mesh Kn, 1 ≤ n ≤ N ,
is obtained from Kn−1 by limited refinement/coarsening and that the common
refinements Kn−1,n are uniformly shape regular. Thus, for K ∈ Kn, using the
triangle inequality, Assumption 4.2, and the inverse inequality, cf. [44, Proposition
6.3.2], the first term of (3.13a) can be bounded by

η
n,ϵn,kn

R,K = CP,KhK∥f̂n − ∂tu
n,ϵn,kn

hτ −∇·tn,ϵn,kn

h ∥L2(K)

≤ CP,KhK∥f̂n − ∂tu
n,ϵn,kn

hτ +∇·ln,ϵn,kn

h ∥L2(K)

+ CP,KhK∥∇·(ln,ϵn,kn

h + t
n,ϵn,kn

h )∥L2(K)

"

⎧

⎨

⎩

∑

K′∈Kn−1,n,K′⊂K

h2
K′∥f̂n − ∂tu

n,ϵn,kn

hτ +∇·ln,ϵn,kn

h ∥2L2(K′)

⎫

⎬

⎭

1
2

+

⎧

⎨

⎩

∑

K′∈Kn−1,n,K′⊂K

∥ln,ϵn,kn

h + t
n,ϵn,kn

h ∥2L2(K′)

⎫

⎬

⎭

1
2

.

Consequently, employing Assumption 4.3,

(A.2) ηn,ϵn,kn

sp " ηnres,1 + ηnres,2.

Proving the efficiency of the estimators introduced in Section 3.4 thus amounts to
proving the efficiency of the residual estimators ηnres,1 and ηnres,2.

Henceforth, to simplify, we will use the shorthand notation

un
hτ = un,ϵn,kn

hτ , lnh = l
n,ϵn,kn

h

and denote

(

ηnLRQT

)2
:=

∫

In

∑

K∈Kn−1,n

∥∇β(un
hτ (·, t))− lnh∥

2
L2(K)dt.(A.3)

We have:
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Lemma A.1 (Estimate of ηnres,1). Under the assumptions of Theorem 4.4, there
holds

(A.4) ηnres,1 " ∥R(un
hτ )∥X′

n
+ ηnLRQT + ∥f − f̂∥X′

n
.

Proof. For all K ∈ Kn−1,n, we let vK := (f̂n−∂tu
n
hτ+∇·lnh)|K . By Assumption 4.2,

vK is polynomial in K. We denote by ψK the usual bubble function on K, i.e., the
product of the (d+1) hat basis functions (barycentric coordinates) ψa associated
with the vertices a of the element K, set λK := h2

KψKvK for all K ∈ Kn−1,n, and
let λ :=

∑

K∈Kn−1,n λK . Clearly, λ ∈ H1
0 (Ω) and λ|K ∈ H1

0 (K) for all K ∈ Kn−1,n.
Using the equivalence of norms on finite-dimensional spaces, integrating by parts in
space, the weak form (2.2c), and (3.9) together with the Cauchy–Schwarz inequality;
we infer that (cf. [49])

(A.5)

(

ηnres,1
)2

"

∫

In

∑

K∈Kn−1,n

h2
K(vK ,ψKvK)Kds

=

∫

In

{

⟨∂t(u− un
hτ ),λ⟩+ (∇β(u)−∇β(un

hτ ),∇λ)

+ (∇β(un
hτ )− lnh,∇λ) + (f̂n − f,λ)

}

ds

≤
(

∥R(un
hτ )∥X′

n
+ ηnLRQT + ∥f − f̂∥X′

n

)

∥λ∥Xn
.

By the shape regularity of the mesh Kn−1,n and the inverse inequality (cf. [44,
Proposition 6.3.2]) we have, for any K ∈ Kn−1,n,

∥∇λ∥L2(K) = h2
K∥∇(ψKvK)∥L2(K) " hK∥ψKvK∥L2(K) ≤ hK∥vK∥L2(K).

An immediate consequence is that ∥λ∥Xn
" ηnres,1 and (A.4) follows. !

Lemma A.2 (Estimate of ηnres,2). Under the assumptions of Theorem 4.4, there
holds

(A.6) ηnres,2 " ∥R(un
hτ )∥X′

n
+ ηnLRQT + ∥f − f̂∥X′

n
.

Proof. Let F ∈ F i,n−1,n. We denote by KF the simplices K ∈ Kn−1,n that share
the face F . Let vF := [[lnh]]·nF and keep the same notation for the constant ex-
tension of vF into KF along the vectors face barycenter-opposite vertex. Owing
to Assumption 4.2, vF is a polynomial on KF . Let ψF be the usual face bubble
function supported on KF , i.e., the product of the d hat basis functions (barycentric
coordinates) ψa associated with the vertices a of the face F . For all F ∈ F i,n−1,n,
set λF := hFψF vF and let λ :=

∑

F∈F i,n−1,n λF . Note that λ ∈ H1
0 (Ω) and

λ|KF
∈ H1

0 (KF ) for all F ∈ F i,n−1,n. Using the equivalence of norms in finite-
dimensional spaces, integrating by parts in space, using the weak form (2.2c),

Licensed to Ecole Natl des Ponts et Chaussees. Prepared on Thu Jun 19 04:33:39 EDT 2014 for download from IP 195.221.193.15/195.221.193.114.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



TWO-PHASE STEFAN PROBLEM 29

and (3.9) together with the Cauchy–Schwarz inequality, it is inferred that (cf. [49])

(A.7)

(

ηnres,2
)2

"

∫

In

∑

F∈F i,n−1,n

hF (vF ,ψF vF )Fds

=

∫

In

∑

F∈F i,n−1,n

∑

K∈KF

{(∇·lnh,λF )K + (lnh,∇λF )K}ds

=

∫

In

{(∇·lnh,λ) + (lnh,∇λ)}ds

=

∫

In

{

⟨∂t(u
n
hτ − u),λ⟩+ (∇β(un

hτ )−∇β(u),∇λ)

+ (f̂n − ∂tu
n
hτ +∇·lnh,λ)

+ (lnh −∇β(un
hτ ),∇λ) + (f − f̂n,λ)

}

ds

"
(

∥R(un
hτ )∥X′

n
+ ηnLRQT + ∥f − f̂∥X′

n

)

∥λ∥Xn

+ ηnres,1

{

τn
∑

K∈Kn−1,n

h−2
K ∥λ∥2L2(K)

}
1
2

.

Using the fact that, for all F ∈ F i,n−1,n and K ∈ Kn−1,n
F , ∥ψF vF ∥L2(K) "

h
1
2

F ∥vF ∥L2(F ), it is inferred that τn
∑

K∈Kn−1,n h−2
K ∥λ∥2

L2(K) " (ηnres,2)
2, whence

by the inverse inequality, ∥λ∥Xn
" ηnres,2. Using this fact in (A.7) in conjunction

with (A.4), (A.6) follows. !

Proof of Theorem 4.4. It follows from Lemmas A.1 and A.2 and from (A.2) that

(A.8) ηn,ϵn,kn

sp " ∥R(un,ϵn,kn

hτ )∥X′

n
+ ηnLRQT + ∥f − f̂∥X′

n
.

In order to bound the term ηnLRQT, we proceed as follows. The triangle inequality

and the definitions (3.13) and (3.14) give

ηnLRQT ≤ η
n,ϵn,kn

lin + ηn,ϵn,kn

reg + η
n,ϵn,kn

qd + η
n,ϵn,kn

tm .

Thus, proceeding as for the bound (A.1),

ηnLRQT ≤ Cηn,ϵn,kn

sp ,

where the constant C only depends on the parameters Γlin, Γreg, and Γqd in the
stopping criteria (4.1)–(4.3) and Γtm in the balancing criterion (4.4). Thus, choosing
these parameters small enough, the term ηnLRQT can be made small enough to be

discarded from the right-hand side of (A.8); cf. [15, Theorem 4.4] and the assertion
of Theorem 4.4 follows from (A.1). !

A.2. Proof of Theorem 5.2. We start by proving the following intermediate
result.

Lemma A.3 (Duality bound). Let u be the solution to (2.2) and let uhτ ∈ Z be
such that β(uhτ ) ∈ X. Then, there holds, for a.e. t ∈ (0, T ),

2

Lβ

∥β(u)− β(uhτ )∥
2
Qt

+ ∥(u− uhτ )(·, t)∥
2
H−1(Ω)(A.9)

≤ ∥u0 − uhτ (·, 0)∥
2
H−1(Ω) + ∥R(uhτ )∥

2
X′

t
+ ∥u− uhτ∥

2
X′

t
.
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Proof. For a.e. t ∈ (0, T ), we denote by W (·, t) ∈ H1
0 (Ω) the solution to

(A.10) (∇W (·, t),∇ψ) = ((u− uhτ )(·, t),ψ) ∀ψ ∈ H1
0 (Ω).

The existence and uniqueness of W (·, t) follow from the Riesz representation theo-
rem. Moreover, since u, uhτ ∈ Z, there holds W ∈ X. Using (A.10), it is inferred
that

(A.11)

∥∇W (·, t)∥L2(Ω) = sup
ψ∈H1

0 (Ω), ∥∇ψ∥
L2(Ω)=1

(∇W (·, t),∇ψ)

= sup
ψ∈H1

0 (Ω), ∥∇ψ∥
L2(Ω)=1

((u− uhτ )(·, t),ψ)

= ∥(u− uhτ )(·, t)∥H−1(Ω).

This duality technique is rather standard; see [9] and the references therein. Its
origins can be traced back at least to the elliptic projection of Wheeler [53]. In some
aspects, it is close to the elliptic reconstruction of Makridakis and Nochetto [31];
however, in [31] it is used to restore optimal order of the a posteriori estimate in
L∞(0, T ;L2(Ω)), whereas here we employ it to obtain a bound on an energy-like
norm.

Taking ϕ = W1(0,t) with 1(0,t) the characteristic function of the interval (0, t) in
definition (3.1) and using (A.11) and the Young inequality, it is inferred that
(A.12)

⟨R(uhτ ),W ⟩X′

t,Xt
≤ ∥R(uhτ )∥X′

t
∥u− uhτ∥X′

t
≤

1

2
∥R(uhτ )∥

2
X′

t
+

1

2
∥u− uhτ∥

2
X′

t
.

Moreover,

⟨R(uhτ ),W ⟩X′

t,Xt
=

∫ t

0

⟨∂t(u− uhτ ),W ⟩(s)ds(A.13)

+

∫ t

0

(∇β(u)−∇β(uhτ ),∇W )(s)ds = : R1 +R2.

Recalling (A.10), and since u−uhτ ∈ H1(0, T ;H−1(Ω)), there holds ∂tW ∈ X and,
for a.e. s ∈ (0, T ), ∂tW (·, s) satisfies in a weak sense

−∇·(∇∂tW (·, s)) = ∂t(u− uhτ )(·, s) in Ω,

∂tW (·, s) = 0 on ∂Ω.

Thus, it follows from the definition (A.10) of W and from the norm characteriza-
tion (A.11) that

(A.14)
R1 =

∫ t

0

(∂t∇W,∇W )(s)ds =
1

2

(

∥∇W (·, t)∥2L2(Ω) − ∥∇W (·, 0)∥2L2(Ω)

)

=
1

2

(

∥(u− uhτ )(·, t)∥
2
H−1(Ω) − ∥u0 − uhτ (·, 0)∥

2
H−1(Ω)

)

.

Invoking again the definition (A.10) and using the fact that β is nondecreasing and
Lβ-Lipschitz continuous, there holds

(A.15)

R2 =

∫ t

0

(u− uhτ ,β(u)− β(uhτ ))(s)ds

≥
1

Lβ

∫ t

0

(β(u)− β(uhτ ),β(u)− β(uhτ ))(s)ds

=
1

Lβ

∥β(u)− β(uhτ )∥
2
Qt

.

Licensed to Ecole Natl des Ponts et Chaussees. Prepared on Thu Jun 19 04:33:39 EDT 2014 for download from IP 195.221.193.15/195.221.193.114.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



TWO-PHASE STEFAN PROBLEM 31

The conclusion follows using the inequalities (A.12), (A.14), and (A.15) in equa-
tion (A.13). !

Corollary A.4 (Application of the Gronwall lemma). Under the assumptions of
Lemma A.3, there holds

∥u− uhτ∥
2
X′ ≤ (eT − 1)∥u0 − uhτ (·, 0)∥

2
H−1(Ω)

+

∫ T

0

(

∥R(uhτ )∥
2
X′

t
+

∫ t

0

∥R(uhτ )∥
2
X′

s
et−sds

)

dt

−
2

Lβ

∫ T

0

(

∥β(u)− β(uhτ )∥
2
Qt

+

∫ t

0

∥β(u)− β(uhτ )∥
2
Qs

et−sds

)

dt.

Proof. Using (A.9) followed by the Gronwall lemma

ξ(t) ≤ α(t) +

∫ t

0

ξ(s)ds =⇒ ξ(t) ≤ α(t) +

∫ t

0

α(s)et−sds,

with ξ(t) :=∥(u−uhτ )(·, t)∥
2
H−1(Ω) and α(t) := ∥u0−uhτ (·, 0)∥

2
H−1(Ω)+∥R(uhτ )∥

2
X′

t
−

2
Lβ

∥β(u)− β(uhτ )∥
2
Qt

, it is inferred, for a.e. t ∈ (0, T ),

∥(u− uhτ )(·, t)∥
2
H−1(Ω) ≤ et∥u0 − uhτ (·, 0)∥

2
H−1(Ω) + ∥R(uhτ )∥

2
X′

t

+

∫ t

0

∥R(uhτ )∥
2
X′

s
et−sds−

2

Lβ

(

∥β(u)− β(uhτ )∥
2
Qt

+

∫ t

0

∥β(u)− β(uhτ )∥
2
Qs

et−sds

)

.

The assertion follows by integrating over the interval (0, T ). !

We are now ready to prove Theorem 5.2:

Proof of Theorem 5.2. Using (A.9) with t = T and adding ∥u − uhτ∥
2
X′ to both

sides we infer

L :=
2

Lβ

∥β(u)− β(uhτ )∥
2
QT

+ ∥u− uhτ∥
2
X′ + ∥(u− uhτ )(·, T )∥

2
H−1(Ω)

≤ ∥u0 − uhτ (·, 0)∥
2
H−1(Ω) + ∥R(uhτ )∥

2
X′ + 2∥u− uhτ∥

2
X′ .

Using Corollary A.4 to estimate the last term in the right-hand side we obtain

L ≤(2eT − 1)∥u0 − uhτ (·, 0)∥
2
H−1(Ω) + ∥R(uhτ )∥

2
X′

+ 2

∫ T

0

(

∥R(uhτ )∥
2
X′

t
+

∫ t

0

∥R(uhτ )∥
2
X′

s
et−sds

)

dt

−
4

Lβ

∫ T

0

(

∥β(u)− β(uhτ )∥
2
Qt

+

∫ t

0

∥β(u)− β(uhτ )∥
2
Qs

et−sds

)

dt.

The conclusion follows multiplying both sides by Lβ/2 and rearranging the terms.
!
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Université Montpellier 2, I3M, 34057 Montpellier, France
E-mail address: daniele.di-pietro@univ-montp2.fr
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