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Absolute continuity of Markov chains ergodic measures by
Dirichlet forms methods

Guillaume POLY

April 17, 2012

Abstract

We study the absolute continuity of ergodic measures of Markov chainsXn+1 = F (Xn, Yn+1)
for the discrete case, and dXt = b(Xt)dt+ σ(Xt).dWt for the continuous case. In the dis-
crete case, we provide with a method enabling to deal with the case where the chains has
several invariant measures whereas previous works (c.f. [10, 12]) made assumptions of
contractivity, and hence unique ergodicity. Besides, the smoothness assumptions on F are
weakened. In the continuous case, we make stronger smoothness assumptions than [3],
but non-degeneracy assumptions are strongly weakened. The proofs are based on Dirichlet
forms theory, and ergodic theory arguments.

1 Introduction

During the past two decades, the theory of Dirichlet forms has been extensively studied in
the direction of improving regularity results of Malliavin calculus (cf. [14, 15]). The classical
approach of Malliavin calculus consists of proving, for any test function φ, inequalities of the
form

∣∣E(φ(p)(X))
∣∣ ≤ C‖φ‖C0 , from which one can deduce the smoothness of the law of X .

Nevertheless, when applying this method, for instance to the case of a stochastic differential
equation dXt = b(Xt)dt + σ(Xt).dWt, one always need strong regularity assumptions on the
coefficients b and σ. With respect to the Malliavin calculus on the Wiener space, the Dirichlet
forms method enables to take only Lipschitz hypotheses for the coefficients b and σ. Moreover,
a general criterion exists, the energy image density (EID), proved for the Ornstein-Uhlenbeck
form and many other local Dirichlet forms (cf [6, 9, 16]), which provides with an efficient tool
for obtaining existence of densities. Let us recall that the (EID) criterion still remains a conjec-
ture in the general case of a local Dirichlet form admitting a square field operator.

In this article, we will use the (EID) criterion to study the absolute continuity of an ergodic
measure π of a Markov chain defined by XN+1 = F (XN , YN+1), with F : Rn × Rp −→ Rn
globally Lipschitz and Yi an i.i.d. sequence. Previous works on this subject (cf [10, 12]) use
the Malliavin approach which requires the mapping F being more regular. Besides, in [10, 12],
F is assumed to be a contraction (e.g. supx E (‖∂1F (x, Y )‖) < 1). Indeed, when perform-
ing the calculation of the square field operator, terms of the form ∇FN (·) · · · ∇F1(x) (where
Fi(x) = F (x, Yi) and ∇Fi is its Jacobian matrix) appear, which, without any assumption of
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contractivity, grow exponentially fast. This very strong hypothesis prevents one from studying
the case where the chain has several invariant measures. To face with this technical issue, we
put fast enough decreasing weights in order to compensate the lack of contractivity. Several
examples are given where the non degeneracy conditions are proven to be equivalent to geomet-
ric conditions. Finally, we provide with a method to endow the space L2(π) with a non trivial
local Dirichlet form Eπ whose square field operator Γπ satisfies the (EID) criterion. In general,
the Dirichlet form we build does not satisfy the usual sufficient (but non necessary) conditions
entailing (EID) criterion (cf. [11], p105 or cf. [1] Theorems 3.2 and 5.3).

Our method is very general and, as we will see, applies also to the case of stochastic dif-
ferential equations in order to provide sufficient conditions under which invariant measures are
absolutely continuous with respect to the Lebesgue measure. This question has been exten-
sively discussed during the two past decades using analytic methods and we refer to [3] for
a rather complete and recent survey of the question. Let us mention the most general result
already published in [3]. For an open subset Ω of Rd and all f ∈ C∞c (Ω), let us define
LA,bf = trace(Af

′′
) + (b,∇f), where A is a mapping from Ω taking values in the space

of non-negative symmetric operators of Rd and b a vector field (A, b ∈ L1
loc(Ω)). Let µ a

probability measure solution of
∫

Ω LA,bfdµ = 0 for all f ∈ C∞c (Ω). Let us assume that
µ {x | detA(x) = 0} = 0, then µ is absolutely continuous with respect to the Lebesgue mea-
sure. Compared with this result, when the mappings A and b satisfy the usual Lipschitz condi-
tions leading to the existence of a strong solution of the stochastic differential equation induced
by LA,b, and taking µ an ergodic probability measure we can strongly weaken the criterion:
µ {x | detA(x) = 0} = 0 may be replaced by µ {x | detA(x) = 0} < 1. Roughly speaking,
Lipschitz assumptions enable to "think" the stochastic equation as a dynamical system and use
ergodic Theorems. The proof is essentially the same as in the discrete case. Thus, we discretize
the stochastic flow in order to restrict ourselves to the case of a discrete Markov chain.

First, we recall some elementary facts of Dirichlet structure theory and precise our notations,
especially the differential ones, next we state the main results. Finally we successively prove
the results after-mentioned in the discrete case and in the continuous case. We are grateful to
A.Coquio and E.Löcherbach for their helpful advices and notices, notably in concern with the
proof of Theorem 1.1.

1.1 Preliminaries and notations

Originally introduced by Beurling and Deny (c.f. [2]), a Dirichlet form is a symmetric non-
negative bilinear form E [·, ·] acting on a dense subdomainD(E) of an Hilbert spaceH, such that
D(E) endowed with the norm

√
< X,X >H +E [X,X] is complete. We refer to [13, 11, 8, 4]

for an exhaustive introduction to this theory. In the sequel we only focus on the particular case
of local Dirichlet forms admitting square field operators.

Definition 1.1. Following the terminology of [8], in this paper, a Dirichlet structure will design
a term (Ω,F ,P,D,Γ) such that:

(a) (Ω,F ,P) is a probability space.
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(b) D is a dense sub-domain of L2(P).

(c) Γ[·, ·] : D× D −→ L1(P) is bilinear, symmetric, non-negative.

(d) For all m ≥ 1, for all X = (X1, · · · , Xm) ∈ Dm, and for all F ∈ C1(Rm,R) and K-
Lipschitz:

• F (X) ∈ D,

• Γ[F (X), F (X)] =
m∑
i=1

m∑
j=1

∂iF (X)∂jF (X)Γ[Xi, Xj ].

(e) Setting E [X,X] = E (Γ[X,X]), the domain D endowed with the norm:

‖X‖D =
√
E(X2) + E [X,X],

is complete. Thus, E is a Dirichlet form with domain D on the Hilbert space L2(P).

Remark 1.1. One could work with a more general kind of Dirichlet structure, by choosing a
measured space (Ω,F ,m) instead of a probability space. In order to avoid unessential difficul-
ties we make here this restriction.

The following definition is preponderant in this work.

Definition 1.2. Let S = (Ω,F ,P,D,Γ) be a Dirichlet structure. We say that S satisfies the
energy image density criterion, if and only if, for all p ≥ 1, for all X = (X1, · · · , Xp) ∈ Dp:

X∗(1{det(Γ[Xi,Xj ])>0}dP) << dλp.

Conjecture. (Bouleau-Hirsch)
Every Dirichlet structure (in the sense of 1.1) satisfies the criterion E.I.D..

As already mentioned, we refer to [6, 9, 5] for examples and sufficient conditions entailing
E.I.D..

The most illustrative example of this kind of structure is the Sobolev spaceH1(Ω, λd) where
Ω is a bounded open subset of Rd, and λd the d-dimensional Lebesgue measure In this case:

• (Ω,F ,P) = (Ω,B(Ω), dλd
λd(Ω)),

• D = H1(Ω),

• Γ[φ] = ∇φ . t∇φ,

• E [φ] =
1

λd(Ω)

∫
Ω
∇φt∇φ dλd.

Another fundamental structure is the Sobolev space H1(Rp,N (0, Ip)) where N (0, Ip) de-
notes the standard Gaussian distribution in Rp. In this case:

• (Ω,F ,P) = (Rp,B(Rp),N (0, Ip),
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• H1(Rp,N (0, Ip)),

• Γ[φ] = ∇φ . t∇φ,

• E [φ] =

∫
Rp
∇φt∇φ dN (0, Ip).

Letting p→∞ in the previous structure leads to the fundamental structure of Ornstein-Uhlenbeck
on the Wiener space. We refer to [4] for a short introduction and to [8] for more details. Let
us mention that,in the structure H1(RN,N (0, 1)N), the square field operator Γ is the Malliavin
square field operator on the Wiener space.

Let us enumerate the notations adopted in the present paper:

• for X ∈ D, we set Γ[X] = Γ[X,X] and E [X] = E [X,X],

• for X = (X1, · · · , Xm) ∈ Dm:

Γ[X] = Γ[X, tX] =


Γ[X1, X1] Γ[X1, X2] · · · Γ[X1, Xn]
Γ[X2, X1] Γ[X2, X2] · · · Γ[X2, Xn]

...
... · · ·

...
Γ[Xn, X1] Γ[Xn, X2] · · · Γ[Xn, Xn]

 ,

• for φ ∈ C1(Rp,Rq), we set the Jacobian matrix: ∇φ(x) =

 ∂1φ1(x) · · · ∂pφ1(x)
... · · ·

...
∂1φq(x) · · · ∂pφq(x)

,

• for φ(·, ·) ∈ C1(Rn×Rp,Rq),∇xφ(x, y) is the partial Jacobian matrix of:
{

Rn −→ Rq
x −→ φ(x, y)

,

and ∇yφ(x, y) the Jacobian matrix of y −→ φ(x, y).

• when the mappings considered are only Lipschitz,∇φ will denotes an arbitrary represen-
tation of the Jacobian matrix. In the case of a particular representation (c.f. 2.4), we will
precise it,

• in a topological space (E, T ), xn
T−−−→

n→∞
x naturally means that xn converges toward x

in the topology T .

Finally, we end this preliminary section by giving without proof, elementary calculus rules which
are currently used in the paper.

Lemma 1.1. Let p, q ≥ 1. Let X = (X1, · · · , Xp) ∈ Dpand let F ∈ C1 ∩ Lip(Rp,Rq). Then,

Γ[F (X)] = ∇F (X)Γ[X]t∇F (X).

(Where∇F (X) ∈Mq,p(R) and Γ[X] ∈Mq(R).)
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Remark 1.2. In the whole article, we assume that the Markov chains under consideration admit
ergodic probability measures whereas it is not systematically true when the state space is not
compact. Our approach consists simply of studying the regularity of an ergodic probability
measure if it exists.

1.2 Statement of the main results

1.2.1 Discrete case:

Theorem 1.1. Let F : Rn × Rp −→ Rn be globally Lipschitz and ∇F (·) be one represen-
tation of its Jacobian matrix. Let (Yi)i∈N∗ be the coordinates of a product Dirichlet struc-
ture (Rp,B(Rp), µ,D,Γ)N

∗
which is assumed to satisfy (EID) criterion. Let finally π be an

ergodic measure of the Markov chain XN+1 = F (XN , YN+1). We make the two following
non-degeneracy conditions:

1. π ⊗ µ {(x, y) ∈ Rn × Rp | det∇xF (x, y) = 0} = 0,

2. there exists N0 > 1 such that π ⊗ µN∗
{

det Γ[Xx
N0

] > 0
}
> 0.

Then π is absolutely continuous with respect to λn.

More concretely, the previous Theorem may be applied in the following way.

Corrolary 1.1. Let F : Rn×Rp −→ Rn be globally Lipschitz and∇F (·) be one representation
of its Jacobian matrix. Let Yi be a i.i.d. sequence with common law dµ(x) = 1Ω(x)

dλp(x)
λp(Ω)

for some bounded open subset Ω of Rp and let π be an ergodic measure of the Markov chain
XN+1 = F (XN , YN+1). Let us assume the two non-degeneracy conditions:

1. π ⊗ µ {(x, y) ∈ Rn × Rp | det∇xF (x, y) = 0} = 0,

2. there existsN0 > 1 such that π⊗µN∗
{

det∇Y1,··· ,YN0
[Xx

N0
]t∇Y1,··· ,YN0

[Xx
N0

] > 0
}
> 0.(

∇Y1,··· ,YN0
[Xx

N0
] is one representation of the Jacobian matrix of the (Lipschitz) mapping

(Y1, · · · , YN0) −→ Xx
N0

)
.

Then π is absolutely continuous with respect to λn.

Remark 1.3. Before making the proof of Theorem 1.1, let us explain roughly the role played
by the non-degeneracy conditions 1) and 2). The condition 1) ensures that from XN to XN+1,
the system conserves all the "noise" already accumulated, just like a convolution would do. The
condition 2) expresses the fact that, with some positive probability, some "noise" is added on the
system. Finally, the ergodicity condition entails that the aforementioned process of "regulariza-
tion" is repeated infinitely often so that after an "infinite" time the law of the Markov chain is
absolutely continuous with respect to the Lebesgue measure λn.
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1.2.2 Continuous case:

In the continuous time setting, the previous results take the following form.

Theorem 1.2. Let b : Rn −→ Rn and σ : Rn −→ Mn,p(R) two globally Lipschitz mappings.
Let us consider the stochastic differential equation:

dXt = b(Xt)dt+ σ(Xt).dWt (1)

where (Wt)t≥0 is a standard Brownian motion on Rp. Let π an ergodic measure of the diffusion.
We assume that π {∃t > 0 | det Γ[Xx

t ] > 0} > 0. Then π is absolutely continuous with respect
to Lebesgue.

Corrolary 1.2. Under the hypotheses of the above Theorem, if π
{
x | detσ(x)tσ(x) = 0

}
< 1,

then π is absolutely continuous with respect to the Lebesgue measure λn.

Remark 1.4. In the continuous setting, because of the flow property, condition 1) of non-
degeneracy is automatically fulfilled and does not appear in the hypotheses.

2 Absolute continuity of ergodic measures, discrete case

2.1 Main Theorems

Before making the proof of Theorem 1.1, let us state some preliminary results.

Lemma 2.1. Let (Si)1≤i≤N be a finite family of symmetric nonnegative matrix of Rn. Let
(αi)1≤i≤N be a family of positive numbers. Then,

det

(
N∑
i=1

Si

)
> 0⇔ det

(
N∑
i=1

αiSi

)
> 0.

Proof. Let X ∈ Rn, since for all i, αi > 0 and tXSiX ≥ 0, then:

N∑
i=1

tXSiX = 0⇔
N∑
i=1

αi
tXSiX = 0.

Lemma 2.2. In the Theorem (1.1) setting, we may define on an auxiliary probability space,
random variables (zi, yi,Γ[yi])i∈N∗ such that:

1. for all i ≥ 1, zi = F (zi+1, yi),

2. for all i ≥ 1, zi is π distributed,

3. for allP ≥ 1, σ (zi, yi,Γ[yi]; i ≥ P + 1) is a sigma-algebra independent from (yi,Γ[yi])1≤i≤P ,

4. for all i ≥ 1, (yi,Γ[yi]) has the same distribution as (Yi,Γ[Yi]).
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(Let us note η the joint law of the sequence of variables (zi, yi,Γ[yi])i≥1).

Proof. We set S = (Rn × Rp ×Mp(R))N
∗

equipped with T the product topology. Let X be a
random variable π-distributed and independent from (Yi,Γ[Yi])i≥1 and let ZNP = FP ◦ FP+1 ◦
FN (X) the reversed iterations. Finally, we set νN the probability over the topological space
(S, T ) being the joint law of the sequence of variables:(
(ZN1 , Y1,Γ[Y1]), (ZN2 , Y2,Γ[Y2]), · · · , (ZNN , YN ,Γ[YN ]), (0Rn , 0Rp , 0Mp(R)), (0Rn , 0Rp , 0Mp(R)), · · ·

)
.

νN being a tight sequence of probabilities over (S, T ), for some subsequenceNk, µNk converges
in distribution toward a probability, namely η. We then set (zi, yi,Γ[yi])i≥1 the coordinates
of the probability space (S, T , η). Checking the conditions 1), 2), 3), 4) aforementioned is
straightforward.

Remark 2.1. We could construct theses auxiliary variables by reversing the iterations, that is
to say making F1 ◦ F2 ◦ · · · ◦ FN (x) instead of FN ◦ FN−1 ◦ · · · ◦ F1(x). The variable z1 is
then obtained with infinitely many iterations and is π distributed. All the strategy of the proof
Theorem (1.1) consists of exploiting this fact with the (EID) criterion.

Lemma 2.3. Let us endow the space (S, T ) with the measure η being the joint law of the
sequence of variables (zi, yi,Γ[yi])i≥1 aforementioned. Then the left shift τ in the topological
space (S, T ) is η-ergodic.(
Left shift means : τ(ω1, ω2, . . . , ωN , . . .) = (ω2, ω3, . . . , ωN+1, . . .)

)
.

Proof. For simplicity we set (zi, yi,Γ[yi])i≥1 = ω = (ω1, ω2, · · · ), where ωi = (zi, yi,Γ[yi])
and we define (∀P ≥ 1) FP = σ(y1,Γ[y1], y2,Γ[y2], · · · , yP ,Γ[yP ]). Let µ1, µ2 be two τ -
invariant measures on the topological space S, such that η = µ1+µ2

2 . By definition, η is ergodic
if and only if it is extremal in the convex of τ -invariant probability measures, hence we want to
prove that η = µ1 = µ2. Let us be given an integer P ≥ 1 and a map ψ such that η-almost
surely:

ψ(ω1, · · · , ωP ) = ψ(ω2, · · · , ωP+1). (2)

Then η-almost surely, for all Q ≥ P , since σ(ωi ; i ≥ P + 1) is independent from FP (c.f.
Lemma (2.2)):

ψ(ω1, · · · , ωP ) = ψ(ω1+Q, · · · , ωQ+P )

=

∫
ψ(ω1+Q, · · · , ωQ+P )dP(y1,Γ[y1],··· ,yp,Γ[yP ])

=

∫
ψ(ω1, · · · , ωP )dP(y1,Γ[y1],··· ,yp,Γ[yP ])

= E {ψ(ω1, · · · , ωP ) | zP+1}
= f(zP+1),

with f(x) = E {ψ(ω1, · · · , ωP ) | zP+1 = x}. But, according to (2), η-almost surely, f(zP+1) =
f(zP+2). Since π is an ergodic measure of the Markov chain XN , f is constant π-almost ev-
erywhere, which implies that ψ is constant η-almost surely. Setting ηP = (ω1, · · · , ωP )∗η the
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projection of η on the P first coordinates, we have proved that the left shift τP on the space
SP = (Rn × Rp ×Mp(R))P is ηP -ergodic. However, ηP = (ω1,··· ,ωP )∗µ1+(ω1,··· ,ωP )∗µ2

2 where
(ω1, · · · , ωP )∗µi (i ∈ {1, 2}) are τP -invariant. Necessarily:

ηP = (ω1, · · · , ωP )∗µ1 = (ω1, · · · , ωP )∗µ2.

Letting P →∞ we get η = µ1 = µ2.

By functional calculus, the following result is true when F is C1. We need to extend it to the
Lipschitz case, without using Lipschitz functional calculus which fails in this setting.

Lemma 2.4. Let (Ω,F ,P,D,Γ) be a Dirichlet structure satisfying the (EID) criterion. Let
X = (X1, · · · , Xn) be in Dn and let F : Rn −→ Rp be a Lipschitz mapping. Then, for any
Borel representation∇F (·) of the Jacobian matrix of F we have:

det Γ[F (X)] = det
(
∇F (X)Γ[X]t∇F (X)

)
.

Proof. Let ∇F be any Borel representation of the Jacobian matrix of F , we notice that:

det
(
∇F (X)Γ[X]t∇F (X)

)
= det

(
∇F (X)Γ[X]t∇F (X)1{det Γ[X]>0}

)
.

But, using (EID),X∗
(
1{det Γ[X]>0}dP

)
� λn ensures that det

(
∇F (X)Γ[X]t∇F (X)1{det Γ[X]>0}

)
does not depend on the representation of ∇F . Hence, det

(
∇F (X)Γ[X]t∇F (X)

)
neither de-

pends on the representation of ∇F . Besides, using a suitable smoothing argument, one can
prove (c.f.[8]) that there exists at least one representation ∇̃F for which the functional calcu-
lus Γ[F (X)] = ∇̃F (X)Γ[X]t∇̃F (X) holds (but not necessarily for all representations). This
implies:

det Γ[F (X)] = det
(
∇̃FΓ[X]t∇̃F

)
= det

(
∇F (X)Γ[X]t∇F (X)

)
.

Now, we make the proof Theorem (1.1).

Proof. Theorem (1.1)

Let K be the Lipschitz constant of the mapping F , let α be some positive number such that
0 < K2α < 1, and let A be a Borel subset of Rn with λn(A) = 0. In order to use the Radon-
Nykodym criterion, we wish to prove that π(A) = 0.

For some latter convenience, we set for all (N,P ) with 1 ≤ N ≤ P :

• ZPN (x) = FN ◦ · · · ◦ FP (x) (with Fi(x) = F (x, Yi)),

•
{
M1(x) = ∇yF (x, Y1),
MP (x) = ∇xF (ZP2 (x), Y1) · · · ∇xF (ZPP (x), YP−1)∇yF (x, YP ) (P > 1),
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•
{
m1 = ∇yF (z2, y1),
mP = ∇xF (z2, y1) · · · ∇xF (zP , yP−1)∇yF (zP+1, yP ) (P > 1).

In application of the (EID) criterion, and thanks to Lemma (2.4):

E
{
1A(ZP1 (x)) det Γ[ZP1 (x)]

}
= E

{
1A(ZP1 (x)) det

( P∑
k=1

Mk(x)Γ[Yk]
tMk(x)

)}
= 0. (3)

Using Lemma (2.1) in (3), we get:

E
{
1A(ZP1 (x)) det

( P∑
k=1

αkMk(x)Γ[Yk]
tMk(x)

)}
= 0. (4)

Now, integrating (4) on x with respect to π entails:

E
{
1A(z1) det

( P∑
k=1

αkmkΓ[yk]
tmk

)}
= 0. (5)

Since E

{
P∑
k=1

αk
∥∥mkΓ[yk]

tmk

∥∥} ≤ E{‖Γ[Y1]‖}
P∑
k=1

(K2α)k we can let P →∞ so that:

E
{
1A(z1) det

( ∞∑
k=1

αkmkΓ[yk]
tmk

)}
= 0. (6)

Setting J(ω) =
(∑∞

k=1 α
kmkΓ[yk]

tmk

)
(with ω = (zi, yi,Γ[yi])i≥1), let us notice that:

det J(ω) = det
( ∞∑
k=1

αkmkΓ[yk]
tmk

)
≥ det

( ∞∑
k=2

αkmkΓ[yk]
tmk

)
= α2n det∇xF (z2, y1)J(τω)t∇xF (z2, y1).

But the non degeneracy assumption 1) ensures that η{detF (z2, y1) 6= 0} = 1, so that we get
{det J(ω) = 0} ⊂ {det J(τω) = 0}. Since η{det J(ω) = 0} = η{det J(τω) = 0}, then
{det J(ω) = 0} = {det J(τω) = 0}. Lemma (2.3) ensures that η {det J = 0} ∈ {0, 1}. Using
the non degeneracy assumption 2):

η

{
det

(
N0∑
k=1

αkmkΓ[yk]
tmk

)
= 0

}
< 1.

Then, η {det J = 0} < 1 and so η {det J = 0} = 0. Finally, (6) implies E {1A(z1)} = π(A) =
0.
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Proof. Corollary (1.1)

Let us consider the Dirichlet structure :

SΩ =
(
Ω,B(Ω),1Ω(x)

dλp(x)

λp(Ω)
,H1(Ω),Γ[φ] = ∇φt∇φ

)
.

Since SN∗
Ω satisfies the (EID) criterion (cf. [11], p.105), we may use Theorem (1.1) to get the

wished result.

Now let us give few applications.

Application 1. LetA ∈ GLn(R) be an invertible matrix, let Ω be a bounded and connected open
subset of Rp, let dµ(x) = 1Ω(x)

dλp(x)
λp(Ω) be the uniform measure on Ω and let G : Rp −→ Rn be

globally Lipschitz. Let us given (Yi)i≥1 a i.i.d sequence with common distribution µ and let π be
an ergodic probability measure of the Markov chain XN+1 = AXN +G(YN+1). If we assume
in addition that with π positive probability, XN (x) converges in distribution toward π then we
have the alternative:
either π is absolutely continuous, either supp(π) is contained in a strict vector subspace.

Let us assume, that non-degeneracy condition 2) fails, we have:

det J(ω) = det

( ∞∑
k=1

αkAk−1Γ[G(yk)]
tAk−1

)
= 0.

Let us define H(ω) = ker
(∑∞

k=1 α
kAk−1Γ[G(yk)]

tAk−1
)

and let us take X ∈ H(ω). We
have:

0 = tX

( ∞∑
k=1

αkAk−1Γ[G(yk)]
tAk−1

)
X

≥ tX

( ∞∑
k=2

αkAk−1Γ[G(yk)]
tAk−1

)
X

= α t(AX)J(τω)(AX).

From the above equation, and since detA 6= 0, we deduce that A (H(ω)) ⊂ H(τω) which
by ergodicity (2.3) entails that dim(H(ω)) = dim(H(τω)) and so that AH(ω) = H(τω).
Consequently, A−NH(ω) = H(τNω). Therefore for all N ≥ 1, H(ω) is independent from
(Γ[G(y1)], · · · ,Γ[G(yN )]), this ensures thatH(ω) is a deterministic vector subspace of Rn. Let
us fix (ξ1, · · · , ξd) a deterministic basis of H(ω), where d = dimH(ω). Then, by construction,
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for all 1 ≤ i ≤ d and all N ≥ 1, almost surely:

0 = tξi

∞∑
k=1

αkAk−1Γ[G(yk)]
tAk−1ξi

= tξi

N∑
k=1

αkAk−1Γ[G(yk)]
tAk−1ξi

= tξi

N∑
k=1

Ak−1Γ[G(yk)]
tAk−1ξi

=

∫
Rn

Γ[

n∑
j=1

ξ
(j)
i X

(j)
N (x)]dπx. (7)

Nevertheless, since Ω is connected, we can prove that the Dirichlet structure (Ω,B(Ω), dµ,H1(Ω),∇t∇)N∗

satisfies the recurrence property :

∀X ∈ D, E [X] = 0⇒ X is constant.

Thus, (7) implies that, πx almost surely, there exists a finite family (Ci,N (x))1≤i≤d such that:

n∑
j=1

ξ
(j)
i X

(j)
N (x) = Ci,N (x). (8)

Let us assume that XN (x)
Law−−−−→
N→∞

π. Then, letting N →∞, (8) implies that there exists a finite

family of numbers (Ci)1≤i≤d such that πx almost everywhere:

∀i ∈ {1, · · · , d},
n∑
j=1

ξ
(j)
i xj = Ci.

More geometrically, the support of π is contained in the intersection of d hyperplanes of Rn.

Remark 2.2. Without this additional assumption we failed in getting an analogous conclusion.
For instance, such an assumption is fulfilled when the matrix A contracts, but also in a more
general context since we only need the convergence in distribution ofXx

N for some x ∈ supp(π).

Application 2. The above method applies to the case of a stochastic differential equation dXt =
AXtdt + σ.dWt where A ∈ Mn(R) is dissipative (< Ax, x >≤ −c‖x‖2), σ ∈ Mn,p(R) and
(Wt)1≤i≤p a p-dimensional standard Brownian motion. In particular:

Xx
t = eAt

(∫ t

0
e−Asσ.dWs + x

)
.

Discretizing, we may consider the Markov chain:

X(N+1)T = eATXNT + eAT
∫ T

0
e−AsσdW (N)

s ,

11



where (W
(i)
s )s∈[0,T ] are independent standard Brownian motions. Then we are exactly in the

setting of application (1) and the following alternative holds: either the invariant probability
measure is absolutely continuous, either it is supported by a strict vector subspace of Rn. Of
course, in this Gaussian context, we might get the same result, studying the covariance matrix
of Xx

N . However the method is more general and could apply to s.d.e. of the form dXt =
AXtdt+ σ.dξt, ξt being a suitable Levy process.

Application 3. Let us be given f, g : R −→ R two contractions. Let (Ui)i≥1 be a i.i.d. sequence
of uniformly distributed variables in [0, 1]. Let π be the invariant probability of the Markov
chain XN+1 = UN+1f(XN ) + (1 − UN+1)g(XN ). We fix f ′, g′ two Borel representations of
the derivatives of f and g. We assume that:

1. ∀x ∈ R, f ′(x) 6= 0 or g′(x) 6= 0,

2. f and g do not fix the same point,

then π is absolutely continuous with respect to the Lebesgue measure.

Let us fix x ∈ R, and let us assume that for two distinct numbers u, v in [0, 1] we have:

uf ′(x) + (1− u)g′(x) = vf ′(x) + (1− v)g′(x) = 0.

Then, f ′(x) = g′(x) = 0. Hence condition 1) ensures that πx⊗λy almost everywhere yf ′(x) +
(1 − y)g′(x) 6= 0. Besides, let us assume that condition 2) of Corollary (1.1) fails. We then
have that πx almost everywhere, f(x) = g(x). Since supp(π) is stable by f and g, we deduce
that f and g fix the same point which contradicts our second assumption. It follows that the
non-degeneracy condition 2) of Corollary (1.1)is fulfilled and that π is absolutely continuous
with respect to the Lebesgue measure.

2.2 Building Dirichlet structures satisfying (EID)

Let us be placed in the setting of Theorem (1.1), we wish to exhibit a way to construct in the
probability space (Rn,B(Rn), π) a Dirichlet form Eπ with square field operator Γπ such that the
structure satisfies the (EID) criterion. More generally, we prove that (Rn,B(Rn), π,Dπ,Γπ)N

∗

also satisfies (EID). This process of construction enables to create easily Dirichlet structures sat-
isfying (EID) criterion whereas the usual sufficient conditions entailing (EID) are not necessarily
fulfilled. Another interest of this process of construction, consists of iterating the square field
operator Γπ in order to give quantitative estimates of dπ

dλ (x), nevertheless we decided to restrict
our attention to the absolute continuity and the aforementioned estimates will be performed in a
forthcoming paper. We keep the notations adopted in the proof of Theorem (1.1).
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Definition 2.1. Let φ ∈ C∞c (Rn), we set:

Γπ[φ](x) = E
{
∇φ(z1)J(ω)t∇φ(z1) | z1 = x

}
= ∇φ(x)E{J(ω) | z1 = x}t∇φ(x),

Eπ[φ] =

∫
Rn

Γπ[φ](x)dπx

= E

{
∇φ(z1)

( ∞∑
k=1

αkmkΓ[yk]
tmk

)
t∇φ(z1)

}
. (9)

Theorem 2.1. The symmetric, bilinear form Eπ[.] defined in C∞c (Rn) is closable.

Proof. Let φN be sequence of maps in C∞c (Rn) satisfying:

(a)
∫
Rn φ

2
N (x)dπx −−−−→

N→∞
0,

(b) Eπ[φN − φM ] −−−−−−−−−→
N→∞,M→∞

0.

In order to prove the closability of the form, we must prove that Eπ[φN ] −−−−→
N→∞

0.

For N ≥ 1 and φ ∈ C∞c (Rn) we set:

ENπ [φ] = E

{
∇φ(z1)

(
N∑
k=1

αkmkΓ[yk]
tmk

)
t∇φ(z1)

}
≤ Eπ[φ].

Then for all P,Q ∈ N∗, setting C = supk
√
Eπ[φk], we have:

Eπ[φP ] ≤
∣∣Eπ[φP ]− ENπ [φP ]

∣∣+ ENπ [φP ]

≤
∣∣Eπ[φP ]− ENπ [φP ]

∣∣+
∣∣ENπ [φP ]− ENπ [φQ]

∣∣+ ENπ [φQ]

≤
∣∣Eπ[φP ]− ENπ [φP ]

∣∣+
√
ENπ [φP − φQ]

√
ENπ [φP + φQ] + ENπ [φQ]

≤
∣∣Eπ[φP ]− ENπ [φP ]

∣∣+ 2C
√
Eπ[φP − φQ] + ENπ [φQ].

Eπ[φP ] ≤ lim sup
N→∞

∣∣Eπ[φP ]− ENπ [φP ]
∣∣+ lim sup

Q→∞
ENπ [φQ] + 2C lim sup

Q→∞

√
Eπ[φP − φQ].

(10)

• According to (9), for all φ ∈ C∞c (Rn), we have ENπ [φ] −−−−→
N→∞

Eπ[φ]. This implies that

lim sup
N→∞

∣∣Eπ[φP ]− ENπ [φP ]
∣∣ = 0.

• According to assumption b), we have:

ENπ [φP − φQ] ≤ Eπ[φP − φQ] −−−−−→
P,Q→∞

0. (11)
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Taking into account that
∫
Rn Γ[φ(ZN1 (x))]dπx ≤ 1

αN
ENπ [φ] and using assumption b) and

(11): ∫
Rn

E
{(
φP (ZN1 (x))

)2}
dπx −−−−→

P→∞
0, (12)∫

Rn
E
{

Γ[φP (ZN1 (x))− φQ(ZN1 (x))]
}
dπx −−−−−→

P,Q→∞
0.

Using (12) we may construct a subsequence Nk such that:

∫
Rn

E

{ ∞∑
k=1

(
φNk(ZN1 (x))

)2}
dπx <∞, (13)

∫
Rn

∞∑
k=1

∣∣E{Γ[φNk+1
(ZN1 (x))]

}
− E

{
Γ[φNk(ZN1 (x))]

}∣∣ dπx <∞,∫
Rn

∞∑
k=1

E [φNk+1
(ZN1 (x))− φNk(ZN1 (x))]dπx <∞.

Consequently, πx-almost everywhere, E
{(
φNk(ZN1 (x))

)2} −−−→
k→∞

0 and E [φNk(ZN1 (x))−

φNk′ (Z
N
1 (x))] −−−−−→

k,k′→∞
0. Nevertheless, φNk(ZN1 (x)) belongs to the domain D of the

Dirichlet structure (Rp,B(Rp), µ,D,Γ)N
∗

which is complete for the Dirichlet norm. Hence,
πx-almost everywhere:

E [φNk(ZN1 (x))] −−−→
k→∞

0. (14)

According to (13):

E [φNk(ZN1 (x))] ≤
∞∑
q=k

∣∣E{Γ[φNq+1(ZN1 (x))]
}
− E

{
Γ[φNq(Z

N
1 (x))]

}∣∣
≤

∞∑
q=1

∣∣E{Γ[φNq+1(ZN1 (x))]
}
− E

{
Γ[φNq(Z

N
1 (x))]

}∣∣ ∈ L1(π).

Hence by dominated convergence, (14) entails:

lim
k→∞

∫
Rn
E [φNk(ZN1 (x))]dπx = 0.

Up to any extraction, assumptions a), b) remain. Thus, we have proved that:

lim
Q→∞

∫
Rn
E [φQ(ZN1 (x))]dπx = 0.

Taking into account that ENπ [φQ] ≤
∫
Rn E [φQ(ZN1 (x))]dπx, we have established that

lim sup
Q→∞

ENπ [φQ] = 0.
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• Thanks to (10), we have:

Eπ[φP ] ≤ 2C lim sup
Q→∞

√
Eπ[φP − φQ] −−−−→

P→∞
0.

Theorem 2.2. Let Dπ be the closure of C∞c (Rn) for the Dirichlet form Eπ. Under the non-
degeneracy assumptions of Theorem (1.1), the resulting Dirichlet structure:

Sπ = (Rn,B(Rn), π,Dπ,Γπ)

satisfies the (EID) criterion. Moreover, SN∗
π also satisfies the (EID) criterion.

Proof. Let us be given (φ1, · · · , φk) ∈ Dkπ and let A be a Borel subset of Rk, negligible for
the Lebesgue measure λk. Since Dπ is the closure of C∞c (Rn) for Eπ, there exist k sequences
(φ

(N)
1 , · · · , φ(N)

k ) in C∞c (Rn) such that for all i ∈ {1, · · · , k} and R ≥ 1:∫
Rn

(
φi(x)− φ(N)

i (x)
)2
dπx −−−−→

N→∞
0, (15)∫

Rn
E
{
∇
(
φ

(P )
i (z1)− φ(Q)

i (z1)
)
J(ω)t∇

(
φ

(P )
i (z1)− φ(Q)

i (z1)
)}
≥

∫
Rn

E

∇(φ(P )
i (z1)− φ(Q)

i (z1)
) R∑

j=1

αjmjΓ[yj ]
tmj

 t∇
(
φ

(P )
i (z1)− φ(Q)

i (z1)
) ≥

1

αR

∫
Rn

E
{

Γ[φ
(P )
i (ZR1 (x))− φ(Q)

i (ZR1 (x))]
}
dπx −−−−−→

P,Q→∞
0. (16)

Using both (15) and (16), for all i ∈ {1, · · · , k}, πx-almost every where: φi(ZR1 (x)) ∈ D. We
set φ(x) = (φ1(x), · · · , φk(x)). Using the (EID) criterion which is valid in the structure S,
πx-almost every where:

E
{
1A(φ1(ZR1 (x)), · · · , φk(ZR1 (x))) det

(
∇φ(ZR1 (x))Γ[ZR1 (x)]t∇φ(ZR1 (x))

)}
= 0.

Integrating x with respect to π and using Lemma(2.1) we have:

E

1A(φ1(z1), · · · , φk(z1)) det

∇φ(z1)

 R∑
j=1

αjmjΓ[yj ]
tmj

 t∇φ(z1)

 = 0.

Letting R→∞ we get:

E
{
1A(φ1(z1), · · · , φk(z1)) det

(
∇φ(z1)J(ω)t∇φ(z1)

)}
=

E
{
1A(φ1(z1), · · · , φk(z1))1{det(∇φ(z1)J(ω)t∇φ(z1))>0}

}
= 0. (17)
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Using [8] (p.188 Lemma 1.1.6.2):

{detE {J(ω) | z1} = 0} ⊂ {det J(ω) = 0} = ∅.

That is why:

{det Γπ[φ](z1) > 0} =
{

det
(
∇φ(z1)E {J(ω) | z1} t∇φ(z1)

)
> 0
}

=
{

det
(
∇φ(z1)t∇φ(z1)

)
> 0
}

=
{

det
(
∇φ(z1)J(ω)t∇φ(z1)

)
> 0
}
.

Finally, (17) leads to ∫
Rn
1A(φ(x))1{det Γπ [φ]>0}(x)dπx = 0.

In order to prove that SN∗
π satisfies the (EID) criterion, it is enough proving that for all P ≥ 1,

SPπ satisfies (EID). In this case, we can use a coupling argument by saying that πP is an ergodic
invariant measure of the coupled Markov chain :

WN+1(x1, · · · , xP ) = (X
(1)
N+1(x1), · · · , X(P )

N+1(xP )) = (F (X
(1)
N (x1), Y

(1)
N+1), · · · , F (X

(P )
N (xP ), Y

(P )
N+1)).

(where (Y
(j)
i ) is still i.i.d.)

The Jacobian matrix of the two mappings:

1. (x1, · · · , xP ) −→ (F (x1, Y
1

1 ), · · · , F (x1, Y
P

1 )),

2. (Y1, · · · , YP ) −→ (F (x1, Y
1

1 ), · · · , F (x1, Y
P

1 )),

are bloc-diagonal. So the non-degeneracy conditions of Theorem(1.1) remain for the coupled
Markov chain WN (x1, · · · , xP ). Besides, if we apply the same process of construction of Sπ
to the coupled Markov chain, thanks to the bloc-diagonal forms of the Jacobian matrix, the
Dirichlet structure obtained coincide with SPπ . Since the conclusions of Theorem (2.2) hold, SPπ
checks the (EID) property. Finally, letting P →∞, SN∗

π also satisfies (EID).

3 Absolute continuity of ergodic measures, continuous case

Proof. (Theorem 1.2)
We wish to apply the same strategy as those previously used in the proof of Theorem 1.1. Let
us be given for that, T > 0 and a family of independent Brownian motions (W i

t)t∈[0,T ]. We will
note Γi the Malliavin calculus operator with respect to the Wiener space σ(W i

t ; t ∈ [0, T ]). (Γi
plays exactly the role of "∇Yi" in the proof of Theorem 1.1). Setting φi(x) the solution of the
s.d.e. dXi

t = b(Xt)
i + σ(Xi

t)dW i
t starting from x at the time T , we consider the Markov chain:

W x
N+1 = φN+1(W x

N ), W0 = x.

Since the s.d.e. 1 under consideration is homogeneous, and thanks to the flow property, we can
assert that π is invariant for the chain (Wn). Besides, thanks to [7], we know that x −→ φi(x)
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is a Lipschitz mapping, which Jacobian matrix almost surely and almost everywhere belongs to
GLn(R) (the set of invertible matrix of Rn). Hence we apply the same procedure as those used
in the proof of Theorem 1.1, the starting equation (consequence of (EID) in the Wiener space)
being :

E
{
χA(z1) det

(
Γ1[z1] +∇φ1(z2)Γ2[z2]t∇φ1(z2)Γ2 + · · ·+

∇φ1(z2) · · · ∇φp(zp+1)Γp+1[zp+1]t∇φp(zp+1) · · · t∇φ1(z2)
)}

= 0,

where A is a negligible set and where (zi)i≥1 are defined in the same way as in the Lemma 2.2,
in particular zi = φi+1(zi+1).

Proof. (Corollary 1.2)

In order to apply Theorem 1.2, it is enough checking that π {x | ∃t > 0 with det Γ[Xx
t ] > 0} >

0. But according to [6] or (Theorem 2.3.1 p.127 [15]), starting from xwhere detσ(x)tσ(x) > 0,
we know that for all t > 0, det Γ[Xx

t ] > 0. (Xx
t being the solution of the s.d.e. (1)). That is

why: {
x | det(σ(x)tσ(x)) > 0

}
⊂ {x | ∃t > 0 with det Γ[Xx

t ] > 0} .
Hence:

π {x | ∃t > 0 with det Γ[Xx
t ] > 0} > 0.
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