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Parameter sensitivity of CIR process

We study the differentiability of the CIR process with respect to its parameters.

We give a stochastic representation for these derivatives in terms of the paths of V .

Introduction

The CIR process is defined as the unique solution of the following stochastic differential equation:

dV t = (a -bV t )dt + σ V t dW t , V 0 = v, (1.1) 
where a, σ, v ≥ 0 and b ∈ R (see [START_REF] Ikeda | Stochastic Differential Equations and Diffusion Processes[END_REF] for the existence and uniqueness of the solution of the SDE). This process is widely used in finance to model short term interest rate (see [START_REF] Cox | Theory of the Term structure of Interest Rates[END_REF]) but also used to model stochastic volatility in the Heston stochastic volatility model. The option prices in these models depend in the values of the parameters of CIR process. On the other hand, these parameters are often calibrated to market prices of derivatives, so they tend to change their values regularly. The knowledge of the derivatives of the CIR process with respect to its parameters is therefore crucial for the study the sensitivities of prices in these models.

The most common approach to study the sensitivity of stochastic differential equation with respect to its parameters is to use the Malliavin calculus, especially for the sensitivity with respect to the initial value. The Malliavin derivative gives a stochastic representation of the sensitivity of process with respect to its initial value. We note that the coefficients of (1.1) are neither differentiable in 0 nor globally Lipschitz, so the standard results (see e.g [START_REF] Nualart | The Malliavin Calculus and Related Topics, Probability and Its Applications Springer[END_REF], [START_REF] Detemple | Representation formulas for Malliavin derivatives of diffusion processes[END_REF]) cannot be used here. Nevertheless, for the special case of CIR process, Alòs and Ewald ( [START_REF] Alòs | Malliavin differentiability of the Heston volatility and applications to option pricing[END_REF]) show the existence of Malliavin derivative of the CIR process under assumption (2a > σ 2 ). In mathematical finance, the sensitivities of option prices with respect to not only the initial point, but also other parameters, need to be studied very carefully.

In this article, we study the differentiability of the solution of (1.1) with respect to the parameters a, b and σ in L p sense (see next section). We show that, under some assumptions, this process is differentiable with respect to these parameters and give a stochastic representation of its derivatives.

Differentiability

For technical reasons, we will rather consider the square root of V v , denoted X v . Throughout this paper, we assume that 2a ≥ σ 2

(2.1)

Under this assumption, we have for any T, v > 0, P (∀t ∈ [0, T ] :

V v t > 0) = 1.
The process X v is the unique solution of the following stochastic differential equation

dX v t = a 2 - σ 2 8 1 X v t - b 2 X v t dt + σ 2 dW t , X v 0 = √ v. (2.2) 
We start by studying the differentiability of X with respect to the parameter a. We consider here the L p -differentiability of the function a -→ X v (a), i.e the existence of a process Ẋa so that

lim →0 sup s≤t X v s (a + ) -X v s (a) -Ẋa (s) p = 0 (2.3)
We have the following result Proposition 2.1. Let b ∈ R and σ, x ≥ 0. For every a ∈]σ 2 , +∞[, let X a be the unique solution of the SDE :

dX t = a 2 - σ 2 8 1 X t - b 2 X t dt + σ 2 dW t , X(0) = x
and let a 0 > σ 2 . Then the function a -→ X a is L p -differentiable at a 0 , for any 1 ≤ p ≤ 2a 0 σ 2 -1 and its derivative ( Ẋa ) is given by

Ẋa (t) = t 0 1 2X s exp - b 2 (t -u) -( a 2 - σ 2 8 ) t s du X 2 u ds.
(2.4)

Proof: Let X be the unique solution of the stochastic differential equation

dX t = a + 2 - σ 2 8 1 X t - b 2 X t dt + σ 2 dW t , X 0 = √ v.
For > 0, define R 0 (t) := X t -X t . We can easily see that R 0 is given by

R 0 (t) = U t t 0 (U s ) -1 1 2X s ds,
where

U = exp - t 0 α s ds , with α t = a + 2 - σ 2 8 1 X s X s + b 2 .
We have, using the fact that for any s ≤ t, e -t s α u du ≤ e -bt/2 ∨ 1 a.s,

|R 0 (t)| ≤ t(e -bt/2 ∨ 1) 2 sup s≤t 1 X v s .
On the other hand, we have, using Lemma 2.3.2 of [START_REF] De Marco | On Probability Distributions of Diffusions and Financial Models with non-globally smooth coefficients[END_REF] ,

∀p < 2 2a σ 2 -1 , E sup s≤t 1 X p s < +∞. (2.5)
In particular, we have for any

p ∈ 1, 2 2a σ 2 -1 , R 0 p ≤ C .
Let's now set

Ẋa (t) := lim →0 R 0 (t) = U 0 t t 0 (U 0 s ) -1 1 2X s ds.
We have Ẋa p ≤ C. Furthermore, Ẋa is solution of the stochastic differential equation:

d Ẋa (t) = - a 2 - σ 2 8 1 X 2 t + b 2 Ẋa (t)dt + 1 2X t dt. Let R 1 (t) = X t -X t -Ẋa (t).
The process R 1 is a solution of the stochastic differential equation

dR 1 (t) = -α t R 1 (t) -Ẋa (t) α t -( a 2 - σ 2 8 ) 1 X 2 t + b 2 dt.
On the other hand, we have

α t -( a 2 - σ 2 8 ) 1 X 2 t + b 2 = - α t X t - b 2X t R 0 (t) + 2X 2 t .
It follows that R 1 can be written as

R 1 (t) = U t t 0 (U s ) -1 Ẋa (t) α t X t - b 2X t R 0 (t) - 2 2X 2 t ds,
Using (2.5) and the fact that for any s ≤ t, we have e -t s α u du ≤ 1∨e -bt/2 and t 0 α s e -t s α u du ds = 1 -e -t 0 α u du , we get

∀1 ≤ p < 2a σ 2 -1, R 1 p ≤ C 2 .
The differentiability with respect to b is obtained in the same. The proof of the next Proposition is almost identical to Proposition 2.1.

Proposition 2.2. Let x, a, σ ≥ 0 so that 4a > 3σ 2 . For every b ∈ R, let X b be the unique solution of the SDE :

dX t = a 2 -σ 2 8 1 Xt -b 2 X t dt+ σ 2 dW t , X 0 = x and let b 0 ∈ R. The function b -→ X b is L p -differentiable at b 0 , for any 1 ≤ p < 2( 2a σ 2 -1)
and its derivative Ẋb is given by

Ẋb (t) = - t 0 X s 2 exp - b 2 (t -u) -( a 2 - σ 2 8 ) t s du X 2 u ds (2.6)
We now consider the differentiability of X with respect to the parameter σ. We propose an extension of the result of Benhamou et al (cf. [START_REF] Benhamou | Times dependent Heston model[END_REF]) who show that σ -→ X is C 2 in neighborhood of 0. We will show that this function is

C 1 in [0, √ a[ and C ∞ around 0. Proposition 2.3. For any σ ∈ [0, √ a[, the function σ -→ X is C 1 at σ in L p -sense, for every p ∈ [1, 2a σ 2 -1[
and its derivative is the unique solution of the SDE :

d Ẋσ (t) = - σ 4X t - a 2 - σ 2 8 
Ẋσ (t)

X t - b 2 Ẋσ (t) dt + 1 2 dW t .
(2.7)

Proof: Let X be the unique solution of the SDE :

dX t = a 2 - (σ + ) 2 8 1 X t - b 2 X t dt + σ + 2 dW t , X 0 = √ v.
Let set R 0 (t) = X t -X t . In particular, R 0 solves the stochastic differential equation:

dR 0 (t) = a 2 - (σ + ) 2 8 1 X t - b 2 X t - a 2 - σ 2 8 1 X t + b 2 X t dt + 2 dW t = - a 2 - (σ + ) 2 8 1 X s X s + b 2 R 0 (t) - 2 σ + 2 8X t dt + 2 dW t .
It follows that R 0 can be written as

R 0 (t) = U t t 0 (U s ) -1 - 2 σ + 2 8X s ds + 2 dW s ,
where U is given by

U t = exp - t 0 α s ds (2.8)
and

α s = a 2 - (σ + ) 2 8 1 X s X s + b 2 .
(2.9)

Applying the Itô formula to the product (U t ) -1 W t , we have

R 0 (t) = - 2 σ + 2 8 U t t 0 (U s ) -1 ds X s + 2 W t + U t t 0 W s d(U ) -1 s .
On the other hand, using the fact that α t ≥ b/2, a.s, we know that for any s ≤ t, we have

0 ≤ U t (U s ) -1 ≤ 1 ∨ e -bt/2 , a.s. It follows that |R 0 (t)| ≤ c(t) t 0 ds X s + 2 sup s≤t W s + sup s≤t W s (1 -U t )U t ≤ c(t) sup s≤t 1 X s + sup s≤t W s (1 + U t )U t .
Using (2.5), we have, for any

1 ≤ p < 2 2a σ 2 -1 , R 0 p ≤ C . (2.10) Let's now set Ẋσ (t) := U 0 t t 0 (U 0 s ) -1 - σ 4X s ds + 1 2 dW s .
We have Ẋσ p ≤ C. Furthermore, we can easily see that Ẋσ is solution to the stochastic differential equation:

d Ẋσ (t) = - a 2 - σ 2 8 1 X 2 t + b 2 Ẋσ (t)dt - σ 4X t dt + 1 2 dW t .
Set R 1 (t) = X t -X t -Ẋσ (t). The process R 1 solves the stochastic differential equation:

dR 1 (t) = -α t R 1 (t) -Ẋσ (t) α t -( a 2 - σ 2 8 ) 1 X 2 t + b 2 - 2 8X t dt.
On the other hand, we can easily see that

α t -( a 2 - σ 2 8 ) 1 X 2 t + b 2 = - α t X t - b 2X t R 0 (t) - 2 σ + 2 8X 2 t .
It follows that R 1 can be written as

R 1 (t) = U t t 0 (U s ) -1 - 2 8X s ds + Ẋσ (s) α s X s - b 2X s R 0 (s) + 2 σ + 2 8X 2 s ds.
We have

|R 1 (t)| ≤ t 0 U t (U s ) -1 2 8X s ds + | Ẋσ (s)| α t X s + b 2X s |R 0 (s)| + 2 σ + 2 8X 2 s ds ≤ t 0 U t (U s ) -1 2 8X s ds + | Ẋσ (t)| b 2X s |R 0 (s)| + 2 σ + 2 8X 2 s ds + t 0 U t (U s ) -1 α t X s | Ẋσ (s)||R 0 (s)|ds ≤ c(t) t 0 2 8X s ds + | Ẋσ (t)| b 2X s |R 0 (s)| + 2 σ + 2 8X 2 s ds + c 2 (t) sup s≤t | Ẋσ (s)||R 0 (s)| X s .
Finally, using (2.5), we have, for any 

1 ≤ p < 2a σ 2 -1 , R 1 p ≤ C 2 .
Va (t) = √ V t t 0 1 √ V s exp - b 2 (t -u) -( a 2 - σ 2 8 ) t s du V u ds, Vb (t) = - √ V t t 0 √ V s exp - b 2 (t -u) -( a 2 - σ 2 8 ) t s du V u ds, Vσ (t) = 2 σ V t - 2 σ V t   √ ve -b 2 t-( a 2 -σ 2 8 ) t 0 dr Vr + a t 0 e -b 2 (t-u)-( a 2 -σ 2 8 ) t u dr Vr √ V u du   . (2.11) Proof: As V t = X 2 t ,
V is differentiable with respect to the parameters a, b and σ under the assumptions of Propositions 2.3, 2.1, 2.2. The derivatives Vσ is given as solution of the SDE :

d Vσ (t) = -b Vσ (t)dt + V t dW 2 t + σ Vσ (t) 2 √ V t dW t , Vσ (0) = 0.
One can see that the process Z t := Vσ (t) -2 σ V t is solution of the SDE :

dZ t = - 2a σ -bZ t dt + σ Z t 2 √ V t dW 2 t , Z 0 = - 2 σ x.
On the other hand, applying Itô formula to the process ZV α , for α ∈ R * , we have

d(ZV α )(t) = (- 2a σ V α t -b(1 + α)Z t V α t + (αa + α 2 2 σ 2 )Z t V α-1 )dt + (α + 1 2 )ZV α-1 2 dW 2 t .
It follows that, for α = -1 2 , the process Y = ZV -1 2 , Y has finite variation and is given as solution of

dY t = - 2a σ V -1 2 t - b 2 Y t -( a 2 - σ 2 8 ) Y t V t dt , Y 0 = - 2 η √ v.
We can easily solve this equation, we get 

Y t := V σ (t) -2 σ V t √ V t = - 2 σ √ ve -γt - 2a σ t 0 e -(

  Proposition 2.4. Under the assumptions of Propositions 2.3, 2.1, 2.2, the solution of the SDE (1.1) is differentiable with respect to the parameters a, b and σ. Its derivatives, denoted by Va , Vb and Vσ respectively, are given as