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LOCALLY ADAPTIVE GREEDY APPROXIMATIONS FOR

ANISOTROPIC PARAMETER REDUCED BASIS SPACES

YVON MADAY∗ AND BENJAMIN STAMM†

Abstract. Reduced order models, in particular the reduced basis method, rely on empirically
built and problem dependent basis functions that are constructed during an off-line stage. In the on-
line stage, the precomputed problem dependent solution space can then be used in order to reduce the
size of the computational problem. For complex problems, the number of basis functions required
to guarantee a certain error tolerance can become too large in order to benefit computationally
from the model reduction. To overcome this, the present work introduces a framework where local
approximation spaces (in parameter space) are used to define the reduced order approximation in
order to have explicit control over the on-line cost. This approach also adapts the local approximation
spaces to local anisotropic behavior in the parameter space. We present the algorithm and present
numerous numerical tests.

Key words. model reduction, reduced basis method, greedy algorithm

1. Introduction. The recent progresses in the numerical simulation of physical
phenomena obtained through the combination of robust and accurate approximation
methods and faster and larger computational platforms have permitted to investigate
more and more complex problems with improved reliability. These progresses have,
in turn, lead to new demands for the numerical simulations that are not only used
to understand a given state but investigate control and optimization problems. Here
it is not only a unique (or very few) instance(s) of a given model that is required
but a large number of similar computations of a now parameter-dependent model
dynamically varying through the values of the parameter under which the behavior
of the solution is sought for.

Faster solution algorithms are often not sufficient to achieve these new demands
in many engineering applications and reduced numerical methods have been proposed
as surrogates to standard numerical approximations of given mathematical models.
Among these methods, the proper orthogonal decomposition (POD) and reduced
basis (RB) methods are two main classes of higher-order mathematical techniques
that have been widely developed during the last decade. These approaches have
gained in generality and reliability [2, 3, 11, 12].

The basic idea behind these reduced numerical methods is the notion of small
Kolmogorov n-width of the set of all solutions obtained when the parameters varies.
Indeed POD or RB methods are based on a two steps strategy : the first step (off-
line stage) allows to select particular instances of the parameters, for which a very
accurate approximation of the solution is computed : the associated solutions consti-
tute the reduced basis, in a second step (the on-line stage) the generic solution (for
other instances of the parameter) are approximated by a linear combination of these
reduced basis elements. The interest of the approach lies in the fact that, in cases the
Kolmogorov n-width is small — and there are many reasons a priori, such as regularity
of the solutions as a function of the parameters, and a posteriori, revealed by a large
number of simulation — these reduced model approximations require very few degrees
of freedom and in some sense are close in spirit to other high order approximation
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methods like spectral methods, but with an improved efficiency.
It is well known that high order methods generally take advantage of a global

approach by using basis functions that have a large support that, combined with
important regularity of the solution to be approximated (going some times up to an-
alyticity) allows to get, with very few degrees of freedom, a very good accuracy. For
most practical design problems in engineering though, the solution is not analytical
and most of the time regularity exists but only locally which precludes the interest of
global approximations. This is the reason why, for instance, by breaking the global
framework to locally piecewise global approaches, the spectral element methods re-
veals superiority with respect to plain spectral method: a trade off between locality
and globality is generally preferred as is demonstrated in e.g. [4] for approximation
in spacial direction by spectral element approximations. The same cause imply the
same effects in the parameter directions for RB approximations, this the reason why
recently, some works have been devoted to proposing ways of adding locality to the
reduced methods yielding parameter subdomain domain refinement.

In this paper we shall focus on the certified RB framework for which, the con-
struction of basis functions during the first stage of the algorithm is, as in most of
the current approaches, performed through a greedy strategy based on a posteriori
error estimator. This concerns both the Galerkin approximation and the empirical
interpolation methods. For either high dimensional parameter spaces or spaces with
large measure one may encounter the problem that the size of the reduced basis turns
out to be larger than desired. Following the lines drawn above, a first idea in this
context has been presented by Eftang, Patera and Rønquist [6] and also Eftang and
Stamm [7] where the parameter space is decomposed into cells where different reduced
basis sets are assembled. This approach presents clear advantages in the size of the
matricial system that appears in the on-line solution procedure, and corroborates the
natural feeling that, in order to approximate the solution at a given parameter, pri-
marily those solutions in the reduced basis corresponding to parameters that are close
to the parameter we are interested in are to be involved in the linear approximation.

A drawback of the current approach [6, 7] however is that, in two adjacent
parameter-subdomains, some of the parameters that are selected may be very close.
Due to the difference between the CPU time associated with exploiting a RB method
in the on-line stage, and that required for constructing the basis elements in the off-
line step, this leads to the idea that it might be interesting to be able to use, in one
parameter subdomain, the parameters that are used in the adjacent ones. Parameter
domain decomposition may not thus be the ultimate approach. Another drawback of
all current greedy approach is to be unable to master the size of the discrete system
that will be solved in the on-line procedure. These remarks have motivated us to
investigate the alternative discussed in this paper.

An outline of the paper is as follows. In Section 2 we present the standard
greedy algorithm that is widely used in reduced basis computations and introduce
then in Section 3 the concept of local approximation spaces that are able to take into
account the local anisotropies in the parameter space. The construction of the local
approximation spaces is based on a semi-distance function which is constructed in
Section 4 through a learning process of the geometry of the manifold of the solution
set. Section 5 introduces the concept of a varying train set that is chosen in a optimal
fashion using the possibly anisotropic semi-distance function. Finally, in Section 6 we
explain some practical aspects of the on-line implementation and Section 7 presents
some numerical examples.
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2. The greedy algorithm for reduced basis approximations. Let us first
introduce a classical greedy-algorithm to have a common ground to present our ideas.
In a general setting, it is assumed that for each parameter value µ in a parameter
domain P ⊂ Rp, a µ-dependent function v(µ) ∈ W of the variable x in a bounded
domain Ω ⊂ Rd (e.g. d = 2 or d = 3) can be computed. The space W denotes
some functional space of functions defined on Ω. In order to fix the ideas this can be
either that v(µ) is a solution to a parameter dependent partial differential equation,
an approximation of which can be computed by e.g. classical finite element or spectral
method. It can also be that v(µ) is a function f(u(µ)) of some u(µ), the evaluation
of u(µ) is easy at some few points in Ω but the general knowledge is required for
further purposes. Let

SN = {µ1, · · · ,µN}

be a collection of N parameters in P and

WN = span{v(µ1), · · · , v(µN )}

be the approximation space associated to the set SN . A projection/interpolation
operator PN : W → WN is supposed to exists that can be either a parameter depen-
dent Ritz-projection (reduced basis methods in case of a parameter dependent PDE)
[12, 13], an interpolation operator (empirical interpolation methods in case v(µ) is
a function of some u(µ), e.g. v(µ) = [u(µ)]4 or v(µ) = e[u(µ)]) [1, 8] or simply a
L2-projection. Further, it is assumed that for each parameter value µ ∈ P an error
estimator η(µ; WN ) of the approximation of v(µ) by PN (v(µ)) can be computed (this
can be e.g. through a posteriori analysis of the residual, see eg [12]). The case where
η(µ; WN ) describes the exact error is not excluded in this general framework.

The following sketch represent a typical greedy algorithm: Let Ξtrial be a chosen
finite trial set Ξtrial ⊂ P of representative points.

ClassicalGreedy

1. Choose (possibly randomly) µ
1 ∈ Ξtrial, set S1 = {µ1}, W1 = span{v(µ1)}

and N = 1, err = maxµ∈Ξtrial
η(µ;W1).

2. While err > tol

3. Find µ
N+1 = argmax

µ∈Ξtrial
η(µ;WN ), err = maxµ∈Ξtrial

η(µ;WN ).

4. Compute v(µN+1), set SN+1 = SN ∪ {µN+1} and WN+1 =
span{WN , v(µN+1)}.

5. Set N := N + 1.
6. End while.

Algorithm: Classical greedy algorithm.

Remark 2.1. The introduction of the finite set Ξtrial is due to practical imple-
mentation. Actually the definition of this finite set can evolve during the algorithm.
We shall elaborate on this in the frame of our approach latter in the paper in Section
5.

Let Ñ denote the final size of the reduced basis space WÑ such that the accuracy
criterion

max
µ∈Ξtrial

η(µ;WÑ ) ≤ tol
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is satisfied. Note that this final size is a consequence of the tolerance that has been
chosen, hence, for a prescribed tolerance, we have not the hand on the complexity of
the RB approximation method.

3. Local approximations. The new approach pursued in this work is in the
same spirit of partitioning the parameter set as in [6, 7], however (i) we do not impose
a clear partition of the parameter space but rather collect a global set of sample points
S — preliminary constructed (in an off-line stage) with a given tolerance requirement
— (ii) we choose a priori the size of the system we want to solve online by selecting
an integer N , then (iii) when a reduced basis approximation is to be computed for
a certain given parameter value µ ∈ P, we only use the N basis functions whose
parameter values lie in a ball

Bµ = {µ̃ ∈ P | d(µ, µ̃) ≤ r(µ)}, (3.1)

for a given semi-distance function d(·, ·). Thus, the radius r(µ) is computed in such a
way that there are actually N basis functions in the ball. Therefore the local sample
space is defined by

Sµ = Bµ ∩ S = {µ̃ ∈ S | µ̃ ∈ Bµ}

with cardinality equal to N1. Further the local reduced basis approximation space
shall be defined by Wµ = span{v(µ̃) | µ̃ ∈ Sµ} and its associated local projection by
Pµ : W → Wµ.

One basic ingredient of this local reduced basis approximation is thus the metric
d(·, ·); the radius is adjusted to select the total number of modes N for each value of
µ whereas the metric can be chosen isotropic or better accounts for anisotropies in
the parameter space. The construction of an adapted local metric is a topic itself and
is addressed in the upcoming Section 4.

The basic principle of the Locally Adaptive Greedy Approximation is to first se-
lect the number N of basis functions we want to get involved in the on-line procedure
(i.e. the size of the matrix system to be solved on-line). A standard greedy algorithm,
as described by Section 2, is then performed until N + 1 basis functions are selected.
Then, the second stage of the algorithm is performed. The basis functions are no
longer searched globally but in the above described local balls. The construction of
those requires the data of a metric the construction of which is explained in Section 4
(note that, by default, a uniform metric is possible). This metric is updated at each
one of the steps of this second stage. Having such a current metric, only local basis
functions are considered in order to enrich the set SN : the locality of the basis func-
tions affects the greedy selection of the basis functions since several basis functions
can be chosen per iteration. The following procedure is proposed. At any given itera-
tion, the first sample point, say µ, is chosen such that the estimated error η(µ;Wµ) is
maximized over the parameter domain as in the traditional setting except that only a
local approximation space Wµ is considered to compute the error (-estimator). Next,
the maximum estimated error η(µ;Wµ) is searched over all parameter values lying
outside of the domain of influence of Bµ. By the domain of influence of Bµ we mean
any µ such that µ ∈ Bµ or µ ∈ Bµ. Outside of the domain of influence of Bµ more
basis functions can however be added. This condition assures that at most one sample

1Note that N has not the same meaning as in the previous section any more; hence the cardinal
of S is not N but a K > N generally much larger.
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point is added per ball. This procedure is repeated, and more and more parts of the
parameter domain are excluded, until the remaining set is the empty set. Given K
global sample points S the following pseudo-code results for one iteration, again for a
given subset Ξtrial ⊂ P of representative points :

EnrichmentLoop

1. Set Ξ̃trial = Ξtrial, err = max
µ∈Ξ̃trial

η(µ;Wµ).

2. While Ξ̃trial 6= ∅ and err > tol

3. Set µ
K+1 = argmax

µ∈Ξ̃trial

η(µ;Wµ), err = max
µ∈Ξ̃trial

η(µ;Wµ).

4. Compute v(µK+1) and set SK+1 = S ∪ {µK+1}.

5. Set Ξ̃trial := Ξ̃trial\{µ ∈ Ξtrial |µ ∈ BµK+1 or µK+1 ∈ Bµ}.
6. Set K := K + 1.
7. End while.

Algorithm: Basis enrichment loop.

4. Anisotropy and local metric - a general finite difference based ap-

proach. In order to reduce at most the number of elements involved in the reduced
basis approximation, one has to estimate, on the fly, the way the (unknown) solution
v(µ) depends on µ.

Indeed, for instance assuming that the parameter domain P is a subset of R2,
so that µ = (µ1, µ2), and assuming that there exists a function ϕ of one variable,
such that v(µ) = ϕ(µ1 + µ2), then the optimal selection of parameters should be
sought e.g. along the line µ1 = µ2 involving only a one dimensional parameter set.
Of course the fact that v depends only on µ1 + µ2 is generally not known. What
we have to figure out from prior computations, during the greedy algorithm, is if in
the solution dependency, there is such an anisotropy. This is a quite classical quest
in numerical analysis, and the knowledge of this valuable information implies a large
computational reduction. As in other instances, e.g. adaptive approaches like the one
used in finite element approximations (see e.g. [5]), the goal is the construction of
a (semi-) metric d(·, ·) that accounts for the anisotropic behavior of changes of v(µ)
with respect to variations in µ. Similarly as in other approaches, the metric is derived
from the knowledge of the Hessian of the function v with respect to the parameter µ.

We propose here a general framework to obtain an approximation of the Hessian
by finite differences. We always assume that Ξtrial is such that its convex hull spans
the parameter space P.

1 Definition of the Hessian. The goal is to define a Hessian matrix H(µ) for each
point µ ∈ Ξtrial upon which the metric will be based on. Since the Hessian is based
on the reduced basis approximation, it is updated/constructed at each iteration in the
algorithm. To do so, compute a reduced basis approximation vrb(µ) of v(µ) based
on the current reduced basis, on the stencil µ(α) = µ +

∑p

i=1 αiδµi, with µ ∈ Ξtrial

and where δµi, i = 1, .., p, is a positive small increment in the ith direction in the
parameter and αi = −1, 0, 1, such that, at most, two of them are non zero. From
these 3p approximations vrb(µ(α)) of v(µ(α)) on the surrounding stencil µ(α) of µ,
one can, by finite differences, evaluate an approximation of the Hessian of v(µ) as a
function of µ by taking e.g. Hii(·;µ) = Dijvrb(µ) on Ω where the operator Dij is
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defined by

Dijvrb(µ) =
vrb(µ + δµi + δµj) − vrb(µ − δµi + δµj) − vrb(µ + δµi − δµj) + vrb(µ − δµi − δµj)

4δµiδµj
.

Remembering that vrb(µ) is a function on Ω, the above formula thus defines a Hessian
matrix for each point x ∈ Ω and parameter value µ ∈ P. In order to obtain one
Hessian Hij(µ) per parameter point µ ∈ P one needs to define an average operator
over the space Ω. If {ϕn}

N
n=1 denotes the basis of Wµ used to build vrb such that

vrb(x;µ) =

N
∑

n=1

αn(µ)ϕn(x),

we propose to define an averaged Hessian over the Ω-space as follows

Hij(µ) =

N
∑

n=1

αn(µ) Dijαn(µ).

The term Dijαn(µ) describes the anisotropy of the n-th mode while αn(µ) indicates
the its weight in the approximation.
2 On-line construction of the metric. Defining a mesh consisting of P -dimensional

simplices with vertices being the set Ξtrial allows to interpolate/represent quantities
only defined on Ξtrial by means of P1-finite element functions on the mesh for any
parameter value µ ∈ P, since the convex hull of Ξtrial coincides with the parameter
space P. We can therefore easily access the interpolated Hessian H(µ), for any µ ∈ P,
by means of its interpolated component functions Hij(µ).

Then, the construction of d(µ1,µ2) is based on the Hessian at the points µ1 and
µ2. Indeed, we will consider an average of the two local Hessian H(µi), i = 1, 2, to
construct

Hµ1µ2
=

H(µ1)

‖H(µ1)‖F

+
H(µ2)

‖H(µ2)‖F

,

where ‖ · ‖F denotes the Frobenius norm.
The choice of this linear combination between H(µ1) and H(µ2) is motivated by

the following argument. The Hessian is derived from a finite difference stencil and the
order of the coefficients is not known and might vary in parameter space. In order
to take equal quantities, we propose therefore to normalize the Hessian. This does
not result in a loss of information since all we want to extract from the Hessian is the
local anisotropy, but averaged properly.

One can then perform an eigenvalue decomposition

Hµ1µ2
= V Λ V T

where V is an orthogonal and (Λ)ii = λi a diagonal matrix consisting of the eigenvalues
λi. Consider the diagonal matrix

|Λ|ii =
|λi|

√

λ2
1 + . . . + λ2

P

, i = 1, . . . , P,

and the associated symmetric positive definite matrix Mµ1µ2
= V |Λ|V T to define

the semi-distance between µ1 and µ2 by

d(µ1,µ2) =
√

(µ1 − µ2)T Mµ1µ2
(µ1 − µ2).



Local Greedy Approximations 7

5. Varying train sets based on Hessian. The goal of this section is to present
an approach that further allows to reduce the offline computational cost. Here, we
focus on the trial set Ξtrial. It is aimed to keep its cardinality as small as possible, but
large enough to capture the local geometry of the parametrized system. Since not only
the cardinality of Ξtrial but also the locations of its points matters we propose to use
the above constructed metric to design problem adapted training sets of appropriate
size which will increase with increasing number of basis functions selected.

Firstly, we construct at each iteration of the presented algorithm a new trial set
Ξtrial. The cardinality of the Ξtrial being variable and an increasing function of the
inverse of the actual error (-estimation) err. Let Qm be the minimal cardinality of
Ξtrial at the beginning of the algorithm and QM the maximal target cardinality at
the end of the algorithm once the tolerance criteria err < tol is reached, then we
define

Q(err) =

⌈

QM − Qm

log(tol)
log(err) + Qm

⌉

to be the number of points at the next iteration. Having the number of elements
in Ξtrial for the next iteration specified it remains to construct an updated pointset
Ξtrial.

The trial set Ξtrial is constructed such that edges of the corresponding unique
Delaunay triangulation are uniform in the slightly modified metric

d̃(µ1,µ2) =
d(µ1,µ2)

r(µ12)
,

where µ12 = 1
2 (µ1 +µ2). Taking the metric d̃(·, ·) instead of d(·, ·) is motivated by the

fact that a ball defined by (3.1) corresponds (approximately) to a unit ball in d̃(·, ·).
This modification of the metric allows to compare unit balls at a global level.

Remark 5.1. Enriching the trial set during the sampling process is not a new
idea. An adaptively enriching greedy sampling strategy was proposed in [9]. We how-
ever want to mention the featurse that distinguishes our approach from the previously
proposed version on a conceptual level. First our approach not only detects where the
manifold of the solutions (as a function of the parameters) is complex but also the di-
rections that are important to sample and those that are not. Second in our approach
the size of the discrete system to be solved on-line is determined by the user leading
to a controlled simulation cost.

6. On-line implementation. It is well known that the stable implementation
of the reduced basis method requires the orthonormalization of the snapshots v(µ),
µ ∈ S [12, 14]. In the standard approach, this orthonormalization is prepared off-line
and the vectorial space W spanned by the series {v(µ̃) | µ̃ ∈ S} is not affected by this
change of basis. In our alternative method, there are a large number of approximation
spaces, almost one for each µ : Wµ = span{v(µ̃) | µ̃ ∈ Sµ}. We cannot compute all
various orthonormalized basis sets for all possible Wµ off-line. This would be too
costly and using way too much memory.

Nevertheless, we can still prepare the orthonormalization process so that, the on-
line orthonormalization is feasible. For any µ and µ

′ in S, let us compute off-line the
scalar products

ℓµ,µ′ = 〈v(µ), v(µ′)〉 (6.1)
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where 〈·, ·〉 represents an appropriate scalar product : say either L2 or H1 type.
Note that we can even compute only those scalar products corresponding to pairs of
parameters (µ,µ′) that are close, indeed if µ and µ

′ are distant in P, they will never
be in the same Sµ̃.

In the on-line stage, once the approximation in Wµ will be required, we can
easily orthonormalize the basis set {v(µ̃) | µ̃ ∈ Sµ} first by declaring an order in the
parameters

{µ̃ ∈ Sµ} = {µ1,µ2, ...,µN} (6.2)

then perform a classical Gramm-Schmidt orthonormalization process

ζ1 = β1,1v(µ1),
ζ2 = β2,2v(µ2) + β2,1ζ1,

...

ζN = βN,Nv(µN ) +

N−1
∑

i=1

βN,iζi, (6.3)

where the coefficients βn,i are chosen so that ζn is orthogonal to

span{v(µi) | i = 1, .., n − 1} = span{ζi | i = 1, .., n − 1}

and the coefficients βn,n are chosen so that ζn is norm 1. It is well known that these
coefficients exist, are unique and that, in order to compute them, we have to know each
scalar product 〈v(µn), ζi〉, i = 1, .., n − 1. It should be noticed that computing those
coefficients 〈v(µn), ζi〉 on-line depends on the length of the basis vectors representing
the basis functions v(µn), which should be avoided during the on-line process. Instead,
these scalar products can be easily computed from the precomputed coefficients ℓµi,µj

.
First, notice that the basis functions {ζn}

N
n=1 can alternatively be expressed by

the following linear transformation

ζ1 = γ1,1v(µ1),
ζ2 = γ2,2v(µ2) + γ2,1v(µ1),

...

ζN = γN,Nv(µN ) +

N−1
∑

i=1

γN,iv(µi), (6.4)

from the set of basis functions {v(µn)}N
n=1. It is our intention to construct the coeffi-

cients γn,i representing the change of basis functions from {v(µn)}N
n=1 to {ζn}

N
n=1 as

defined by (6.4) in a stable way and without any operation depending on the length of
the vectors representing v(µn) to guarantee stability and good on-line performance.

Remark 6.1. Note that the coefficients γn,i could be obtained based on (6.4)
directly. Indeed, each ζn is orthogonal to span{v(µi) | i = 1, .., n − 1} allowing to
compute the coefficients γn,i, i = 1, . . . , n − 1. This however involves solving a
linear systems based on the mass matrix with coefficients ℓµi,µj

= 〈v(µi), v(µj)〉,
i, j = 1, .., n − 1, which can be heavily linearly dependent leading to an unstable
scheme.

The coefficients βn,k can be obtained by the following formula mimicking the
Gram-Schmidt procedure (6.3) but using the precomputed coefficients ℓn,k. For the
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construction of the coefficients βn,j , we proceed as follows (it helps to have in mind

that ℓ̃j,i stands for 〈ζj , v(µi)〉) : for all n = 1, . . . , N apply recursively
First set

β̃n,n = 1, β̃n,k = −ℓ̃k,n, k = 1, . . . , n − 1,

so that v(µn) −
∑n−1

k=1 β̃n,kζk is orthogonal to span{ζi) | i = 1, .., n − 1}. Then

α =

(

ℓn,n −
n−1
∑

k=1

(ℓ̃k,n)2

)

1
2

,

βn,k = β̃n,k/α, k = 1, . . . , n − 1,

ℓ̃n,k = βn,nℓn,k +

n−1
∑

j=1

βn,j ℓ̃j,k, k = 1, . . . , N.

Note that the construction of α is not subject to instabilities since the sum involves
only positive values.

In theory, the set of coefficients {γn,i}
N
n,i=1 can be obtained by O(N3) operations

from the coefficients βn,j , through a triangular process. Indeed, the coefficients γn,i

can be obtained by the following recursive formula

γn,i =







∑n−1
k=1 βn,kγk,i if i < n,

βn,n if i = n,
0 if i > n,

for all n = 1, . . . , N.

In practice however, the set of coefficients {γn,i}
N
n,i=1 is even not required, as explained

in the following.
As mentioned above the set of basis functions {ζn}

N
n=1 leads to well-conditioned

matrices, the precomputed quantities are nevertheless expressed in the basis {v(µn)}N
n=1.

As an illustration assume that the reduced basis problem to be solved is about the
approximation of the solution to a parametrized PDE, written in a variational form
as : for a given parameter value µ, find u such that

a(u, v;µ) = f(v;µ)

where it is assumed, for the sake of simplicity that a and f are affine decomposable

a(w, v;µ) =
P
∑

p=1

gp(µ)ap(w, v), f(v;µ)

Q
∑

q=1

hq(µ)fq(v).

The ultimate goal is to construct the well-conditioned stiffness matrix a(ζi, ζj ;µ)
derived from the off-line pre-computation of the series αp

i,j = ap(v(µi), v(µj)), for
1 ≤ i, j ≤ N . To do so, we first compute the series α̃p

i,j = ap(v(µi), ζj), for 1 ≤ i ≤ N ,
recursively over j, 1 ≤ j ≤ N :

α̃p
i,j = ap(v(µi), ζj) = βj,jα

p
i,j +

j−1
∑

k=1

βj,kα̃p
i,k.

Then, compute the series ap(ζi, ζj), for 1 ≤ i ≤ N , recursively over j, 1 ≤ j ≤ N :

ap(ζi, ζj) = βj,jα̃
p
i,j +

j−1
∑

k=1

βj,kap(ζk, ζj), (6.5)
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before finally assembling the entries of the stiffness matrix

a(ζi, ζj ;µ) =
P
∑

p=1

gp(µ)ap(ζi, ζj), (6.6)

that involves O(PN2) operations.
Similarly, the evaluation of the each component of the vector f(ζi,µ), 1 ≤ i ≤ N

can be performed in O(PN) operations, and the inversion of the associated matricial
problem is done in O(N2) further operations.

7. Numerical results. Before we start with the numerical tests, an abstract
description of the entire proposed local greedy algorithm is given in the following box:

LocallyAdaptiveGreedy

========= Stage 1 =========
1. Perform a classical greedy algorithm to select N + 1 basis functions.
========= Stage 2 =========
2. Compute the error estimate η(µ,Wµ) at each point µ ∈ Ξtrial.
3. Compute the metric function d.
4. Enrich the set of basis functions.
5. Create a new trial set Ξtrial.
6. Go to 2. until tolerance tol is achieved.

Algorithm: Locally adaptive greedy algorithm.

In a first step, Section 7.1, we only test the feature of local anisotropic approximation
balls without adapting the train set using the metric. In a second step, Section 7.2,
we test the entire algorithm.

As a reduced basis model W, we use a parametrized family of functions combined
with the L2-projection P . The error is computed in an exact manner and no a
posteriori estimation is used. For all numerical tests, Ω and P are discretized by a
regular lattice of 75×75 points and the target tolerance is set to 10−3 if not otherwise
mentioned.

7.1. Numerical results with fixed train set.

7.1.1. Test 1. We start with presenting a numerical example to illustrate the
benefit of the local anisotropic approximation spaces. Consider the function

f1(x;µ) = exp

[

−(x1 − 0.1(µ1 − µ2))
2

0.01
−

(x2 − (µ1 + µ2))
2

0.01

]

,

x ∈ Ω = (−1, 1)2,µ ∈ P = [−0.5, 0.5]2

that exhibits a constant anisotropy of parameters over the whole parameter space.
The dependency in the (µ1 +µ2)-direction is ten times stronger than in the (µ1−µ2)-
direction. Figure 7.1 (left) illustrates the evolution of the number of basis functions
that are necessary to be computed versus the achieved accuracy in the L∞-norm for
N = 20 for the anisotropic approach and the results of the same algorithm but us-
ing isotropic local approximation spaces as comparison. One can observe that using
the anisotropic approach is beneficial in terms of the number of truth solutions to
be computed at the off-line stage. Figure 7.1 (right) presents the same quantity but
for varying N = 20, 30, 40. Not surprisingly the number of needed basis functions
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decreases while increasing N and more and more the exponential convergence estab-
lishes as for the classical Greedy-algorithm is expected. We can also observe that for
a lower N more basis functions can be included per iteration.

Figure 7.2 illustrates the local approximation spaces, the radius as a function of
the parameter and the sample set S for the anisotropic and the isotropic approach.
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Fig. 7.1: Test 1: Accuracy with respect to the number of truth solutions to be com-
puted in comparison with the isotropic approach for N = 20 (left) and the for different
values of N = 20, 30, 40 (right).
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Fig. 7.2: Test 1: Local approximation spaces for selected parameter values (left), ra-
dius as a function of the parameters (middle) and sample points (right) for anisotropic
approach (top) and the isotropic version (bottom, as comparison) with N = 20.
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7.1.2. Test 2. The previous example is in some sense idealized since the anisotropy
is not varying throughout the parameter domain. In this regard, the next example

f2(x;µ) = exp

[

−
(x1 − (µ2

1 + µ2
2))

2

0.01
−

(x2 − (µ2
1 + µ2

2))
2

0.01

]

,

x ∈ Ω = (−1, 1)2,µ ∈ P = [−0.5, 0.5]2

is more interesting. It presents a family of parametrized functions where the functions
(as functions of x) are constant along concentric circles around the origin in parameter
space. As an example, all four corners of the parameter space define the same function.

We compare again the number of required truth solutions for the anisotropic
approach compared with the presented algorithm but using isotropic approximation
spaces, which is presented in Figure 7.3 (left) for N = 5. We observe that 60%
of the number of truth solutions to be computed can be saved. The corresponding
local approximation spaces, radii and sample points S are illustrated in Figure 7.4.
Figure 7.3 (right) also presents the number of required truth solutions for N = 5 but
for different tolerance levels. We observe that starting from a critical value Nc of
computed truth solutions, that depends on the tolerance, the curves show different
behavior. During the iterations before Nc the complete parameter region has to be
scanned because the tolerance is achieved nowhere in the parameter space. During
the iterations after Nc however the tolerance is achieved in an increasing region of the
parameter space and this part needs no longer to be not scanned. The enrichment of
new truth solutions is then limited in space and the final phase of the greedy algorithm
converges faster.

Additionally we present in Figure 7.5 the local approximation spaces for the
different tolerance levels. One can clearly see how the approximation spaces take into
account the local geometry that also allow non-convex approximation spaces.
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Fig. 7.3: Test 2: Accuracy with respect to the number of truth solutions to be com-
puted in comparison with the isotropic approach (left) and the for different end tol-
erances (right). In both cases N = 5.
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Fig. 7.4: Test 2: Local approximation spaces for selected parameter values (left),
radius as a function of the parameters (middle) and sample points (right) for the
presented approach (top) in comparison wit the isotropic version (bottom) for N = 5.
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Fig. 7.5: Test 2: Local approximation spaces for different tolerance levels.

7.1.3. Test 3. The next example

f3(x;µ) = exp

[

−
(x1 − (µ1 + 3µ2))

2

0.1 + 5|µ1 + 3µ2|
−

(x2 − (3µ1 − µ2))
2

0.1 + 5|3µ1 − µ2|

]

,

x ∈ Ω = (−1, 1)2,µ ∈ P = [−0.5, 0.5]2

is interesting in the sense that it presents an almost singularity in parameter space at
the origin. The performance of the anisotropic approach, compared to the isotropic
version, is presented in Figure 7.6. Again, the anisotropic approaches outperform the
isotropic one and about a 56% of computations of truth solutions can be saved.

The local approximation spaces, the radius and the sample points with N = 10
is presented in Figure 7.7. We observe a posteriori that the trial space Ξtrial was
not sampled fine enough. Indeed in the region around the origin (and the cross for
the isotropic version), every trial point is included in the set of sample points. This



14 Yvon Maday and Benjamin Stamm

also explains the sudden drop of the convergence in Figure 7.6, in particular for the
isotropic version. This is a known problematic in greedy methods and our approach
with adapted/moving trial sets presents a solution to this problem. The corresponding
numerical results are presented in the next section. Further we recognize that the
scheme detects the cross where the behavior of the function is most singular as can
be seen by the chosen sample points in Figure 7.8 (right). Additionally, we present
the sample points that were chosen for different functions of the type

f3,ξ1,ξ2
(x;µ) = exp

[

−
(x1 − ξ1(µ))2

0.1 + 5|ξ1|
−

(x2 − ξ2(µ))2

0.1 + 5|ξ2|

]

x ∈ Ω = (−1, 1)2,µ ∈ P = [−0.5, 0.5]2

where ξ1 and ξ2 are functions of µ = (µ1, µ2). We can observe the adaptive nature of
the algorithm.

Again, we plot the local approximation spaces for different values of the tolerance
levels in Figure 7.9. We observe that the originally non-connected approximation
spaces are becoming connected with increased tolerance.
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Fig. 7.6: Test 3: Accuracy with respect to the number of truth solutions to be com-
puted in comparison with the isotropic approach for N = 10.

7.2. Numerical results with adapted train sets. In order to compare the
accuracy of this version we introduce a fixed test set of sample points Ξtest. In the
following examples it consists of a lattice of 75×75 points. It corresponds to the fixed
trial set of the tests of the previous section. We use FreeFem [10] in order to adapt
the sample points by constructing the desired uniform mesh in the new metric.

It is not expected that the new approach with an adapting trial set uses fewer
computed solutions than the approach using a fixed trial set since a non-adapted trial
set may leave large errors in parameters that are outside the fixed trial set. On the
contrary the adapted set tracks these forgotten parameter values. The benefit will
be on the computational efficiency using the framework of a small trial set in the
beginning that is gradually increasing. The points of the trials set are however chosen
wisely using the information available from the local geometry of the system.

Figure 7.10 illustrates the total number of basis functions that are necessary to
be computed versus the achieved accuracy of the proposed algorithm with adapting
trial sets for the test cases 1, 2 and 3. In each plot, we present the error on the moving



Local Greedy Approximations 15

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

µ
1

µ 2

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

µ
1

µ 2

Local approximation
spaces

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
 

µ
1

 

µ 2

0.05

0.1

0.15

0.2

0.25

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
 

µ
1

 

µ 2

0.05

0.1

0.15

0.2

0.25

0.3

Radius

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

µ
1

µ 2

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

µ
1

µ 2

Sample points

Fig. 7.7: Test 3: Local approximation spaces for selected parameter values (left),
radius as a function of the parameters (middle) and sample points (right) for the
presented approach (top) in comparison wit the isotropic version (bottom) for N = 10.
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Fig. 7.8: Sample set patterns for different type of parametrized functions with singular
behavior on two crossing line with different slopes.

trial set, the error on the fixed testing set Ξtest and the accuracy of the version with
a fixed trial set (which equals Ξtest) as comparison.

7.2.1. Test 1. From Figure 7.10 (left), one can observe that the error on the
trial set and on the test set of the approach with an adapted trial set are similar. This
illustrates that the accuracy is not only guaranteed on the adaptive trial set but also
satisfied on the test grid. Both errors are also similar to the error of the algorithm
using a fixed trial set as presented in Section 7.1.

The adaptive version is as good as the version on a fixed trial set, but uses less
evaluation of the error estimate as is shown in the following table:
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Fig. 7.9: Test 3: Local approximation spaces for different tolerance levels.

Number of trial point evaluations for the greedy using adapted trial sets: 133’866
Number of trial point evaluations for the greedy using fixed trial sets: 382’500

We observe a gain of 65% fewer error evaluations.
Figure 7.11 presents the trial set, local approximation spaces, radii and sample

points for this calculation.
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Fig. 7.10: Accuracy with respect to the number of truth solutions that need to be
computed for all three test case.
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Fig. 7.11: Test 1: Trial points, local approximation spaces for some specific parameter
values, radii and sample points for greedy algorithm with adapted trial set and N =
20.
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7.2.2. Test 2. Next, we consider the second example of the previous section.
Figure 7.10 (middle) compares this version (with adapted trial sets) with the version of
the previous section using a fixed trial set. One can observe again that the performance
is similar than the version using a fixed trial set, and that the accuracy is also satisfied
on the fixed test set Ξtest.

Comparing again with the version using a fixed trial set, the version with an
adaptive trial set requires less evaluation of the error estimate as is shown in the
following table:

Number of trial point evaluations during greedy using adapted trial sets: 37’444
Number of trial point evaluations during greedy using fixed trial sets: 123’750

We observe a gain of 70% fewer error evaluations.

Figure 7.12 presents the trial set, local approximation spaces, radii and sample
points of this calculation.
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Fig. 7.12: Test 2: Trial points, local approximation spaces for some specific parameter
values, radii and sample points for greedy algorithm with adapted trial set and N = 5.

7.2.3. Test 3. Finally, we apply the new algorithm with adapted trial set to the
third example. As already mentioned, the solution of this example has a singularity
and the version with a fixed train set did not resolve the singularity since the train
set was not sampled fine enough. We expect the version with the problem-adapted
train set to completely resolve the singularity, and thus in contrast using more sample
points than the version with a fixed trial set. Figure 7.10 (right) presents the evolution
of the number of sample points versus the accuracy of the algorithm. One can observe
that this approach (with moving trial set) uses indeed more sample points than the
version on a fixed train set as explained above. Finally, Figure 7.13 presents the trial
set, local approximation spaces, radii and sample points. We observe that the trial
points are in accordance with the sample points, and that a more dense sampling is
indeed required around the origin. We observe that the local approximation spaces
are now connected also for the tolerance of 10−3.

In order to illustrate the benefit of using adaptive trial sets also in this case we con-
sider a test sample of 75× 75 uniformly distributed points in the region [−0.05, 0.05]2

around the origin. Figure 7.14 illustrates the error distribution using the online pro-
cedure generated using a fixed (left) and an adaptive (right) trial set. The maximum
error is 0.043 resp. 0.00146. While the error tolerance is almost satisfied in the latter
case, it is clearly not the case for the former approach. Further, the number of error
evaluations is given in the following table:
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Number of trial point evaluations during greedy using adapted trial sets: 215’888
Number of trial point evaluations during greedy using fixed trial sets: 241’875

Thus, the adaptive version uses still less error estimator evaluations and is more
accurate in the region around the origin. Also, the error is more equally distributed.
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Fig. 7.13: Test 3: Trial points, local approximation spaces for some specific parameter
values, radii and sample points for greedy algorithm with adapted trial set and N =
10.
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Fig. 7.14: Test 3: Error distribution on a region around the origin of the greedy
version using a fixed (left) and an adaptive (right) trial set.

8. Conclusions. We presented a generalization of the classical greedy algorithm
that is used in the framework of reduced basis methods and the empirical interpola-
tion method. The presented algorithm introduces local approximation spaces (in the
parameter space) that also account for local anisotropic behavior instead of a global
approach. The key idea was to consider the N closest basis functions (for a fixed
N) where the semi-distance is measured in an empirically built metric which can be
constructed on the fly and which is problem-dependent. Numerical tests illustrate the
benefit of this approach.
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