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HYBRID FINITE ELEMENT METHODS
FOR THE SIGNORINI PROBLEM

F. BEN BELGACEM AND Y. RENARD

Abstract. We study three mixed linear finite element methods for the nu-merical simulation of the 
two-dimensional Signorini problem. Applying Falk’s Lemma and saddle point theory to the 
resulting discrete mixed variational inequality allows us to state the convergence rate of each of 
them. Two of these finite elements provide optimal results under reasonable regularity as-sumptions 
on the Signorini solution, and the numerical investigation shows that the third method also provides 
optimal accuracy.

1. Introduction and functional tools

Linear finite elements are currently used for the approximation of contact prob-
lems with unilateral Signorini boundary conditions. Developing efficient computing
tools for the numerical simulation of such models is of a permanent growing inter-
est in many physical fields: hydrostatics, thermics, solid mechanics, etc., (we refer
to [17] and to [25] for a large review of the main unilateral contact models). The
particular feature of the unilateral problems is that the mathematical variational
statement leads to variational inequalities set on closed convex functional cones.
The modeling of the nonpenetration condition in the discrete finite element level
is of crucial importance. This condition may be imposed stricto-sensus on the dis-
placement or relaxed and expressed in a weaker sense. On the way it is enforced
depends the well posedness of the discrete inequalities and the accuracy of the
approximation algorithms. This point is addressed in many works especially for
Lagrangian finite element discretizations (see [19], [24], [21], [33], [22], [3], [26]),
where different modelings are suggested and studied under a variational formula-
tion where the displacement is the only unknown of the problem, or under a mixed
variational formulation where the displacement and the stress on the contact zone
are independent unknowns. Their numerical analysis established more or less satis-
factory asymptotic convergence rates. For instance, when the frictionless Signorini
problem is considered, imposing the nonpenetration in a strong way on the dis-
placement field—assumed to be of class H2 (the standard Sobolev space of degree
2)—the convergence rate is known to decay like Ch

3
4 with respect to the energy

norm, h being the mesh size (see [24], [22]). The convergence can be improved under
some reasonable assumptions, and the error estimate is reduced to Ch

√
| log h| in

[3]. An alternative consists in enforcing the nonpenetration in some weaker sense,
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as proposed in [23], which leads to a convergence rate of order Ch
1
4 . Despite the

poor convergence rate proven therein—it can be actually squared to Ch
1
2 , see sec-

tion 4—this approach has the attractive feature that the stress computed on the
contact zone has the good sign; in addition, the numerical error decays like h in
practice (see Section 7). In [26], another weak modeling of the unilateral condi-
tion is proposed which yields a (theoretically) faster decaying of the error, of order
Ch

3
4 . However, the main drawback is that the approximation method is coherent

only when none of the extremities of the contact zone is subjected to a prescribed
displacement (Dirichlet boundary condition); otherwise the discretization involves
some spurious modes and the problem is then ill-posed. Moreover, it could hardly
be extended to three-dimensional problems, where the number of spurious modes
grows drastically.

In the present work, each of those finite element methods is revisited. They will
all be expressed in a mixed formulation. The asymptotic convergence rates on the
displacement of the first two discretizations are improved, and an error estimate
on the Lagrange multiplier is stated (sections 4 and 5). Section 6 is dedicated to a
stabilization of the third algorithm by bubble functions, which makes it extensible
to general circumstances with a quasi-optimal error estimate and renders it con-
ceptually coherent in three dimensions with an optimal accuracy (see [5]). In the
first sections we lay a mathematical framework for the variational direct and mixed
formulations of the exact Signorini problem (section 2), and we describe the finite
element framework needed here (section 3). A numerical investigation of the three
methods is described in section 7, in order to show the reliability of each of them.

Notation. We need to set some notation and to recall some functional tools nec-
essary to our analysis. Let Ω ⊂ R2 be a Lipschitz domain with generic point x.
The Lebesgue space Lp(Ω) is endowed with the norm: ∀ψ ∈ Lp(Ω),

‖ψ‖Lp(Ω) =
( ∫

Ω

|ψ(x)|p dx
) 1
p .

We make constant use of the standard Sobolev space Hm(Ω), m ≥ 1, provided with
the norm

‖ψ‖Hm(Ω) =
( ∑

0≤|α|≤m
‖∂αψ‖2L2(Ω)

) 1
2
,

where α = (α1, α2) is a multi-index in N2 and the symbol ∂α represents a partial
derivative (H0(Ω) = L2(Ω)). The fractional order Sobolev spaceHν(Ω), ν ∈ R+\N,
is defined by the norm

‖ψ‖Hν(Ω) =
(
‖ψ‖2Hm(Ω) +

∑
|α|=m

∫
Ω

∫
Ω

(∂αψ(x)− ∂αψ(y))2

|x− y|2+2θ
dxdy

) 1
2
,

where ν = m+θ,m is the integer part of ν and θ ∈ ]0, 1[ is the decimal part (see [1],
[20]). The closure in Hν(Ω) of D(Ω) is denoted Hν

0 (Ω), where D(Ω) is the space of
infinitely differentiable functions with support in Ω.

For any portion γ of the boundary ∂Ω, the Hilbert space H
1
2 (γ) is associated

with the norm

‖ψ‖
H

1
2 (γ)

=
(
‖ψ‖2L2(γ) +

∫
γ

∫
γ

(ψ(x)− ψ(y))2

|x− y|2 dΓdΓ
) 1

2
.
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The space H−
1
2 (γ) is the dual space of H

1
2 (γ), and the duality pairing is denoted

〈., .〉 1
2 ,γ

. The special space H
1
2
00(γ) is defined as the set of the restrictions to γ

of the functions of H
1
2 (∂Ω) that vanish on ∂Ω \ γ; it is also obtained by Hilbert

interpolation between H1
0 (γ) and L2(γ).

Sometimes, we need to use the Hölder space C 0,α(γ), 0 < α ≤ 1, defined as

C 0,α(γ) =
{
∈ C 0(γ), ‖ψ‖C 0,α(γ) <∞

}
,

where

‖ψ‖C 0,α(γ) = sup
x∈γ
|ψ(x)|+ sup

x,y∈γ

|ψ(x)− ψ(y)|
|x− y|α .

2. The continuous setting of Signorini’s problem

Let Ω be a Lipschitz bounded domain in R2. The boundary ∂Ω is a union of
three nonoverlapping portions Γu,Γg and ΓC . The vertices of ΓC are {c1, c2} and
those of Γu are {c′1, c′2}. The part Γu of nonzero measure is subjected to Dirichlet
conditions, while on Γg a Neumann condition is prescribed, and ΓC is the candidate
to be in contact with a rigid obstacle.

For given data f ∈ L2(Ω) and g ∈ H− 1
2 (Γg), the Signorini problem consists in

finding u such that

−∆u = f in Ω,(2.1)

u = 0 on Γu,(2.2)
∂u

∂n
= g on Γg,(2.3)

u ≥ 0,
∂u

∂n
≥ 0, u

∂u

∂n
= 0 on ΓC ,(2.4)

where n is the outward unit normal to ∂Ω. Most often, the modeling of the contact
condition is formulated using a gap function α defined on ΓC , so that instead of
u ≥ 0 and the saturation condition u ∂u∂n = 0 we have u − α ≥ 0 and (u − α) ∂u∂n =
0 on the contact zone ΓC (see [17]). As the whole subsequent analysis can be
extended straightforwardly to the case where α does not vanish, we choose, only
for conciseness, to take α = 0.

Remark 2.1. Many important applications of Signorini’s problem can be found
in physical or mechanical fields. For instance, in hydrostatics, consider a fluid
contained in a region Ω limited partly by a thin membrane ΓC which is semi-
permeable, meaning that it allows the fluid to pass through only in one direction—
only to get in Ω. When subjected to an external pressure α|ΓC , the internal pressure
field p is a solution of equations (2.1)-(2.4) Another example comes from the air
conditioning field, the temperature distribution u within a room heated by a wall
device, which injects a heat flux only when u drops below a threshold so that u
is permanently maintained higher than a fixed temperature α in the vicinity of
the device, is modeled by equations (2.1)-(2.4). The last situation that we shall
consider is taken from deformable solid mechanics. The displacement of a body Ω
supported by a frictionless rigid foundation ΓC , fixed along a part Γu of the border
and subjected to external forces f |Ω and g|Γg , is a solution to the following problem
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Figure 2.1.

(see Figure 2.1):

−div σ(u) = f in Ω,(2.5)

σ(u)n = g on Γg,(2.6)

u = 0 on Γu.(2.7)

The bold symbol div denotes the divergence operator of a tensor function and is
defined as div σ =

(
∂σij
∂xj

)
i
. The stress tensor is obtained from the displacement

through the constitutive law σ(u) = A(x) ε(u), where A(x) ∈ (L∞(Ω))16; the
Hooke tensor is of fourth order, symmetric and elliptic.

Finally, to close the system, frictionless contact conditions are needed on ΓC .
Denoting by σn the normal component of (σn) and by σt its tangential component,
the contact conditions are formulated as follows:

u.n ≤ 0, σn ≤ 0, σn(u.n) = 0,
σt = 0.

(2.8)

In the linear elasticity context, where the body undergoes small displacements the
strain tensor is ε(u) = 1

2 (∇u+(∇u)T ), problem (2.5)-(2.8) has the same properties
as the Signorini problem (2.1)-(2.4) we intend to study in detail. Then, the whole
numerical analysis is extended also to the unilateral contact elastic problem.

The functional framework well suited to solve Signorini’s problem consists in
working with the subspace H1

0 (Ω,Γu) of H1(Ω) made of functions that vanish at
Γu, endowed with the semi-norm which is equivalent, by Poincaré’s inequality, to
the norm of H1(Ω). Accounting for the unilateral contact condition on ΓC in the
weak formulation may be done in two different ways. In the first, the contact
condition enters the variational formulation through the introduction of the closed
convex set

K(Ω) =
{
v ∈ H1

0 (Ω,Γu), v|ΓC ≥ 0, a.e.
}
.

The primal variational principle for Signorini’s problem produces the variational
inequality: find u ∈ K(Ω) such that

(2.9) a(u, v − u) ≥ L(v − u), ∀v ∈ K(Ω).
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In (2.9) we have set

a(u, v) =
∫

Ω

∇u∇v dx,

L(v) =
∫

Ω

fv dx + 〈g, v〉 1
2 ,Γg

.

Applying Stampacchia’s theorem (see [25], [22]), the weak problem (2.9) is well
posed and has only one solution in K(Ω) that depends continuously on the data
(f, g).

Remark 2.2. When no more regularity than H1(Ω) is available on the solution u,
the normal derivative ∂u

∂n does exist in H−
1
2 (∂Ω) since ∆u ∈ L2(Ω), but cannot be

expressed pointwise. A little care should be paid to give a mathematical sense to
conditions (2.3) and (2.4), which are then formulated as follows:

〈 ∂u
∂n

, v〉 1
2 ,∂Ω − 〈g, v〉 1

2 ,Γg
≥ 0, ∀v ∈ H

1
2
00(∂Ω,Γu), v|ΓC ≥ 0,(2.10)

〈 ∂u
∂n

, u〉 1
2 ,∂Ω − 〈g, u〉 1

2 ,Γg
= 0,(2.11)

where H
1
2
00(∂Ω,Γu) is the subspace of H

1
2 (∂Ω) of the functions that vanish on Γu.

Roughly, (2.10) says that ∂u
∂n = g on Γg and ∂u

∂n ≥ 0 on ΓC , while (2.11) expresses
the saturation condition u ∂u∂n = 0 on ΓC .

A second weak formulation is obtained from writing the solution u as the min-
imizing argument of the energy functional under the unilateral contact inequality
constraints u|ΓC ≥ 0. Such a problem can be reformulated as a saddle point prob-
lem, and hence u is the first component of the saddle point (u, ϕ) of the Lagrangian

(2.12) L(v, ψ) =
1
2
a(v, v) − L(v)− b(ψ, v)

defined on H1
0 (Ω,Γu)×M(ΓC), where

M(ΓC) =
{
∈ H− 1

2 (ΓC), ψ ≥ 0
}
.

The nonnegativity of a distribution ψ ∈ H− 1
2 (ΓC) is to be understood in the sense

that 〈ψ, χ〉 1
2 ,ΓC

≥ 0 for any χ ∈ H 1
2 (ΓC), χ ≥ 0. In (2.12) we have denoted

b(ψ, v) = 〈ψ, v〉 1
2 ,ΓC

.

The properties of L allow us to deduce that the saddle point (u, ϕ) is a solution of
the mixed variational system: find (u, ϕ) ∈ H1

0 (Ω,Γu)×M(ΓC) such that

a(u, v)− b(ϕ, v) = L(v), ∀v ∈ H1
0 (Ω,Γu),(2.13)

b(ψ − ϕ, u) ≥ 0, ∀ψ ∈M(ΓC).(2.14)

A complete analysis of this mixed problem is provided in [24], Theorem 3.14 (see
also [22]), where an existence and uniqueness result is proven. Besides, we have the
following stability:

(2.15) ‖u‖H1(Ω) + ‖ϕ‖
H−

1
2 (ΓC)

≤ C(‖f‖L2(Ω) + ‖g‖
H−

1
2 (Γg)

).
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Remark 2.3. By the Hahn-Banach theorem it can be stated that

K(Ω) =
{
v ∈ H1

0 (Ω,Γu), b(ψ, v) ≥ 0, ∀ψ ∈M(ΓC)
}
.

It is easy to show that if (u, ϕ) is a solution of (2.13)-(2.14), then u ∈ K(Ω) and
satisfies (2.10) and (2.11). Therefore, it can be proven that u is also a solution of
(2.9). Conversely, thanks to the existence and uniqueness results for both problems,
if u is the solution of (2.9), then (u, ϕ) is the solution of the mixed problem (2.13)-
(2.14), where ϕ ∈ H− 1

2 (ΓC) is such that

〈ϕ, v〉 1
2 ,ΓC

= 〈 ∂u
∂n

, v〉 1
2 ,∂Ω − 〈g, v〉 1

2 ,Γg
, ∀v ∈ H

1
2
00(∂Ω,Γu).

When u is sufficiently regular (u ∈ Hσ(Ω), σ > 3
2 ), the normal derivative ∂u

∂n can
be defined pointwise; hence the function ϕ coincides with ∂u

∂n |ΓC , and b(ϕ, u) = 0.

3. Linear finite element framework

We shall now describe the finite elements used in the approximation of the mixed
problem (2.13)-(2.14) and of the variational inequality (2.9). The shape of the
domain Ω is assumed polygonal, so that it can be exactly covered by rectilinear
finite elements. For any given discretization parameter h > 0, let Th, a partition
of Ω into triangles (or quadrangles) with a maximum size h, be given

Ω =
⋃
κ∈Th

κ.

The set of the vertices of the elements is Ξh. The family (Th)h is assumed to be
C 0-regular in the classical sense (see [13], [31]). Moreover, Th is built in such a way
that the set {c1, c2, c

′
1, c
′
2} is included in Ξh. For any κ ∈ Th,Pq(κ) stands for the

set of polynomials of total degree ≤ q. Then we introduce the finite dimensional
subspace Xh(Ω) of H1

0 (Ω,Γu),

Xh(Ω) =
{
vh ∈ C (Ω), ∀κ ∈ Th, vh|κ ∈ P1(κ), vh|Γu = 0

}
.

For simplification, in particular when we are involved with fractional Sobolev norms,
the contact portion ΓC is assumed to be a straight line. More general cases require
higher technicalities, which are beyond the scope of this work.

Due to the C 0-regularity hypothesis, ΓC inherits a regular mesh, denoted T C
h

characterized by the subdivision (xCi )0≤i≤i∗ with xC0 = c1 and xCi∗ = c2; and
(ti =]xCi ,x

C
i+1[)0≤i≤i∗−1 are its elements. Furthermore, if (Ih) denotes the standard

Lagrange interpolation operator, then for any (µ, ν) ∈ [0, 1] × ]1, 2], the following
error estimate holds (see [13]): ∀v ∈ Hν(Ω),

(3.1) ‖v − Ihv‖Hµ(Ω) ≤ Chν−µ‖v‖Hν(Ω).

The constant C depends only on (µ, ν,Ω). Throughout this section, the approxima-
tion of the Lagrange multipliers space M(ΓC) is made by choosing a closed convex
cone Mh(ΓC), which for the two first methods (sections 4 and 5) will be a subset
of the trace space

Wh(ΓC) =
{

h = vh|ΓC , vh ∈ Xh(Ω)
}

=
{

h ∈ C (ΓC), ∀t ∈ T C
h , ψh|t ∈ P1(t)

}
,
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containing the “nonnegative” functions. At this level notion of the nonnegativity is
not yet determined. It may have different meanings according to the mixed finite
elements used, and needs to be made more precise later on.

The discrete framework being adopted, the discrete mixed problem is obtained
from (2.13)-(2.14) by a standard Galerkin procedure and consists in finding (uh, ϕh)
∈ Xh(Ω)×Mh(ΓC) such that

a(uh, vh)− b(ϕh, vh) = L(vh), ∀vh ∈ Xh(Ω),(3.2)

b(ψh − ϕh, uh) ≥ 0, ∀ψh ∈Mh(ΓC).(3.3)

Proving that this problem has only one solution (uh, ϕh) ∈ Xh(Ω)×Mh(ΓC) is an
easy matter using tools of convex optimization in finite dimensions. However, in
order to derive optimal stability results with respect to the natural norms, H1(Ω)
for u and H−

1
2 (ΓC) for ϕ, it is necessary to have a uniform inf-sup condition on

the bilinear form b(., .) set on Mh(ΓC)×Xh(Ω). This inf-sup condition is strongly
connected to the continuity of the L2(ΓC)-orthogonal projection πh on Wh(ΓC),
restricted to H

1
2 (ΓC) with ‖πh‖L(H

1
2 (ΓC))

independent of h. Such a result is obvious

when the one dimensional mesh T C
h is quasi-uniform, and this allows us to use

the inverse inequality. The quasi-uniformity assumption is particularly stringent
and does not authorize some “interesting” meshing used in adaptive processes for
instance. It has been weakened, thanks to the work of Crouzeix and Thomée (see
[16]), which allows for a larger class of meshes. The triangulation T C

h is said to
satisfy the Crouzeix-Thomée criterion if

(3.4)
|ti|
|tj |
≤ Cβ|i−j|, ∀i, j(0 ≤ i, j ≤ i∗ − 1),

where 1 ≤ β < 4 and C does not depend on h (the number 4 is related to the
finite element degree q = 1, i.e., β < (q+ 1)2). Observe that a wide class of radical
and geometric meshes fulfill this criterion. Under the assumption (3.4) and for any
ν ∈ [0, 1], the operator πh has the stability (see [16]): ∀ψ ∈ Hν(ΓC)

(3.5) ‖πhψ‖Hν(ΓC) ≤ C‖ψ‖Hν(ΓC).

Moreover, the following approximation result holds (see [16]): for any ν ∈ [0, 1] and
µ ∈ [0, ν + 1

2 ] we have, ∀ψ ∈ H 1
2 +ν(ΓC),

(3.6) h−
1
2 ‖ψ − πhψ‖

H−
1
2 (ΓC)

+ hµ‖ψ − πhψ‖Hµ(ΓC) ≤ Chν+ 1
2 ‖ψ‖

H
1
2 +ν(ΓC)

.

The boundedness of the error with respect to the H−
1
2 (ΓC)-norm is obtained by

duality and does not require any additional hypothesis on T C
h , while the estimate

in Hν(ΓC) is a direct consequence of (3.5) and is valid under condition (3.4).

Lemma 3.1. Under the assumption (3.4) on the mesh T C
h the following inf-sup

condition holds :

inf
ψh∈Wh(ΓC)

sup
vh∈Xh(Ω)

b(ψh, vh)
‖vh‖H1(Ω)‖ψh‖H− 1

2 (ΓC)

≥ γ.

The constant γ > 0 and does not depend on h.

Proof. Let ψh ∈Wh(ΓC). We are going to construct vh ∈ Xh(Ω) satisfying

(3.7) b(ψh, vh) ≥ ‖ψh‖2
H−

1
2 (ΓC)

and γ‖vh‖H1(Ω) ≤ ‖ψh‖H− 1
2 (ΓC)

.
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Let us consider the function v ∈ H1(Ω) such that

(3.8)
∫

Ω

vw dx+
∫

Ω

∇v∇w dx = b(ψh, w) ∀w ∈ H1(Ω).

The following stability inequalities hold:

(3.9) c−‖ h‖
H−

1
2 (ΓC)

≤ ‖v‖H1(Ω) ≤ c+‖ψh‖H− 1
2 (ΓC)

.

Then we set vh ∈ Xh(Ω) such that vh|ΓC = πh(v|ΓC ) and

(3.10) ‖vh‖H1(Ω) ≤ c‖πhv‖H 1
2 (ΓC)

≤ c‖v‖
H

1
2 (ΓC)

.

Such a vh is built using the stable finite element extension operator studied in [8].
The first statement of (3.7) is valid because

(3.11) b(ψh, vh) = b(ψh, v) = ‖v‖2H1(Ω) ≥ c2−‖ψh‖2H− 1
2 (ΓC)

.

The second is obtained from (3.9) and (3.10) together with the trace theorem. �

This lemma implies that the bilinear form b(., .) fulfills also a uniform inf-sup
on Mh(ΓC)×Xh(Ω) which yields existence and uniqueness for the mixed problem
(3.2)-(3.3)

Proposition 3.2. The discrete mixed finite element problem (3.2)-(3.3) has only
one solution in Xh(Ω)×Mh(ΓC) such that

‖uh‖H1(Ω) + ‖ϕh‖
H−

1
2 (ΓC)

≤ C(‖f‖L2(Ω) + ‖g‖
H−

1
2 (Γg)

).

The constant C does not depend on h.

The numerical modeling of the unilateral contact, while respecting the inclu-
sion Mh(ΓC) ⊂ Wh(ΓC), may be done in two different ways. It is possible to
enforce explicitly either uh ≥ 0 on ΓC or ϕh ≥ 0. These choices provide us with
two variational problems and yield different “theoretical” convergence rates of the
corresponding linear finite element approximations.

4. Mixed finite elements and “nonconforming”

discretization of problem (2.9)

Sometimes, for practical reasons, it is preferred to enforce strongly the non-
negativity condition on ϕ = ∂u

∂n |ΓC rather than on u|ΓC . Then, it is explicitly
incorporated in the Lagrange multipliers space

Mϕ
h (ΓC) =

{
h ∈Wh(ΓC), ψh ≥ 0

}
.

In order to carry out the numerical analysis of this approximation let us define the
discrete closed convex set

Kϕ
h (Ω) =

{
vh ∈ Xh(Ω), b(ψh, vh) ≥ 0, ∀ψh ∈Mϕ

h (ΓC)
}
.

It is an external approximation of K(Ω), i.e., Kϕ
h (Ω) 6⊂ K(Ω). We have uh ∈

Kϕ
h (Ω), and from inequality (3.3) we deduce that b(ϕh, uh) = 0. By some easy

manipulations we derive that uh is also a solution of the discrete Signorini problem:
find uh ∈ Kϕ

h (Ω) such that

(4.1) a(uh, vh − uh) ≥ L(vh − uh), ∀vh ∈ Kϕ
h (Ω).

It may be viewed as a “nonconforming” approximation of the exact problem (2.9).
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An attempt at numerical analysis of this discretization is made in [23] (see also
[15]). Even when the solution u ∈ H2(Ω), the convergence estimate of order Ch

1
4 ,

with respect to the energy norm, is not satisfactory. Numerical evidence (see [15]
and section 7) shows that the error should decay faster. The aim is to improve
the numerical analysis, to recover an optimal error estimate for u, and to derive an
error estimate for the Lagrange multiplier ϕ. The derivation of the error estimate
for u is based on an adaptation of Falk’s Lemma (see [18], [24]).

Lemma 4.1. Let u ∈ K(Ω) be the solution of the variational Signorini inequality
(2.9), and let uh ∈ Kϕ

h (Ω) be the solution of the discrete variational inequality (4.1).
Then

‖u− uh‖2H1(Ω) ≤ C
[

inf
vh∈Kϕ

h (Ω)

(
‖u− vh‖2H1(Ω) + 〈 ∂u

∂n
, vh〉 1

2 ,∂Ω − 〈g, vh〉 1
2 ,Γg

)
(4.2)

+ inf
v∈K(Ω)

(
〈 ∂u
∂n

, v − uh〉 1
2 ,∂Ω − 〈g, v − uh〉 1

2 ,Γg

)]
.

Remark 4.2. The first infimum of the bound given in Lemma 4.1 is the approxi-
mation error, and the integral term involved there is specifically generated by the
discretization of variational inequalities. The last infimum is the consistency error;
it is the “variational crime” and is due to the nonconformity of the approximation.

Using Lemma 4.1, together with the finite element approximation results, we are
in position to provide the convergence rate of our finite element approximation.

Theorem 4.3. Let u ∈ K(Ω) be the solution of the continuous Signorini problem
(2.9), and uh ∈ Kϕ

h (Ω) the solution of (4.1). Assume u ∈ H2(Ω). Then

(4.3) ‖u− uh‖H1(Ω) ≤ Ch
1
2 ‖u‖H2(Ω).

Remark 4.4. If Γu and Γg share a common point (as is the case in Figure 2.1),
the exact solution u is expected to contain a singular part that does not belong
to H

3
2 (see [20]). However, since our goal is only to focus on the approximation

behavior around ΓC , we can assume that this singularity is not effective (or in an
equivalent way the singular coefficient is switched off). Besides, notice that the
convergence rate of the integral term depends only on the smoothness of u around
ΓC , and unless the domain is cracked near this contact zone, the solution u has
a regularity exponent higher than two (see [28]), and the regularity assumed on
u in the theorem seems to be quiet reasonable as soon as f and g are sufficiently
smooth.

Before giving the proof of the theorem, we need separate bounds for the approx-
imation error and the consistency error.

Lemma 4.5. Let u ∈ K(Ω) be the solution of the continuous Signorini problem
(2.9), and uh ∈ Kϕ

h (Ω) the solution of (4.1). Assume u ∈ H2(Ω). Then

inf
vh∈Kϕ

h (Ω)

(
‖u− vh‖2H1(Ω) +

∫
ΓC

∂u

∂n
vh dΓ

)
≤ Ch2‖u‖2H2(Ω).

Proof. Choose vh = Ihu + wh, with wh ∈ Xh(Ω) a stable extension of the trace
function (πh(u|Γc)− (Ihu)|Γc). To check that vh ∈ Kϕ

h (Ω), it is sufficient to observe
that vh|ΓC = πh(u|Γc), and since u|Γc ≥ 0, we have, ∀ψh ∈Mϕ

h (ΓC),

b(ψh, vh) =
∫

ΓC

πh(u|Γc)ψh dΓ =
∫

ΓC

(u|Γc)ψh dΓ ≥ 0.
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Furthermore, using (3.1) and (3.6) produces

‖u− vh‖H1(Ω) ≤ ‖u− Ihu‖H1(Ω) + C‖πh(u|Γc)− (Ihu)|Γc‖H 1
2 (ΓC)

≤ Ch‖u‖H2(Ω).

In order to evaluate the integral term we use the saturation condition (u ∂u∂n )|ΓC = 0
and again the estimate (3.6):∫

ΓC

∂u

∂n
vh dΓ =

∫
ΓC

∂u

∂n
(πhu− u) dΓ ≤ ‖ ∂u

∂n
‖
H

1
2 (ΓC)

‖πhu− u‖
H−

1
2 (ΓC)

≤ Ch2‖ ∂u
∂n
‖
H

1
2 (ΓC)

‖u‖
H

3
2 (ΓC)

≤ Ch2‖u‖2H2(Ω).

This proves the lemma. �

Lemma 4.6. Let u ∈ K(Ω) be the solution of the continuous Signorini problem
(2.9), and uh ∈ Kϕ

h (Ω) the solution of (4.1). Assume u ∈ H2(Ω). Then the
consistency error is bounded as follows :

inf
v∈K(Ω)

∫
ΓC

∂u

∂n
(v − uh) dΓ ≤ C

(
h

3
2 ‖u‖H2(Ω) + h

1
2 ‖u− uh‖H1(Ω)

)
‖u‖H2(Ω).

Proof. Choose v = u; then we have, ∀ψh ∈Mϕ
h (ΓC),∫

ΓC

∂u

∂n
(u− uh) dΓ =

∫
ΓC

(
∂u

∂n
− ψh)(u − uh) dΓ +

∫
ΓC

h(u− uh) dΓ.

Taking ψh = rh( ∂u∂n ) (rh is a nonstandard Clément type interpolation operator
preserving nonnegativity, and is defined in Appendix A) and using (A.5), the first
integral is easily handled:

(4.4)
∫

ΓC

(
∂u

∂n
− ψh)(u − uh) dΓ ≤ Ch 1

2 ‖u‖H2(Ω)‖u− uh‖H1(Ω).

Optimality is not reached in (4.4). To recover the optimal rate (h instead of h
1
2 ) it

is necessary to construct ψh ≥ 0 such that ( ∂u∂n − ψh) decays like h with respect to
the norm of H−

1
2 (ΓC), which is still an open question.

Working out the remaining term requires some preliminary technical steps. On
account of b(ψh, uh) ≥ 0, and of the saturation condition, we derive

∫
ΓC

h(u− uh) dΓ ≤
∫

ΓC
hu dΓ =

∫
ΓC

(ψh −
∂u

∂n
)u dΓ

≤
∑
t∈T C

h

∫
t

(ψh −
∂u

∂n
)u dΓ ≤

∑
t∈T C

h

‖ψh −
∂u

∂n
‖L2(t)‖u‖L2(t).

(4.5)

Then, focussing on each segment t, if u|Tt > 0 then ∂u
∂n |Tt = 0, and then, from

Remark A.3, ψh|t = 0 (see Appendix A for the notation Tt); otherwise, u vanishes
at least once in Tt. This results in, ∀x ∈ Tt,

|u(x)| ≤ ch
1
2
t |u|H1(Tt),

from which we deduce that

‖u‖L2(t) ≤ cht|u|H1(Tt).
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Going back to (4.5) and using Cauchy-Schwartz inequality, we obtain

(4.6)
∫

ΓC
h(u− uh) dΓ ≤ C

∑
t∈T C

h

h
1
2
t

∥∥∥ ∂u
∂n

∥∥∥
H

1
2 (Tt)

ht|u|H1(Tt) ≤ Ch
3
2 ‖u‖2H2(Ω).

Putting together (4.4) and (4.6) finishes the proof of the lemma. �

Proof of Theorem 4.3. Using Lemma 4.1 with the results of Lemmas 4.5 and 4.6
yields the inequality

‖u− uh‖2H1(Ω) ≤ C(h
1
2 ‖u− uh‖H1(Ω) + h

3
2 ‖u‖H2(Ω))‖u‖H2(Ω),

from which we derive the final estimate (4.3). �

Corollary 4.7. Let (u, ϕ) be the solution of the mixed Signorini problem (2.13)-
(2.14), and (uh, ϕh) ∈ Xh(Ω)×Mϕ

h (ΓC) the solution of the discrete mixed inequality
(3.2)-(3.3). Assume u ∈ H2(Ω). Then

(4.7) ‖ϕ− ϕh‖
H−

1
2 (ΓC)

≤ Ch 1
2 ‖u‖H2(Ω).

Proof. Let ψh ∈Mϕ
h (ΓC) and vh ∈ Xh(Ω). Then

b(ϕh − ψh, vh) = a(uh, vh)− L(vh)− b(ψh, vh) = a(u− uh, vh) + b(ϕ− ψh, vh).

On account of the inf-sup condition of Lemma 3.1 and the triangle inequality,

‖ϕ− ϕh‖
H−

1
2 (ΓC)

≤ C
(
‖u− uh‖H1(Ω) + inf

ψh∈Mϕ
h (ΓC)

‖ϕ− ψh‖
H−

1
2 (ΓC)

)
.

The estimate is completed by taking ψh = rh(ϕ) ∈Mϕ
h (ΓC) and using Theorem 4.3.

�

Remark 4.8. In the particular case where a Dirichlet boundary condition is applied
to one (or both) of the extreme points of ΓC—let us say c1, and recall that t0 ∈ T C

h

is the boundary element containing it—the trace operator maps H1
0 (Ω,Γu) onto

H
1
2
00(ΓC , {c1}) which coincides with the interpolated space [H1

0 (ΓC , {c1}), L2(ΓC)] 1
2

(see [27]). The construction of the Lagrange multipliers space Mϕ
h (ΓC) requires

some modifications. It is chosen to be a convex cone of the space

M̃h(ΓC) =
{
ψh ∈ Wh(ΓC), ψh|t0 ∈ P0(t)

}
involving all nonnegative functions

Mϕ
h (ΓC) =

{
h ∈ M̃h(ΓC), ψh ≥ 0

}
.

The proof of the inf-sup condition on b(., .) restricted to M̃h(ΓC)×Xh(Ω) is based
on the properties of the projection operator

π̃h : H
1
2
00(ΓC , {c1})→W 0

h (ΓC , {c1}) =
{

h ∈Wh(ΓC), ψh(c1) = 0
}

defined as follows: ∫
ΓC

(ϕ− π̃hϕ)ψh dΓ = 0, ∀ψh ∈ M̃h(ΓC).

Here again under the Crouzeix-Thomée criterion (3.4) on the mesh T C
h we have

the uniform stability (see [4], Lemma 2.2, or [30])

‖π̃hψ‖
H

1
2
00(ΓC ,{c1})

≤ C‖ψ‖
H

1
2
00(ΓC ,{c1}))

.
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This operator is called the mortar projector, and is used to enforce weak continuity
conditions of finite element functions at the interfaces of nonmatching grids (see
[9], [7], [2]). As a consequence, the inf-sup condition given in Lemma 3.1 is still
valid when the norm of H−

1
2 (ΓC) is replaced by the more appropriate norm of

H
1
2
00(ΓC , {c1})′. As a corollary, the well posedness for the discrete mixed problem

of Proposition 3.2 holds true, and the approximation results of Theorem 4.3 and
Corollary 4.7 are also valid in the sense that if u ∈ H2(Ω), then

(4.8) ‖u− uh‖H1(Ω) + ‖ϕ− ϕh‖
H

1
2
00(ΓC ,{c1})′

≤ Ch 1
2 ‖u‖H2(Ω).

5. Mixed finite elements and conforming

discretization of problem (2.9)

Enforcing explicitly uh|ΓC ≥ 0 requires that we use the polar convex cone of
Mϕ
h (ΓC), denoted Mu

h (ΓC) and characterized as the subset of Wh(ΓC) containing
all “weakly” nonnegative functions,

Mu
h (ΓC) =

{
h ∈ Wh(ΓC),

∫
ΓC

hχh dΓ ≥ 0, ∀χh ∈Mϕ
h (ΓC)

}
.

If (uh, ϕh) is the solution to the discrete mixed finite element problem (3.2)-(3.3)
set on Xh(Ω)×Mu

h (ΓC), then uh belongs to

Ku
h(Ω) =

{
vh ∈ Xh(Ω), b(ψh, vh) ≥ 0, ∀ψh ∈Mu

h (ΓC)
}
.

By the Hahn-Banach theorem we have explicitly

Ku
h (Ω) =

{
vh ∈ Xh(Ω), vh|ΓC ≥ 0

}
.

Besides, uh is the unique solution of the discrete Signorini variational inequality:
find uh ∈ Ku

h (Ω) such that

(5.1) (4.1) is satisfied , ∀vh ∈ Ku
h(Ω).

The convex set Ku
h (Ω) is an internal approximation of K(Ω), i.e., Kh(Ω) ⊂ K(Ω);

the discretization of the Signorini problem (2.9) is then conforming in the Hodge
sense.

The numerical analysis of this problem starts by deriving an error estimate for
u, and then we need another adaptation of Falk’s results to our conforming case.

Lemma 5.1. Let u ∈ K(Ω) be the solution to the variational Signorini inequality
(2.9), and uh ∈ Ku

h (Ω) the solution to the discrete variational inequality (5.1).
Then

‖u− uh‖2H1(Ω) ≤ C inf
vh∈Ku

h (Ω)

(
‖u− vh‖2H1(Ω) + 〈 ∂u

∂n
, vh〉 1

2 ,∂Ω − 〈g, vh〉 1
2 ,Γg

)
.

Proof. It is direct from Lemma 4.1, where the consistency error is canceled because
the approximation is conforming. �

Theorem 5.2. Let u ∈ K(Ω) be the solution to the continuous variational Signorini
problem (2.9), and uh ∈ Ku

h (Ω) the “conforming” piecewise linear approximation
of u, the solution to (5.1). Assume u ∈ H2(Ω). Then

(5.2) ‖u− uh‖H1(Ω) ≤ Ch
3
4 ‖u‖H2(Ω).
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Moreover, if in addition the number of points in ΓC where the constraint changes
from binding to nonbinding is finite then

(5.3) ‖u− uh‖H1(Ω) ≤ Ch| log(h)| 14 ‖u‖H2(Ω).

Proof. The proof is based on the choice vh = Ihu ∈ Ku
h (Ω) (5.2) is shown in a

standard way (see [22], for instance). The estimate (5.3) is slightly better than the
convergence rate of order h| log(h)| 12 , given in [3], and is proven as follows.

Consider ΓB and ΓN , the portions of ΓC defined respectively by u|ΓB = 0 and
u|ΓN > 0; therefore ( ∂u∂n )|ΓN = 0. Then, select, among the triangles κ ∈ Th having
a complete edge contained in ΓC , those for which κ∩ΓB 6= ∅ and κ∩ΓN 6= ∅. Their
number is bounded uniformly in h in view of the additional assumption; the set of
such elements is denoted sh. Looking at the product ( ∂u∂n (Ihu))|κ∩ΓC , we see that
because of the saturation condition it vanishes except for κ ∈ sh. Thus,∫

ΓC

∂u

∂n
(Ihu) dΓ =

∑
κ∈sh

∫
κ∩ΓC

∂u

∂n
(Ihu) dΓ =

∑
κ∈sh

∫
κ∩ΓC

∂u

∂n
(Ihu− u) dΓ.

For any real number p in ]1, 2] and p′ ∈ [2,+∞[ its conjugate number, i.e., 1
p+ 1

p

′ = 1,
the Hölder inequality produces∫

ΓC

∂u

∂n
(Ihu) dΓ ≤

∑
κ∈sh

∥∥∥ ∂u
∂n

∥∥∥
Lp′(κ∩ΓC)

‖Ihu− u‖Lp(κ∩ΓC)

≤
∑
κ∈sh

∥∥∥ ∂u
∂n

∥∥∥
Lp′(κ∩ΓC)

h
1
p ‖Ihu− u‖L∞(κ∩ΓC).

Having in mind that the cardinality of the set sh is bounded uniformly in h, we get

(5.4)
∣∣∣ ∫

ΓC

∂u

∂n
(Ihu) dΓ

∣∣∣ ≤ Ch 1
p

∥∥∥ ∂u
∂n

∥∥∥
Lp′(ΓC)

‖Ihu− u‖L∞(ΓC).

In one side, using the Sobolev-Morrey theorem, we obtain

‖ ∂u
∂n
‖Lp′(ΓC) ≤ C

√
p′
∥∥∥ ∂u
∂n

∥∥∥
H

1
2 (ΓC)

≤ C
√
p′‖u‖H2(Ω),

with C independent of p′. In the other side the Gagliardo-Nirenberg inequality
implies that

‖Ihu− u‖L∞(ΓC) ≤ C‖Ihu− u‖
1
2
L2(ΓC)‖Ihu− u‖

1
2
H1(ΓC) ≤ Ch‖u‖H2(Ω).

Inserting these in (3.4) leads to∫
ΓC

∂u

∂n
(Ihu) dΓ ≤ Ch2(h−

1
p
′√

p′)‖u‖2H2(Ω).

Taking p′ = | log h| finishes the proof. �

Remark 5.3. Although the additional assumption in Theorem 5.2 (that is, the
number of points where the constraints ∂u

∂n become effective is finite) is most often
valid, it seems to be a working hypothesis currently used and has appeared first
in [11]. In particular, from the solid mechanics point of view, it appears to be
a fair modeling of realistic unilateral situations which engineers are interested in.
Conversely, if this hypothesis is violated, it is not possible to find out, through the
numerical results, that the points where the type of contact condition is changed,
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are of infinite number. This might be a justification of the loss of optimality, in
this case.

Corollary 5.4. Let (u, ϕ) be the solution to the mixed Signorini problem (2.13)-
(2.14), and (uh, ϕh) ∈ Xh(Ω)×Mu

h (ΓC) the solution to the discrete mixed inequality
(3.2)-(3.3). Assume u ∈ H2(Ω). Then

‖ϕ− ϕh‖
H−

1
2 (ΓC)

≤ Ch 3
4 ‖u‖H2(Ω).

Moreover, if in addition the number of points in ΓC where the constraint changes
from binding to nonbinding is finite, then

‖ϕ− ϕh‖
H−

1
2 (ΓC)

≤ Ch| log(h)| 14 ‖u‖H2(Ω).

Proof. Proceeding as in the proof of Corollary 4.7, we get

(5.5) ‖ϕ− ϕh‖
H−

1
2 (ΓC)

≤ C
(
‖u− uh‖H1(Ω) + inf

ψh∈Mu
h (ΓC)

‖ϕ− ψh‖
H−

1
2 (ΓC)

)
.

Finally, choose ψh = πhϕ which belongs to Mu
h (ΓC), and use Theorem 5.2 and the

estimate (3.6). �
Remark 5.5. Handling the particular situation described in Remark 4.8, where a
Dirichlet boundary condition is applied to one or two extreme points of ΓC (say
c1), also requires a change in the construction of the Lagrange multipliers space
Mu
h (ΓC). It is defined to be the convex cone

(5.6)

Mu
h (ΓC) =

{
h ∈ M̃h(ΓC),

∫
ΓC

hχh ≥ 0, ∀χh ∈W 0
h (ΓC , {c1}), χh ≥ 0

}
.

Identifying M̃h(ΓC) to the dual space of W 0
h (ΓC , {c1}) and using the Hahn-Banach

Theorem again, we get

Ku
h (Ω) =

{
vh ∈ Xh(Ω), vh|ΓC ≥ 0

}
.

The error estimate on u is carried out exactly as in Theorem 5.2, and the con-
vergence results given there still hold true. However, studying the accuracy of the
method on ϕ is based on an optimal approximation estimate, in the H

1
2
00(ΓC , {c1})′-

norm, of some projection operator π̌h : L2(ΓC) → Wh(ΓC) constructed and ana-
lyzed in Appendix B. Consequently, choosing ψh = π̌hϕ in (5.5) in view of (B.2)
yields the same bound as Corollary 5.4 under the same hypothesis.

6. Bubble-stabilized mixed finite elements

Many authors (see [26], for instance) use piecewise constant Lagrange multipliers,
meaning that they work with the space

Nh(ΓC) =
{

h ∈ L2(ΓC), ∀t ∈ T C
h , ψh|t ∈ P0(t), ψh ≥ 0

}
.

The numerical analysis of the resulting mixed problem set on Xh(Ω) × Nh(ΓC)
allows one to exhibit a satisfactory convergence rate. Actually, if u ∈ H2(Ω), it is
proven in [26] that

‖u− uh‖H1(Ω) + ‖ϕ− ϕh‖
H−

1
2 (ΓC)

≤ Ch 3
4 ‖u‖H2(Ω).

Unfortunately this mixed finite element discretization has an essential drawback.
It works only in the particular situation where neither of the extreme points of ΓC

14
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Figure 6.1.

is subjected to a Dirichlet condition. Otherwise, the space Nh(ΓC) contains one
(if only one point of {c1, c2} is subjected to a Dirichlet boundary condition) or
two (if both extreme points of ΓC are subjected to Dirichlet conditions) spurious
modes, and the well posedness of the discrete equations (3.2)-(3.3) is definitely lost.
Besides, there is no hope that it could be extended to three-dimensional problems,
as it is well known that the number of triangles in ΓC is drastically higher than
the number of the degrees of freedom attached to ΓC . This results necessarily in a
great number of spurious modes, and the discrete problem is ill-posed.

A possible way to avoid the difficulties of this approach is to stabilize the ap-
proximation by introducing the bubble finite element functions. This approach is
inspired by the work of [10] and [12], where it is used in some nonconforming domain
decomposition algorithms and proved to perform well. The discrete space will be
enriched by some bubble functions defined on each t ∈ T C

h . Precisely, let there be
given an element t ∈ T C

h with vertices {x1,x2} and κ = κt the (unique!) triangle
of Th having t as an edge. The vertices of κ are (xi)1≤i≤3, and λi, (1 ≤ i ≤ 3) is
the barycentric coordinate associated with xi. The bubble function we need to use
is defined to be (see Figure 6.1 for its shape)

ϕt(x) =
6
|t|λ1(x)λ2(x), ∀x ∈ κ,

and extended by zero elsewhere. The normalization coefficient allows us to have∫
t ϕt dΓ = 1.

The function ϕt is continuous and vanishes on the skeleton of the mesh, except
on t, where it is explicitly given by

(ϕt)|t(x) =
6
|t|3 (x− xi,xi+1 − x)R2 .

Then, the finite element space, where uh is computed, is given by

Yh(Ω) = Xh(Ω)⊕
( ⊕
t∈T C

h

Rϕt
)
.

Setting as degrees of freedom

Σ =
{
vh(x),x ∈ Ξh,

∫
t

(vh − Ihvh) dΓ, t ∈ T C
h

}
,
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it is not hard to show that (Ω, Yh(Ω),Σ) is unisolvent. We also need to introduce
the interpolation operator Jh, defined for any v ∈ C (Ω) as follows:

Jhv = Ihv +
∑
t∈T C

h

(∫
t

(v − Ihv) dΓ
)
ϕt.

The operator Jh leaves the elements of Xh(Ω) invariant, and as a consequence, for
any (µ, ν) ∈ [0, 1] × ]1, 2], the following error estimate holds: ∀v ∈ Hν(Ω),

(6.1) ‖v − Jhv‖Hµ(Ω) ≤ Chν−µ‖v‖Hν(Ω).

We are now in position to pose the discrete stabilized mixed finite element problem:
find (uh, ϕh) ∈ Yh(Ω)×Nh(ΓC) such that

a(uh, vh)− b(ϕh, vh) = L(vh), ∀vh ∈ Yh(Ω),(6.2)

b(ψh − ϕh, uh) ≥ 0, ∀ψh ∈ Nh(ΓC).(6.3)

Remark 6.1. The range of the space Yh(Ω) under the trace operator on ΓC is the
quadratic Lagrangian finite element space

Vh(ΓC) =
{
χh ∈ C (ΓC), ∀t ∈ T C

h , χh|t ∈ P2(t)
}
.

The idea of approximating u|ΓC by quadratic finite elements and the flux ϕ = ∂u
∂n

by a piecewise constant function is not new; it was also used in the P2 ×P0 mixed
finite elements discretization of Poisson problem (see [29], [32]).

Remark 6.2. It is sufficient for the stabilization to add the bubble functions only to
the external elements t0 and ti∗−1 of ΓC , those that contain c1 or c2. The analysis
is carried out following the same arguments as presented below.

The proof of the well posedness of the mixed variational inequality relies on a
uniform inf-sup condition which is provided by

Lemma 6.3. Under the Crouzeix-Thomée assumption (3.4) on the mesh T C
h , the

following inf-sup condition holds :

inf
ψh∈Nh(ΓC)

sup
vh∈Yh(Ω)

b(ψh, vh)
‖vh‖H1(Ω)‖ψh‖H− 1

2 (ΓC)

≥ γ′.

The constant γ′ > 0 and does not depend on h.

Proof. We follow the same lines as for Lemma 3.1. For any ψh ∈ Nh(ΓC) we intend
to construct vh ∈ Yh(Ω) satisfying (3.7).

Let v ∈ H1(Ω) be the solution to the Laplace problem (3.8). By a stable finite
element extension as in [8], it is possible to construct vh ∈ Yh(Ω) such that

vh|ΓC = r̃hv|ΓC +
∑
t∈T C

h

(∫
t

(v − r̃hv) dΓ
)
ϕt and ‖vh‖H1(Ω) ≤ c‖vh‖H 1

2 (ΓC)
,

r̃h being the standard Clément regularizing operator defined in Appendix A. The
constant c is independent of h. Then, computing b(ψh, vh) and using (3.11) yields

b(ψh, vh) =
∑
t∈T C

h

ψh|t

∫
t

v dΓ =
∫

ΓC
hv dΓ = b(ψh, v) ≥ c‖ψh‖2

H−
1
2 (ΓC)

.

In order to show that

(6.4) ‖vh‖
H

1
2 (ΓC)

≤ c‖v‖
H

1
2 (ΓC)

≤ c‖ψh‖
H−

1
2 (ΓC)

,
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we first need to bound∥∥∥ ∑
t∈T C

h

(∫
t

(v − r̃hv) dΓ
)
ϕt

∥∥∥2

L2(ΓC)
=
∑
t∈T C

h

(∫
t

(v − r̃hv) dΓ
)2

‖ϕt‖2L2(t)

≤ 6
5

∑
t∈T C

h

|t|−1
(∫

t

(v − r̃hv) dΓ
)2

≤ 6
5

∑
t∈T C

h

‖v − r̃hv‖2L2(t).

Using (A.4) with ν = 0 produces∥∥∥ ∑
t∈T C

h

(∫
t

(v − r̃hv) dΓ
)
ϕt

∥∥∥2

L2(ΓC)
≤ c

∑
t∈T C

h

‖v‖2L2(Tt)
≤ c‖v‖2L2(ΓC).

In the other side,∣∣∣ ∑
t∈T C

h

(∫
t

(v − r̃hv) dΓ
)
ϕt

∣∣∣2
H1(ΓC)

=
∑
t∈T C

h

(∫
t

(v − r̃hv) dΓ
)2

|ϕt|2H1(t)

≤ 12
∑
t∈T C

h

|t|−3
(∫

t

(v − r̃hv) dΓ
)2

≤ 12
∑
t∈T C

h

|t|−2‖v − r̃hv‖2L2(t).

By (A.3) we have∣∣∣ ∑
t∈T C

h

(∫
t

(v − r̃hv) dΓ
)
ϕt

∣∣∣2
H1(ΓC)

≤ c
∑
t∈T C

h

|v|2H1(Tt)
≤ c|v|2H1(ΓC).

Finally, again on account of (A.4) with ν = 0 and ν = 1, we obtain

‖vh‖L2(ΓC) ≤ c‖v‖L2(ΓC) and ‖vh‖H1(ΓC) ≤ c‖v‖H1(ΓC).

The stability (6.4) is derived by Hilbert interpolation. �

Proposition 6.4. The discrete mixed finite element problem (6.2)-(6.3) has only
one solution in Yh(Ω)×Nh(ΓC) such that

‖uh‖H1(Ω) + ‖ϕh‖
H−

1
2 (ΓC)

≤ C(‖f‖L2(Ω) + ‖g‖
H−

1
2 (Γg)

).

The constant C does not depend on h.

As in the previous sections, we begin the numerical analysis by proving an error
estimate for u. Then, we introduce the following convex cone:

Kh(Ω) =
{
vh ∈ Yh(Ω), b(ψh, vh) ≥ 0, ∀ψh ∈ Nh(ΓC)

}
=
{
vh ∈ Yh(Ω),

∫
t

vh dΓ ≥ 0
}
.

The function uh belongs to Kh(Ω) and is the unique solution to the discrete Sig-
norini problem: find uh ∈ Kh(Ω) such that

(6.5) (4.1) is satisfied, ∀vh ∈ Kh(Ω).
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As we have Kh(Ω) 6⊂ K(Ω), Kh(Ω) is then an external approximation K(Ω). The
discretization of the formulation (2.9) of Signorini’s problem by the finite element
variational inequality (6.5) is nonconforming. Nevertheless, the convergence rate of
this algorithm is “quasi-optimal”.

Theorem 6.5. Let u ∈ K(Ω) be the solution to the continuous variational Signorini
problem (2.9), and uh ∈ Kh(Ω) the “nonconforming” stabilized linear finite element
approximation of u, the solution to (6.5). Assume u ∈ H2(Ω). Then

(6.6) ‖u− uh‖H1(Ω) ≤ Ch
3
4 ‖u‖H2(Ω).

Moreover, if in addition the number of points in ΓC where the constraint changes
from binding to nonbinding is finite, then

(6.7) ‖u− uh‖H1(Ω) ≤ Ch| log(h)| 14 ‖u‖H2(Ω).

The proof is based on Lemma 4.1 and needs two intermediary results. The first
is the bound for the approximation error.

Lemma 6.6. Let u ∈ K(Ω) be the solution of the continuous Signorini problem
(2.9), and uh ∈ Kh(Ω) the solution to (6.5). Assume u ∈ H2(Ω). Then

inf
vh∈Kh(Ω)

(
‖u− vh‖2H1(Ω) +

∫
ΓC

∂u

∂n
vh dΓ

)
≤ Ch2‖u‖2H2(Ω).

Proof. Choose vh = Jhu. It is easily checked that ∀ψh ∈ Nh(ΓC),

b(ψh, vh) = b(ψh, u) =
∫

ΓC
hu dΓ ≥ 0.

Then vh ∈ Kh(Ω). Bounding ‖u− vh‖H1(Ω) is direct from (6.1). The integral term
is treated in the following way, using the saturation condition:∫

ΓC

∂u

∂n
vh dΓ =

∫
ΓC

∂u

∂n
(Jhu− u) dΓ.

The properties of Jh allow to write, ∀ψh ∈ Nh(ΓC),∫
ΓC

∂u

∂n
vh dΓ =

∫
ΓC

(
∂u

∂n
− ψh)(Jhu− u) dΓ ≤ ‖ ∂u

∂n
− h‖L2(ΓC)‖Jhu− u‖L2(ΓC).

We conclude by using the standard approximation. �

Lemma 6.7. Let u ∈ K(Ω) be the solution to the continuous Signorini problem
(2.9), and uh ∈ Kh(Ω) the solution to (6.5). Assume u ∈ H2(Ω). Then the
consistency error is bounded as follows:

inf
v∈K(Ω)

∫
ΓC

∂u

∂n
(v − uh) dΓ ≤ C

(
h

3
2 ‖u‖H2(Ω) + h‖u− uh‖H1(Ω)

)
‖u‖H2(Ω).

Moreover, if in addition the number of points in ΓC where the constraint changes
from binding to nonbinding is finite, then

inf
v∈K(Ω)

∫
ΓC

∂u

∂n
(v − uh) dΓ ≤ C

(
h2| log h| 12 ‖u‖H2(Ω) + h‖u− uh‖H1(Ω)

)
‖u‖H2(Ω).
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Proof. It is similar to that of Lemma 4.6. Choose v = u; then we have, ∀ψh ∈
Nh(ΓC),∫

ΓC

∂u

∂n
(u− uh) dΓ =

∫
ΓC

(
∂u

∂n
− ψh)(u − uh) dΓ +

∫
ΓC

h(u− uh) dΓ.

The first part is handled as follows:∫
ΓC

(
∂u

∂n
− ψh)(u − uh) dΓ ≤

∥∥∥ ∂u
∂n
− h

∥∥∥
H−

1
2 (ΓC)

‖u− uh‖
H

1
2 (ΓC)

.

If we take ψh|t = |t|−1
∫
t
∂u
∂n dΓ ≥ 0, then ψh ∈ Nh(ΓC); it is actually the orthogonal

projection of ∂u
∂n on piecewise constant functions. By duality we obtain∥∥∥ ∂u

∂n
− h

∥∥∥
H−

1
2 (ΓC)

≤ ch‖u‖H2(Ω).

Therefore

(6.8)
∫

ΓC

(
∂u

∂n
− ψh)(u− uh) dΓ ≤ ch‖u‖H2(Ω)‖u− uh‖H 1

2 (ΓC)
.

Next, focussing on the remaining part, observe that, due to the unilateral condition,∫
ΓC

h(u− uh) dΓ ≤
∫

ΓC
hu dΓ.

By the saturation we have∫
ΓC

hu dΓ =
∫

ΓC

(ψh −
∂u

∂n
)u dΓ.

Or equivalently, ∀χh ∈ Nh(ΓC),∫
ΓC

hu dΓ =
∫

ΓC

(ψh −
∂u

∂n
)(u− χh) dΓ.

Choosing the appropriate χh|t = |t|−1
∫
t u dΓ leads to

(6.9)
∫

ΓC
h(u− uh) dΓ ≤ Ch 3

2

∥∥∥ ∂u
∂n

∥∥∥
H

1
2 (ΓC)

‖u‖H1(ΓC).

Assembling together (6.8) and (6.9) gives the first estimate of the lemma.
In the case of the additional assumption this last term is worked out as in the

proof of Lemma 4.6 modulo some slight modifications, which yields the second
estimate of the lemma. �

Proof of Theorem 6.5. Using Lemmas 4.1, 6.6, and 6.7 we deduce that

‖u− uh‖2H1(Ω) ≤ C
(
h

3
2 ‖u‖H2(Ω) + h‖u− uh‖H1(Ω)

)
‖u‖H2(Ω).

Hence the result follows by Cauchy-Schwarz. �

The error estimate for the Lagrange multiplier ϕ follows from the inf-sup condi-
tion of Lemma 6.3 and Theorem 6.5.

Corollary 6.8. Let (u, ϕ) be the solution to the mixed Signorini problem (2.13)-
(2.14), and (uh, ϕh) ∈ Yh(Ω)×Nh(ΓC) the solution to the discrete mixed inequality
(6.2)-(6.3). Assume u ∈ H2(Ω). Then

‖ϕ− ϕh‖
H−

1
2 (ΓC)

≤ Ch 3
4 ‖u‖H2(Ω).
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Moreover, if in addition the number of points in ΓC where the constraint changes
from binding to nonbinding is finite, then

‖ϕ− ϕh‖
H−

1
2 (ΓC)

≤ Ch| log(h)| 14 ‖u‖H2(Ω).

Remark 6.9. When the contact zone ΓC has one (or two) common extreme point
with Γu (say c1), meaning that a Dirichlet boundary condition is enforced on c1, the
construction of both spaces Yh(Ω) and Nh(ΓC) does not change and the numerical
analysis remains valid as is. The only modification to be taken into account is the
norm used on the Lagrange multipliers, which is in this case ‖.‖

H
1
2
00(Γc,{c1})′

instead

of ‖.‖
H−

1
2 (Γc)

.

7. Numerical discussion

To illustrate the finite element solutions computed by the three approaches we
consider the Signorini problem on the squared domain Ω = [0, 1]2. For both expe-
riences examined below, the unilateral side is the lower edge ΓC = [0, 1]× {0} and
the volume data is fixed as f = sin(2πx). The different simulations are run using
a C++ linear triangular finite element code developed by our team. The discrete
solution is obtained as the argument of a convex minimization problem using the
conjugate gradient algorithm.

Since an explicit solution of Signorini’s problem is not available to us, the
methodology followed for our purpose consists in calculating the discrete solution by
the quadratic triangular finite elements with sufficiently high resolution (h = 1

256),
which is then taken as the reference solution u. Next, we compute uh, the ap-
proximated solution of Signorini’s problem, by the conforming, nonconforming and
stabilized linear finite element methods using structured meshes for mesh sizes
h ∈ { 1

4 ,
1
8 ,

1
16 ,

1
32 ,

1
64}, and we compare it with the reference solution. The exami-

nation of the convergence curves gives us a pertinent insight on the performances
of each of the approximations, and we can draw some reliable conclusions.

In the first experiment we carried out, both vertical edges are subjected to ho-
mogeneous Neumann conditions while on the upper edge a homogeneous Dirichlet
condition is prescribed. In Figure 7.1 we plotted the reference solution—actually,
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Figure 7.1.
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Table 7.1.

L2-error

h = 0.0625 0.03125 0.015625

CFE 0.005074 0.00122 0.00030241

NCFE 0.005078 0.00123 0.00030246

SFE 0.005023 0.00124 0.00030325

H1-error

CFE 0.0843 0.04169 0.02035

NCFE 0.0844 0.04170 0.02036

SFE 0.0842 0.04172 0.02034

L∞-error

CFE 0.01025 0.0027969 0.0009717

NCFE 0.01136 0.0027963 0.0009716

SFE 0.01020 0.0025073 0.0007983

the curve represents the interpolant of the reference solution on the coarser grid de-
termined by h = 1

32 . The hypothesis made in Theorem 5.2 to obtain estimate (5.2)
and in Theorem 6.5 for estimate (6.7) is clearly fulfilled: there is a single point
where the constraint changes from binding to nonbinding.

Table 7.1 provides, for all the approximations (CFE, NCFE and SFE indicate
the conforming, the nonconforming and the stabilized finite elements respectively)
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h
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−2

10
−1

10
0

er
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Figure 7.2.
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the variation of the L2-, H1- and L∞-errors respectively with respect to the mesh
sizes h = 1

16 ,
1
32 and 1

64 . The first conclusion that comes to mind is that the three
methods give almost the same results with a satisfactory accuracy.

We are also interested in the convergence rate of these discretizations, mainly
for the L2- and H1-errors, so as to figure out whether the numerical results are
in agreement with the theoretical predictions. To cope with this we choose to
plot in Figure 7.2, in a logarithmic scale for both axes, the curves of these errors
as functions of the mesh size h only for the conforming finite elements. This is
motivated by our desire not to have superposed curves, because, based on the
results of Table 7.1, the nonconforming and the stabilized methods are expected to
provide almost the same curves.

The evaluation of the linear regression of each curve leads to the following ob-
servations:

• The slope of the L2-error curve is approximately 1.98, which indicates that
this error decays like h2. This behavior is expected, although the corre-
sponding mathematical analysis is not available.
• The slope of the H1-error curve is calculated to 1.02, meaning that the error

decreases approximately like h. This is proven for the conforming ((5.3) of
Theorem 5.2) and for the stabilized method ((6.7) of Theorem 6.5).

It is important to emphasize that the nonconforming method behaves, for this
test and for the next one, in an optimal way. This makes us feel that the reason
why we failed to prove optimality in this case is only of a technical origin.

The second phase of our numerical investigation is to find out whether the trends
observed in the first experiment are confirmed when the extreme points of ΓC are
fixed to Dirichlet data. We consider the case where the whole complementary part of
ΓC is subjected to a homogeneous Dirichlet condition. Of course, the modifications
detailed in Remarks 4.8, 5.5, and 6.9 have to be introduced in the construction of
the discrete convex cones Ku

h ,K
ϕ
h and Kh.

The reference solution is depicted in Figure 7.3, where it appears that here
also the constraint changes from binding to nonbinding, through only one point.
Table 7.2 illustrates the equivalence of all the approaches where the approximated
solution is computed using the grid corresponding to h = 1

32 . Finally, the plots of
Figure 7.4 allow us to evaluate the different convergence rates: for the L2-error the
slope is close to 1.90 (quadratic convergence) and for the H1-norm it is equal to
0.98 (linear convergence), which is in accordance with the theory.

Table 7.2.

L2-error H1-error L∞-error

CFE 0.00068126 0.040533 0.0023162

NCFE 0.00068119 0.040557 0.0023148

SFE 0.00068926 0.040606 0.0027593
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8. Concluding remarks

This work is a review of the most important—to our knowledge—linear finite
element approximations of the Signorini problem set in a mixed variational for-
mulation. We develop appropriate tools to improve the convergence rates on the
displacement for two discretizations (sections 4 and 5). We also derive an error
estimate on the Lagrange multiplier which is the stress field on the contact region.

For the third technique a stabilization based on bubble functions is proposed and
analyzed which makes it coherent for different boundary condition configurations.
Conceptually this stabilized method is generalized as well to the three-dimensional
problems, and the numerical analyses give similar convergence results (see [5]).
Besides, it is possible to extend such an approach to consider nonmatching grids
when approximation of the unilateral contact problem between two deformable
solids, using the mortar concept following the ideas developed in [6] (see also [4],
[21]).
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Appendix A. Some regularized

interpolation operator preserving signs

Our purpose is the construction of a regularization interpolation operator rh :
L2(ΓC) → Wh(ΓC) preserving the nonnegativity, i.e., if ϕ ≥ 0, then (rhϕ) ≥ 0,
and having optimal approximation estimates for ϕ ∈ Hs(ΓC) (0 ≤ s ≤ 1

2 ), ϕ ≥
0. To alleviate the presentation and avoid parametrization, we identify ΓC with
the segment [0, 1], the nodes being denoted (xi)0≤i≤i∗ increasingly ordered, ti =
[xi, xi+1], with hi = |xi+1−xi| being the elements of the mesh T C

h and h = maxi hi.
The mesh T C

h satisfies the assumption (3.4). The notation used in the sequel
follows, in a large extent, that introduced in [8]. For any i (0 ≤ i ≤ i∗), let Ti
denote the macro segment which is the union ti−1∪ti = (ξi−1, ξi+1), while Ti∗ = ti∗

and T0 = t0—the index i in Ti refers to the node xi, and Ti is then related to xi.
to the first kind of segments we associate the reference macro-interval T̂ = (−1, 1),
which is a union of the reference intervals t̂+ = (0, 1) and t̂− = (−1, 0), and the
invertible piecewise linear mapping Fi defined by

Fi(ξ̂) =

{
|ti−1|ξ̂ + ξi if ξ ∈ t̂−,
|ti|ξ̂ + ξi if ξ ∈ t̂+.

On the other hand, if i ∈ {0, i∗}, the mapping Fi is the classical invertible linear
transformation from T̂ = (0, 1) on Ti. Moreover, we need to define the interval Tt for
any t = ti: it is the union of t and its neighbors, for instance Tt0 = t0∪ t1 = (x0, x2)
and Tt1 = t0 ∪ t1 ∪ t2 = (x0, x3). We begin by defining some local operators. Then,
consider the local finite element spaces

W (T̂ ) =
{
ψ̂ ∈ C (T̂ ), ∀t̂ ∈ T̂ , ψ̂|t̂ ∈ P1(t̂)

}
,

Wh(Ti) =
{

h ∈ C (Ti), ∀t ∈ Ti, h|t ∈ P1(t)
}
,

and the local finite element convex cones

M(T̂ ) =
{
ψ̂ ∈W (T̂ ), ψ̂ ≥ 0

}
,

Mh(T̂i) =
{

h ∈Wh(Ti), ψh ≥ 0
}
.

Then, for any function ϕ̂ ∈ L1(T̂ ) we define respectively r̂W (ϕ̂) ∈ W (T̂ ) and
r̂M (ϕ̂) ∈M(T̂ ) by

∀ψ̂ ∈ W (T̂ ),
∫
T̂

(ϕ̂− r̂W (ϕ̂))ψ̂ dξ̂ = 0;

∀ψ̂ ∈M(T̂ ),
∫
T̂

(ϕ̂− r̂M (ϕ̂))(ψ̂ − r̂M (ϕ̂)) dξ̂ ≤ 0.

Next, let i (0 ≤ i ≤ i∗) be fixed. Then for any function ϕ ∈ L1(Ti) we define

riW (ϕ) = r̂W (ϕ ◦ Fi) ∈ Wh(Ti),

riM (ϕ) = r̂M (ϕ ◦ Fi) ∈Mh(Ti).

Of course there are two kinds of reference macro-elements, and the one associated
with Ti should be denoted T̂i , but we choose to drop the index i of T̂i for a while.
The definition of the interpolation operator riW is due to Clément (see [14]) and
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is analyzed in detail in [8], and we recall the approximation result proven therein:
∀t ∈ Ti, ∀ϕ ∈ Hs(ΓC), s ≤ 2,

(A.1) ‖ϕ− riWϕ‖L2(t) ≤ Chsi |ϕ|Hs(Ti).

The particular feature of the operator riM is the nonnegativity preservation, and
we have

Lemma A.1. For any real number s ∈ [0, 2], there exists a constant C = C(s)
independent of h such that for any Ti (0 ≤ i ≤ i∗) and any t ∈ Ti the following
inequality holds: ∀ϕ ∈ Hs(ΓC), ϕ ≥ 0,

(A.2) ‖ϕ− riMϕ‖L2(t) ≤ Chsi |ϕ|Hs(Ti).

Proof. Let t∗ be an interval of the macro-interval Ti. Then we have

‖ϕ− riMϕ‖L2(t∗) = |t∗|
1
2 ‖ϕ̂− r̂M ϕ̂‖L2(t̂) ≤ |t∗|

1
2 ‖ϕ̂− r̂M ϕ̂‖L2(T̂ ).

As r̂M M(T̂ ) invariant, and by the equivalence of all the norms in the finite dimen-
sional space W (T̂ ), we derive that for any θ̂ ∈M(T̂ )

‖ϕ̂− r̂M ϕ̂‖L2(T̂ ) = ‖(ϕ̂− θ̂)− r̂M (ϕ̂− θ̂)‖L2(T̂ ) ≤ ĉ‖(ϕ̂− θ̂)‖L2(T̂ ).

By the Bramble-Hilbert theorem we deduce that

‖ϕ̂− r̂M ϕ̂‖L2(T̂ ) ≤ ĉ|ϕ̂|Hs(T̂ ).

Going back to Ti by a variable change, we have

‖ϕ− rihϕ‖L2(t∗) ≤ ĉ|t∗|
1
2

(∑
t∈Ti

|t|2s−1|ϕ|2Hs(t)
) 1

2
.

Using assumption (3.4) on the mesh T C
h yields the result. �

For i (0 ≤ i ≤ i∗) let ϕi denote the basis function of Wh(ΓC) that takes the
value 1 at the point xi and vanishes at all other nodes. Next, for any given function
ϕ ∈ L2(ΓC) we define the regularized interpolants

r̃hϕ =
i∗∑
i=0

[riW (ϕ)](xi)ϕi and rhϕ =
i∗∑
i=0

[riM (ϕ)](xi)ϕi.

The operator r̃h is studied in [8], and the following error estimate holds true for
any s ∈ [0, 2]: ∀ϕ ∈ Hs(ΓC), ∀t ∈ T C

h ,

(A.3) ‖ϕ− r̃hϕ‖L2(t) ≤ Chsi |ϕ|Hs(Tt).

Besides, we have uniform stability in Hν(ΓC) for any ν ∈ [0, 1], meaning that for
any t ∈ T C

h and any ϕ ∈ Hν(ΓC),

(A.4) ‖r̃hϕ‖Hν (t) ≤ C‖ϕ‖Hν(Tt).

The regularizing operator rh preserves the nonnegativity, and we have the following
result

Proposition A.2. Assume that the triangulation T C
h fulfills the Crouzeix-Thomée

criterion (3.4). Then there exists a constant C, independent of h, such that for any
t ∈ T C

h and any s ∈ [0, 2], ∀ϕ ∈ Hs(ΓC), ϕ ≥ 0,

(A.5) ‖ϕ− rhϕ‖L2(t) ≤ Chs|ϕ|Hs(Tt).
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Proof. Let t = ti; then Tt = (xi−1, xi+2). Following [8], we write

(ϕ− rh(ϕ))|t = (ϕ− ri+1
M (ϕ))|t + [ri+1

M (ϕ)− riM (ϕ)](xi)ϕi|t.

Estimating the first part is direct from Lemma A.1, while the second requires a
technical preparation:

‖[ri+1
M (ϕ)− riM (ϕ)](xi)ϕi‖L2(t)

= ĉ|t| 12 ‖ri+1
M (ϕ)− riM (ϕ)‖L∞(t) = ĉ|t| 12 ‖r̂i+1

M (ϕ)− r̂iM (ϕ)‖L∞(t̂)

≤ ĉ|t| 12 ‖r̂i+1
M (ϕ)− r̂iM (ϕ)‖L2(t̂) ≤ ĉ‖ri+1

M (ϕ) − riM (ϕ)‖L2(t).

Using Lemma A.1 leads to the result. �
Remark A.3. It is immediate that if ϕ|Tt = 0, then (rhϕ)|t = 0.

Corollary A.4. Assume that the triangulation T C
h fulfills the Crouzeix-Thomée

criterion (3.4). Then there exists a constant C, independent of h, such that for any
s ∈ [0, 2], ∀ϕ ∈ Hs(ΓC), ϕ ≥ 0,

(A.6) ‖ϕ− rhϕ‖L2(ΓC) ≤ Chs|ϕ|Hs(ΓC)

Proof. This is directly obtained from (A.5) of the previous proposition. �
Remark A.5. For s > 1

2 , it is possible to construct an interpolation operator r̃0
h :

Hs
0(ΓC , {c1})→W 0

h (ΓC , {c1}) by restricting the sum on the shape functions to the
indices i (1 ≤ i ≤ i∗):

r̃0
hϕ =

i∗∑
i=1

[riW (ϕ)](xi)ϕi.

This operator satisfies similar stability conditions as (A.4) and the approximation
estimate (A.5).

Remark A.6. Obviously when s > 1
2 , the Lagrangain interpolation operator cur-

rently denoted ih preserves the sign and satisfies the desired error estimates. How-
ever, when less regular functions (of Hs(ΓC), s ≤ 1

2 ) are dealt with, we fail to
define their Lagrangian interpolants. Then, the use of the regularization operators
becomes necessary.

The results of Proposition A.2 may be extended to higher dimensions, in partic-
ular to two and three dimensions, following the arguments of [8].

Appendix B. Analysis of a one-dimensional

finite element projection operator

The aim is to define a projection operator π̌h : L2(ΓC) → M̃h(ΓC) satisfying

optimal approximation results with respect to the H
1
2
00(ΓC , {c1})′-norm and so that

π̌hϕ is in the convex cone Mu
h (ΓC) ((5.6)) if ϕ ≥ 0, which means that∫

ΓC

π̌hϕχh dΓ ≥ 0, ∀χh ∈ W 0
h (ΓC , {c1}), χh ≥ 0.

Such an operator is used to derive an error estimate on the Lagrange multiplier ϕ
in Remark 5.5.

Consider the following definition: ∀ψ ∈ L2(ΓC),

(B.1)
∫

ΓC

(ϕ− π̌hϕ)ψh dΓ = 0, ∀ψh ∈ W 0
h (ΓC , {c1}).
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Obviously, as soon as ϕ ≥ 0 the π̌hϕ belongs to Mu
h (ΓC). Furthermore, we have

Lemma B.1. The following approximation holds: ∀ϕ ∈ H 1
2 (ΓC),

(B.2) ‖ϕ− π̌hϕ‖
H

1
2
00(ΓC ,{c1})′

≤ Ch‖ϕ‖
H

1
2 (ΓC)

.

Proof. As in Appendix A, we identify ΓC with the segment [0, 1], with the same
notation introduced there. Let us define the function

α|t1(x) =
x− x0

x1 − x0
, and α|ti(x) = 1, ∀i ≥ 2.

Then, for any ϕ ∈ L2(ΓC), choosing χh = α(π̌hϕ) ∈ W 0
h (ΓC , {c1}) in (B.1) pro-

duces
‖
√
α(π̌hϕ)‖L2(ΓC) ≤ ‖

√
αϕ‖L2(ΓC) ≤ ‖ϕ‖L2(ΓC),

from which we deduce the preliminary result: ∀ϕ ∈ H 1
2 (ΓC)

(B.3) ‖
√
α(ϕ− π̌hϕ)‖L2(ΓC) ≤ 2 inf

ψh∈M̃h(ΓC)
‖ϕ− ψh‖L2(ΓC) ≤ Ch

1
2 ‖ϕ‖

H
1
2 (ΓC)

.

By duality it can be written

(B.4) ‖ϕ− π̌hϕ‖
H

1
2
00(ΓC ,{c1})′

= sup
χ∈H

1
2
00(ΓC ,{c1})

1
‖χ‖

H
1
2
00(ΓC ,{c1})

∫
ΓC

(ϕ− π̌hϕ)χ dΓ.

Then, as allowed by the definition of π̌h, we have, ∀χh ∈ W 0
h (ΓC , {c1}),∫

ΓC

(ϕ− π̌hϕ)χ dΓ =
∫

ΓC

(ϕ− π̌hϕ)(χ − χh) dΓ

≤ ‖
√
α(ϕ− π̌hϕ)‖L2(ΓC)

∥∥∥χ− χh√
α

∥∥∥
L2(ΓC)

.

(B.5)

Handling the term on χ, we get∥∥∥χ− χh√
α

∥∥∥2

L2(ΓC)
=
∑
i≥2

‖χ− χh‖2L2(ti)
+
∥∥∥χ− χh√

α

∥∥∥2

L2(t1)

=
∑
i≥2

‖χ− χh‖2L2(ti)
+ h1

∥∥∥ χ− χh√
x− x0

∥∥∥2

L2(t1)

≤
∑
i≥2

‖χ− χh‖2L2(ti)
+ h1‖χ− χh‖2

H
1
2
00(t1,{c1})

.

Then, constructing χh = r̃0
hχ as in Remark A.3, we obtain

(B.6)

‖χ− χh√
α
‖2L2(ΓC) ≤ C

(∑
i≥2

hi‖χ‖2L2(Tti )
+ h1‖χ‖2

H
1
2
00(t1,{c1})

)
≤ Ch‖χ‖2

H
1
2
00(ΓC ,{c1})

.

Going back to (B.5) and using (B.3) and (B.6) yields∫
ΓC

(ϕ− π̌hϕ)χ dΓ ≤ Ch‖ϕ‖
H

1
2 (ΓC)

‖χ‖
H

1
2
00(ΓC ,{c1})

.

The duality (B.4) ends the proof. �
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