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AN ERROR ESTIMATE FOR THE SIGNORINI PROBLEM WITH 
COULOMB FRICTION APPROXIMATED BY FINITE ELEMENTS

PATRICK HILD† AND YVES RENARD‡

Abstract. The present paper is concerned with the unilateral contact model and the Coulomb
friction law in linear elastostatics. We consider a mixed formulation in which the unknowns are
the displacement field and the normal and tangential constraints on the contact area. The chosen
finite element method involves continuous elements of degree one and continuous piecewise affine
multipliers on the contact zone. A convenient discrete contact and friction condition is introduced
in order to perform a convergence study. We finally obtain a first a priori error estimate under the
assumptions ensuring the uniqueness of the solution to the continuous problem.

Key words. unilateral contact, Coulomb friction, uniqueness of solution, finite elements, a
priori error estimate

Introduction. This study deals with the unilateral contact problem governed by
the Coulomb friction law in linear elasticity. We consider a simplified model, the so-
called static friction problem, which roughly corresponds to an incremental problem
in the time discretized quasi-static model and whose solutions are also some particular
equilibrium configurations of the dynamic problem.

From a mathematical point of view the early progress made on the static problem
was accomplished in [15, 17]. These studies concerned the weak formulation of the
problem. The first existence results were obtained in [39] for an infinite elastic strip.
Thereafter, many existence results followed for general domains, in particular in [18]
(see also the references quoted therein). These existence results hold for small friction
coefficients, and uniqueness is not discussed. In fact, uniqueness does not hold in
the general case, at least for large friction coefficients; see [26, 27]. More recently a
first uniqueness result has been obtained in [41] with the assumption that a “regu-
lar” solution exists and that the friction coefficient is sufficiently small. Additionally,
the so-called nonlocal Coulomb frictional models mollifying the normal stresses were
introduced in [16] and developed in [14, 11, 31]. The smoothing map used in the non-
local friction model allows one to obtain existence results for any friction coefficient.
Moreover, uniqueness of a solution can also be established if the friction coefficient is
small enough (see [16, 14, 11, 31]). The same type of result (existence for any friction
coefficient and uniqueness for small friction coefficients) was obtained in [32, 33] for
the normal compliance model, introduced in [40, 37].

From a numerical point of view, the finite element method is commonly used
when approximating such frictional contact problems (see, e.g., [31, 24, 21, 35, 43]).
It is well known that the finite element problem, associated with the continuous static
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Coulomb friction model, always admits a solution and that the solution is unique if
the friction coefficient is small enough. (Unfortunately the definition of small depends
on the discretization parameter, and the bound ensuring uniqueness vanishes as the
mesh is refined; see, e.g., [24].) The former result holds for any reasonable choice of the
approximated contact and friction conditions (see [30]). Moreover, a first convergence
study of the finite element problem towards the continuous model was accomplished
in [22], where convergence was obtained under the assumptions ensuring the existence
of a solution in [39] (i.e., small friction coefficient). This result proves the existence
of a subsequence of discrete solutions converging towards a solution to the continuous
problem. A similar result is obtained in [42] for the quasi-static model.

Our purpose is to carry out a convergence analysis and to obtain an a priori error
estimate for a finite element discretization of the frictional contact conditions under
the assumptions ensuring the uniqueness of a solution to the continuous problem
obtained in [41]. As far as we know, this work presents the first error estimate with
a convergence rate for this model.

Our paper is outlined as follows. Section 1 is concerned with the setting of
the continuous problem, several equivalent weak formulations, and a presentation of
the tools and techniques leading to the uniqueness result. In section 2 we consider
a discretization of the problem with finite elements of degree one and continuous
piecewise affine multipliers on the contact zone. We introduce a convenient discrete
contact and friction condition which allows us to perform a convergence analysis and to
obtain an a priori estimate of the discretization error with a quasi-optimal convergence
rate of order h1/2 in the energy norm under H(3/2)+ε-regularity assumptions on the
displacements.

1. The Signorini problem with Coulomb friction. Let Ω ⊂ Rd (d = 2 or
3) be a polygonal domain representing the reference configuration of a linearly elastic
body whose boundary ∂Ω consists of three nonoverlapping open parts Γ

N
, Γ

D
, and

Γ
C

with Γ
N
∪Γ

D
∪Γ

C
= ∂Ω. We assume that the measures of Γ

C
and Γ

D
are positive

and, in order to simplify that Γ
C

is a straight line segment when d = 2 or a plane
surface when d = 3. The body is submitted to a Neumann condition on Γ

N
with a

density of loads F ∈ (L2(Γ
N

))d, a Dirichlet condition on Γ
D

(the body is assumed
to be clamped on Γ

D
to simplify), and to volume loads denoted f ∈ (L2(Ω))d in Ω.

Finally, a unilateral contact condition with static Coulomb friction between the body
and a flat rigid foundation holds on Γ

C
(see Figure 1.1).
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Fig. 1.1. Elastic body Ω in frictional contact.
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The problem consists of finding the displacement field u : Ω → Rd satisfying

− div σ(u) = f in Ω,(1.1)

σ(u) = Aε(u) in Ω,(1.2)

σ(u)n = F on Γ
N
,(1.3)

u = 0 on Γ
D
,(1.4)

where σ(u) represents the stress tensor field, ε(u) = (∇u + (∇u)T )/2 denotes the
linearized strain tensor field, n stands for the outward unit normal to Ω on ∂Ω, and
A is the fourth order elastic coefficient tensor which satisfies the usual symmetry and
ellipticity conditions and whose components are in L∞(Ω).

On Γ
C
, we decompose the displacement and the stress vector fields in normal and

tangential components as follows:

u
N

= u.n, u
T

= u− u
N

n,

σ
N

(u) = (σ(u)n).n, σ
T
(u) = σ(u)n − σ

N
(u)n.

The unilateral contact condition on Γ
C

is expressed by the following complementary
condition:

(1.5) u
N
≤ 0, σ

N
(u) ≤ 0, u

N
σ

N
(u) = 0,

where a vanishing gap between the elastic solid and the rigid foundation has been
chosen in the reference configuration.

Denoting by F ≥ 0 the given friction coefficient on Γ
C

(which is supposed constant
for the sake of simplicity), the static Coulomb friction condition reads as

if u
T

= 0, then |σ
T
(u)| ≤ −Fσ

N
(u),(1.6)

if u
T
	= 0, then σ

T
(u) = Fσ

N
(u)

u
T

|u
T
| .(1.7)

When F = 0 the friction conditions (1.6)–(1.7) merely reduce to σ
T
(u) = 0 on Γ

C
.

1.1. Classical weak formulations. This section is devoted to the presentation
of different and equivalent weak formulations of the Coulomb friction problem. Let
us introduce the following Hilbert spaces:

V =
{
v ∈ (H1(Ω))d, v = 0 on Γ

D

}
,

X =
{
v|Γ

C

: v ∈ V
}
⊂ (H1/2(Γ

C
))d,

X
N

=
{
v
N |Γ

C

: v ∈ V
}
, X

T
=

{
v
T |Γ

C

: v ∈ V
}
,

and their topological dual spaces V ′, X ′, X ′
N

, and X ′
T
, endowed with their usual

norms. Since Γ
C

is a straight line segment (d = 2) or a plane surface (d = 3), we have
H1/2

00
(Γ

C
) ⊂ X

N
⊂ H1/2(Γ

C
), (H1/2

00
(Γ

C
))d−1,⊂ X

T
⊂ (H1/2(Γ

C
))d−1, which implies

X ′
N

⊂ H−1/2(Γ
C
) and X ′

T
⊂ (H−1/2(Γ

C
))d−1, where we denote by Hs the standard

Sobolev spaces (see [1]). Classically, H1/2(Γ
C
) is the space of the restrictions on Γ

C
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of traces on ∂Ω of functions in H1(Ω), and H−1/2(Γ
C
) is the dual space of H1/2

00
(Γ

C
),

which is the space of the restrictions on Γ
C

of functions in H1/2(∂Ω) vanishing outside
Γ

C
. We refer to [36, 1, 31] for a detailed presentation of trace operators and/or trace

spaces.
The set of admissible displacements satisfying the noninterpenetration conditions

on the contact zone is

K = {v ∈ V, v
N
≤ 0 a.e. on Γ

C
} .

Take as given the following forms for any u and v in V :

a(u, v) =

∫
Ω

Aε(u) : ε(v) dΩ,

l(v) =

∫
Ω

f.v dΩ +

∫
Γ
N

F.v dΓ,

which represent the virtual work of the elastic forces and of the external loads, re-
spectively. If 〈·, ·〉

X′
N

,X
N

stands for the duality pairing between X ′
N

and X
N

, then the

“virtual work” of the friction forces is given by

j(Fλ
N
, v

T
) = −〈Fλ

N
, |v

T
|〉

X′
N

,X
N

for any λ
N
∈ X ′

N
and v

T
∈ X

T
. From the previous assumptions it follows that

a(·, ·) is a bilinear symmetric V -elliptic and continuous form on V × V :

∃ α > 0,∃ M > 0, a(v, v) ≥ α‖v‖2
V
, a(u, v) ≤ M‖u‖

V
‖v‖

V
∀u, v ∈ V,

l(·) linear continuous form on V, i.e., ∃ L > 0, |l(v)| ≤ L‖v‖
V

∀v ∈ V.

Moreover, j(Fλ
N
, v

T
) is linear continuous with respect to λ

N
and convex lower semi-

continuous with regard to v
T

if λ
N

is a nonpositive element of X ′
N

(see, for instance,
[2]).

Clearly a(·, ·) is an inner product on V , and the associated norm,

‖v‖a = (a(v, v))1/2,

is equivalent to the usual norm of V :

√
α‖v‖

V
≤ ‖v‖a ≤

√
M‖v‖

V
∀v ∈ V.

The continuity constant of l(·) can also be given with respect to ‖ · ‖a:

∃ La > 0, |l(v)| ≤ La‖v‖a ∀v ∈ V.

Constants L and La can be chosen such that

√
αLa ≤ L ≤

√
MLa.

The weak formulation of problem (1.1)–(1.7) (written as an inequality), introduced
in [15] (see also [17]), is

(1.8)

{
Find u ∈ K satisfying
a(u, v − u) + j(Fσ

N
(u), v

T
) − j(Fσ

N
(u), u

T
) ≥ l(v − u) ∀ v ∈ K.
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Introducing the stresses on the contact boundary as an unknown in the previous
formulation, one obtains the following equivalent formulation (see [30]):

(1.9)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find u ∈ V, λ
N
∈ X

N
, and λ

T
∈ X

T
satisfying

a(u, v) = l(v) + 〈λ
N
, v

N
〉
X′

N
,X

N

+ 〈λ
T
, v

T
〉
X′

T
,X

T

∀v ∈ V,

u
N
≤ 0, 〈λ

N
, v

N
− u

N
〉
X′

N
,X

N

≥ 0 ∀v
N
∈ X

N
, v

N
≤ 0,

〈λ
T
, v

T
− u

T
〉
X′

T
,X

T

+ j(Fλ
N
, v

T
) − j(Fλ

N
, u

T
) ≥ 0 ∀v

T
∈ X

T
.

Inverting contact and friction relations, one also obtains the classical equivalent hybrid
formulation (see [30]):

(1.10)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find u ∈ V, λ
N
∈ X

N
, and λ

T
∈ X

T
satisfying

a(u, v) = l(v) + 〈λ
N
, v

N
〉
X′

N
,X

N

+ 〈λ
T
, v

T
〉
X′

T
,X

T

∀v ∈ V,

λ
N
∈ Λ

N
, 〈μ

N
− λ

N
, u

N
〉
X′

N
,X

N

≥ 0 ∀μ
N
∈ Λ

N
,

λ
T
∈ Λ

T
(Fλ

N
), 〈μ

T
− λ

T
, u

T
〉
X′

T
,X

T

≥ 0 ∀μ
T
∈ Λ

T
(Fλ

N
),

where Λ
N

and Λ
T
(Fλ

N
) denote the sets of admissible normal and tangential stresses:

Λ
N

=

{
λ

N
∈ X ′

N
: 〈λ

N
, v

N
〉
X′

N
,X

N

≥ 0 ∀v
N
≤ 0

}
,

Λ
T
(Fλ

N
) =

{
λ

T
∈ X ′

T
: 〈λ

T
, v

T
〉
X′

T
,X

T

+ j(Fλ
N
, v

T
) ≥ 0, ∀v

T
∈ X

T

}
.

It is easy to check that the multipliers λ
N

and λ
T

solving (1.9) and (1.10) satisfy
λ

N
= σ

N
(u) and λ

T
= σ

T
(u) at least in a weak sense. The main difficulty in the

existence and uniqueness analysis of (1.8), (1.9), or (1.10) comes from the coupling
between the friction threshold Fσ

N
(u) and the contact pressure σ

N
(u).

Remark 1. The equivalence between problems (1.8) and (1.9) is easy to obtain
here since the assumption f ∈ L2(Ω)d implies that a generalized Green formula holds
(see [31], for instance). The proof can also be made directly as follows. A solution
to problem (1.9) is obviously a solution to problem (1.8). Conversely, if u is solution
to problem (1.8), then the map X � v �−→ a(u,Π(v)) − l(Π(v)) is linear continuous
for any continuous lifting operator Π : X → V . Thus there exists λ ∈ X ′ such
that 〈λ, v〉

X′,X
= a(u,Π(v)) − l(Π(v)) for all v ∈ X. It is easy to state that in fact

〈λ, v〉
X′,X

= a(u, v)− l(v) for all v ∈ V , proving a(u,Π(v|Γ
C

)−v)− l(Π(v|Γ
C

)−v) = 0

for all v ∈ V . Indeed, Π(v|Γ
C

) − v has a vanishing trace on Γ
C
, and replacing

successively v − u by (Π(v|Γ
C

) − v + u) − u and by (v − Π(v|Γ
C

) + u) − u in the
inequality of (1.8) leads to this result. The two inequalities of (1.9) result then from
the replacement of a(u, v − u) − l(v − u) by 〈λ, v − u〉

X′,X
in the inequality of (1.8),

separating normal and tangential components (Γ
C

is straight here), and remarking
that applying a Green formula, one has σ

N
(u) = λ

N
. The equivalence between (1.9)

and (1.10) is developed in [30] by computing the Fenchel conjugate of j(Fσ
N
, ·) and

inverting the normal cone to K.
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1.2. Neumann to Dirichlet operator. We introduce the Neumann to Dirich-
let operator on Γ

C
and its basic properties. This will allow us to restrict the contact

and friction problem on Γ
C

and obtain useful estimates.
Let λ = (λ

N
, λ

T
) ∈ X ′. The solution u to

(1.11)

{
Find u ∈ V satisfying
a(u, v) = l(v) + 〈λ, v〉

X′,X
∀ v ∈ V

is unique (see [17]). So it is possible to define the operator

E : X ′ −→ X

λ �−→ u|Γ
C

.

It is easy to check that the operator E is affine and continuous. We define the following
norms on Γ

C
relative to a(·, ·):

‖v‖a,Γ
C

= inf
w∈V, w|Γ

C

=v

‖w‖a,

‖v
N
‖a,Γ

C
= inf

w∈V,
w

N
=v

N
on Γ

C

‖w‖a = inf
w∈V,

w
N

=v
N

on Γ
C

‖w‖a,Γ
C
,

‖v
T
‖a,Γ

C
= inf

w∈V,
w

T
=v

T
on Γ

C

‖w‖a = inf
w∈V,

w
T

=v
T

on Γ
C

‖w‖a,Γ
C
,

‖λ‖−a,Γ
C

= sup
v∈X
v �=0

〈λ, v〉
X′,X

‖v‖a,Γ
C

= sup
v∈V
v �=0

〈λ, v〉
X′,X

‖v‖a
,

‖λ
N
‖−a,Γ

C
= sup

v
N

∈X
N

v
N

�=0

〈λ
N
, v

N
〉
X′

N
,X

N

‖v
N
‖a,Γ

C

= ‖(λ
N
, 0)‖−a,Γ

C
,

‖λ
T
‖−a,Γ

C
= sup

v
T

∈X
T

v
T

�=0

〈λ
T
, v

T
〉
X′

T
,X

T

‖v
T
‖a,Γ

C

= ‖(0, λ
T
)‖−a,Γ

C
,

which are equivalent, respectively, to the norms in X and X ′:
√
α

C1
‖v‖

X
≤ ‖v‖a,Γ

C
≤

√
Mγ‖v‖

X
,

√
α

C1
‖v

N
‖
X

N
≤ ‖v

N
‖a,Γ

C
≤

√
Mγ‖v

N
‖

X
N
,

√
α

C1
‖v

T
‖

X
T
≤ ‖v

T
‖a,Γ

C
≤

√
Mγ‖v

T
‖

X
T
,
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1√
Mγ

‖λ‖
X′ ≤ ‖λ‖−a,Γ

C
≤ C1√

α
‖λ‖

X′ .

One also has

‖vN
‖a,Γ

C
≤ ‖v‖a,Γ

C

and

‖λ
N
‖−a,Γ

C
≤ Cα‖λ‖−a,Γ

C

with a constant Cα ≤ C1γ
√

M/α. (But a better estimate should be possible: follow-
ing [19], Cα is close to 1 when the Poisson ratio is close to 0.)

With the previous norms, it is possible to state (see [41]) the following equalities,
when u = E(λ) and u = E(λ) are the solutions to problem (1.11):

(1.12) ‖u− u‖a = ‖E(λ) − E(λ)‖a,Γ
C

= ‖λ− λ‖−a,Γ
C
.

1.3. Direct weak inclusion formulation. Let

KN
= {v

N
∈ X

N
: v

N
≤ 0 a.e. on Γ

C
}

be the set of admissible normal displacements on ΓC
. The normal cone in X ′

N
to K

N

at v
N
∈ X

N
is defined as

NK
N

(v
N

) =

{
μ

N
∈ X ′

N
: 〈μ

N
, w

N
− v

N
〉
X′

N
,X

N

≤ 0 ∀w
N
∈ K

N

}
if v

N
∈ K

N
,

and NK
N

(v
N

) = ∅ if v
N

/∈ K
N

. The subdifferential of j(Fλ
N
, .) (i.e., with respect to

the second variable) at u
T

is given by

∂2j(Fλ
N
, u

T
)

=

{
μ

T
∈ X ′

T
: j(Fλ

N
, v

T
) ≥ j(Fλ

N
, u

T
) + 〈μ

T
, v

T
− u

T
〉
X′

T
,X

T

∀v
T
∈ X

T

}
.

With this notation, problem (1.8) can be written

(1.13)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find u ∈ V, λ
N
∈ X ′

N
, and λ

T
∈ X ′

T
satisfying

(u
N
, u

T
) = E(λ

N
, λ

T
),

−λ
N
∈ NK

N
(u

N
) in X ′

N
,

−λ
T
∈ ∂2j(Fλ

N
, u

T
) in X ′

T
.

More details resulting from this equivalence can be found in [34].

1.4. A uniqueness criterion. In [26, 27] some multisolutions of the problem
(1.1)–(1.7) are exhibited for triangular or quadrangular domains. These multiple
solutions involve either an infinite set of slipping solutions or two isolated (stick and
separation) configurations. Note that these examples of nonuniqueness involve large
friction coefficients (i.e., F > 1) and tangential displacements with a constant sign
on Γ

C
. Actually, it seems that no multisolution has been detected for an arbitrary
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small friction coefficient in the continuous case, although such a result exists for finite
element approximations in [25], but for a variable geometry. The forthcoming partial
uniqueness result is obtained in [41]: it defines some cases where it is possible to affirm
that a solution to the Coulomb friction problem is in fact the unique solution. More
precisely, if a regular solution to the Coulomb friction problem exists (here the term
regular means, roughly speaking, that the transition is smooth when the slip direction
changes) and if the friction coefficient is small enough, then this solution is the only
one. We recall the main useful tools leading to that result.

Lemma 1.1. Let u and u be two solutions to problem (1.8), and let λ and λ be
the corresponding contact stresses on Γ

C
. Then the following estimate holds:

‖u− u‖2
a = ‖λ− λ‖2

−a,Γ
C
≤ 〈ζ − λ

T
, u

T
− u

T
〉
X′

T
,X

T

∀ζ ∈ −∂2j(Fλ
N
, u

T
).

Proof. From (1.12), the Green formula, and (1.5), we get

‖u− u‖2
a = ‖λ− λ‖2

−a,Γ
C

=
〈
λ

N
− λ

N
, u

N
− u

N

〉
X′

N
,X

N

+
〈
λ

T
− λ

T
, u

T
− u

T

〉
X′

T
,X

T

≤
〈
λ

T
− λ

T
, u

T
− u

T

〉
X′

T
,X

T

.

Thus

‖u− u‖2
a ≤

〈
(λ

T
− ζ) + (ζ − λ

T
), u

T
− u

T

〉
X′

T
,X

T

∀ζ ∈ −∂2j(Fλ
N
, u

T
).

The conclusion follows from (1.13) and the fact that −∂2j(Fλ
N
, .) is a monotone

set-valued mapping.
We now introduce the space of multipliers M(X

T
→ X

N
) of the functions ξ :

Γ
C
→ Rd satisfying ξ.n = 0 a.e. on Γ

C
and such that the following equivalent norms

are finite:

‖ξ‖
M(X

T
→X

N
)
= sup

v
T

∈X
T

v
T

�=0

‖ξ.v
T
‖

X
N

‖v
T
‖
X

T

, and ‖ξ‖a = sup
v
T

∈X
T

v
T

�=0

‖ξ.v
T
‖a,Γ

C

‖v
T
‖a,Γ

C

.

Since Γ
C

is assumed to be straight, M(X
T
→ X

N
) contains for any ε > 0 the space

H1/2+ε(Γ
C
) when d = 2. When d = 3, M(X

T
→ X

N
) contains H1(Γ

C
) ∩ L∞(Γ

C
).

(See [38] for a complete discussion on the theory of multipliers in a pair of Hilbert
spaces.)

The partial uniqueness result is given assuming that λ
T

= Fλ
N
ξ, with

ξ ∈ M(X
T

→ X
N

). The product λ
N
ξ has to be understood in the sense that

〈λ
N
ξ, v

T
〉
X′

T
,X

T

= 〈λ
N
, ξ.v

T
〉
X′

N
,X

N

for all v
T
∈ X

T
. It is easy to see that this implies

|ξ| ≤ 1 a.e. on the support of λ
N

. More precisely, this implies that ξ ∈ Dir
T
(u

T
)

a.e. on the support of λ
N

, where Dir
T
(.) is the subdifferential of the convex map

Rd � x �−→ |xT |. This means that it is possible to assume that ξ ∈ Dir
T
(u

T
) a.e.

on Γ
C
.

Proposition 1.2. Let u be a solution to problem (1.8) such that λ
T

= Fλ
N
ξ,

with ξ ∈ M(X
T
→ X

N
), ξ ∈ Dir

T
(u

T
) a.e. on Γ

C
, and F < (Cα‖ξ‖a)−1. Then u is

the unique solution to problem (1.8).
Proof. Let u be another solution to problem (1.8), where λ

N
and λ

T
denote the

corresponding contact stresses on Γ
C
. According to Lemma 1.1, we write

‖u− u‖2
a ≤ 〈ζ − λ

T
, u

T
− u

T
〉
X′

T
,X

T

∀ζ ∈ −∂2j(Fλ
N
, u

T
).
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0

+1
ξ

Γ
C

0

u
T

Γ
C

.

Fig. 1.2. Example of a tangential displacement uT and a possible corresponding multiplier ξ
when d = 2.

It is easy to see that a possible choice is ζ = Fλ
N
ξ. Therefore

‖u− u‖2
a ≤ 〈Fξ(λ

N
− λ

N
), u

T
− u

T
〉
X′

T
,X

T

≤ F‖λ
N
− λ

N
‖−a,Γ

C
‖ξ.(u

T
− u

T
)‖a,Γ

C

≤ CαF‖ξ‖a‖λ− λ‖−a,Γ
C
‖u− u‖a

= CαF‖ξ‖a‖u− u‖2
a,

which implies that u = u when F < (Cα‖ξ‖a)−1.
In two space dimensions (d = 2), the case ξ ≡ 1 corresponds to a homogeneous

sliding direction, and the previous result is complementary to the nonuniqueness re-
sults obtained in [26, 27].

As illustrated in Figure 1.2, when d = 2 the multiplier ξ has to vary from −1
to +1 each time the sign of the tangential displacement changes from negative to
positive. The set M(X

T
→ X

N
) does not contain any multiplier having a singularity

of the first kind. Consequently, in order to satisfy the assumptions of Proposition 1.2,
the tangential displacement of the solution u cannot pass from a negative value to a
positive value and be zero at only a single point of Γ

C
.

Remark 2. This remark deals with a more precise discussion concerning the
assumption λ

T
= Fλ

N
ξ, ξ ∈ M(X

T
→ X

N
), ξ ∈ Dir

T
(u

T
) and the cases where the

assumption cannot be fulfilled independently of the regularity of the solution when
d = 2. On the one hand, it is easy to show that the choice of ξ is unique at any
point where λ

N
	= 0 or u

T
	= 0. In the first case ξ = λ

T
/(Fλ

N
), in the second case

ξ = u
T
/|u

T
|, and both expressions coincide when λ

N
	= 0 and u

T
	= 0. On the other

hand, any ξ ∈ [−1, 1] can be chosen at the points where λ
N

= u
T

= 0. So it remains to
determine when ξ lies in M(X

T
→ X

N
). If there are no points such that λ

N
= u

T
= 0

on Γ
C
, then the condition ξ ∈ M(X

T
→ X

N
) is linked to the regularity of u (in other

words, if u is regular enough, then ξ ∈ M(X
T

→ X
N

)). If there are some points
such that λ

N
= u

T
= 0, then it is easy to show that the continuity of ξ can be lost

(whatever the regularity of u is) only if some of these points are isolated. A discussion
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shows then that ξ 	∈ M(X
T
→ X

N
) in three cases. The first one is when u

T
passes

from a negative to a positive value at such a point (note that this could also occur
at a point which is separated from the foundation). The second case corresponds to
a stick area surrounding such an isolated point and where the right and left limits of
λ

T
/(Fλ

N
) differ at this point (where λ

T
= λ

N
= u

T
= u

N
= 0). The third case is a

combination of both previous cases: a side where u
T
	= 0, the other one with u

T
= 0

and λ
N

	= 0, and a limit of λ
T
/(Fλ

N
) which differs from u

T
/|u

T
|. If the solution is

less regular, then other cases of nonfulfillment could appear, but we think that this
assumption (which is needed to obtain the uniqueness of a solution to the continuous
problem) takes into account many frictional contact configurations.

2. Finite element approximation. Let V h ⊂ V be a family of finite dimen-
sional vector spaces indexed by h coming from a regular family T h (see [9]) of tri-
angulations of the domain Ω (h represents the largest diameter among all elements).
We choose standard continuous and piecewise affine functions, i.e.,

(2.1) V h =
{
vh ∈ (C(Ω))d, vh|

T

∈ P1(T ) ∀T ∈ T h, vh = 0 on Γ
D

}
.

Define

Xh
N

=
{
vh
N |

Γ
C

: vh ∈ V h
}
,

Xh
T

=
{
vh
T |

Γ
C

: vh ∈ V h
}
,

(2.2) Xh =
{
vh|

Γ
C

: vh ∈ V h
}

= Xh
N
×Xh

T
.

Identifying Xh
N

and Xh
T

with their dual spaces using the L2 scalar product, we con-
sider that Xh

N
and Xh

T
are also the finite-dimensional approximations of X ′

N
and X ′

T
,

respectively.
The finite element discretization of problem (1.10) becomes

(2.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find uh ∈ V h, λh
N
∈ Xh

N
, and λh

T
∈ Xh

T
satisfying

a(uh, vh) = l(vh) +

∫
Γ
C

λh
N
vh
N
dΓ +

∫
Γ
C

λh
T
.vh

T
dΓ ∀vh ∈ V h,

λh
N
∈ Λh

N
,

∫
Γ
C

(μh
N
− λh

N
)uh

N
dΓ ≥ 0 ∀μh

N
∈ Λh

N
,

λh
T
∈ Λh

T
(Fλh

N
),

∫
Γ
C

(μh
T
− λh

T
).uh

T
dΓ ≥ 0 ∀μh

T
∈ Λh

T
(Fλh

N
),

where the approximations of Λ
N

and Λ
T
(Fλ

N
) have been chosen in the following way:

(2.4) Λh
N

= Λ
N
∩Xh

N
,

(2.5) Λh
T
(Fλh

N
) =

{
λh

T
∈ Xh

T
:

∫
Γ
C

λh
T
.vh

T
dΓ + j(Fλh

N
, vh

T
) ≥ 0 ∀vh

T
∈ Xh

T

}
.
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To simplify our discussion, we assume afterwards that the mesh inherited on the con-
tact zone is quasi-uniform (although there exist some less restrictive assumptions; see,
e.g., [13]) of size h (to simplify). Another simplification is that we restrict ourselves
to the two-dimensional case (d = 2), and we assume that the end points of Γ

C
do not

belong to Γ
D

(in other words, Γ
C
∩ Γ

D
= ∅). More general cases will be discussed in

some remarks at the end of the paper.
With this choice of discretization, the following discrete Babuška–Brezzi inf-sup

condition holds (see, e.g., [12, 6]):

(2.6) inf
λh∈Xh

sup
vh∈V h

∫
Γ
C

λh.vhdΓ

‖vh‖a‖λh‖−a,Γ
C

≥ cis > 0,

where cis ≤ 1 is independent of h. As a consequence, problem (2.3) admits a solution
for any friction coefficient, and the solution is unique for a sufficiently small friction
coefficient (where the label “small” may depend on h) (see [30]).

The following lemma shows the relation between the hybrid formulation and the
direct formulation of the friction condition in the discrete framework.

Lemma 2.1. For λh
N
∈ Λh

N
, a pair (λh

T
, uh

T
) ∈ Xh

T
×Xh

T
satisfies

(2.7) λh
T
∈ Λh

T
(Fλh

N
),

∫
Γ
C

(μh
T
− λh

T
).uh

T
dΓ ≥ 0 ∀μh

T
∈ Λh

T
(Fλh

N
)

if and only if the pair satisfies

(2.8)

∫
Γ
C

λh
T
.(vh

T
− uh

T
)dΓ + j(Fλh

N
, vh

T
) − j(Fλh

N
, uh

T
) ≥ 0 ∀vh

T
∈ Xh

T
.

Proof. Let us first assume that (λh
T
, uh

T
) satisfies (2.7). For an arbitrary choice

ξ ∈ Fλh
N

Dir
T
(uh

T
) the map vh

T
�−→

∫
Γ
C

ξ.vh
T
dΓ is a linear form on Xh

T
, and thus by

the Riesz representation theorem there exists μh
T

∈ Xh
T

such that
∫
Γ
C

μh
T
.vh

T
dΓ =∫

Γ
C
ξ.vh

T
dΓ for all vh

T
∈ Xh

T
. This μh

T
satisfies

∫
Γ
C
μh

T
.uh

T
dΓ =

∫
Γ
C
Fλh

N
|uh

T
|dΓ =

−j(Fλh
N
, uh

T
), and μh

T
is an element of Λh

T
(Fλh

N
). Now considering this particular μh

T

in (2.7) leads to ∫
Γ
C

λh
T
.uh

T
dΓ + j(Fλh

N
, uh

T
) ≤ 0.

Together with the fact that λh
T

is in Λh
T
(Fλh

N
) this leads to the complementarity

relation ∫
Γ
C

λh
T
.uh

T
dΓ + j(Fλh

N
, uh

T
) = 0,

which straightforwardly implies (2.8).
Conversely, let us assume that (λh

T
, uh

T
) satisfies (2.8). Then choosing vh

T
=

0 in (2.8) gives −
∫
Γ
C

λh
T
.uh

T
dΓ − j(Fλh

N
, uh

T
) ≥ 0, and choosing vh

T
= 2uh

T
gives∫

Γ
C

λh
T
.uh

T
dΓ + j(Fλh

N
, uh

T
) ≥ 0, which implies the complementarity relation

∫
Γ
C

λh
T
.uh

T
dΓ + j(Fλh

N
, uh

T
) = 0.
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Taking this into account in (2.8) leads to

∫
Γ
C

λh
T
.vh

T
dΓ + j(Fλh

N
, vh

T
) ≥ 0 ∀vh

T
∈ Xh

T
,

which implies λh
T
∈ Λh

T
(Fλh

N
). Now, from the complementarity relation and for all

μh
T
∈ Λh

T
(Fλh

N
) one has

∫
Γ
C

(μh
T
− λh

T
).uh

T
dΓ =

∫
Γ
C

μh
T
.uh

T
dΓ + j(Fλh

N
, uh

T
) ≥ 0,

which implies (2.7).
Remark 3. The equivalence given by this lemma is a classical result when it

deals with the continuous problem. With the particular finite element discretization
considered in this section, the result is still valid in the finite-dimensional case. One
of the reasons is that the space of the multipliers has been chosen in such a way that
it can represent the dual space of the discrete trace space Xh

T
. But this result does

not remain valid when a smaller space for the multipliers is chosen.

3. The error estimate.
Theorem 3.1. Let (u, λ) be the solution to problem (1.8) (for d = 2) such

that λ
T

= Fλ
N
ξ, with ξ ∈ M(X

T
→ X

N
), ξ ∈ Dir

T
(u

T
) a.e. on Γ

C
, and F <

cis(Cα‖ξ‖a)−1. Assume that u ∈ (H(3/2)+ε(Ω))2 with ε > 0, and let (uh, λh) be a
solution to the discrete problem (2.3). Then there exists a constant C > 0 independent
of h and u such that

(3.1) ‖u− uh‖a + ‖λ− λh‖−a,Γ
C
≤ Ch1/2‖u‖(H(3/2)+ε(Ω))2 .

Proof. Let vh ∈ V h. Then

‖u− uh‖2
a = a(u− uh, u− uh)

= a(u− uh, u− vh) + a(u, vh − uh) − a(uh, vh − uh)

= a(u− uh, u− vh) +

∫
Γ
C

λ
N

(vh
N
− uh

N
) dΓ +

∫
Γ
C

λ
T
.(vh

T
− uh

T
) dΓ

−
∫

Γ
C

λh
N

(vh
N
− uh

N
) dΓ −

∫
Γ
C

λh
T
.(vh

T
− uh

T
) dΓ

= a(u− uh, u− vh)

+

∫
Γ
C

(λ
N
− λh

N
)(vh

N
− u

N
) dΓ +

∫
Γ
C

(λ
T
− λh

T
).(vh

T
− u

T
) dΓ

+

∫
Γ
C

(λ
N
− λh

N
)(u

N
− uh

N
) dΓ +

∫
Γ
C

(λ
T
− λh

T
).(u

T
− uh

T
) dΓ.

The continuous and discrete complementary conditions imply

∫
Γ
C

λ
N
u

N
dΓ =

∫
Γ
C

λh
N
uh

N
dΓ = 0.
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Hence

‖u− uh‖2
a = a(u− uh, u− vh)

+

∫
Γ
C

(λ
N
− λh

N
)(vh

N
− u

N
) dΓ +

∫
Γ
C

(λ
T
− λh

T
).(vh

T
− u

T
) dΓ

−
∫

Γ
C

λ
N
uh

N
+ λh

N
u

N
dΓ +

∫
Γ
C

(λ
T
− λh

T
).(u

T
− uh

T
) dΓ.

Using the continuity of the bilinear form, we obtain

‖u− uh‖2
a ≤ ‖u− uh‖a‖u− vh‖a + ‖λ− λh‖−a,Γ

C
‖u− vh‖a,Γ

C

−
∫

Γ
C

λ
N
uh

N
+ λh

N
u

N
dΓ +

∫
Γ
C

(λ
T
− λh

T
).(u

T
− uh

T
) dΓ.(3.2)

Additionally, we consider the equilibrium equation. From V h ⊂ V , we get

a(u, vh) = l(vh) +

∫
Γ
C

λ.vh dΓ ∀ vh ∈ V h.

Since

a(uh, vh) = l(vh) +

∫
Γ
C

λh.vh dΓ ∀ vh ∈ V h,

we deduce by subtraction that

a(u− uh, vh) =

∫
Γ
C

(λ− λh).vh dΓ ∀ vh ∈ V h.

Consequently, for any vh ∈ V h and any μh ∈ Xh

∫
Γ
C

(λh − μh).vh dΓ = a(uh − u, vh) +

∫
Γ
C

(λ− μh).vh dΓ

≤ (‖u− uh‖a + ‖λ− μh‖−a,Γ
C

)‖vh‖a.

The mesh independent inf-sup condition (2.6) implies, for any μh ∈ Xh,

cis‖λh − μh‖−a,Γ
C
≤ sup

vh∈V h

∫
Γ
C

(λh − μh).vh dΓ

‖vh‖a
≤ ‖u− uh‖a + ‖λ− μh‖−a,Γ

C
.

By the triangular inequality we come to the conclusion that

‖λ− λh‖−a,Γ
C
≤ 1

cis
‖u− uh‖a +

(
1 +

1

cis

)
inf

μh∈Xh
‖λ− μh‖−a,Γ

C
.(3.3)

Keeping in mind that u ∈ (H(3/2)+ε(Ω))2 with ε > 0, so that λ ∈ (L2(Γ
C
))2 ac-

cording to the trace theorem, we choose vh = Ihu, where Ih denotes the Lagrange
interpolation operator mapping onto V h, and μh = πhλ, where πh represents the
(L2(Γ

C
))2-projection operator mapping onto Xh. As a consequence (see [7, 9, 13]) if

ε > 0 is small enough, we have

inf
vh∈V h

‖u− vh‖a ≤ Ch(1/2)+ε‖u‖(H(3/2)+ε(Ω))2(3.4)
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and

inf
μh∈Xh

‖λ− μh‖−a,Γ
C
≤ Ch(1/2)+ε‖u‖(H(3/2)+ε(Ω))2 ,(3.5)

where C denotes here and afterwards a positive constant independent of h. We now
estimate the terms in (3.2) coming from the contact approximation. Since u

N
≤ 0

and λh
N
≤ 0 on Γ

C
, we deduce that the first term is nonpositive:

−
∫

Γ
C

λh
N
u

N
dΓ ≤ 0.(3.6)

In order to estimate the second term in (3.2) coming from the contact approximation
we introduce a specific operator. Namely, rh : L1(Γ

C
) �→ Xh

N
is the quasi-interpolation

operator defined for any function v in L1(Γ
C
) by

rhv =
∑

x∈Nh

αx(v)ψx,

where Nh represents the set of nodes of Γ
C
, ψx is the scalar basis function of Xh

N

(defined on Γ
C
) at node x verifying ψx(x′) = δx,x′ for all x′ ∈ Nh, and

αx(v) =

( ∫
Γ
C

vψx dΓ

)( ∫
Γ
C

ψx dΓ

)−1

.

Remark 4. It is straightforward to check that rh is linear and that it preserves
nonpositivity. It is also obvious that rhvh 	= vh when vh ∈ Xh

N
. This operator is

different from Clément’s (which consists of making local projections onto P1 functions;
see [10]), from Chen–Nochetto’s (which uses local projections onto P0 functions; see
[8]), and from Ben Belgacem–Renard’s (which consists of making local projections
onto the convex cone of nonpositive P1 functions; see [6]). The main particularity
of the operator rh, which directly follows from its definition, is that rhvh ≤ 0 when
vh ∈ Xh

N
satisfies only “weak nonpositivity conditions”; i.e.,

(3.7)

∫
Γ
C

μh
N
vhdΓ ≥ 0 ∀μh

N
∈ Λh

N
.

This property is not satisfied by the operators in [8] and [10]. Moreover, as we
see hereafter, the approximation properties of rh hold for any function without sign
condition, contrary to the operator in [6].

The approximation properties of rh are established in [28]. We recall them to
render the proof of Theorem 3.1 self-contained. We first show the L2-stability property
of rh.

Lemma 3.2. There is a positive constant C independent of h such that for any
v ∈ L2(Γ

C
) and any E ∈ Eh

C
(Eh

C
denotes the set of closed edges lying in Γ

C
)

‖rhv‖L2(E) ≤ C‖v‖L2(γE),

where γE = ∪{F∈Eh
C

: F∩E �=∅}F .

Proof. Let γx be the support of the basis function ψx in Γ
C
. Using the definition

of αx(v), the Cauchy–Schwarz inequality, and the uniform regularity of the mesh, we
get

|αx(v)| ≤ ‖v‖L2(γx)‖ψx‖L2(γx)‖ψx‖−1
L1(γx) ≤ Ch− 1

2 ‖v‖L2(γx).
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We obtain by a triangular inequality

‖rhv‖L2(E) =

∥∥∥∥∥∥
∑

x∈Nh∩E

αx(v)ψx

∥∥∥∥∥∥
L2(E)

≤ C‖v‖L2(γE).

The next lemma is concerned with the L2-approximation properties of rh.
Lemma 3.3. There is a positive constant C independent of h such that for any

v ∈ Hη(Γ
C
), 0 ≤ η ≤ 1, and any E ∈ Eh

C
(Eh

C
denotes the set of closed edges lying in

Γ
C
)

‖v − rhv‖L2(E) ≤ Chη‖v‖Hη(γE),(3.8)

where γE = ∪{F∈Eh
C

: F∩E �=∅}F .

Proof. When η = 0 the bound results from the previous lemma. Note that rh

preserves the constant functions on Γ
C
. Let be given an arbitrary constant function

c(x) = c, for all x ∈ Γ
C
. From the definition of rh, we may write, for any v ∈ Hη(Γ

C
),

v − rhv = v − c− rh(v − c).

Therefore by Lemma 3.2 we get

‖v − rhv‖L2(E) ≤ C
(
‖v − c‖L2(E) + ‖v − c‖L2(γE)

)
≤ C‖v − c‖L2(γE) ∀c ∈ R.

(3.9)

We then choose c =
∫
γE

v(x) dx/|γE | in (3.9), where |γE | denotes the length of
γE . Then if x ∈ γE and 0 < η < 1, we have

v(x) − c = |γE |−1

∫
γE

v(x) − v(y) dy

= |γE |−1

∫
γE

v(x) − v(y)

|x− y| 1+2η
2

|x− y| 1+2η
2 dy.

Using the Cauchy–Schwarz inequality, we deduce

∫
γE

(v(x) − c)2dx = |γE |−2

∫
γE

(∫
γE

v(x) − v(y)

|x− y| 1+2η
2

|x− y| 1+2η
2 dy

)2

dx

≤ |γE |−2

∫
γE

(∫
γE

(v(x) − v(y))2

|x− y|1+2η
dy

∫
γE

|x− y|1+2ηdy

)
dx

≤ |γE |2η
∫
γE

∫
γE

(v(x) − v(y))2

|x− y|1+2η
dydx

≤ Ch2η‖v‖2
Hη(γE).

Hence the result.
If x ∈ γE and η = 1, we have

v(x) − c = |γE |−1

∫
γE

v(x) − v(y) dy = |γE |−1

∫
γE

∫ x

y

v′(t) dtdy.

Hence

|v(x) − c| ≤ |γE |
1
2 ‖v′‖L2(γE).
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The result is then straightforward.
End of the proof of Theorem 3.1. The second term coming from the contact

approximation in (3.2) is handled as follows:

−
∫

Γ
C

λ
N
uh

N
dΓ = −

∫
Γ
C

λ
N

(uh
N
− rhuh

N
) dΓ −

∫
Γ
C

λ
N
rhuh

N
dΓ.

According to (2.3), uh
N

satisfies a weak nonnegativity condition as in (3.7). From
Remark 4 we deduce that rhuh

N
≤ 0. Hence we have, for any small ε > 0,

−
∫

Γ
C

λ
N
uh

N
dΓ ≤ −

∫
Γ
C

λ
N

(uh
N
− rhuh

N
) dΓ

≤ ‖λ
N
‖L2(Γ

C
)‖uh

N
− rhuh

N
‖L2(Γ

C
)

≤ ‖λ
N
‖L2(Γ

C
)‖(uh

N
− u

N
) − rh(uh

N
− u

N
)‖L2(Γ

C
)

+ ‖λ
N
‖L2(Γ

C
)‖uN

− rhu
N
‖L2(Γ

C
)

≤ Ch1/2‖u‖(H(3/2)+ε(Ω))2‖uh
N
− u

N
‖H1/2(Γ

C
)

+Ch‖u‖(H(3/2)+ε(Ω))2‖uN
‖H1(Γ

C
),(3.10)

where the trace theorem ‖λ
N
‖L2(Γ

C
) ≤ C‖u‖(H(3/2)+ε(Ω))2 (see [20]) and the estimates

in Lemma 3.3 have been used. Putting together estimates (3.6) and (3.10) yields for
any small ε > 0

−
∫

Γ
C

λh
N
u

N
+ λ

N
uh

N
dΓ ≤ Ch1/2‖u‖(H(3/2)+ε(Ω))2(

‖u− uh‖a + h1/2‖u‖(H(3/2)+ε(Ω))2

)
.(3.11)

We now estimate the terms corresponding to the friction approximation in (3.2).
From the assumptions in the theorem we write∫

Γ
C

(λ
T
− λh

T
).(u

T
− uh

T
) dΓ =

∫
Γ
C

(λ
T
−Fλh

N
ξ).(u

T
− uh

T
) dΓ

+

∫
Γ
C

(Fλh
N
ξ − λh

T
).(u

T
− uh

T
) dΓ

=

∫
Γ
C

F(λ
N
− λh

N
)ξ.(u

T
− uh

T
) dΓ

+

∫
Γ
C

(Fλh
N
ξ − λh

T
).(u

T
− uh

T
) dΓ.(3.12)

The estimate of the first integral term in (3.12) gives∫
Γ
C

F(λ
N
− λh

N
)ξ.(u

T
− uh

T
) dΓ ≤ CαF‖ξ‖a‖λ− λh‖−a,Γ

C
‖u− uh‖a.

The second integral term in (3.12) is written as follows:∫
Γ
C

(Fλh
N
ξ − λh

T
).(u

T
− uh

T
) dΓ =

∫
Γ
C

Fλh
N
ξ.(u

T
− uh

T
) dΓ −

∫
Γ
C

λh
T
.u

T
dΓ

+

∫
Γ
C

λh
T
.uh

T
dΓ.
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Using the equivalent discrete friction conditions in (2.8), we obtain for any vh ∈ V h

∫
Γ
C

(Fλh
N
ξ − λh

T
).(u

T
− uh

T
) dΓ ≤

∫
Γ
C

Fλh
N
ξ.(u

T
− uh

T
) dΓ −

∫
Γ
C

λh
T
.u

T
dΓ

+

∫
Γ
C

λh
T
.vh

T
dΓ −

∫
Γ
C

Fλh
N
|vh

T
| dΓ +

∫
Γ
C

Fλh
N
|uh

T
| dΓ.

Choosing vh
T

= Ihu
T

and since ξ.u
T

= |u
T
|, we obtain∫

Γ
C

(Fλh
N
ξ − λh

T
).(u

T
− uh

T
) dΓ ≤

∫
Γ
C

λh
T
.(Ihu

T
− u

T
) dΓ +

∫
Γ
C

Fλh
N

(|uh
T
| − ξ.uh

T
) dΓ

+

∫
Γ
C

Fλh
N

(|u
T
| − |Ihu

T
|) dΓ.(3.13)

The estimate of the first term in (3.13) is achieved as follows by using the error
estimates in [9]:∫

Γ
C

λh
T
.(Ihu

T
− u

T
) dΓ =

∫
Γ
C

(λh
T
− λ

T
).(Ihu

T
− u

T
) dΓ +

∫
Γ
C

λ
T
.(Ihu

T
− u

T
) dΓ

≤ Ch1/2‖u‖(H3/2(Ω))2

(
‖λ− λh‖−a,Γ

C
+ h1/2‖u‖(H(3/2)+ε(Ω))2

)
.

The estimate of the second term in (3.13) uses the fact that λh
N

≤ 0 and |uh
T
| −

ξ.uh
T
≥ 0 so that ∫

Γ
C

Fλh
N

(|uh
T
| − ξ.uh

T
) dΓ ≤ 0.

Finally, the third term in (3.13) yields∫
Γ
C

Fλh
N

(|u
T
| − |Ihu

T
|) dΓ ≤ F‖λh

N
‖L2(Γ

C
)‖|uT

| − |Ihu
T
|‖L2(Γ

C
)

≤ F‖λh
N
‖L2(Γ

C
)‖uT

− Ihu
T
‖L2(Γ

C
)

≤ CF‖λh
N
‖L2(Γ

C
)h‖u‖(H3/2(Ω))2 .

Further, using the (global) L2(Γ
C
)-projection operator πh

N
onto Xh

N
(the notation πh

stands for the (L2(Γ
C
))2-projection operator onto Xh) and an inverse inequality (see,

e.g., [7, 9, 13]), we write

‖λh
N
‖L2(Γ

C
) ≤ ‖λh

N
− πh

N
λ

N
‖L2(Γ

C
) + ‖πh

N
λ

N
− λ

N
‖L2(Γ

C
) + ‖λ

N
‖L2(Γ

C
)

≤ C
(
h−1/2‖λh − πhλ‖−a,Γ

C
+ ‖λ

N
‖L2(Γ

C
)

)
≤ C

(
h−1/2‖λ− λh‖−a,Γ

C
+ ‖u‖(H(3/2)+ε(Ω))2

)
.

Therefore, ∫
Γ
C

Fλh
N

(|u
T
| − |Ihu

T
|) dΓ ≤ CFh1/2‖u‖(H3/2(Ω))2(

‖λ− λh‖−a,Γ
C

+ h1/2‖u‖(H(3/2)+ε(Ω))2

)
.
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We come to the conclusion that the term dealing with the friction approximation in
(3.2) is bounded as follows:∫

Γ
C

(λ
T
− λh

T
).(u

T
− uh

T
) dΓ ≤ CαF‖ξ‖a‖λ− λh‖−a,Γ

C
‖u− uh‖a

+C(1 + F)h‖u‖2
(H(3/2)+ε(Ω))2

+C(1 + F)h1/2‖u‖(H3/2(Ω))2‖λ− λh‖−a,Γ
C
.(3.14)

Finally, the result is obtained by using (3.4)–(3.5) and putting together (3.2), (3.3),
(3.11), and (3.14).

Remark 5. The quasi-optimal rate of convergence of order 1/2 in the theorem
does not depend on ε > 0. Actually we are not able to obtain a better convergence
rate even if ε increases. A bit more regularity than H3/2 is needed to apply the
trace theorem, when writing ‖λ

N
‖L2(Γ

C
) ≤ C‖u‖(H(3/2)+ε(Ω))2 (see [20]). The choice

of the regularity assumptions u ∈ (H(3/2)+ε(Ω))2 in the numerical analysis of contact
problems is discussed in [4, Remark 2.4(i)] and [5, Remark 4.4]. If u is less regular
than H3/2, then the normal and tangential constraints cannot be expressed pointwise,
and the frictional contact conditions cannot be simply written as in (1.5)–(1.7). In
the frictionless case, when u ∈ (Hν(Ω))2 with 1 < ν < 3/2, the error analysis of a
finite element approximation is achieved in [4]. Actually we are not able to extend
these results to the frictional case.

Remark 6. If one (or both) end points of Γ
C

= [x0, xn] is subjected to Dirichlet
conditions, then the previous study can be extended with some modifications. Sup-
pose, for instance, that Γ

C
∩Γ

D
= {x0} and that the definition of V h in (2.1) remains

unchanged. If we still keep the same definition of Xh as in (2.2), then the estimate
(3.5), does not hold in the general case. Thus we use a mortar approach introduced
in [7]: denoting by xi, 0 ≤ i ≤ n, the nodes on Γ

C
, we set

Xh
N

=
{
μh

N
∈ C(Γ

C
), μh

N |
[xi,xi+1]

∈ P1([xi, xi+1]) ∀1 ≤ i ≤ n− 1, μh
N |

[x0,x1]

∈ P0([x0, x1])
}
.

The particularity of this space is that the functions are constant on the extreme
segment [x0, x1]. We choose the same kind of approximation for Xh

T
, and we set

Xh = Xh
N

× Xh
T
. In this case the discrete Babuška–Brezzi inf-sup condition (2.6)

still holds (see [3]). Moreover, estimate (3.5) remains valid (see [7, Lemma 4.1]).
Keeping the same definitions of Λh

N
and Λh

T
(Fλh

N
) as in (2.4) and (2.5), we note

that the equivalence in Lemma 2.1 still holds in this case since the dimensions of the
multiplier and tangential displacement spaces are the same (see also Remark 1) and
the inf-sup condition is satisfied. According to [30], problem (2.3) admits a solution
for any friction coefficient, and the solution is unique for a sufficiently small friction
coefficient. The following result is then obtained: if (uh, λh) is a solution to (2.3),
then estimate (3.1) is recovered.

Remark 7. In the three-dimensional case, the convergence result should hold (at
least when Γ

C
∩ Γ

D
= ∅), and the main task would be to generalize the estimate

(3.8).
Remark 8. If F = 0, then the continuous problem admits a unique solution.

Choosing then the same approximation method as in (2.3) (therefore λh
T

= 0 and the
discrete solution is unique) and accomplishing the convergence analysis has led to an
upper bound of the error of order h1/2 under H2-regularity hypotheses (see [6]). The
estimate obtained in the present paper improves the bound in [6], since we obtain the
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same convergence rate with fewer regularity assumptions (H(3/2)+ε with ε arbitrary
small instead of H2). Moreover, we observe that there is no loss of convergence
when the friction terms are added. Nevertheless we mention that there exists in the
frictionless case a standard finite element approximation, which leads to an upper
bound of the error of order h3/4 under H2-regularity hypotheses (see [24, 23]) and
of order h with some additional assumptions concerning the finiteness of transition
points between contact and separation (see [29]). Actually we are not able to extend
these results to the frictional case.

Remark 9. Note that we do not prove that the solution to the discrete problem
is unique under the assumptions of Theorem 3.1. This seems to be an open question
which is actually under investigation. Note also that this possible loss of uniqueness
would not be embarrassing in the a priori error analysis of Theorem 3.1. As a matter of
fact, even if there are multiple solutions to the discrete problem, any solution would
converge towards the unique solution of the continuous model. Additionally, the
bound ensuring uniqueness in Proposition 1.2 is F < (Cα‖ξ‖a)−1, and we establish the
error estimate only for F < cis(Cα‖ξ‖a)−1. It should be interesting to see whether or
not it is possible to prove an error estimate for all the uniqueness cases of Proposition
1.2.

Conclusion. This work is a contribution to the numerical analysis of the uni-
lateral contact problem governed by Coulomb’s law of friction in elastostatics. As far
as we know, this study establishes a first error estimate with a convergence rate for
this model. From the previous remarks we can reasonably conclude that the present
convergence analysis could be generalized in many directions.
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