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A UNIQUENESS CRITERION FOR THE SIGNORINI PROBLEM
WITH COULOMB FRICTION 

YVES RENARD†

Abstract. The purpose of this paper is to study the solutions to the Signorini problem with
Coulomb friction (the so-called Coulomb problem). Some optimal a priori estimates are given, and
a uniqueness criterion is exhibited. Recently, nonuniqueness examples have been presented in the
continuous framework. It is proved, here, that if a solution satisfies a certain hypothesis on the
tangential displacement and if the friction coefficient is small enough, it is the unique solution to
the problem. In particular, this result can be useful for the search of multisolutions to the Coulomb
problem because it eliminates a lot of uniqueness situations.

Key words. unilateral contact, Coulomb friction, uniqueness of solution

Introduction. The so-called Signorini problem with Coulomb friction (or simply
the Coulomb problem) has been introduced by Duvaut and Lions [4]. It does not
exactly represent the equilibrium of a solid which encounters an obstacle because
when the equilibrium is reached (or any steady state solution) the friction condition
is no longer an irregular law. The aim of this problem is in fact to be very close to a
time semidiscretization of an evolutionary problem by an implicit scheme. The fact
that several solutions could coexist in an implicit scheme (independently of the size of
the time step) may be an indication that the evolutionary problem has a dynamical
bifurcation.

The first existence results for this problem were obtained by Nečas, Jarušek, and
Haslinger in [15] for a two-dimensional elastic strip, assuming that the coefficient
of friction is small enough and using a shifting technique previously introduced by
Fichera and later applied to more general domains by Jarušek [11]. Eck and Jarušek
[5] give a different proof using a penalization method. We emphasize that most results
on existence for frictional problems involve a condition of smallness for the friction
coefficient (and a compact support on Γ

C
).

Recently, examples of nonunique solutions have been given by Hild in [7] and [8]
for a large friction coefficient. As far as we know, for a fixed geometry, it is still an
open question whether or not there is uniqueness of the solution for a sufficiently small
friction coefficient. In the finite element approximation framework, the presence of
bifurcation has been studied in [9].

The present paper gives the first (partial) result of uniqueness of a solution to the
Coulomb problem. The summary is the following. Section 1 introduces strong and
weak formulations of the Coulomb problem. Section 2 gives optimal estimates on the
solutions. In particular, a comparison is made with the solution to the frictionless
contact problem. Section 3 gives an additional estimate for the Tresca problem, i.e.,
the problem with a given friction threshold. And finally, section 4 gives the partial

†MIP, CNRS UMR 5640, INSAT, Complexe scientifique de Rangueil, 31077 Toulouse, France
(Yves.Renard@insa-toulouse.fr).
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Fig. 1. Elastic body Ω in frictional contact.

uniqueness result. It is proved in Proposition 5 for bidimensional problems and a
friction coefficient less than one that there is no multisolution with one of the solutions
having a tangential displacement with a constant sign. The major result is given by
Proposition 6 using the notion of a multiplier in a pair of Sobolev spaces.

1. The Signorini problem with Coulomb friction. Let Ω ⊂ R
d (d = 2 or 3)

be a bounded Lipschitz domain representing the reference configuration of a linearly
elastic body.

It is assumed that this body is submitted to a Neumann condition on a part of its
boundary Γ

N
, to a Dirichlet condition on another part Γ

D
, and to a unilateral contact

with static Coulomb friction condition on the rest of the boundary Γ
C

between the
body and a flat rigid foundation (see Figure 1). This latter part Γ

C
is supposed to

be of nonzero interior in the boundary ∂Ω of Ω. The problem consists in finding the
displacement field u(t, x) satisfying

− div σ(u) = f in Ω,(1)

σ(u) = Aε(u) in Ω,(2)

σ(u)n = F on Γ
N
,(3)

u = 0 on Γ
D
,(4)

where σ(u) is the stress tensor, ε(u) is the linearized strain tensor, n is the outward
unit normal to Ω on ∂Ω, F and f are the given external loads, and A is the elastic
coefficient tensor which satisfies classical conditions of symmetry and ellipticity.

On Γ
C
, it is usual to decompose the displacement and the stress vector in normal

and tangential components as follows:

u
N

= u·n, u
T

= u− u
N

n,

σ
N

(u) = (σ(u)n)·n, σ
T
(u) = σ(u)n − σ

N
(u)n.

To give a clear sense to this decomposition, we assume Γ
C

to have the C1 regular-
ity. The unilateral contact condition is expressed by the following complementary
condition:

u
N
≤ g, σ

N
(u) ≤ 0, (u

N
− g)σ

N
(u) = 0,(5)

where g is the normal gap between the elastic solid and the rigid foundation in refer-
ence configuration (see Figure 2).
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Fig. 2. Normal gap between the elastic solid Ω and the rigid foundation.

Denoting by F ≥ 0 the friction coefficient, the static Coulomb friction condition
reads as follows:

if u
T

= 0, then |σ
T
(u)| ≤ −Fσ

N
(u),(6)

if u
T
�= 0, then σ

T
(u) = Fσ

N
(u)

uT

|u
T
| .(7)

The friction force satisfies the so-called maximum dissipation principle

−σ
T
(u)·u

T
= sup

μ
T

∈Rd−1

|μ
T

|≤−Fσ
N

(u)

(−μ
T
·u

T
).(8)

1.1. Classical weak formulation. We present here the classical weak formu-
lation proposed by Duvaut [3] and Duvaut and Lions [4]. Let us introduce the Hilbert
spaces

V = {v ∈ H1(Ω; Rd), v = 0 on Γ
D
},

X = {v|Γ
C

: v ∈ V } ⊂ H1/2(Γ
C
; Rd),

X
N

= {v
N|

Γ
C

: v ∈ V }, X
T

= {v
T |

Γ
C

: v ∈ V },
and their topological dual spaces V ′, X ′, X ′

N
, and X ′

T
. It is assumed that Γ

C
is suffi-

ciently smooth such that X
N
⊂ H1/2(Γ

C
), X

T
⊂ H1/2(Γ

C
; Rd−1), X ′

N
⊂ H−1/2(Γ

C
),

and X ′
T
⊂ H−1/2(Γ

C
; Rd−1).

Classically, H1/2(Γ
C
) is the space of the restriction on Γ

C
of traces on ∂Ω of

functions of H1(Ω), and H−1/2(Γ
C
) is the dual space of H1/2

00
(Γ

C
), which is the space

of the restrictions on Γ
C

of functions of H1/2(∂Ω) vanishing outside Γ
C
. We refer to

[1] and [12] for a detailed presentation of trace operators.
Now, the set of admissible displacements is defined as

K = {v ∈ V, v
N
≤ g a.e. on Γ

C
}.(9)

The maps

a(u, v) =

∫
Ω

Aε(u) : ε(v)dx,

l(v) =

∫
Ω

f ·vdx +

∫
Γ
N

F ·vdΓ,

j(Fλ
N
, v

T
) = −〈Fλ

N
, |v

T
|〉

X′
N

,X
N

3



represent the virtual work of elastic forces, the external load, and the “virtual work”
of friction forces, respectively. Standard hypotheses are as follows:

a(·, ·) is a bilinear symmetric V-elliptic and continuous form on V × V :(10)

∃ α > 0, ∃ M > 0, a(u, u) ≥ α‖u‖2
V
, a(u, v) ≤ M‖u‖

V
‖v‖

V
∀u, v ∈ V,

l(·) is a linear continuous form on V ; i.e., ∃ L > 0, |l(v)| ≤ L‖v‖
V
∀v ∈ V,(11)

g ∈ X
N
,(12)

F ∈ MX
N

is a nonnegative multiplier in X
N
.(13)

The latter condition ensures that j(Fλ
N
, v

T
) is linear continuous on λ

N
and

convex lower semicontinuous on v
T

when λ
N

is a nonpositive element of X ′
N

(see, for
instance, [2]). To satisfy condition (10), it is necessary that Γ

D
is of nonzero interior

in the boundary of Ω and that the elastic coefficient tensor is uniformly elliptic (see
[4]).

We refer to Maz’ya and Shaposhnikova [14] for the theory of multipliers. The set
MX

N
denotes the space of multipliers from X

N
into X

N
, i.e., the space of function

f : Γ
C
−→ R of finite norm

‖f‖
MX

N
= sup

v
N

∈X
N

v
N

�=0

‖fv
N
‖

X
N

‖v
N
‖

X
N

.

This is the norm of the linear mapping X
N


 v �−→ (fv) ∈ X
N

. Of course, if
F is a constant on Γ

C
, one has ‖F‖

MX
N

= F . From the fact that Ω is supposed to

be a bounded Lipschitz domain and Γ
C

is supposed to have the C1 regularity, it is
possible to deduce that for d = 2 the space H1/2+ε(Γ

C
) is continuously included in

MX
N

for any ε > 0, and for d = 3 the space H1(Γ
C
)∩L∞(Γ

C
) is included in MX

N
,

continuously for the norm ‖f‖
H1(Γ

C
)
+ ‖f‖

L∞(Γ
C

)
(see [14]). In particular, the space

of Lipschitz continuous functions is continuously included in MX
N

.
Condition (10) implies in particular that a(·, ·) is a scalar product on V and that

the associated norm

‖v‖a = (a(v, v))1/2

is equivalent to the usual norm of V :
√
α‖v‖

V
≤ ‖v‖a ≤

√
M‖v‖

V
∀v ∈ V.

The continuity constant of l(·) can also be given with respect to: ‖ · ‖a:
∃ La > 0, |l(v)| ≤ La‖v‖a ∀v ∈ V.

Constants L and La can be chosen such that
√
αLa ≤ L ≤

√
MLa.

The classical weak formulation of problem (1)–(7) is given by⎧⎨
⎩

Find u ∈ K satisfying

a(u, v − u) + j(Fσ
N

(u), v
T
) − j(Fσ

N
(u), u

T
) ≥ l(v − u) ∀ v ∈ K.

(14)

The major difficulty about (14) is due to the coupling between the friction thresh-
old and the contact pressure σ

N
(u). The consequence is that this problem does not

represent a variational inequality, in the sense that it cannot be derived from an
optimization problem.
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1.2. Neumann to Dirichlet operator. In this section, the Neumann to Dirich-
let operator on Γ

C
is introduced together with its basic properties. This will allow to

restrict the contact and friction problem to Γ
C

and obtain useful estimates.
Let λ = (λ

N
, λ

T
) ∈ X ′; then, under hypotheses (10) and (11), the solution u to

⎧⎨
⎩

Find u ∈ V satisfying

a(u, v) = l(v) + 〈λ, v〉
X′,X

∀ v ∈ V
(15)

is unique (see [4]). So it is possible to define the operator

E : X ′ −→ X

λ �−→ u|
Γ
C

.

This operator is affine and continuous. Moreover, it is invertible and its inverse is

continuous. It is possible to express E
−1

as follows: For w ∈ X, let u be the solution
to the Dirichlet problem

⎧⎨
⎩

Find u ∈ V satisfying u|Γ
C

= w and

a(u, v) = l(v) ∀ v ∈ V, v|Γ
C

= 0;

(16)

then E
−1

(w) is equal to λ ∈ X ′ defined by

〈λ, v〉X′,X = a(u, v) − l(v) ∀ v ∈ V.

In a weak sense, one has the relation E
−1

(u) = σ(u)n on Γ
C
. Now, under hypotheses

(10) and (11) one has

‖E(λ1) − E(λ2)‖
X
≤ C2

1

α
‖λ1 − λ2‖

X′ ,(17)

where C1 is the continuity constant of the trace operator on Γ
C

and α is the coercivity
constant of the bilinear form a(·, ·). One can verify it as follows. Let λ1 and λ2 be
given in X ′

T
and let u1, u2 be the corresponding solutions to (15); then

α‖u1 − u2‖2
V

≤ a(u1 − u2, u1 − u2) = 〈λ1 − λ2, u1 − u2〉
X′,X

≤ C1‖λ1 − λ2‖
X′ ‖u1 − u2‖

V

(18)

and, consequently,

‖u1 − u2‖
V
≤ C1

α
‖λ1 − λ2‖

X′ .(19)

Conversely, one has

‖E−1
(u1) − E

−1
(u2)‖

X′ ≤ MC2
2‖u1 − u2‖

X
,(20)

where M is the continuity constant of a(·, ·) and C2 > 0 is the continuity constant
of the homogeneous Dirichlet problem corresponding to (16) (i.e., with l(v) ≡ 0 and

5



C2 = sup v∈X
v �=0

‖w‖
V

‖v‖
X

, where w|Γ
C

= v and a(w, z) = 0 ∀z ∈ V ). This latter estimate

can be performed as follows:

‖E−1
(u1) − E

−1
(u2)‖

X′ = sup
v∈X
v �=0

〈E−1
(u1) − E

−1
(u2), v〉

X′,X

‖v‖
X

= sup
v∈X
v �=0

⎛
⎝ inf

{w∈V :w|
Γ
C

=v}

a(u1 − u2, w)

‖v‖
X

⎞
⎠

≤ Mγ‖u1 − u2‖
V
,(21)

where γ = sup v∈X
v �=0

inf
{w∈V :w|

Γ
C

=v}
‖w‖

V

‖v‖
X

is the continuity constant of the homoge-

neous Poisson problem with respect to a Dirichlet condition on Γ
C
. Using γ ≤ C2,

this gives (20).
It is also possible to define the following norms on Γ

C
relative to a(·, ·):

‖v‖a,Γ
C

= inf
w∈V, w|

Γ
C

=v

‖w‖a,

‖λ‖−a,Γ
C

= sup
v∈X
v �=0

〈λ, v〉
X′,X

‖v‖a,Γ
C

= sup
v∈V
v �=0

〈λ, v〉
X′,X

‖v‖a .

These are equivalent, respectively, to the norms in X and X ′:
√
α

C1
‖v‖

X
≤ ‖v‖a,Γ

C
≤

√
Mγ‖v‖

X
,

1√
Mγ

‖λ‖
X′ ≤ ‖λ‖−a,Γ

C
≤ C1√

α
‖λ‖

X′ .

With these norms, the estimates are straightforward since the following lemma holds.
Lemma 1. Let λ1 and λ2 be two elements of X ′ and let u1 = E(λ1), u2 = E(λ2);

then under hypotheses (10) and (11) one has

‖u1 − u2‖a,Γ
C

= ‖u1 − u2‖a = ‖λ1 − λ2‖−a,Γ
C
.

Proof. On the one hand, one has

‖u1 − u2‖2
a,Γ

C
= inf

w∈V

w|
Γc

=u1−u2

‖w‖2
a = ‖u1 − u2‖2

a,

because u1 − u2 is the minimum of 1
2‖w‖2

a under the constraint w|ΓC

= u1 − u2. This
implies

‖u1 − u2‖2
a,Γ

C
= a(u1 − u2, u1 − u2) = 〈λ1 − λ2, u1 − u2〉

X′,X

≤ ‖λ1 − λ2‖−a,Γ
C
‖u1 − u2‖a,Γ

C
,

and finally

‖u1 − u2‖a,Γ
C
≤ ‖λ1 − λ2‖−a,Γ

C
.
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On the other hand, one has

‖λ1 − λ2‖−a,Γ
C

= sup
v∈X
v �=0

〈λ1 − λ2, v〉
X′,X

‖v‖a,Γ
C

= sup
v∈X
v �=0

inf
w∈V

w|ΓC

=v

a(u1 − u2, w)

‖v‖a,Γ
C

,

≤ sup
v∈X
v �=0

inf
w∈V

w|
ΓC

=v

‖u1 − u2‖a‖w‖a
‖v‖a,Γ

C

= ‖u1 − u2‖a = ‖u1 − u2‖a,Γ
C
,

which ends the proof of the lemma.

1.3. Direct weak inclusion formulation. Let

K
N

= {v
N
∈ X

N
: v

N
≤ 0 a.e. on Γ

C
}

be the (translated) set of admissible normal displacements on Γ
C
. The normal cone

in X ′
N

to K
N

at v
N
∈ X

N
is defined as

NK
N

(v
N

) = {μ
N
∈ X ′

N
: 〈μ

N
, w

N
− v

N
〉
X′

N
,X

N

≤ 0 ∀w
N
∈ K

N
}.

In particular, NK
N

(v
N

) = ∅ if v
N

/∈ K
N

. The subgradient of j(Fλ
N
, u

T
) with respect

to the second variable is given by

∂2j(Fλ
N
, u

T
) = {μ

T
∈ X ′

T
: j(Fλ

N
, v

T
)

≥ j(Fλ
N
, u

T
) + 〈μ

T
, v

T
− u

T
〉
X′

T
,X

T

∀v
T
∈ X

T
}.

With this notation, problem (14) is equivalent to the following problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find u ∈ V, λ
N
∈ X ′

N
, and λ

T
∈ X ′

T
satisfying

(u
N
, u

T
) = E(λ

N
, λ

T
),

−λ
N
∈ NK

N
(u

N
− g) in X ′

N
,

−λ
T
∈ ∂2j(Fλ

N
, u

T
) in X ′

T
.

(22)

More details on this equivalence can be found in [13].
Remark 1. Inclusion −λ

N
∈ NK

N
(u

N
− g) is equivalent to the complementarity

relations

u
N
≤ g, 〈λ

N
, v

N
〉
X′

N
,X

N

≥ 0 ∀v
N
∈ K

N
, 〈λ

N
, u

N
− g〉

X′
N

,X
N

= 0,

which is the weak formulation of the strong complementarity relations (5) for the
contact conditions. Similarly, the second inclusion −λ

T
∈ ∂2j(Fλ

N
, u

T
) represents

the friction condition.

1.4. Hybrid weak inclusion formulation. We will now consider the sets of
admissible stresses. The set of admissible normal stresses on Γ

C
can be defined as

Λ
N

= {λ
N
∈ X ′

N
: 〈λ

N
, v

N
〉
X′

N
,X

N

≥ 0 ∀v
N
∈ K

N
}.

7



This is the opposite of K∗
N

, the polar cone to K
N

. The set of admissible tangential
stresses on Γ

C
can be defined as

Λ
T
(Fλ

N
) = {λ

T
∈ X ′

T
: −〈λ

T
, w

T
〉
X′

T
,X

T

+ 〈Fλ
N
, |w

T
|〉

X′
N

,X
N

≤ 0 ∀w
T
∈ X

T
}.

With this, problem (14) is equivalent to the following problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find u ∈ V, λ
N
∈ X ′

N
, and λ

T
∈ X ′

T
satisfying

(u
N
, u

T
) = E(λ

N
, λ

T
),

−(u
N
− g) ∈ NΛ

N
(λ

N
) in X

N
,

−u
T
∈ NΛ

T
(Fλ

N
)(λT

) in X
T
,

(23)

where the two inclusions can be replaced by inequalities as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find u ∈ V, λ
N
∈ X ′

N
, and λ

T
∈ X ′

T
satisfying

(u
N
, u

T
) = E(λ

N
, λ

T
),

λ
N
∈ Λ

N
, 〈μ

N
− λ

N
, u

N
− g〉

X′
N

,X
N

≥ 0 ∀μ
N
∈ Λ

N
,

λ
T
∈ Λ

T
(Fλ

N
), 〈μ

T
− λ

T
, u

T
〉
X′

T
,X

T

≥ 0 ∀μ
T
∈ Λ

T
(Fλ

N
).

(24)

Remark 2. The inclusion −u
T

∈ NΛ
T

(Fλ
N

)(λT
) implies the complementarity

relation

〈λ
T
, u

T
〉
X′

T
,X

T

= 〈Fλ
N
, |u

T
|〉

X′
N

,X
N

and the weak maximum dissipation principle

−〈λ
T
, u

T
〉
X′

T
,X

T

= sup
μ
T
∈Λ

T
(Fλ

N
)

〈−μ
T
, u

T
〉
X′

T
,X

T

,

which is the weak formulation of (8).

2. Optimal a priori estimates on the solutions to the Coulomb problem.
For the sake of simplicity, a vanishing contact gap (g ≡ 0) will be considered in the
following.

Remark 3. In the case of a nonvanishing gap, it is possible to find ug ∈ V such

that ug|
Γ
C

= gn, and then w = u− ug is solution to the problem
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find w ∈ V, λ
N
∈ X ′

N
, and λ

T
∈ X ′

T
satisfying

a(w, v) = l(v) − a(ug, v) + 〈λ
N
, w

N
〉
X′

N
,X

N

+ 〈λ
T
, w

T
〉
X′

T
,X

T

,

−w
N
∈ NΛ

N
(λ

N
) in X

N
,

−w
T
∈ NΛ

T
(Fλ

N
)(λT

) in X
T
,

(25)

i.e., a contact problem without gap but with a modified source term.
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Following Remarks 1 and 2, a solution (u, λ) to problem (22) (i.e., a solution u
to problem (14)) satisfies the complementarity relations

〈λ
N
, u

N
〉
X′

N
,X

N

= 0,

〈λ
T
, u

T
〉
X′

T
,X

T

= 〈Fλ
N
, |u

T
|〉

X′
N

,X
N

.

This implies

〈λ, u〉
X′,X

≤ 0,

which expresses the dissipativity of contact and friction conditions. The first conse-
quence of this is that solutions to problem (14) can be bounded independently of the
friction coefficient.

Proposition 1. Assuming hypotheses (10), (11), and (13) are satisfied and
g ≡ 0, let (u, λ) be a solution to problem (22), which means that u is a solution
to problem (14); then

‖u‖a ≤ La, ‖λ‖−a,Γ
C
≤ La,

‖u‖
V
≤ L

α
, ‖λ‖

X′ ≤ Lγ

√
M

α
.

Proof. One has

‖u‖2
a = a(u, u) = l(u) + 〈λ, u〉

X′,X
≤ La‖u‖a,

which states the first estimates. The estimate on ‖λ‖−a,Γ
C

can be performed using

the intermediary solution uN to the following problem with a homogeneous Neumann
condition on Γ

C
:

a(uN , v) = l(v) ∀v ∈ V.(26)

Since ‖uN ‖a ≤ La for the same reason as for u, and using Lemma 1, one has

‖λ− 0‖2
−a,Γ

C
= a(u− uN , u− uN ) = 〈λ, u− uN 〉

X′,X
≤ −〈λ, uN 〉

X′,X
≤ La‖λ‖−a,Γ

C
.

The two last estimates can be stated thanks to equivalence of norms introduced in
section 1.1.

It is possible to compare ‖u‖a to the corresponding norm of the solution uc to
the Signorini problem without friction defined as follows:⎧⎨

⎩
Find uc ∈ K satisfying

a(uc, v − uc) ≥ l(v − uc) ∀ v ∈ K.
(27)

It is well known that under hypotheses (10) and (11), this problem has a unique
solution (see [12]).

Proposition 2. Assuming hypotheses (10), (11), and (13) are satisfied and
g ≡ 0, let u be a solution to problem (14), let uc be the unique solution to problem (27),
and let uN be the solution to problem (26); then

‖u‖a ≤ ‖uc‖a ≤ ‖uN ‖a.

9



Proof. One has

a(uN , uN ) = l(uN ), a(uc, uc) = l(uc), a(u, u) = l(u) + 〈λ
T
, u

T
〉
X′

T
,X

T

.

Since uc is the solution to the Signorini problem without friction, it minimizes over K
the energy functional 1

2a(v, v)−l(v). The solution uN minimizes this energy functional
over V . Thus, since u ∈ K, one has

1

2
a(uN , uN ) − l(uN ) ≤ 1

2
a(uc, uc) − l(uc) ≤ 1

2
a(u, u) − l(u),

and the following relations allow one to conclude that

a(uc, uc) − a(uN , uN ) = l(uc − uN ),

a(u, u) − a(uc, uc) = l(u− uc) + 〈λ
T
, u

T
〉
X′

T
,X

T

because then

1

2
a(uc, uc) − 1

2
a(uN , uN ) ≤ 0,

1

2
a(u, u) ≤ 1

2
a(uc, uc) + 〈Fλ

N
, |u

T
|〉

X′
N

,X
N

≤ 1

2
a(uc, uc).

It is also possible to estimate how far from uc is a solution u to problem (14). Let
us introduce the following norms on Γ

C
. For v ∈ X let us define

‖v
T
‖a,Γ

C
= inf

w∈V
w

T
=v

T

‖w‖a = inf
z∈X

z
T

=v
T

‖z‖a,Γ
C
,

‖v
N
‖a,Γ

C
= inf

w∈V
w

N
=v

N

‖w‖a = inf
z∈X

z
N

=v
N

‖v‖a,Γ
C
.

One has

‖v
T
‖a,Γ

C
≤ ‖v‖a,Γ

C
, ‖v

N
‖a,Γ

C
≤ ‖v‖a,Γ

C
.

Now, for λ ∈ X ′, let us define

‖λ
T
‖−a,Γ

C
= sup

v
T

∈X
T

v
T

�=0

〈λ
T
, v

T
〉
X′

T
,X

T

‖v
T
‖a,Γ

C

= sup
v∈X
v �=0

〈λ
T
, v

T
〉
X′

T
,X

T

‖v‖a,Γ
C

,

‖λ
N
‖−a,Γ

C
= sup

v
N

∈X
N

v
N

�=0

〈λ
N
, v

N
〉
X′

N
,X

N

‖v
N
‖a,Γ

C

= sup
v∈X
v �=0

〈λ
N
, v

N
〉
X′

N
,X

N

‖v‖a,Γ
C

.

Then, the following equivalences of norms are immediate:

√
α

C1
‖v

N
‖

X
N

≤ ‖v
N
‖a,Γ

C
≤ γ

√
M‖v

N
‖

X
N
,

√
α

C1
‖v

T
‖

X
T
≤ ‖v

T
‖a,Γ

C
≤ γ

√
M‖v

T
‖

X
T
,
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1

γ
√
M

‖λ
N
‖
X′

N

≤ ‖λ
N
‖−a,Γ

C
≤ C1√

α
‖λ

N
‖

X′
N

,

1

γ
√
M

‖λ
T
‖

X′
T

≤ ‖λ
T
‖−a,Γ

C
≤ C1√

α
‖λ

T
‖

X′
T

.

And the following result can be easily deduced.
Lemma 2. There exists C3 > 0 such that for all λ ∈ X ′

‖λ
T
‖−a,Γ

C
≤ C3‖λ‖−a,Γ

C
, ‖λ

N
‖−a,Γ

C
≤ C3‖λ‖−a,Γ

C
.

This also allows us to define an equivalent norm on MX
N

given for F ∈ MX
N

by

‖F‖a = sup
v
N

∈X
N

v
N

�=0

‖Fv
N
‖a,Γ

C

‖v
N
‖a,Γ

C

,

which satisfies

√
α

C1γ
√
M

‖F‖a ≤ ‖F‖
MX

N
≤ C1γ

√
M√

α
‖F‖a.

With these definitions, the following result holds.
Lemma 3. There exists C4 > 0 such that

‖F|v
T
| ‖a,Γ

C
≤ C4‖F‖a‖vT

‖a,Γ
C

∀v
T
∈ X

T
.

Proof. One has

‖F|v
T
| ‖a,Γ

C
≤ ‖F‖a‖ |v

T
| ‖a,Γ

C
.

Moreover, it is known (see [1]) that the norm ‖ · ‖
X

N
is equivalent to the norm

‖v
N
‖2
1/2,Γ

C
= ‖v

N
‖2

L2(Γ
C

)
+

∫
Γ
C

∫
Γ
C

|v
N

(x) − v
N

(y)|2
|x− y|d dxdy,

and it is easy to verify that ‖ |v
T
| ‖1/2,Γ

C
≤ ‖v

T
‖1/2,Γ

C
for any v

T
∈ X

T
. Thus, the

result can be deduced from the previously presented equivalences of norms.
Of course the tangential stress on Γ

C
corresponding to uc is vanishing. The

tangential stress corresponding to u can be estimated as follows. As λ
T
∈ Λ

T
(Fλ

N
),

one has

‖λ
T
‖−a,Γ

C
= sup

v
T

∈X
T

v
T

�=0

〈λ
T
, v

T
〉
X′

T
,X

T

‖v
T
‖a,Γ

C

≤ sup
v
T

∈X
T

v
T

�=0

−〈Fλ
N
, |v

T
|〉

X′
N

,X
N

‖v
T
‖a,Γ

C

≤ C4‖F‖a‖λN
‖−a,Γ

C
.

Now, with the result of Proposition 1 this means that

‖λ
T
‖−a,Γ

C
≤ LaC3C4‖F‖a,(28)

and the following result holds.
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Fig. 3. Admissibility zone for ‖u‖a.

Proposition 3. Assuming hypotheses (10), (11), and (13) are satisfied and
g ≡ 0, let u be a solution to problem (14) and let uc be the solution to problem (27);
then

‖uc − u‖a ≤ LaC3C4‖F‖a,

‖uc − u‖
V
≤ LC3C4

α
‖F‖a.

Proof. With λ ∈ X ′ and λc ∈ X ′ the corresponding stresses on Γ
C
, because

−λc
N

∈ NK
N

(uc
N

) and −λ
N

∈ NK
N

(u
N
− g) and because of the fact that NK

N
is a

monotone set-valued map, one has

〈λc
N
− λ

N
, uc

N
− u

N
〉
X′

N
,X

N

≤ 0.

Now, ‖uc − u‖a can be estimated as follows:

‖uc − u‖2
a

= a(uc − u, uc − u) = 〈λc − λ, uc − u〉
X′,X

≤ ‖λ
T
‖−a,Γ

C
‖uc − u‖a,

which gives the result taking into account (28).
The latter result implies that if problem (14) has several solutions, then they are

in a ball of radius LaC3C4‖F‖a centered around uc. In particular, if u1 and u2 are
two solutions to problem (14), one has ‖u1−u2‖a ≤ 2LaC3C4‖F‖a. This is illustrated
by Figure 3.

Remark 4. For a friction coefficient F constant on Γ
C
, the graph in Figure 3

can be more precise for F = ‖F‖a small, since, from the proof of Proposition 2 and
the continuity result given by the latter proposition, one can deduce ‖u‖2

a ≤ ‖uc‖2
a +

F〈λc
N
, |uc

T
|〉

X′
N

,X
N

at least if 〈λc
N
, |uc

T
|〉

X′
N

,X
N

< 0. Of course, if 〈λc
N
, |uc

T
|〉

X′
N

,X
N

= 0,

the solution uc to the Signorini problem without friction is also a solution to the
Coulomb problem for any friction coefficient.

3. Elementary estimates on the Tresca problem. What is usually called
the Tresca problem is the friction problem with a given friction threshold. Let θ ∈ X ′

N

be given. Then it can be formulated as follows:⎧⎨
⎩

Find u ∈ K satisfying

a(u, v − u) + j(θ, v
T
) − j(θ, u

T
) ≥ l(v − u) ∀ v ∈ K.

(29)
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It is well known that under standard hypotheses (10), (11), and (13), this problem
has a unique solution (see [12]) which minimizes the functional 1

2a(u, u)+j(θ, u)−l(u).
In fact, it is not difficult to verify that all the estimates given in the previous

section for the solutions to the Coulomb problem are still valid for the solution to the
Tresca problem. Moreover, the solution to the Tresca problem continuously depends
on the friction threshold θ. This result is stated in the following lemma.

Lemma 4. Assuming hypotheses (10), (11), and (13) are satisfied, if u1, u2 are the
solutions to problem (29) for a friction threshold θ1 ∈ Λ

N
and θ2 ∈ Λ

N
, respectively,

then there exists a constant C5 > 0 independent of θ1 and θ2 such that the following
estimate holds:

‖u1 − u2‖2
a ≤ C5‖θ1 − θ2‖−a,Γ

C
.

Proof. One has

a(u1, u2 − u1) − l(u2 − u1) + j(θ1, u2) − j(θ1, u1) ≥ 0,

a(u2, u1 − u2) − l(u1 − u2) + j(θ2, u1) − j(θ2, u2) ≥ 0,

which implies

‖u1 − u2‖2
a ≤ 〈θ1 − θ2, |u1

T
| − |u2

T
|〉
X′

N
,X

N

,

which gives the estimate using Proposition 1 (in fact, C5 ≤ 2C4La).
Remark 5. It does not seem possible to establish a Lipschitz continuity with

respect to the friction threshold θ. Such a result would automatically imply the
uniqueness of the solution to the Coulomb problem for a sufficiently small friction
coefficient.

4. A uniqueness criterion. Hild in [7, 8] exhibits some multisolutions for the
Coulomb problem on triangular domains. These solutions have been obtained for a
large friction coefficient (F > 1) and for a tangential displacement having a constant
sign. For the moment, it seems that no multisolution has been exhibited for an
arbitrary small friction coefficient in the continuous case, although such a result exists
for finite element approximation in [6], albeit for a variable geometry. As far as
we know, no uniqueness result has been proved even for a sufficiently small friction
coefficient. The result presented here is a partial uniqueness result, which determines
some cases where it is possible to say that a particular solution of the Coulomb
problem is in fact the unique solution. A contrario, this result can be used to search
multisolutions for an arbitrary small friction coefficient, by the fact that it eliminates a
lot of situations. The partial uniqueness results we present in this section are deduced
from the estimate given by the following lemma.

Lemma 5. Assuming hypotheses (10), (11), and (13) are satisfied and g ≡ 0, if u1

and u2 are two solutions to problem (14) and λ1 and λ2 are the corresponding contact
stresses on Γ

C
, then one has the following estimate:

‖u1 − u2‖2
a = ‖λ1 − λ2‖2

−a,Γ
C
≤ 〈ζ − λ2

T
, u1

T
− u2

T
〉
X′

T
,X

T

∀ζ ∈ −∂2j(Fλ1
N
, u2

T
).

Proof. One has

‖u1−u2‖2
a = ‖λ1−λ2‖2

−a,Γ
C

= 〈λ1
N
− λ2

N
, u1

N
− u2

N
〉
X′

N
,X

N

+〈λ1
T
− λ2

T
, u1

T
− u2

T
〉
X′

T
,X

T

.
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Because NK
N

is a monotone set-valued map, one has 〈λ1
N
− λ2

N
, u1

N
− u2

N
〉
X′

N
,X

N

≤ 0.

Thus

‖u1 − u2‖2
a ≤ 〈(λ1

T
− ζ) + (ζ − λ2

T
), u1

T
− u2

T
〉
X′

T
,X

T

∀ζ ∈ −∂2j(Fλ1
N
, u2

T
).

But ∂2j(Fλ
N
, u

T
) is also a monotone set-valued map with respect to its second vari-

able, which implies the result (and also the fact that ‖u1−u2‖2
a ≤ infζ∈−∂2j(Fλ1

N
,u2

T
) ‖ζ−

λ2
T
‖−a,Γ

C
).

An immediate consequence of this lemma is the following result for a vanishing
tangential displacement.

Proposition 4. Assuming hypotheses (10), (11), and (13) are satisfied and g ≡
0, if u is a solution to problem (14) such that u

T
= 0 a.e. on Γ

C
and if C3C4‖F‖a < 1,

then u is the unique solution to problem (14).
Proof. Let us assume that u is another solution to problem (14). Then from

Lemma 5 one has

‖u− u‖2
a ≤ 〈ζ − λ

T
, u

T
− u

T
〉
X′

T
,X

T

∀ζ ∈ −∂2j(Fλ
N
, u

T
),

but, because u
T

= 0 and due to the complementarity relations 〈λ
T
, u

T
〉
X′

T
,X

T

=

〈Fλ
N
, |u

T
|〉

X′
N

,X
N

and 〈ζ, u
T
〉
X′

T
,X

T

= 〈Fλ
N
, |u

T
|〉

X′
N

,X
N

, it implies using Lemma 3

that

‖u− u‖2
a ≤ 〈F(λ

N
− λ

N
), |u

T
|〉

X′
N

,X
N

≤ C3C4‖F‖a‖λ− λ‖−a,Γ
C
‖u

T
− u

T
‖2
a,Γ

C

≤ C3C4‖F‖a‖u− u‖2
a,

which concludes the proof.
In the case d = 2, it is possible to give a result to a solution having a tangential

displacement with a constant sign on Γ
C
. We will say that a tangential displacement

u
T
∈ X

T
is strictly positive if 〈μ

T
, u

T
〉
X′

T
,X

T

> 0 for all μ
T
∈ X ′

T
such that μ

T
≥ 0

(i.e., 〈μ
T
, v

T
〉
X′

T
,X

T

≥ 0 for all v
T
∈ X

T
, v

T
≥ 0, a.e. on Γ

C
) and μ

T
�= 0.

Proposition 5. Assuming hypotheses (10), (11), and (13) are satisfied, g ≡ 0,
and d = 2, if u is a solution to problem (14) such that u

T
> 0 and C3‖F‖a < 1, then

u is the unique solution to problem (14) (when F is constant over Γ
C
, the condition

reduces to C3F < 1).
Proof. Let us assume that u is another solution to problem (14), with λ

N
and λ

T

the corresponding contact stresses on Γ
C
. Then from Lemma 5 one has

‖u− u‖2
a ≤ 〈ζ − λ

T
, u

T
− u

T
〉
X′

T
,X

T

∀ζ ∈ −∂2j(Fλ
N
, u

T
).

Because u
T
> 0, one has λ

T
= Fλ

N
and −∂2j(Fλ

N
, u

T
) contains Fλ

N
. Thus, taking

ζ = Fλ
N

, one obtains

‖u−u‖2
a ≤ 〈F(λ

N
− λ

N
), u

T
− u

T
〉
X′

T
,X

T

≤ ‖λ−λ‖−a,Γ
C
‖F(u−u)‖a ≤ ‖F‖a‖u−u‖2

a,

which implies u = u when ‖F‖a < 1.
Of course, the same reasoning is valid for u

T
< 0.
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Fig. 4. Example of tangential displacement uT and a possible corresponding multiplier ξ for
d = 2.

Let us now define the space of multipliers M(X
T

→ X
N

) of the functions ξ :
Γ

C
→ R

d such that ξ ·n = 0 a.e. on Γ
C

and such that the following two equivalent
norms are finite:

‖ξ‖
M(X

T
→X

N
)
= sup

v
T

∈X
T

v
T

�=0

‖ξ ·v
T
‖

X
N

‖v
T
‖

X
T

and ‖ξ‖a = sup
v
T

∈X
T

v
T

�=0

‖ξ ·v
T
‖a,Γ

C

‖v
T
‖a,Γ

C

.

Because Γ
C

is assumed to have the C1 regularity, M(X
T

→ X
N

) is isomorphic to
(MX

N
)d−1.

It is possible to give a more general result assuming that λ
T

= Fλ
N
ξ, with

ξ ∈ M(X
T
→ X

N
). It is easy to see that this implies that |ξ| ≤ 1 a.e. on the support

of λ
N

and, more precisely, that ξ ∈ Dir
T
(u

T
) a.e. on the support of λ

N
, where Dir

T
(.)

is the subderivative of the convex map R
d 
 x �−→ |xT |. This means that it is

reasonable to assume that ξ ∈ Dir
T
(u

T
) a.e. on Γ

C
.

Proposition 6. Assuming hypotheses (10), (11), and (13) are satisfied and g ≡
0, if u is a solution to problem (14) such that λ

T
= Fλ

N
ξ, with ξ ∈ M(X

T
→ X

N
),

ξ ∈ Dir
T
(u

T
) a.e. on Γ

C
, and C3‖F‖a‖ξ‖a < 1, then u is the unique solution to

problem (14).
Proof. Let us assume that u is another solution to problem (14), with λ

N
and λ

T

the corresponding contact stresses on Γ
C
. Then from Lemma 5 one has

‖u− u‖2
a ≤ 〈ζ − λ

T
, u

T
− u

T
〉
X′

T
,X

T

∀ζ ∈ −∂2j(Fλ
N
, u

T
).

Then, a possible choice is ζ = Fλ
N
ξ, which, together with the fact that ‖Fξ‖a ≤

‖F‖a‖ξ‖a, gives

‖u− u‖2
a ≤ 〈Fξ(λ

N
− λ

N
), u

T
− u

T
〉
X′

T
,X

T

≤ C3‖F‖a‖ξ‖a‖λ− λ‖−a,Γ
C
‖u− u‖a

≤ C3‖F‖a‖ξ‖a‖u− u‖2
a,

which implies u = u when C3‖F‖a‖ξ‖a < 1.
Remark 6. Using equivalences of norms, one can deduce that a more restrictive

condition than C3‖F‖a‖ξ‖a < 1 is the condition ‖F‖
MX

N
‖ξ‖

M(X
T

→X
N

)
<

√
α

C1C3γ
√
M

.

As illustrated in Figure 4, for d = 2, the multiplier ξ has to vary from −1 to +1
each time the sign of the tangential displacement changes from negative to positive.
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The set M(X
T
→ X

N
) does not contain any multiplier having a discontinuity of the

first kind. This implies that in order to satisfy the assumptions of Proposition 6
the tangential displacement of the solution u cannot pass from a negative value to a
positive value, being zero on only a single point of Γ

C
.

Perspectives. As far as we know, the result given by Propositions 4, 5, and 6 are
the first results dealing with the uniqueness of the solution to the Coulomb problem
without considering a regularization of the contact or the friction law. In the future,
it may be interesting to investigate the following open problems.

Is it possible to prove that, for a sufficiently regular domain and a sufficiently
regular loading, a solution of the Coulomb problem is necessarily such that λ

T
= Fλ

N
ξ

with ξ ∈ M(X
T

→ X
N

)? This could be a way to prove a uniqueness result for a
sufficiently small friction coefficient and regular loadings.

The more the tangential displacement u
T

oscillates around 0 (i.e., the more u
T

changes its sign for d = 2), the more the multiplier ξ varies and thus the greater
‖ξ‖

M(X
T

→X
N

)
is. Does it mean that a multisolution for an arbitrary small friction

coefficient and a fixed geometry has to be searched with very oscillating tangential
displacement (necessarily for all the solutions)?

Finally, the convergence of finite element methods in the uniqueness framework
given by Proposition 6 will be presented in [10].
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