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A RESCALING VELOCITY METHOD FOR DISSIPATIVE KINETIC EQUATIONS
APPLICATIONS TO GRANULAR MEDIA

FRANCIS FILBET AND THOMAS REY

Abstract. We present a new numerical algorithm based on a relative energy scaling for collisional kinetic
equations allowing to study numerically their long time behavior, without the usual problems related to
the change of scales in velocity variables. It is based on the knowledge of the hydrodynamic limit of the
model considered, but is able to compute solutions for either dilute or dense regimes. Several applications
are presented for Boltzmann-like equations. This method is particularly efficient for numerical simulations
of the granular gases equation with dissipative energy: it allows to study accurately the long time behavior
of this equation and is very well suited for the study of clustering phenomena.
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1. Introduction

We are interested in numerical simulations of the long time behavior of collisional kinetic equations
such as the Boltzmann equation for granular gases. To this end, we introduce a new technique which
is based on the information provided by the hydrodynamic fields computed from a macroscopic model
corresponding to the original kinetic equation. Then we simply rescale the kinetic equation according to
these hydrodynamic quantities. The reason to do so is that the change of scales in velocity is a challenging
numerical problem when one wants to deal with solutions to dissipative kinetic equations on a fixed grid.
Indeed, most of the usual deterministic methods fails to capture the correct long time behavior because
of concentration or spreading over the velocity space.

Recently, F. Filbet and G. Russo proposed in [25] a rescaling method for space homogeneous kinetic
equations on a fixed grid. This idea is mainly based on the self-similar behavior of the solution to the
kinetic equation. However for space non homogeneous case, the situation is much more complicated and
this method cannot be applied since the transport operator and the boundary conditions break down this
self-similar behavior. Here we propose a very simple idea based on a rescaling of the kinetic equation
according to its hydrodynamic limit. We will see that this approach can actually be applied to various
type of collisional kinetic equations such as elastic and inelastic Boltzmann equation (also known as the
granular gases equation).

Among popular methods for numerical simulations of collisional gases, the most widely used are mesh-
less. On the one hand, the Molecular Dynamics algorithm is a deterministic method up to the random
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initialization of the particles which is valid in a dense regime [32]. This method has been used to de-
scribe the apparition of shocks in supersonic sand and reproduces very accurately experimentation results
[41]. On the other hand, Direct Simulation Monte Carlo (DSMC) methods are stochastic algorithms
working either in dense or rarefied regimes. We refer for instance to [5] for a complete review of this
topic. These methods are really efficient in term of computational cost since their complexity grows lin-
early with the number N of particles but they are rather inaccurate since the order of accuracy is about
O(1/

√
N). Another approach consists in a direct resolution of the Boltzmann operator on a phase space

grid. For instance, deterministic and highly accurate methods based on a spectral discretization of the
collisional operator have been proposed by F. Filbet, G. Naldi, L. Pareschi, G. Toscani and G. Russo in
[39, 37, 24] for the space-homogeneous setting. Although being of complexity O(N2), they are spectrally
accurate and then need very few points to be precise. Another spectral method, inspired of the direct
fast Fourier transform approach of A.V. Bobylev and S. Rjasanow [8, 10, 9] using Lagrange multiplier to
improve the conservations was also used for space-homogeneous simulations in 3D by I. Gamba and S.H.
Tharkabhushanam in [28].

Due to the large number of particles involved in the study of rarefied gas dynamics, we shall adopt a
statistical physics’ point of view, by the use of Boltzmann-like kinetic equations. For a given nonnegative
initial condition f0, we will consider a particle distribution function f ε = f ε(t, x, v), for t ≥ 0, x ∈ Ω ⊂ Rdx

and v ∈ Rdv , solution to the initial-boundary value problem

(1.1)


∂fε

∂t
+ v · ∇xf ε = 1

ε
Q(f ε, fε),

f ε(0, x, v) = f0(x, v).
where the collision operatorQ is a Boltzmann-like operator, which preserves at least mass and momentum.
This equation describes numerous models such as the Boltzmann equation for elastic and inelastic collisions
or Fokker-Planck-Landau type equations. The parameter ε > 0 is the dimensionless Knudsen number, that
is the ratio between the mean free path of particles before a collision and the length scale of observation.
It measures the rarefaction of the gas: the gas is rarefied if ε ∼ 1 and dense if ε� 1. The open set Ω is a
bounded Lipschitz-continuous domain of Rdx , which means that the model (1.1) has to be supplemented
with boundary conditions described later.

The article is organized as follows. We present in Section 2 the rescaling velocity method and give two
possible choices of scaling functions, the coupled Filbet-Russo scaling and the new uncoupled macroscopic
one. We choose to use the latter in the rest of the article, and apply it to three different collision operators
in Section 3: the Boltzmann operator, the full granular gases operator and a simplified BGK-like granular
gases operator. Subsequently, we introduce in Section 4 the spatial boundary conditions we have to
impose on Ω: the so-called Maxwell boundary conditions, a convex combination of specular and diffusive
reflections at the boundary. We present these conditions for the kinetic model (in classical and rescaled
variables) and for the macroscopic equations. In Section 5, we introduce the numerical methods we shall
use for the discretization of each term of the problem: the collision operator, the conservative transport
term and the system of conservation laws with source term. Finally, we present in Section 6 some
numerical results concerning the full and simplified granular gases models, in space homogeneous and
inhomogeneous settings, with different geometries.

2. The Rescaling Velocity Method

This section is devoted to the presentation of a new scaling for equation (1.1) allowing to follow the
change of scales in velocity. It is an extension to the space-dependent setting of the method first introduced
in [25], using the relative kinetic energy as a scaling function. This method was reminiscent from the
work of A. Bobylev, J.A. Carrillo, and I. Gamba [7] about Enskog-like inelastic interactions models.
Indeed, in one section of this work, the authors scaled the solution of the space homogeneous collision
equation by its thermal velocity, in order to study a drift-collision equation, where no blow-up occurs. The
same technique was also used by S. Mischler and C. Mouhot in [35] to prove the existence of self-similar
solutions to the granular gases equation. This temperature-dependent scaling has also been introduced
by J.A. Carrillo and G. Toscani in [15] and J.A. Carrillo, M. Di Francesco and G. Toscani in [13] for
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nonlinear diffusion equations. It was finally extended by J.A. Carrillo and J. Vázquez in [16] to show
the apparition of chaotic behavior for a precise (constructive) nonlinearity : the self-similar profile of this
equation “oscillates” between Gaussian (heat equation) and Zel’dovich-Kompaneets-Barenblatt (porous
medium equation) profiles.

Let us drop for simplicity the ε-dependence in f . For a given positive function ω : R+ × Ω 7→ R+, we
introduce a new distribution g(t, x, ξ) by setting

(2.1) f(t, x, v) = 1
ωdv

g

(
t, x,

v

ω

)
,

where the function ω is assumed to be an accurate measure of the “support” or scale of the distribution
f in velocity variables. Then according to this scaling, the distribution g should naturally “follow” either
the concentration or the spreading in velocity of the distribution f .

Let us now derive the kinetic equation verified by the distribution g. Differentiating relation (2.1) with
respect to time yields

∂f

∂t
= 1
ωdv

[
∂g

∂t
− 1
ω

∂ω

∂t
divξ(ξ g)

]
.

Provided that v = ωξ, one also has

v · ∇xf = ξ

ωdv−1 ·
[
∇xg −

1
ω
∇xω divξ(ξ g)

]
.

Then, if f is solution to (1.1), the distribution g given by (2.1) is solution to the following equation:

∂g

∂t
+ ω ξ · ∇xg −

1
ω

[(
∂ω

∂t
+ ω ξ · ∇xω

)
divξ(ξ g)

]
= ωdv

ε
Q̃(g, g),

where Q̃ is such that Q̃(g, g) = Q(f, f). This equation can actually be written in the more convenient
conservative form:

(2.2) ∂g

∂t
+ divx (ω ξ g)− divξ

[( 1
ω

∂ω

∂t
ξ + ξ ⊗ ξ∇xω

)
g

]
= ωdv

ε
Q̃(g, g).

In order to make this rescaling efficient, the main difficulty is now to choose an appropriate scaling
function ω to define completely the distribution g.

2.1. The Generalized Filbet-Russo Scaling. The first and natural idea follows from the work [25].
It consists in computing the function ω directly from the distribution function f , by setting

(2.3) ω :=
√

2Ef
dv ρf

,

where ρf and Ef are respectively the local mass and kinetic energy of f

(2.4) ρf :=
∫
Rdv

f(v) dv, Ef :=
∫
Rdv

f(v) |v|
2

2 dv

We also define for the sequel the mean velocity field uf and temperature Tf by

(2.5) uf := 1
ρf

∫
Rdv

f(v) v dv, Tf := 1
dv ρf

(
2Ef − ρf |uf |2

)
.

Assuming that f is nonnegative, the quantity ω will then provide correct information on its support: if
f is concentrated, ω will be small, whereas it will be large for scattered distributions. This approach has
been shown to be very accurate for the space-homogeneous setting in [25], but it is difficult to extend to
our case because the definition of ω yields very restrictive constraints on the moments of g, namely∫

Rdv

g(t, x, ξ) dξ = 1
dv

∫
Rdv

g(t, x, ξ) |ξ|2 dξ, ∀(t, x) ∈ R+ × Ω.
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2.2. The Macroscopic Scaling. In order to relax this constraint on the distribution function g, we
propose a different choice of the function ω. Moreover, to avoid a strong coupling between ω and g
leading to nonlinear terms, we do not want to compute ω directly from the distribution function g itself
but only from macroscopic quantities which are assumed to be close enough to the one computed from f .
Therefore, a good candidate will be a solution to the system of macroscopic equations obtained from a
closure of the kinetic model (1.1). But, as we want to develop a rescaling velocity method, what we really
need is an accurate representation of the support of the initial condition, and not the good hydrodynamic
limit of the model.

To find this system of equation, we choose to assume that, in the asymptotic limit ε→ 0, the distribution
function f solution to (1.1) converges towards a steady stateMρ,u,T , where ρ is the mass, u the velocity
and T the temperature. Then, a first order approximation with respect to ε would be

f ε = Mρ,u,T + O(ε),
where the macroscopic quantities are solutions to [30]

(2.6)



∂tρ+ divx(ρu) = 0,

∂t(ρu) + divx (ρu⊗ u + p I) = 0,

∂tE + divx (u (E + p)) = G(ρ,u, E).
In this last system, E is the kinetic energy given by

2E = dvρ T + ρ |u|2,
p > 0 is the pressure and G ∈ R the “energy” of the collision operator. A natural choice for ω is to set

(2.7) ω :=
√

2E
dv ρ

.

The scaling function ω becomes independent of the original distribution but still follows the change of
scales in velocity, provided that the closure has been done properly. Once more, we want to insist on the
fact that this quantity does not have to be the exact “temperature” of the limit equation, but only an
information on the support of the distribution f . The conditions to apply the method are then to have
some good estimates (by above and below if possible) of the change of scales of the equation, through the
temperature of its solutions. The system (2.2)-(2.6) is now uncoupled which is better both for a numerical
and mathematical point of view. Moreover, it will be easier to solve thanks to the hyperbolic structure
of (2.6).

Remark 2.1. In the case where no precise estimates of the dissipation term G are known, one possibility
would be to close the moment equations with a Maxwellian distributionMρ,u,T , even if we can’t compute
explicitly the kinetic energy of the collision operator for the right hand side. This would yield the following
uncoupled system

∂tρ+ divx(ρu) = 0,

∂t(ρu) + divx (ρu⊗ u + ρ T I) = 0,

∂tE + divx (u (E + ρ T )) = 1
2 ε

∫
Rdv

Q (Mρ,u,T ,Mρ,u,T ) (t, x, v) |v|2 dv.

One of the advantages of this uncoupled approach is that, as we will see in the following section, it general-
izes the closure we used for both elastic and inelastic Boltzmann equation. We are currently investigating
it for the case of kinetic models of flocking, such as the one presented in [26] (where momentum is not
conserved as well).

In the following section we give several examples of application of such a method.
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3. Applications of the Rescaling Velocity Method

We start with the simple example of the classical Boltzmann equation and then present different
applications to inelastic kinetic models for granular gases.

3.1. Application to the Boltzmann Equation. The Boltzmann equation describes the behavior of
a dilute gas of particles when the only interactions taken into account are binary elastic collisions. It is
given by equation (1.1) where f ε(t, x, v) is the time-dependent particle distribution function in the phase
space and the Boltzmann collision operator QB is a quadratic operator, local in (t, x)

(3.1) QB(f, f)(v) =
∫
Rdv

∫
Sdv−1

B(|v − v∗|, cos θ)
[
f ′∗f
′ − f∗f

]
dσ dv∗,

where we used the shorthand f = f(v), f∗ = f(v∗), f
′ = f(v′), f ′∗ = f(v′∗). The velocities of the colliding

pairs (v, v∗) and (v′, v′∗) are related by

v′ = v + v∗
2 + |v − v∗|2 σ, v′∗ = v + v∗

2 − |v − v∗|2 σ.

The collision kernel B is a non-negative function which by physical arguments of invariance only depends
on |v − v∗| and cos θ = û · σ, where û = (v − v∗)/|v − v∗|.

Boltzmann’s collision operator has the fundamental properties of conserving mass, momentum and
energy ∫

Rdv

QB(f, f)ϕ(v) dv = 0, ϕ(v) = 1, v, |v|2

and satisfies the well-known Boltzmann’s H-theorem (for the space homogeneous case)

− d

dt

∫
Rdv

f log f dv = −
∫
Rdv

QB(f, f) log(f) dv ≥ 0.

The functional −
∫
f log f dv is the entropy of the solution. Boltzmann H-theorem implies that any

equilibrium distribution function, i.e. any function which is a maximum of the entropy, has the form of
a locally Maxwellian distribution [18, 30]

(3.2) Mρ,u,T (v) = ρ

(2π T )dv/2
exp

(
−|u− v|

2

2T

)
,

where the density, velocity and temperature of the gas ρ, u and T are computed from the distribution
function as in (2.4)-(2.5). For further details on the physical background and derivation of the Boltzmann
equation we refer to [18, 49].

Assuming that the collision kernel is given by the variable hard spheres model, that is,
B(|z|, cos θ) = |z|λ b(cos θ)

for λ ∈ [0, 1] and b bounded, then for a distribution g given by (2.1), we have using (3.1)

QB(f, f) = ωλ−dv QB(g, g)
and the rescaled equation (2.2) reads

(3.3) ∂g

∂t
+ divx (ω ξ g)− divξ

[( 1
ω

∂ω

∂t
ξ + ξ ⊗ ξ∇xω

)
g

]
= ωλ

ε
QB(g, g).

Moreover, applying a standard closure of the Boltzmann equation by a Maxwellian distribution (3.2), we
find that the macroscopic quantities and then ω thanks to (2.7), are given by

(3.4)


∂tρ+ divx(ρu) = 0,

∂t(ρu) + divx (ρu⊗ u + ρ T I) = 0,

∂tE + divx (u (E + ρ T )) = 0.
We shall now apply the rescaling method to the granular gases equation.
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3.2. Application to the Granular Gases Equation. A granular gas is a set of particles which interact
by energy dissipating collisions leading to inelastic collisions. This inelasticity is characterized by a collision
mechanics where mass and momentum are conserved and kinetic energy is dissipated. Thus, the collision
phenomenon is a non-microreversible process. The velocities of the colliding pairs (v, v∗) and (v′, v′∗) are
related by

v′ = v − 1 + e

2 (u · σ)σ, v′∗ = v∗ + 1 + e

2 (u · σ)σ,

where u := v − v∗ is the relative velocity, σ ∈ Sd−1 the impact direction and e ∈ [0, 1] the dissipation
parameter, known as restitution coefficient. It means that the energy is dissipated in the impact direction
only and will be chosen constant. The parametrization of post-collisional velocities can also be found
by using some properties of the model. Indeed, it is equivalent to the conservation of impulsion and
dissipation of energy:

(3.5)

 v′ + v′∗ = v + v∗,

|v′|2 + |v′∗|2 − |v|2 − |v∗|2 = −1− e2

2 |u · σ|2 ≤ 0.

This microscopic mechanism allows us to describe the granular collision operator QI . If the nonnegative
particles distribution function f depends only on v ∈ Rdv , the collision operator QI(f, g) can be expressed
in the following weak form: given a smooth test function ψ,

(3.6)
∫
Rdv

QI(f, f)ψ dv := 1
2

∫
Rdv×Rdv×Sdv−1

|v − v∗| f∗ f
(
ψ′ + ψ′∗ − ψ − ψ∗

)
b(cos θ) dσ dv dv∗,

where we have used the shorthand ψ′ := ψ(v′), ψ′∗ := ψ(v′∗), ψ := ψ(v) and ψ∗ := ψ(v∗).
Taking ψ(v) = 1, v and |v|2 in (3.6), the relations (3.5) yield conservation of mass and momentum at

the kinetic level and dissipation of kinetic energy∫
Rdv

QI(f, f) |v|2 dv = −D(f).

where D(f) is the energy dissipation functional, given by

(3.7) D(f) = C (1− e2)
∫∫

Rdv×Rdv

f f∗ |v − v∗|3dv dv∗ ≥ 0,

for C an explicit, nonnegative constant depending on the cross section b and the dimension. The decrease
of the energy, together with conservation of mass and momentum imply that the equilibria of the collision
operator are Dirac distributions ρ δu(v) where the density ρ and momentum ρu are prescribed. This is
the major problem for the numerical study of equation (1.1) with deterministic algorithms because of this
concentration in velocity variables. In that case, the rescaling method (2.1) becomes an essential tool to
follow the concentration in velocity of the distribution function.

For the hard sphere kernel (3.6) and for a rescaled distribution function g given by (2.1), we have
QI(f, f) = ω1−dv QI(g, g).

The rescaled equation (2.2) then reads

(3.8) ∂g

∂t
+ divx (ω ξ g) − divξ

[( 1
ω

∂ω

∂t
ξ + ξ ⊗ ξ∇xω

)
g

]
= ω

ε
QI(g, g).

To complete the rescaling procedure, it remains to derive a set of equations for ρ and E to define the
rescaling function ω. To this end, we will assume that the restitution coefficient e is close to 1, which
corresponds to the weak inelasticity case, in order to write the collision operator as a perturbation of
the classical Boltzmann operator and then write the system (2.6) associated to granular gases. Let us
mention that there are alternative methods for deriving hydrodynamic equations from dissipative kinetic
models, which can be found in the review paper of M. Bisi, J.A. Carrillo and G. Spiga [6]. Here, we
focus on the approach developed by G. Toscani [46, 47], which is reminiscent of a the classical works of
Brilliantov, Goldhirsch, Jenkins, Pöschel and Zanetti [11, 29, 33]: we write the granular gases operator
as a perturbation of the elastic Boltzmann operator
(3.9) QI(f, f) = QB(f, f) + ε I(f, f) + O(ε2),
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where I is a quadratic, energy dissipative nonlinear friction operator given by

I(f, f)(v) = 1
2 divv

(∫
Rdv×Sdv−1

|u · σ| (u · σ)σ f∗ f b(cos θ) dσ dv∗
)
.

Using the expansion (3.9) of the operator with respect to ε, it was shown in [46] that we can derive
the macroscopic system (2.6) associated to QI . Assuming that the inelasticity is of the same order of the
Knudsen number:
(3.10) 1− e = ε,

then, up to the second order in ε, the macroscopic quantities are solution to

(3.11)



∂tρ + divx(ρu) = 0,

∂t(ρu) + divx (ρ (u⊗ u) + ρ T I) = 0,

∂tE + divx (u (E + ρ T )) = −Kdv ρ
2 T 3/2,

for an explicit and nonnegative constant Kd [46]. The solution of this system will give the scaling function
ω in (2.7).

Remark 3.1. Let us notice that during the evolution if hydrodynamic quantities (ρ, u, T ) given by the
solution to (3.11) and the ones obtained by computing the moments of the distribution function g solution
to (3.8) are completely different, it is possible to update the scaling, that is the hydrodynamic model,
starting with new macroscopic quantities which corresponds to moments of the distribution function g. If
this happens it only means that the velocity grid in not well fitted with the scale of the distribution function
g and this process corresponds to adapt the grid in the velocity space.

3.3. Application to a Simplified Granular Gases Model. The rescaling velocity method can be also
applied to a simplified model designed to mimic the behavior of the granular gases equation with a simpler
collision operator. Indeed, A. Astillero and A. Santos derived in [2, 3] a very simple approximation of the
granular gases equation, containing its main features. It consists in replacing the bilinear collision operator
QI by a nonlinear relaxation operator, supplemented with a drag force in the velocity space, depending
on the moment of the particle distribution function itself, in order to match the correct macroscopic
dissipation of kinetic energy of the granular gases equation.

The relaxation operator we will use is the so-called Ellipsoidal Statistical BGK operator (ES-BGK) [1].
To this aim we first define some macroscopic quantities of the particle distribution function f such as the
opposite of the stress tensor

Θf (t, x) = 1
ρf

∫
Rdv

(v − uf )⊗ (v − uf ) f(t, x, v) dv.

Therefore the translational temperature is related to the stress tensor as Tf = tr(Θf )/dv. We finally
introduce the corrected tensor

Tf (t, x) = [(1− ν)Tf I + νΘf ] (t, x),
which can be viewed as a linear combination of the initial stress tensor Θf and of the isotropic stress
tensor Tf I developed by a Maxwellian distribution. The parameter −∞ < ν < 1 is used to modify the
value of the Prandtl number through the formula

0 ≤ Pr = 1
1− ν ≤ +∞ for ν ∈ (−∞ , 1).

Thus we introduce a corrected Gaussian G[f ] defined by

G[f ] = ρf√
det(2π Tf )

exp
(
−

(v − uf ) T −1
f (v − uf )
2

)

and the corresponding collision operator is now

(3.12) QS(f) = τ(Pf ) (G[f ] − f) + C ρf T
1/2
f divv ((v − uf )f) ,
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Figure 1. Schematic representation of Maxwell conditions at the boundary.

where τ is a given function depending on the kinetic pressure Pf := ρf Tf and C is given by

C = (1− e) Kdv

dv
.

The coefficient e corresponds to the restitution coefficient of the granular operator QI and will be assumed
equal to 1− ε as in (3.10). This expression yields the correct granular energy dissipation (3.7).

This new operator replaces the inelastic collision operator by an “equivalent” elastic operator and the
drift term acts like an external drag force which mimics the cooling effect of the particles. In particular,
the hydrodynamic equations associated to the rescaled equation (2.2) with operator (3.12) are exactly
given by the system (3.11). The operator Q̃S such that Q̃S(g) = QS(f) is given by

Q̃S(g) = 1
ωdv

[
τg (G[g]− g) + C ω ρg T

1/2
g divξ ((ξ − ug) g)

]
,

using the shorthand τg := τ
(
ω2 Pg

)
. Equation (2.2) then simply reads

∂g

∂t
+ divx (ω ξ g) = τg

ε
(G[g] − g) + divξ

[(
C ω ρg T

1/2
g (ξ − ug) + 1

ω

∂ω

∂t
ξ + ξ ⊗ ξ∇xω

)
g

]
,

where the function ω is given by (2.7) using the closed system (3.11).

4. Boundary Conditions

In order to define completely the mathematical problem for the kinetic equation (1.1), one has to
set boundary conditions on ∂Ω. The most simple (yet physically relevant) are the so-called Maxwell
boundary conditions [34], where a fraction 1−α ∈ [0, 1] of the particles is specularly (elastically) reflected
by a wall, whereas the remaining fraction α is thermalized, leaving the wall (moving at a velocity uw) at
a temperature Tw > 0 (see Figure 1). The parameter α is called accommodation coefficient, because it
expresses the tendency of the gas to accommodate to the state of the wall. More details on the subject can
be found in the textbook of Cercignani [17]. The main difficulty consists to apply appropriate boundary
conditions on the macroscopic model which are consistent with the kinetic boundary value problem.
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Let us consider a distribution function f(t, x, v) solution to (1.1) for (t, x, v) ∈ R+ ×Ω×Rdv with Ω a
bounded Lipschitz-continuous domain of Rdx . We assume the boundary ∂Ω to have a unit outer normal
nx for all x ∈ ∂Ω. Then, for an incoming velocity v ∈ Rdv (namely v · nx ≤ 0), we set

f(t, x, v) = αRf(t, x, v) + (1− α)Mf(t, x, v), ∀x ∈ ∂Ω, v · nx ≤ 0,

with

(4.1)


Rf(t, x, v) = f(t, x, v − 2(nx · v) nx),

Mf(t, x, v) = µ(t, x)M1,uw,Tw(v).

In this last expression,M1,uw, Tw is the wall Maxwellian

M1,uw, Tw(v) := 1
(2π Tw)dv/2

exp
(
−|v − uw|2

2Tw

)

and µ insures global mass conservation:∫
v·nx≥0

f(t, x, v) v · nx dv = −µ(t, x)
∫
v·nx<0

M1,uw, Tw(v)v · nx dv.

Thanks to these definitions, it is classical (see for example [17]) that the following theorem holds:

Theorem 4.1. Let f be a smooth solution to the kinetic equation (1.1) with Maxwell boundary conditions
(4.1). Then,

(1) the mass of f is globally conserved for any accommodation coefficient α ∈ [0, 1];
(2) if Q preserves the kinetic energy, then in the specular case α = 1 the energy of f is globally

conserved ;
(3) if Q produces entropy, namely

−
∫
Rdv

QB(f, f) log(f) dv ≥ 0

then the entropy functional
∫
f log f dv dx is dissipated for any accommodation coefficient α ∈

[0, 1].

We shall present the boundary conditions associated to the Maxwell conditions for the rescaled dis-
tribution g and the hydrodynamics quantites (ρ, ρu, E) solution to the Euler’ system. We split in two
parts, pure specular and pure diffusive boundary conditions.

4.1. Specular Boundary Conditions. The natural translation of a specular reflection of a particle of
velocity v in the physical space, at a point x of the boundary ∂Ω is a specular reflection at the point x,
but with a rescaled velocity ξ = v ω. More precisely, for an incoming velocity ξ (namely ξ · nx ≤ 0), we
set

R g(t, x, ξ) = g (t, x, [ξ − 2(nx · ξ) nx]) .

Concerning the macroscopic quantities, we need to impose at the fluid level the so-called slip boundary
condition [45]. It corresponds to a zero-flux boundary conditions for the mean velocity:

u · nx = 0.

This condition yields in particular the global conservation of mass and kinetic energy that we observed
at the kinetic level in Corollary 4.1. It then remains to fix a condition for the momentum flux. To mimic
the specular reflection, we reverse the velocity at the boundary, as presented in [4].
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4.2. Diffusive Boundary Conditions. We want to impose a velocity uw and a temperature Tw at a
point x of the boundary, using a wall maxwellianM1,uw, Tw in the physical space. Then, for an incoming
velocity ξ in the rescaled space, we set

M g(t, x, ξ) = µ(t, x)M1, ũw, T̃w
(ξ) .

In this last expression,M1, ũw, T̃w
is the “rescaled” wall Maxwellian, with ũw = ωuw, T̃w := ω2 Tw and µ

insures the global mass conservation:∫
ξ·nx>0

g(t, x, ξ) ξ · nx dξ = −µ(t, x)
∫
ξ·nx<0

M1, ũw, T̃w
(ξ) ξ · nx dξ.

At the macroscopic level, we impose a zero-flux boundary conditions for the mean velocity:
u · nx = 0.

This yields the global conservation of mass for the macroscopic model, corresponding to the result of
Corollary 4.1. We also want to fix the temperature Tw > 0 of the wall. We set

E(x) = dv
2 ρ(x)Tw.

These boundary conditions allow to solve the boundary value problems (3.4) or (3.11).

Remark 4.2. Of course, the boundary conditions we presented here for the macroscopic model are very
approximate, and do no reflect exactly what type of conditions have to be imposed for this model to be the
true hydrodynamic limit of the kinetic equation (1.1). An analysis of the boundary layer has to be carried
out properly in order to do so, as was done for example by F. Coron in [19] for the elastic Boltzmann
equation. Nevertheless, we will see in the numerical experiments that our conditions are accurate enough
for the rescaling velocity method to behave properly, because we don’t need the exact hydrodynamic limit
of our problem to compute the scaling function.

5. Numerical Algorithms

5.1. Discretization of the Problem. We will briefly present the numerical schemes we used for the
discretization of the uncoupled models (2.2) and (2.6). We need to distinguish three independent problems:
the treatment of the free transport term, the collision term and the system of conservation laws.
The finite volume method for a conservative transport equation. The first numerical problem
concerns the space discretization of the conservative transport equation

(5.1)


∂g

∂t
+ divX (a(t,X) g) = 0, ∀ (t,X) ∈ R+ ×O,

g(0, X) = g0(X),

for a smooth function a : R+×O → RdX and a Lipschitz-continuous domain O ⊂ RdX . Our treatment of
the problem is made in the framework of finite volume schemes, on Cartesian grid. This type of methods
is particularly well suited to solve conservative transport equation. We choose to use an upwind method
with the so-called Van Leer’s flux limiter, as presented in the classical paper [48].
The spectral method for the collision operator. We now focus on the numerical resolution of

(5.2) ∂g

∂t
= Q(g, g),

where Q = QB or QI .
Any deterministic numerical method for the computation of the Boltzmann operator requires to work

on a bounded velocity space. Our approach consists in adding some non physical binary collisions by
periodizing the particle distribution function and the collision operator, and then using Fourier series to
compute the truncated operator. This implies the loss of some local invariants, but a careful periodization
allows at least the preservation of mass. This periodization is the basis of spectral methods, that we will
use in our numerical simulations.
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Fourier techniques for the resolution of the Boltzmann equation have been first introduced indepen-
dently by L. Pareschi and B. Perthame in [38] and by A. Bobylev and S. Rjasanow in [8]. It has since
been investigated by a lot of authors. One can find numerous results about this method in the article [39]
of L. Pareschi and G. Russo. It has been recently shown to be convergent by F. Filbet and C. Mouhot in
[22] for the elastic case and allows spectral accuracy [12]. It has then been derived for the granular gases
operator (3.6) by F. Filbet, L. Pareschi and G. Toscani in [24].

The alternative approach of [8] has been developed in 3dv and improved in [28, 27]. The concept here
is “dual” from the previous approach, since it consists in first using Fourier transform of the collision
operator and then truncating the Fourier transformed operator. Another difference for this setting is
that conservation of momentum and kinetic energy are achieved by solving a constrained optimization
problem, which is not the case of the method we use in the following of this article.
The WENO approach for a system of conservation laws. The fluid equations (3.11) can be written
as a system of nonlinear hyperbolic conservation laws with source term

∂U

∂t
+ divx F (U) = G(U),

where U : R+ × Ω → Rn, F,G : Rn → Rn and n = dv + dx. There exists a large number of numerical
methods to solve this type of problem, and we choose to use finite differences.

The reconstruction of the fluxes will be made by a high-order Weighted Essentially Non-Oscillatory
(WENO) method with a 5 points stencil. Indeed, it is very well adapted to the treatment of shocks in
fluid systems. The reader can consult the lecture notes [44] of C.W. Shu for most of the details about
this method.

The rescaling function ω (and its time and space derivatives) given by the macroscopic scaling (2.7) is
then evolved in time thanks to the WENO fluxes Fi+ 1

2
.

We shall now present numerical simulations of the rescaling velocity method for energy dissipative
equations.

6. Numerical Simulations

6.1. Test 1: Convergence toward a Dirac mass. In this section, we will deal with a space homoge-
neous distribution f = f(t, v), solution to the granular gases equation

(6.1)


∂f

∂t
= QI(f, f),

f(t = 0) = f0,

with an initial condition chosen as the sum of two gaussian distributions of total temperature equal to 1:

f0(v) := 1
2 (2π σ2)dv/2

(
exp

(
−|v − σ e|2

2σ2

)
+ exp

(
−|v + σ e|2

2σ2

))
, ∀ v ∈ Rdv ,

where e = (1, . . . , 1)T and σ = 1/10. With this choice, we have

(6.2)
∫
Rdv

f0(v)

 1
v
|v|2

 dv =

 1
0
dv

 .
This initial datum is far from equilibrium, for all restitution coefficients e ∈ [0, 1]. The corresponding
scaled distribution g = g(t, ξ) given by (2.1) is then solution to the homogeneous granular equation with
a time-dependent drift term

(6.3)


∂g

∂t
−∇ξ ·

( 1
ω

dω

dt
ξ g

)
= ω QI(g, g),

g(t = 0) = g0.

The initial condition g0 is chosen by g0 = f0 because ω(0) = 1 according to (6.2).
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To study the evolution of ω, we propose to compare the rescaling approach proposed by F. Filbet
and G. Russo in [25] and the macroscopic one based on the closure of the kinetic model. In the space
homogeneous setting, the mass ρ = 1 is preserved. Hence, we have

ω(t) =
√

2
dv
E(t)

and it is enough to compute the time evolution of the kinetic energy E to obtain ω. Then on the one hand,
following [25], we will study the distribution g solution to (6.3) coupled with the exact kinetic energy

(6.4) dE

dt
= ω3

∫
Rdv

QI(g, g) |ξ|
2

2 dξ.

On the other hand, from the result of Subsection 3.2, we replace the ordinary differential equation (6.4)
by

(6.5) dE

dt
= −Kdv ρ

2 T 3/2,

where dv T (t) = 2E(t) because of the conservation of momentum. Let us emphasize that (6.3)-(6.5) is
an uncoupled model. We will then compare it with the solution to (6.1) in classical variables.
Description of the results. We start with a space homogeneous test problem with dv = 2, designed
to compare the results obtained with both coupled (6.3)-(6.4) and uncoupled models (6.3)-(6.5), in the
mildly inelastic regime e = 0.8. With this test, we intend to show that, even if we are not computing
exactly the kinetic energy (provided that we are not in a quasi-elastic setting e ∼ 1), the uncoupled model
will yield exactly the same results than the coupled one even for an initial datum far from equilibrium.
We choose the computational domain in velocity as the box DV = [−V, V ]dv with V = 9 to avoid some
possible loss of mass due to the drift term. We take successively Nv = 32 and Nv = 48 half Fourier modes
in each direction of the velocity space.

We present in Figure 2 the time evolution of the first marginal distribution

g(1)(t, ξ1) :=
∫
R
g(t, ξ1, ξ2) dξ2.

We can see that both models give close results for short time in the coarse and fine grids, but some
oscillations eventually appear in the coupled model, leading to the breakout of the scheme. This is due
to the wrong computation of the kinetic energy of g when we take a sparse grid in the velocity space,
because of the heavy tails of this distribution [35]. This phenomenon does not occur anymore when we
refine the grid. In this case, the results given by both models are in very good agreement, especially for
the long time behavior: the equilibrium distribution is very well captured by the new uncoupled model.

We then compare the results of this test for the uncoupled model with a solution to equation (6.1)
computed in classical variables with the spectral scheme. We take V = 8 and Nv = 32 half modes in each
directions of the classical velocity space.

We observe in Figure 3 that both models give the same result for short time. Then, on the one hand,
the solution obtained by the spectral scheme in classical variables breaks down for intermediate time
(t ∼ 1) because of the concentration which yields spurious oscillations. We can see in particular the loss
of symmetry of the solution at time t = 1. On the other hand, the rescaled variables prevent concentration
and thus allows the spectral scheme to achieve its full accuracy: the Dirac mass is very well captured
for large time. This is also due to the correct change of scales in the support of the scaled distribution,
thanks to the expression of ω.

In this numerical example, we can also notice that the solution to the space homogeneous equation
exhibits a clear self-similar behavior: it converges more quickly towards a self-similar solution made of
two “stretched” bumps than towards the equilibrium solution of the equation, which is a Dirac mass.
This observation is perfect agreement with the theoretical results of [36]. This is even true when we
choose an initial condition far from equilibrium and a mild restitution coefficients, results which are up
to our knowledge not proved yet. It is important to insist on the robustness of this rescaling technique,
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Figure 2. Test 1 – Comparison of the first marginal distribution g(1) for coupled model
(6.3)-(6.4) (points) and uncoupled model (6.3)-(6.4) (dashed line), with e = 0.8, at times
t = 0.5, 10 and 50 for Nv = 32 (left) and Nv = 48 (right).

which is simply based on the temperature dissipation estimate (6.5), since the initial datum is far from a
Maxwellian distribution and the restitution coefficient (e ' 0.8) is not close to one.

6.2. Test 2: Trend to Equilibrium in the Non Homogeneous Case. We consider now the full
inelastic Boltzmann equation in dimension dv on the torus

∂f

∂t
+ v · ∇xf = 1

ε
QI(f, f), x ∈ Tdx , v ∈ Rdv ,

in the physical case of hard spheres collision kernel with a constant cross section b, and successively
periodic and specular boundary conditions in x. We first introduce the hydrodynamical fields associated
to a kinetic distribution f(t, x, v). These are the (dv + 1) fields of density ρ (scalar) and mean velocity
u (vector valued) defined by the formulas (2.4)-(2.5). Whenever f(t, x, v) is a smooth solution to the
granular gases equation with periodic boundary conditions, one has the global conservation laws for mass
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Figure 3. Test 1 – Comparison of the first marginal f (1) of the solution to (6.1) computed
in classical (dashed line) and rescaled variables (solid line), with e = 0.8, at times t = 0.3,
1 and 20.

and momentum
d

dt

∫
Tdx×Rdv

f(t, x, v) dx dv = 0,

d

dt

∫
Tdx×Rdv

f(t, x, v) v dx dv = 0.

Therefore, without loss of generality we shall impose∫
Tdx×Rdv

f(t, x, v) dx dv = 1,
∫
Tdx×Rdv

f(t, x, v) v dx dv = 0,

where we normalized the measure on the torus: m
(
Tdx

)
= 1. These conservation laws are then enough

to uniquely determine the stationary state of the inelastic Boltzmann equation: the normalized global
Dirac distribution in velocity and constant in space

(6.6) f∞(v) = δ0 (v) .

Our goal here is to investigate numerically the long time behavior of the solution f . If f is any reasonable
solution of the inelastic Boltzmann equation, satisfying certain a priori bounds of compactness, then it is
expected that f does converge to the global distribution function f∞ as t goes to +∞. The point is that
on the opposite to the elastic Boltzmann equation, the solution does not satisfy any entropy theorem.
Therefore, to measure the convergence to equilibrium we compute first the evolution of the global kinetic
energy, then the evolution of the deviation from the global mass

L(t) = ‖ρ(t, ·)− 1‖L1 .

We present numerical results for the full granular gases equation (1.1), using the uncoupled rescaled
model (3.8)-(3.11). The initial condition g0(x, ξ) = ω(0, x)dvf0 (x, ω(0, x) ξ) is set as

(6.7)


f0(x, v) = ρ0(x)

(2π)dv/2
exp

(
−|v|

2

2

)
, ∀(x, v) ∈ Tdx × Rdv ,

ω(0, x) =
√

2
dv ρ0(x) ,

with dx = dv = 1, ρ0(x) = 1 + 0.1 cos(πx) and T = [0, L]. The fact that we used an unidimensional
velocity space is relevant, because we consider inelastic collisions. Indeed, for this type of collision, the
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Figure 4. Test 2 – Comparison of the global inhomogeneous cooling process in original
and scaled variables, with e = 0.9.

dissipation of kinetic energy is enough to insure that the microscopic dynamics is nontrivial (which is of
course not the case with elastic collisions).
Description of the results. We start with a simple one dimensional test intended to show that the
uncoupled model is a good approximation of equation (1.1) in the space inhomogeneous case.

We take L = 1 and Nx = 25 points in space variable, a rescaled velocity box DV of size V = 10 and
Nv = 32 half Fourier modes in rescaled variables. We also perform computations in classical velocity
variables, with a velocity box of size V = 8 and Nv = 128 half modes, in order to achieve a good accuracy
and avoid oscillations in short time. The initial condition is given by (6.7).

We compare the evolution of the global kinetic energy E(t) of both simulations. We also plot the
theoretical asymptotic behavior of the kinetic energy (namely, the Haff’s Law [31]), given formally by

E(t) ' E(0)
(1 +

√
2K1 t)2 .

We can see in Figure 4 that the Haff’s Law is very well captured by the rescaling method. This is also the
case for short time in the classical method, but due to the fast apparition of spurious oscillations (even
with Nv = 128 half modes), a strong divergence from the expected global behavior occurs in this case.
Once more, the efficiency of the rescaling method for the long time behavior of the solution becomes clear,
since the Haff’s Law is perfectly described.

Let us investigate more precisely the long time behavior of the numerical solution obtained from the
rescaled method. In Figures 5 and 6, we present the time evolution in log-log scale of

L(t) := ‖ρ(t, ·)− 1‖L1

for an initial condition given by (6.7). This quantity describes the relaxation towards global equilibrium
of the local mass ρ(t, x) in L1 norm.

Numerical investigations on the elastic Boltzmann equation showed some evidences of oscillations during
the relaxation process, for example in the local relative entropy [23], as it was conjectured by L. Desvillettes
and C. Villani in [20]. In the inelastic case, the situation is different. On the one hand the solution f(t)
does not converge to a smooth steady state since f∞ is the Dirac mass (6.6), but hopefully our rescaling
method allows to follow the concentration in velocity. On the other hand, on the evolution of L(t) we
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Figure 5. Test 2 – Oscillations of the quantity L(t) for periodic and specular boundary conditions.

still observe the apparition of oscillations, but now the oscillation frequency is constant with respect to
the logarithmic time scale, which is a big difference with the elastic case (see Figure 5).

We also observe in Figure 5 that the frequency of oscillation is different whether we consider specular
or periodic boundary conditions. This is due to the fact that this frequency depends on the size of the
box, and that specular conditions on a box are equivalent to periodic conditions on 2dv copies of this box,
by symmetrization.

Finally, we point out that the scheme breaks down when L(t) becomes too small (this is particularly
clear for the case ε = 0.05 in Figure 6). This can be avoided by refining the space and velocity grids.
Interpretation of the results. Here, we performed simulations on the full inelastic Boltzmann equation
in a simplified geometry (one dimension of space and velocity, periodic and specular boundary conditions,
fixed Knudsen number) with the spectral method to observe the evolution of the quantity L(t) and to
check numerically if such oscillations occur. It is in fact possible to give a simple interpretation of these
oscillations thanks to the work [21]. Since this effect is observed near the global equilibrium, which is
homogeneous in space, one can consider that the space inhomogeneous granular gases equation is a small
perturbation of the homogeneous equation, which exhibits a self-similar behavior and the Haff’s Law.
Therefore, we rescale this equation as

(6.8)



f(t, x, v) = V (t)dvh(s(t), x, V (t) v),

V (t) = 1 + (1− e) t,

s(t) = log(1 + (1− e) t)
(1− e) .

Then, one can show after straightforward computations that the distribution h is solution to the granular
Boltzmann equation with an anti-drift term in the usual set (see the paper [35] and the references therein)
of self similar variables (s, x, ν) := (s(t), x, V (t) v)

(6.9) ∂h

∂s
+ ν · ∇xh + (1− e)∇ν(νh) = QI(h, h)

ε
.

Due to the convergence toward an equilibrium distribution He, we can replace the collision operator
by its linearization Le around He in (6.9). The initial condition (6.7) actually amounts to study thanks
to L(t) the long time behavior of the first spatial Fourier mode of h. This behavior is formally given by
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Figure 6. Test 2 – Time evolution of L(t) (deviation from equilibrium of the local mass),
for different values of the restitution coefficient e.
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Restitution coefficient e Damping rate β −(1− e)β
0.8 -1.05 0.21
0.85 -1.4 0.21
0.9 -2.05 0.205
0.95 -4.1 0.205

Table 1. Test 2 – Influence of the restitution coefficient e on the damping rate in the
time evolution of the quantity L.

the one of t 7→ eλjt when t→∞ for any j ∈ {0, . . . , dv + 1}, where λj is one of the dv + 2 hydrodynamic
eigenvalues of the linearized operator Le.

At least for weak inelasticity, we have seen in Subsection 3.2 that the inelastic collision operator can
be understood as a perturbation of the elastic Boltzmann operator. In [42], we used this expansion and
results from [36] to perform a spectral analysis of Le, as it has already been done for the elastic Boltzmann
operator in [21]. This allows to compute the first terms of the Taylor expansion of the hydrodynamic
eigenvalues λj . We give this expansion with respect to η = 2π/L and 1− e:

(6.10) λj = i η λ
(1)
j + η2 λ

(2)
j − (1− e) + O(η3) + O((1− e)2),

where λ(1)
j is the first order expansion in η of the elastic hydrodynamic eigenvalues:

λ
(1)
j =

 ±
√

1 + 2
dv
, j ∈ {0, 1},

0, j ∈ {2, ..., dv + 1}.

The second order expansion in η is given by

λ
(2)
j =



− κ

dv + 2 −
µ

2 , j ∈ {0, 1},

−
(

1 + 2
dv

)
κ, j = 2,

− dv
2(dv − 1) µ, j ∈ {3, ..., dv + 1},

with µ the viscosity coefficient and κ the heat conductivity of the Navier-Stokes limit of the elastic
Boltzmann equation.

The expansion (6.10) can explain the oscillations and the damping observed in Figure 6. Indeed, the
first order term in η is imaginary and will generate oscillations during the return toward equilibrium,
of period η

√
1 + 2/dv. Then, the period of oscillation ζ will be proportional to L−1, as in [23]. In our

case, the time has not been scaled, and then according to the definition (6.8) of s(t), the oscillations will
appears in a logarithmic time. The second order term in η and the term in (1 − e) are nonpositive and
then will exhibit a damping effect of magnitude η2α+ (1− e)β for α, β positive, according to (6.10). We
can see in Table 1 that this effect can be observed numerically: when the restitution coefficient vary, the
quantity (1− e)β remains constant, when measured in the logarithmic scale.

6.3. Test 3: Inelastic Shear Flow Problem. The uniform shear flow problem is perhaps one of the
most widely studied nonequilibrum problem for granular gases, both experimentally and theoretically [3].
It can be described as follows: consider a gas enclosed between two infinite planes located at y = −1/2
and y = 1/2, in opposite relative motion with respective velocities −1/2 and 1/2 in the x-direction. The
planes are not described as realistic thermalized, reflecting walls (i.e. Maxwell boundary conditions) but
as Lee-Edwards boundaries: when a particle of velocity v hits one of the planes, it is reemitted through
the opposite one with a velocity v′ such that the relative velocity of the particle with respect to the plane
is preserved before and after this exchange. In consequence, the energy of the system increases during
this process.
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Thus, the particles gain energy at the boundary while other particles lose energy due to the inelasticity
of the collisions. This problem has been solved numerically using Direct Simulation Monte Carlo methods
in [3, 43]. We shall consider it using the full deterministic inelastic Boltzmann equation. The gas is taken
initially at thermal equilibrium in the two dimensional infinite tube

f0(x, v) = 1
2π exp

(
−|v|

2

2

)
, ∀x ∈ [−1/2, 1/2]× R, ∀ v ∈ R2.

The evolution of the system will be induced by the inelastic collisions as well as the flow created by the
energy input at the boundaries.
Description of the results. The simulations are made thanks to the rescaled model (3.8), with the
granular gases collision operator QI , on a simplified geometry: one dimension of space and velocity with
Ω = [−1/2, 1/2]. The shear flow problem is mimicked by using diffusive boundary conditions: we impose
constant temperature Tw = 1 and velocity uw = 0 on the boundary x = ± 1/2. The restitution coefficient
of the inelastic collisions is e = 0.9. We take Nx = 100 and 150 points for the space grid and Nv = 32
half Fourier modes on a rescaled velocity box DV = [−V, V ] of size V = 12. We compare these results
with computations made on the model (1.1) in classical variables. We take in this case Nx = 100 spatial
points and Nv = 32 half Fourier modes on a velocity box DV with V = 8.

We present in Figure 7 the evolution of the normalized density ρ(t, x)/ρ and temperature T (t, x)/T (t),
where ρ and T are the space averaged quantities

T (t) := 1
|Ω|

∫
Ω
T (t, x) dx, ρ := 1

|Ω|

∫
Ω
ρ(t, x) dx.

On the one hand, we observe that the computation in classical and rescaled variables agree very well for
short time. Then, the oscillations due to the concentration in velocity variable for the classical case quickly
break the result of this computation. On the other hand, the solution obtained in rescaled variables can
be computed for large time, thanks to the change of scales induced by the choice (2.7) of ω. We also
notice the stability of the scheme with respect of the space grid.

The short time behavior of this quantity is close to the one presented in [3] using DSMC simulations
on the more realistic 2dx × 2dv geometry. Indeed, we can see that the thermalized walls heat the system
at the boundary and the collisions cool it inside the domain. This induces very strong gradients near the
boundaries for the macroscopic quantities. When time evolves, the temperature will eventually become
uniform inside the domain with bigger and bigger gradients near the boundary. This large time behavior
is different of the one described in [3] where the temperature reaches a space uniform steady state. This
might be due to the use of a simplified geometry. Indeed, in their case, the heating of the boundary
induced by the Lee-Edwards conditions will stop because of the uniformization of the gas.

6.4. Test 4: Cluster Formation in Granular Gases. We consider now the kinetic equation (1.1)
with the simplified granular gases operator QS in two-dimension in space on the torus T2 = [0, 1]2, and
three-dimension in velocity

∂f

∂t
+ v · ∇xf = QS(f)

ε
, ∀ (x, v) ∈ T2 × R3

with periodic boundary conditions in x. We shall present some numerical evidences of clustering for this
simplified granular gases model.

The problem of cluster formation in a force-free granular media is a particularly difficult test case
of numerical methods for granular gases simulations. It has been shown to occur numerically in both
microscopic and macroscopic simulations. More precisely, in the classical Molecular Dynamics (MD)
simulations of [29], clusters arise from an initially homogeneous gas of particles. It was also observed
using MD simulations in [40] that clustering is a transient phenomenon: an initially homogeneous system
of particles interacting by inelastic collisions will tend to form clusters and then will eventually come
back after some time to the homogeneous cooling state. Clusters were also observed using deterministic
numerical simulations for the macroscopic quantities, thanks to the energy dissipative Navier-Stokes model
of [14].
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Figure 7. Test 3 – Normalized density ρ(t, x)/ρ and temperature T (t, x)/T (t) of the shear
flow problem computed in classical and rescaled variables, at times t = 0.25, 0.75 and 2.

We will show that this phenomenon also occurs at the mesoscopic scale, namely using a kinetic de-
scription. The initial condition for the problem is taken as a Maxwellian distribution of homogeneous,
isotropic momentum and temperature and uniform density:

f0(x, v) = U(x)
(2π)dv/2

exp
(
−|v|

2

2

)
, ∀ (x, v) ∈ T2 × R3

with U an uniformly distributed random variable over [0, 1]2.
Description of the results. The simulations are made using the simplified granular gases operator QS
presented in Subsection 6.4 in the rescaled model (2.2)-(2.6). The macroscopic scaling function ω, given
by (2.7), is computed thanks to the energy dissipative Euler system (3.11). Due to the correct energy
dissipation, this model mimics the behavior of the kinetic granular gases equation and is then consistent
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with the MD simulations of [29]. Moreover, the ES-BGK operator used in the definition of QS gives
the good Prandtl number for the Navier-Stokes limit of the model, which is also consistent with the
macroscopic model of [14].

We take Nx = 64 points in each direction of space on the torus and a velocity box of size V = 7 with
24 points in the directions vx and vy and 8 in the direction vz. The restitution coefficient is e = 0.99
(and then ε = 0.01 thanks to the weak inelasticity asumption (3.10)). We show in Figure 8 the density
contour plot given by the kinetic model and by the dissipative Euler system (3.11) used to compute the
scaling function. We see that both models give close results for short time, which is consistent with the
fact that the hydrodynamic limit of the kinetic equation (1.1) with the Fokker-Planck operator (3.12) is
given at the first order in ε by Euler system (2.6). Then, for larger time, clusters start to appears even
with a coarse grid in space. It is interesting to notice that the clusters remains bounded through time,
even without taking into account the dense gas effects through a “pair correlation function” depending of
a maximal packing fraction, as in [14].

We then present a test where the restitution coefficient is taken as e = 0.75, with the same compu-
tational grid than before. This example corresponds to a case where the hydrodynamic closure we used
does not apply to the model, because ε is “large”. Hence, we observe in Figure 9 that the hydrodynamic
density does not correspond at all with the kinetic one (even in short time). Nevertheless, our method
works well even in this case, because the temperature given by the macroscopic model is of the good order
of magnitude compared to the one we obtain with the kinetic model, as shown in Figure 10 (there is an
agreement on the temperature up to 3 digits). Hence, the scale of the distribution function in the velocity
space is well resolved by the kinetic scheme, even if the temperature is very low (the order of magnitude
at time t = 1 is about 0.2) and the velocity grid very coarse. It then confirms that more than the accurate
resolution of the hydrodynamic fields, it is the scale of their temperature which matters in our method.

6.5. Test 5: Riemann Problem for the Elastic Boltzmann Equation. To finish, we consider the
full kinetic equation (1.1) with the ES-BGK operator for elastic interactions (as presented in Section 3.3
or in [1]), in two dimensions of space and three dimensions of velocity, for an infinite domain in space:

∂f

∂t
+ v · ∇xf = τ(ρf ) (G[f ] − f)

ε
, ∀ (x, v) ∈ R2 × R3,

with τ(ρ) = 0.925 ρ π/2. Even if the ES-BGK operator (as well as the elastic Boltzmann operator) does
not exhibit concentration nor spreading in the velocity variables, our rescaling velocity method can be of
great interest if one wants to simulate some problems with a huge difference of magnitude in temperature.

Let us then consider a gas at rest in an infinite space, which is suddenly heated at one particular point.
The change in temperature will induce a shock, which will propagates in the gas. If this change is big
enough, the particle distribution function will be very concentrated in velocity where the gas is cold, and
very spread where it is hot. We will then take as an initial condition the following centered Gaussian
distribution

f0(x, v) = 1
(2π T0(x))d/2

exp
(
− |v|2

2T0(x)

)
, ∀ (x, v) ∈ R2 × R3,

where the initial temperature T0 verify

T0(x) =
{

1, if |x| ≤ 0.5,
100, if |x| > 0.5.

The rescaled initial condition is then set as g0(·, ξ) = ω(0, ·)df0 (·, ω(0, ·) ξ) for all ξ ∈ R3, with

ω(0, x) =
√
T0(x).

We presented in Figure 11 the first marginal of this initial distribution, in both scaled and classical velocity
variables. We can see that if one wants to solve the kinetic equation (1.1) in classical variables for such
a distribution, one has to take a very large velocity space to capture the hot part of the gas, but the
grid also has to be very thin in order to resolve the cold part, which is much more concentrated near the
origin. Then, the number of points in the velocity space (which is two dimensional) has to be huge.
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Figure 8. Test 4 with e = 0.99 – Contour plot of the density given by the simplified
granular gases model (top) and the dissipative Euler system (bottom), at times t = 0,
0.25, 1, 5, 10 and 30. High values are displayed in red, low in blue.
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Figure 9. Test 4 with e = 0.75 – Contour plot of the density given by the simplified
granular gases model (top) and the dissipative Euler system (bottom), at time t = 0.05,
0.5 and 1.
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Figure 11. Test 5 – First marginal in space and velocity of the initial condition for a
shock in temperature, in both classical and scaled velocity variables

With the rescaling velocity method, this is not a problem anymore, because as one can see in the right
hand side part of Figure 11, the initial condition in the rescaled space is a simple reduced Maxwellian
distribution, uniform in velocity. All the information on the initial distribution will be contained in the
scaling function ω. This function will be evolved thanks to the Euler system of perfect gases (3.4).
Description of the results. We take Nx = 64 points in each direction of space (with absorbing condi-
tions to mimic an infinite domain) and and a velocity box of size V = 7 with 24 points in the directions
vx and vy and 8 in the direction vz. We compute our numerical solution in an hydrodynamic regime, in
order to compare it with the compressible Euler system (3.4). Hence, the Knudsen number is taken as
ε = 0.05 in order to have close enough macroscopic solutions.

We present in Figures 12 and 13 the contour plot of the density, the x and y component of the velocity,
and the temperature, at time t = 0.1 (such a short time is needed because the front is evolving fast,
due to the very large shock), for respectively the rescaling velocity method and the Euler system. We
observe that our method is able to compute the evolution of this problem in a sparse velocity grid, which
is not the case of the solver in classical variables, and that our results are in good agreement with the
hydrodynamic ones. More particularly, the temperature profile are very close, which is one of the reasons
that the rescaling method is working well. We just observe some slight oscillations in the kinetic case, but
nothing really bad (and that can be overcome at a greater computational cost by using a more refined
grid).
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