A sequent calculus with procedure calls

Mahfuza Farooque ${ }^{1}$, Stéphane Lengrand ${ }^{1,2}$
${ }^{1}$ CNRS
${ }^{2}$ Ecole Polytechnique
Project PSI: "Proof Search control in Interaction with domain-specific methods" ANR-09-JCJC-0006
23rd April 2012

AbstractIn this paper, we extend the sequent calculus LKF [LM09] into a calculus $\operatorname{LK}(\mathcal{T})$, allowingcalls to a decision procedure. We prove cut-elimination of $\operatorname{LK}(\mathcal{T})$.
Contents
1 The sequent calculus $\operatorname{LK}(\mathcal{T})$ 2
2 Admissible rules 2
3 Invertibility of the asynchronous phase 3
4 Cut-elimination 5
5 Conclusion 9

1 The sequent calculus $\operatorname{LK}(\mathcal{T})$

The sequent calculus $\operatorname{LK}(\mathcal{T})$ manipulates the formulae of first-order logic, with the specificity that every predicate symbol is classified as either positive or negative, and boolean connectives come in two versions: positive and negative.

Definition 1 (Formulae) Literals are predicates (a predicate symbol applied to a list of first-order terms) or negations of predicates. Literals are equipped with the obvious involutive negation, and the negation of a literal l is denoted l^{\perp}.

Let \mathcal{P} be the set of literals that are either predicates with positive predicate symbols, or negations of predicates with negative predicate symbols.

$$
\begin{array}{lll}
\text { Positive formulae } & P & ::=p\left|A \wedge^{+} B\right| A \vee^{+} B \mid \exists x A \\
\text { Negative formulae } & N & ::=p^{\perp}\left|A \wedge^{-} B\right| A \vee^{-} B \mid \forall x A \\
\text { Formulae } & A, B & ::=P \mid N
\end{array}
$$

where p ranges over \mathcal{P}.
Definition 2 (Negation) Negation is extended from literals to all formulae:

$(p)^{\perp}$	$:=p^{\perp}$	$\left(p^{\perp}\right)^{\perp}$	$:=p$
$\left(A \wedge^{+} B\right)^{\perp}$	$:=A^{\perp} \vee^{-} B^{\perp}$	$\left(A \wedge^{-} B\right)^{\perp}$	$:=A^{\perp} \vee^{+} B^{\perp}$
$\left(A \vee^{+} B\right)^{\perp}$	$:=A^{\perp} \wedge^{-} B^{\perp}$	$\left(A \vee^{-} B\right)^{\perp}$	$:=A^{\perp} \wedge^{+} B^{\perp}$
$(\exists x A)^{\perp}$	$:=\forall x A^{\perp}$	$(\forall x A)^{\perp}$	$:=\exists x A^{\perp}$

Definition $3(\operatorname{LK}(\mathcal{T}))$ The sequent calculus $\operatorname{LK}^{p}(\mathcal{T})$ manipulates two kinds of sequents:

Focused sequents	$\Gamma \vdash_{\mathcal{T}}[P]$
Unfocused sequents	$\Gamma \vdash_{\mathcal{T}} \Delta$

where Γ is a multiset of negative formulae and positive literals, Δ is a multiset of formulae, and P is said to be in the focus of the (focused) sequent. By lit (Γ) we denote the sub-multiset of Γ consisting of its literals.

The rules of $\operatorname{LK}^{p}(\mathcal{T})$, given in Figure 1, are of three kinds: synchronous rules, asynchronous rules, and structural rules. These correspond to three alternating phases in the proof-search process that is described by the rules.

If S is a set of literals, $\mathcal{T}(S)$ is the call to the decision procedure on the conjunction of all literals of S. It holds if the procedure returns UNSAT.

2 Admissible rules

Definition 4 (Assumptions on the procedure)

We assume that the procedure calls satisfy the following properties:
Weakening If $\mathcal{T}(S)$ then $\mathcal{T}\left(S, S^{\prime}\right)$.
Contraction If $\mathcal{T}(S, A, A)$ then $\mathcal{T}(S, A)$.
Instantiation If $\mathcal{T}(S)$ then $\mathcal{T}\left(\left\{\frac{t}{x}\right\} S\right)$.
Consistency If $\mathcal{T}(S, p)$ and $\mathcal{T}\left(S, p^{\perp}\right)$ then $\mathcal{T}(S)$.
where S is a set of literals.
Lemma 1 (Admissibility of weakening and contraction)
The following rules are admissible in $L K(\mathcal{T})$.

$$
\begin{aligned}
\frac{\Gamma \vdash[B]}{\Gamma, A \vdash[B]} & \frac{\Gamma \vdash \Delta}{\Gamma, A \vdash \Delta} \\
\frac{\Gamma, A, A \vdash[B]}{\Gamma, A \vdash[B]} & \frac{\Gamma, A, A \vdash \Delta}{\Gamma, A \vdash \Delta}
\end{aligned}
$$

Proof: By induction on the derivation of the premiss.

Figure 1: System $\operatorname{LK}(\mathcal{T})$

Lemma 2 (Admissibility of instantiation) The following rules are admissible in $L K(\mathcal{T})$.

$$
\frac{\Gamma \vdash[B]}{\left\{\frac{t}{x}\right\} \Gamma \vdash\left[\left\{\frac{t}{x}\right\} B\right]} \quad \frac{\Gamma \vdash \Delta}{\left\{\frac{t}{x}\right\} \Gamma \vdash\left\{\frac{t}{x}\right\} \Delta}
$$

Proof: By induction on the derivation of the premiss.

3 Invertibility of the asynchronous phase

Lemma 3 (Invertibility of asynchronous rules)
All asynchronous rules are invertible in $L K(\mathcal{T})$.
Proof: By induction on the derivation proving the conclusion of the asynchronous rule considered.

- Inversion of $A \wedge^{-} B$: by case analysis on the last rule actually used

$$
-\frac{\Gamma \vdash A \wedge^{-} B, C, \Delta^{\prime} \quad \Gamma \vdash A \wedge^{-} B, D, \Delta^{\prime}}{\Gamma \vdash A \wedge^{-} B, C \wedge^{-} D, \Delta^{\prime}}
$$

By induction hypothesis we get

$$
\begin{aligned}
& \frac{\Gamma \vdash A, C, \Delta^{\prime} \quad \Gamma \vdash A, D, \Delta^{\prime}}{\Gamma \vdash A, C \wedge^{-} D, \Delta^{\prime}} \text { and } \frac{\Gamma \vdash B, C, \Delta^{\prime} \quad \Gamma \vdash B, D, \Delta^{\prime}}{\Gamma \vdash B, C \wedge^{-} D, \Delta^{\prime}} \\
- & \frac{\Gamma \vdash A \wedge^{-} B, C, D, \Delta^{\prime}}{\Gamma \vdash A \wedge^{-} B, C \vee^{-} D, \Delta^{\prime}} \\
& B y \text { induction hypothesis we get } \frac{\Gamma \vdash A, C, D, \Delta^{\prime}}{\Gamma \vdash A, C \vee^{-} D, \Delta^{\prime}} \text { and } \frac{\Gamma \vdash B, C, D, \Delta^{\prime}}{\Gamma \vdash B, C \vee^{-} D, \Delta^{\prime}} \\
- & \frac{\Gamma \vdash A \wedge^{-} B, C, \Delta^{\prime}}{\Gamma \vdash A \wedge^{-} B,(\forall x C), \Delta^{\prime}} x \notin \mathrm{FV}\left(\Gamma, \Delta^{\prime}, A \wedge^{-} B\right)
\end{aligned}
$$

By induction hypothesis we get
$\frac{\Gamma \vdash A, C, \Delta^{\prime}}{\Gamma \vdash A,(\forall x C), \Delta^{\prime}} x \notin \mathrm{FV}\left(\Gamma, \Delta^{\prime}, A\right)$ and $\frac{\Gamma \vdash B, C, \Delta^{\prime}}{\Gamma \vdash B,(\forall x C), \Delta^{\prime}} x \notin \mathrm{FV}\left(\Gamma, \Delta^{\prime}, B\right)$
$-\frac{\Gamma, C^{\perp} \vdash A \wedge^{-} B, \Delta^{\prime}}{\Gamma \vdash A \wedge^{-} B, C, \Delta^{\prime}} C$ positive or literal
$\frac{\Gamma, C^{\perp} \vdash A, \Delta^{\prime}}{\Gamma \vdash A, C, \Delta^{\prime}} C$ positive or literal and $\frac{\Gamma, C^{\perp} \vdash B, \Delta^{\prime}}{\Gamma \vdash B, C, \Delta^{\prime}} C$ positive or literal

- Inversion of $A \vee^{-} B$
$\Gamma \vdash A \vee^{-} B, C, \Delta^{\prime} \quad \Gamma \vdash A \vee^{-} B, D, \Delta^{\prime}$
By induction hypothesis we get $\frac{\Gamma \vdash A, B, C, \Delta^{\prime} \quad \Gamma \vdash A, B, D, \Delta^{\prime}}{\Gamma \vdash A, B, C \wedge^{-} D, \Delta^{\prime}}$
$-\frac{\Gamma \vdash A \vee^{-} B, C, D, \Delta^{\prime}}{\Gamma \vdash A \vee^{-} B, C \vee^{-} D, \Delta^{\prime}}$
By induction hypothesis we get $\frac{\Gamma \vdash A, B, C, D, \Delta^{\prime}}{\Gamma \vdash A, B, C \vee^{-} D, \Delta^{\prime}}$
$-\frac{\Gamma \vdash A \vee^{-} B, C, \Delta^{\prime}}{\Gamma \vdash A \vee^{-} B,(\forall x C), \Delta^{\prime}} x \notin \mathrm{FV}\left(\Gamma, \Delta^{\prime}\right)$
By induction hypothesis we get $\frac{\Gamma \vdash A, B, C, \Delta^{\prime}}{\Gamma \vdash A, B,(\forall x C), \Delta^{\prime}} x \notin \mathrm{FV}\left(\Gamma, \Delta^{\prime}\right)$
$-\frac{\Gamma, C^{\perp} \vdash A \vee^{-} B, \Delta^{\prime}}{\Gamma \vdash A \vee^{-} B, C, \Delta^{\prime}} C$ positive or literal
By induction hypothesis we get $\frac{\Gamma, C^{\perp} \vdash A, B, \Delta^{\prime}}{\Gamma \vdash A, B, C, \Delta^{\prime}} C$ positive or literal
- Inversion of $\forall x A$
$-\frac{\Gamma \vdash(\forall x A), C, \Delta^{\prime} \quad \Gamma \vdash(\forall x A), D, \Delta^{\prime}}{\Gamma \vdash(\forall x A), C \wedge^{-} D, \Delta^{\prime}}$
By induction hypothesis we get $\frac{\Gamma \vdash A, C, \Delta^{\prime}}{\Gamma \vdash A, C \wedge^{-} D, \Delta^{\prime}} x \notin \mathrm{FV}\left(\Gamma, \Delta^{\prime}\right)$ and $\Gamma \vdash A, D, \Delta^{\prime}$
$-\frac{\Gamma \vdash(\forall x A), C, D, \Delta^{\prime}}{\Gamma \vdash(\forall x A), C \vee^{-} D, \Delta^{\prime}}$
By induction hypothesis we get $\frac{\Gamma \vdash A, C, D, \Delta^{\prime}}{\Gamma \vdash A, C \vee^{-} D, \Delta^{\prime}}$
$-\frac{\Gamma \vdash(\forall x A), D, \Delta^{\prime}}{\Gamma \vdash(\forall x A),(\forall x D), \Delta^{\prime}} x \notin \mathrm{FV}\left(\Gamma, \Delta^{\prime}\right)$
By induction hypothesis we get $\frac{\Gamma \vdash A, C, \Delta^{\prime}}{\Gamma \vdash A,(\forall x C), \Delta^{\prime}} x \notin \mathrm{FV}\left(\Gamma, \Delta^{\prime}\right)$
$-\frac{\Gamma, C^{\perp} \vdash(\forall x A), \Delta^{\prime}}{\Gamma \vdash(\forall x A), C, \Delta^{\prime}} C$ positive or literal
By induction hypothesis we get $\frac{\Gamma, C^{\perp} \vdash A, \Delta^{\prime}}{\Gamma \vdash A, C, \Delta^{\prime}} C$ positive or literal
- Inversion of literals and positive formulae (A)
$-\frac{\Gamma \vdash A, C, \Delta^{\prime} \quad \Gamma \vdash A, D, \Delta^{\prime}}{\Gamma \vdash A, C \wedge^{-} D, \Delta^{\prime}}$
By induction hypothesis we get $\frac{\Gamma, A^{\perp} \vdash C, \Delta^{\prime} \Gamma, A^{\perp} \vdash D, \Delta^{\prime}}{\Gamma, A^{\perp} \vdash C \wedge^{-} D, \Delta^{\prime}}$

$$
-\frac{\Gamma \vdash A, C, D, \Delta^{\prime}}{\Gamma \vdash A, C \vee^{-} D, \Delta^{\prime}}
$$

By induction hypothesis $\frac{\Gamma, A^{\perp} \vdash C, D, \Delta^{\prime}}{\Gamma, A^{\perp} \vdash C \vee^{-} D, \Delta^{\prime}}$

$$
-\frac{\Gamma \vdash A, D, \Delta^{\prime}}{\Gamma \vdash A,(\forall x D), \Delta^{\prime}} x \notin \mathrm{FV}\left(\Gamma, \Delta^{\prime}\right)
$$

By induction hypothesis we get $\frac{\Gamma, A^{\perp} \vdash C, \Delta^{\prime}}{\Gamma, A^{\perp} \vdash(\forall x C), \Delta^{\prime}} x \notin \mathrm{FV}\left(\Gamma, \Delta^{\prime}\right)$
$-\frac{\Gamma, B^{\perp} \vdash A, \Delta^{\prime}}{\Gamma \vdash A, B, \Delta^{\prime}} B$ positive or literal
By induction hypothesis we get $\frac{\Gamma, A^{\perp}, B^{\perp} \vdash \Delta^{\prime}}{\Gamma, A^{\perp} \vdash B, \Delta^{\prime}} B$ positive or literal

4 Cut-elimination

Theorem 4 (cut ${ }_{1}$ and $\mathbf{c u t}_{2}$) The following rules are admissible in $L K(\mathcal{T})$.

$$
\frac{\mathcal{T}\left(l i t(\Gamma), p^{\perp}\right) \quad \Gamma, p \vdash \Delta}{\Gamma \vdash \Delta} \text { cut }_{1} \quad \frac{\mathcal{T}\left(l i t(\Gamma), p^{\perp}\right) \quad \Gamma, p \vdash[B]}{\Gamma \vdash[B]} \text { cut }_{2}
$$

Proof: By simultaneous induction on the derivation of the right premiss.
We reduce cut ${ }_{8}$ by case analysis on the last rule used to prove the right premiss.

$$
\frac{\mathcal{T}\left(\operatorname{lit}(\Gamma), p^{\perp}\right) \quad \frac{\Gamma, p \vdash B, \Delta \quad \Gamma, p \vdash C, \Delta}{\Gamma, p \vdash B \wedge^{-} C, \Delta}}{\Gamma \vdash B \wedge^{-} C, \Delta} \operatorname{cut}_{1}
$$

reduces to

$$
\begin{aligned}
& \frac{\mathcal{T}\left(\operatorname{lit}(\Gamma), p^{\perp}\right) \quad \Gamma, p \vdash B, \Delta}{\Gamma \vdash B, \Delta} \operatorname{cut}_{1} \quad \frac{\mathcal{T}\left(\operatorname{lit}(\Gamma), p^{\perp}\right) \quad \Gamma, p \vdash C, \Delta}{\Gamma \vdash C, \Delta} \operatorname{cut}_{1} \\
& \Gamma \vdash B \wedge^{-} C, \Delta \\
& \frac{\mathcal{T}\left(\operatorname{lit}(\Gamma), p^{\perp}\right) \frac{\Gamma, p \vdash B_{1}, B_{2}, \Delta}{\Gamma, p \vdash B_{1} \vee^{-} B_{2}, \Delta}}{\Gamma \vdash B_{1} \vee^{-} B_{2}, \Delta} \operatorname{cut}_{1} \quad \text { reduces to } \quad \frac{\mathcal{T}\left(\operatorname{lit}(\Gamma), p^{\perp}\right) \Gamma, p \vdash B_{1}, B_{2}, \Delta}{\frac{\Gamma \vdash B_{1}, B_{2}, \Delta}{\Gamma \vdash B_{1} \vee^{-} B_{2}, \Delta}} \operatorname{cut}_{1} \\
& \frac{\mathcal{T}\left(\operatorname{lit}(\Gamma), p^{\perp}\right) \quad \frac{\Gamma, p \vdash B, \Delta}{\Gamma, p \vdash \forall x B, \Delta}}{\Gamma \vdash \forall x B, \Delta} \operatorname{cut}_{1} \quad \text { reduces to } \quad \frac{\mathcal{T}\left(\operatorname{lit}(\Gamma), p^{\perp}\right) \Gamma, p \vdash B, \Delta}{\Gamma \vdash B, \Delta} \text { cut }_{1} \\
& \frac{\mathcal{T}\left(\operatorname{lit}(\Gamma), p^{\perp}\right) \frac{\Gamma, p, B^{\perp} \vdash \Delta}{\Gamma, p \vdash B, \Delta}}{\Gamma \vdash B, \Delta} \operatorname{cut}_{1} \quad \text { reduces to } \quad \frac{\mathcal{T}\left(\operatorname{lit}\left(\Gamma, B^{\perp}\right), p^{\perp}\right) \Gamma, p, B^{\perp} \vdash \Delta}{\frac{\Gamma, B^{\perp} \vdash \Delta}{\Gamma \vdash B, \Delta}} \operatorname{cut}_{1}
\end{aligned}
$$

We have $\mathcal{T}\left(\operatorname{lit}(\Gamma), p^{\perp}, B^{\perp}\right)$ as we assume the procedure to satisfy weakening.
If $P^{\perp} \in(\Gamma, p)$,

$$
\frac{\mathcal{T}\left(\operatorname{lit}(\Gamma), p^{\perp}\right)}{\Gamma \vdash} \quad \frac{\Gamma, p \vdash[P]}{\Gamma, p \vdash} \text { cut }_{1} \quad \text { reduces to } \quad \frac{\mathcal{T}\left(\operatorname{lit}(\Gamma), p^{\perp}\right) \Gamma, p^{\perp} \vdash[P]}{\Gamma \vdash[P]} \text { cut }_{2}
$$

as $P^{\perp} \in(\Gamma)$.

$$
\frac{\mathcal{T}\left(\operatorname{lit}(\Gamma), p^{\perp}\right) \quad \frac{\mathcal{T}(\operatorname{lit}(\Gamma), p)}{\Gamma, p \vdash}}{\Gamma \vdash} \operatorname{cut}_{1} \quad \text { reduces to } \quad \frac{\mathcal{T}(\operatorname{lit}(\Gamma))}{\Gamma \vdash}
$$

using the assumption of consistency.
We reduce cut ${ }_{2}$ again by case analysis on the last rule used to prove the right premiss.

$$
\frac{\mathcal{T}\left(\mathrm{lit}(\Gamma), p^{\perp}\right) \quad \frac{\Gamma, p \vdash[B] \quad \Gamma, p \vdash[C]}{\Gamma, p \vdash\left[B \wedge^{+} C\right]}}{\Gamma \vdash\left[B \wedge^{+} C\right]} \operatorname{cut}_{2}
$$

reduces to

$$
\begin{aligned}
& \frac{\mathcal{T}\left(\operatorname{lit}(\Gamma), p^{\perp}\right) \quad \Gamma, p \vdash[B]}{\frac{\Gamma \vdash[B]}{} \operatorname{cut}_{2} \quad \frac{\mathcal{T}\left(\operatorname{lit}(\Gamma), p^{\perp}\right) \quad \Gamma, p \vdash[C]}{\Gamma \vdash[C]}} \operatorname{cut}_{2} \\
& \frac{\mathcal{T}\left(\operatorname{lit}(\Gamma), p^{\perp}\right) \quad \frac{\Gamma, p \vdash\left[B_{i}\right]}{\Gamma, p \vdash\left[B_{1} \vee^{+} B_{2}\right]}}{\Gamma \vdash\left[B_{1} \vee^{+} B_{2}\right]} \mathrm{cut}_{2} \quad \text { reduces to } \quad \frac{\mathcal{T}\left(\operatorname{lit}(\Gamma), p^{\perp}\right) \Gamma, p \vdash\left[B_{i}\right]}{\frac{\Gamma \vdash\left[B_{i}\right]}{\Gamma \vdash\left[B_{1} \vee^{+} B_{2}\right]}} \text { cut }_{2} \\
& \frac{\mathcal{T}\left(\operatorname{lit}(\Gamma), p^{\perp}\right) \quad \frac{\Gamma, p \vdash\left[\left\{\frac{t}{x}\right\} B\right]}{\Gamma, p \vdash[\exists x B]}}{\Gamma \vdash[\exists x B]} \mathrm{cut}_{2} \quad \text { reduces to } \quad \frac{\mathcal{T}\left(\operatorname{lit}(\Gamma), p^{\perp}\right) \Gamma, p \vdash\left[\left\{\frac{t}{x}\right\} B\right]}{\Gamma \vdash\left[\left\{\ell^{t} x\right\} B\right]} \text { cut }_{2} \\
& \frac{\mathcal{T}\left(\operatorname{lit}(\Gamma), p^{\perp}\right) \frac{\Gamma, p \vdash N}{\Gamma, p \vdash[N]}}{\Gamma \vdash[N]} \text { cut }_{2} \quad \text { reduces to } \quad \frac{\mathcal{T}\left(\operatorname{lit}(\Gamma), p^{\perp}\right) \quad \Gamma, p \vdash N}{\Gamma \vdash N} \text { cut }_{1}
\end{aligned}
$$

If $p^{\prime} \in \Gamma, p$,

$$
\begin{array}{rlll}
\frac{\mathcal{T}\left(\operatorname{lit}(\Gamma), p^{\perp}\right)}{\overline{\Gamma, p \vdash\left[p^{\prime}\right]}} \text { cut }_{2} & \text { reduces to } & \overline{\Gamma \vdash\left[p^{\prime}\right]} \quad \text { if } & p^{\prime} \in \Gamma \\
\text { reduces to } & \frac{\mathcal{T}\left(\operatorname{lit}(\Gamma), p^{\perp}\right)}{\Gamma \vdash\left[p^{\prime}\right]} & \text { if } \quad p^{\prime}=p
\end{array}
$$

Finally,

$$
\frac{\mathcal{T}\left(\operatorname{lit}(\Gamma), p^{\perp}\right) \quad \frac{\mathcal{T}\left(\operatorname{lit}(\Gamma), p, p^{\prime \perp}\right)}{\Gamma, p \vdash\left[p^{\prime}\right]}}{\Gamma \vdash\left[p^{\prime}\right]} \mathrm{cut}_{2} \quad \text { reduces to } \quad \frac{\mathcal{T}\left(\operatorname{lit}(\Gamma), p^{\prime \perp}\right)}{\Gamma \vdash\left[p^{\prime}\right]}
$$

since weakening gives $\mathcal{T}\left(\operatorname{lit}(\Gamma), p^{\perp}, p^{\prime \perp}\right)$ and consistency then gives $\mathcal{T}\left(\operatorname{lit}(\Gamma), p^{\prime \perp}\right)$.
Theorem $5\left(\right.$ cut $_{3}$, cut $_{4}$ and $\left.\mathbf{c u t}_{5}\right)$ The following rules are admissible in $L K(\mathcal{T})$.

$$
\begin{gathered}
\frac{\Gamma \vdash[A] \quad \Gamma \vdash A^{\perp}, \Delta}{\Gamma \vdash \Delta} \text { cut }_{3} \\
\frac{\Gamma \vdash N \quad \Gamma, N \vdash \Delta}{\Gamma \vdash \Delta} \text { cut }_{4} \quad \frac{\Gamma \vdash N \quad \Gamma, N \vdash[B]}{\Gamma \vdash[B]} \text { cut }_{5}
\end{gathered}
$$

Proof: By simultaneous induction on the following lexicographical measure:

- the size of the cut-formula (A or N)
- the fact that the cut-formula $(A$ or $N)$ is positive or negative (if of equal size, a positive formula is considered smaller than a negative formula)
- the height of the derivation of the right premiss

Weakenings and contractions (as they are admissible in the system) are implicitly used throughout this proof.

In order to eliminate cut_{3}, we analyse which rule is used to prove the left premiss. We then use invertibility of the negative phase so that the last rule used in the right premiss is its dual one.

$$
\begin{aligned}
& \frac{\frac{\Gamma \vdash[A] \Gamma \vdash[B]}{\Gamma \vdash\left[A \wedge^{+} B\right]}}{\Gamma \vdash \Delta} \frac{\Gamma \vdash A^{\perp}, B^{\perp}, \Delta}{\Gamma \vdash A \vee^{-} B, \Delta} \mathrm{cut}_{3} \quad \text { reduces to } \frac{\Gamma \vdash[B]}{\frac{\Gamma \vdash[A] \Gamma \vdash A^{\perp}, B^{\perp}, \Delta}{\Gamma \vdash B^{\perp}, \Delta} \mathrm{cut}_{3}} \underset{\Gamma \vdash \Delta}{\mathrm{C}} \mathrm{cut}_{3} \\
& \frac{\frac{\Gamma \vdash\left[A_{i}\right]}{\Gamma \vdash\left[A_{1} \vee^{+} A_{2}\right]} \quad \frac{\Gamma \vdash A_{1}^{\perp}, \Delta \Gamma \vdash A_{2}^{\perp}, \Delta}{\Gamma \vdash A_{1} \wedge^{-} A_{2}, \Delta} \mathrm{cut}_{3}}{\Gamma \vdash \Delta} \text { reduces to } \quad \frac{\Gamma \vdash\left[A_{i}\right] \quad \Gamma \vdash A_{i}^{\perp}, \Delta}{\Gamma \vdash \Delta} \mathrm{cut}_{3}
\end{aligned}
$$

using the admissibility of instantiation.

$$
\frac{\frac{\Gamma \vdash N}{\Gamma \vdash[N]} \quad \frac{\Gamma, N \vdash \Delta}{\Gamma \vdash\left(N^{\perp}\right), \Delta}}{\Gamma \vdash \Delta} \text { cut }_{3} \quad \text { reduces to } \quad \frac{\Gamma \vdash N \quad \Gamma, N \vdash \Delta}{\Gamma \vdash \Delta} \text { cut }_{4}
$$

We will describe below how cut $_{4}$ is reduced.

$$
\frac{\frac{\Gamma, p, p \vdash \Delta}{\Gamma, p \vdash[p]} \quad \frac{}{\Gamma, p \vdash\left(p^{\perp}\right), \Delta}}{\Gamma, p \vdash \Delta} \text { cut }_{3} \quad \text { reduces to } \quad \begin{gathered}
\Gamma, p, p \vdash \Delta \\
\Gamma, p \vdash \Delta
\end{gathered}
$$

using the admissibility of contraction.

$$
\frac{\frac{\mathcal{T}\left(\operatorname{lit}(\Gamma), p^{\perp}\right)}{\Gamma \vdash[p]} \quad \frac{\Gamma, p \vdash \Delta}{\Gamma \vdash\left(p^{\perp}\right), \Delta}}{\Gamma \vdash \Delta} \operatorname{cut}_{3} \quad \text { reduces to } \quad \frac{\mathcal{T}\left(\operatorname{lit}(\Gamma), p^{\perp}\right) \quad \Gamma, p \vdash \Delta}{\Gamma \vdash \Delta} \operatorname{cut}_{1}
$$

In order to reduce cut_{4}, we analyse which rule is used to prove the right premiss.

$$
\frac{\Gamma \vdash N \quad \frac{\mathcal{T}(\operatorname{lit}(\Gamma))}{\Gamma, N \vdash}}{\Gamma \vdash} \operatorname{cut}_{4} \quad \text { reduces to } \quad \frac{\mathcal{T}(\operatorname{lit}(\Gamma))}{\Gamma \vdash}
$$

if N is not an literal (hence, it is not passed on to the procedure).

$$
\frac{\frac{\Gamma, p \vdash}{\Gamma \vdash p^{\perp}} \quad \frac{\mathcal{T}\left(\operatorname{lit}(\Gamma), p^{\perp}\right)}{\Gamma, p^{\perp} \vdash} \operatorname{cut}_{4}}{\Gamma \vdash} \quad \text { reduces to } \quad \frac{\mathcal{T}\left(\operatorname{lit}(\Gamma), p^{\perp}\right) \quad \Gamma, p \vdash}{\Gamma \vdash} \mathrm{cut}_{1}
$$

if p^{\perp} is an literal passed on to the procedure.

$$
\begin{aligned}
& \frac{\Gamma \vdash N \quad \frac{\Gamma, N \vdash\left[N^{\perp}\right]}{\Gamma, N \vdash} \mathrm{cut}_{4}}{\Gamma \vdash} \quad \text { reduces to } \quad \frac{\frac{\Gamma \vdash N \Gamma, N \vdash\left[N^{\perp}\right]}{\Gamma \vdash\left[N^{\perp}\right]} \mathrm{cut}_{5}}{\Gamma \vdash} \quad \Gamma \vdash N \mathrm{cut}_{3} \\
& \frac{\Gamma, P^{\perp} \vdash N \quad \frac{\Gamma, P^{\perp}, N \vdash[P]}{\Gamma, P^{\perp}, N \vdash}}{\Gamma, P^{\perp} \vdash} \mathrm{cut}_{4} \quad \text { reduces to } \quad \frac{\Gamma, P^{\perp} \vdash N \quad \Gamma, P^{\perp}, N \vdash[P]}{\frac{\Gamma, P^{\perp} \vdash[P]}{\Gamma, P^{\perp} \vdash}} \mathrm{cut}_{5}
\end{aligned}
$$

$$
\frac{\Gamma \vdash N}{} \frac{\Gamma, N \vdash B, \Delta \quad \Gamma, N \vdash C, \Delta}{\Gamma, N \vdash B \wedge^{-} C, \Delta} \operatorname{cut}_{4}
$$

reduces to

$$
\begin{aligned}
& \frac{\Gamma \vdash N \quad \Gamma, N \vdash B, \Delta}{\Gamma \vdash B, \Delta} \operatorname{cut}_{4} \quad \frac{\Gamma \vdash N \quad \Gamma, N \vdash C, \Delta}{\Gamma \vdash C, \Delta} \operatorname{cut}_{4} \\
& \frac{\Gamma \vdash N \quad \frac{\Gamma, N \vdash B, C, \Delta}{\Gamma, N \vdash B \vee^{-} C, \Delta}}{\Gamma \vdash B \vee^{-} C, \Delta} \text { cut }_{4} \quad \text { reduces to } \quad \frac{\Gamma \vdash N \quad \Gamma, N \vdash B, C, \Delta}{\frac{\Gamma \vdash B, C, \Delta}{\Gamma \vdash B \vee^{-} C, \Delta}} \text { cut }_{4} \\
& \frac{\Gamma \vdash N \quad \frac{\Gamma, N \vdash B, \Delta}{\Gamma, N \vdash \forall x B, \Delta}}{\Gamma \vdash \forall x B, \Delta} \text { cut }_{4} \quad \text { reduces to } \quad \frac{\Gamma \vdash N \quad \Gamma, N \vdash B, \Delta}{\frac{\Gamma \vdash B, \Delta}{\Gamma \vdash \forall x B, \Delta}} \text { cut }_{4} \\
& \frac{\Gamma \vdash N \quad \frac{\Gamma, N, B^{\perp} \vdash \Delta}{\Gamma, N \vdash B, \Delta}}{\Gamma \vdash B, \Delta} \text { cut }_{4} \quad \text { reduces to } \quad \frac{\Gamma, B^{\perp} \vdash N \quad \Gamma, N, B^{\perp} \vdash \Delta}{\Gamma, B^{\perp} \vdash \Delta} \operatorname{cut}_{4}
\end{aligned}
$$

using weakening, and if B is positive or a negative literal.
We have reduced all cases of cut ${ }_{4}$; we now reduce the cases for cut_{5} (again, by case analysis on the last rule used to prove the right premiss).

$$
\begin{aligned}
& \frac{\Gamma \vdash N}{\Gamma \vdash\left[B \wedge^{+} C\right]} \frac{\Gamma, N \vdash[B] \quad \Gamma, N \vdash[C]}{\Gamma, N \vdash\left[B \wedge^{+} C\right]} \mathrm{cut}_{5} \\
& \frac{\Gamma \vdash N \quad \Gamma, N \vdash[B]}{\Gamma \vdash[B]} \operatorname{cut}_{5} \quad \frac{\Gamma \vdash N \quad \Gamma, N \vdash[C]}{\Gamma \vdash[C]} \operatorname{cut}_{5} \\
& \frac{\Gamma \vdash N \quad \frac{\Gamma, N \vdash\left[B_{i}\right]}{\Gamma, N \vdash\left[B_{1} \vee^{+} B_{2}\right]}}{\Gamma \vdash\left[B_{1} \vee^{+} B_{2}\right]} \operatorname{cut}_{5} \quad \text { reduces to } \quad \frac{\Gamma \vdash N \quad \Gamma, N \vdash\left[B_{i}\right]}{\Gamma \vdash\left[B_{i}\right]} \text { cut }_{5} \\
& \frac{\Gamma \vdash N \quad \frac{\Gamma, N \vdash\left[\left\{\frac{t}{x}\right\} B\right]}{\Gamma, N \vdash[\exists x B]}}{\Gamma \vdash[\exists x B]} \text { cut }_{5} \quad \text { reduces to } \quad \frac{\Gamma \vdash N \quad \Gamma, N \vdash\left[\left\{\frac{t}{x}\right\} B\right]}{\frac{\Gamma \vdash\left[\left\{\ell^{t} x\right\} B\right]}{\Gamma \vdash[\exists x B]}} \text { cut }_{5} \\
& \frac{\Gamma \vdash N \quad \frac{\Gamma, N \vdash N^{\prime}}{\Gamma, N \vdash\left[N^{\prime}\right]}}{\Gamma \vdash\left[N^{\prime}\right]} \operatorname{cut}_{5} \quad \text { reduces to } \quad \frac{\Gamma \vdash N \quad \Gamma, N \vdash N^{\prime}}{\frac{\Gamma \vdash N^{\prime}}{\Gamma \vdash\left[N^{\prime}\right]}} \operatorname{cut}_{4} \\
& \frac{\Gamma \vdash N \quad \overline{\Gamma, N \vdash[p]}}{\Gamma \vdash[p]} \text { cut }_{5} \\
& \text { reduces to } \quad \overline{\Gamma \vdash[p]}
\end{aligned}
$$

since p has to be in Γ.

$$
\frac{\Gamma \vdash N \quad \frac{\mathcal{T}\left(\operatorname{lit}(\Gamma), p^{\perp}\right)}{\Gamma, N \vdash[p]}}{\Gamma \vdash[p]} \text { cut }_{5} \quad \text { reduces to } \quad \frac{\mathcal{T}\left(\operatorname{lit}(\Gamma), p^{\perp}\right)}{\Gamma \vdash[p]}
$$

Theorem $6\left(\right.$ cut $_{6}$, cut $_{7}$, cut $_{8}$, and cut $\left._{9}\right)$ The following rules are admissible in $L K(\mathcal{T})$.

$$
\begin{gathered}
\frac{\Gamma \vdash N, \Delta \quad \Gamma, N \vdash \Delta}{\Gamma \vdash \Delta} c u t_{6} \quad \frac{\Gamma \vdash A, \Delta \quad \Gamma \vdash A^{\perp}, \Delta}{\Gamma \vdash \Delta} \text { cut }_{7} \\
\frac{\Gamma, l \vdash \Delta \quad \Gamma, l^{\perp} \vdash \Delta}{\Gamma \vdash \Delta} c u t_{8} \quad \frac{\Gamma, l_{1}, \ldots, l_{n} \vdash \Delta \quad \Gamma,\left(l_{1}^{\perp} \vee^{-} \ldots \vee^{-} l_{n}^{\perp}\right) \vdash \Delta}{\Gamma \vdash \Delta} c u t_{9}
\end{gathered}
$$

Proof: cut_{6} is proved admissible by induction on the multiset Δ : the base case is the admissibility of cut_{4}, and the other cases just require the inversion of the connectives in Δ.

For cut ${ }_{7}$, we can assume without loss of generality (swapping A and A^{\perp}) that A is negative. Applying inversion on $\Gamma \vdash A^{\perp}, \Delta$ gives a proof of $\Gamma, A \vdash \Delta$, and cut ${ }_{7}$ is then obtained by cut ${ }_{6}$:

$$
\frac{\Gamma \vdash A, \Delta \quad \Gamma, A \vdash \Delta}{\Gamma \vdash \Delta} \operatorname{cut}_{6}
$$

cut_{8} is obtained as follows:

$$
\frac{\frac{\Gamma, l^{\perp} \vdash \Delta}{\Gamma \vdash l, \Delta} \quad \frac{\Gamma, l \vdash \Delta}{\Gamma \vdash l^{\perp}, \Delta}}{\Gamma \vdash \Delta} \operatorname{cut}_{7}
$$

cut $_{9}$ is obtained as follows:

$$
\frac{\frac{\Gamma,\left(l_{1}^{\perp} \vee^{-} \ldots \vee^{-} l_{n}^{\perp}\right) \vdash \Delta}{\Gamma \vdash l_{1} \wedge^{+} \ldots \wedge^{+} l_{n}, \Delta}}{\Gamma \vdash \Delta} \frac{\frac{\Gamma, l_{1}, \ldots, l_{n} \vdash \Delta}{\Gamma \vdash l_{1}^{\perp}, \ldots, l_{n}^{\perp}, \Delta}}{\Gamma \vdash\left(l_{1}^{\perp} \vee^{-} \ldots \vee^{-} l_{n}^{\perp}\right), \Delta} \mathrm{cut}_{7}
$$

5 Conclusion

It is worth noting that an instance of such a theory is the theory where $\mathcal{T}(S)$ holds if and only if there is a literal $p \in S$ such that $p^{\perp} \in S$.

We proved the admissibility of cut_{8} and cut_{9} as they are used to simulate the $\operatorname{DPLL}(\mathcal{T})$ procedure [NOT06] as the proof-search mechanism of $\operatorname{LK}(\mathcal{T})$.

Further work will consist in using the cut-admissibility results to:

- show that changing the polarities of the connectives and predicates that are present in a sequent, does not change the provability of that sequent in $\operatorname{LK}(\mathcal{T})$;
- prove the completeness of $\operatorname{LK}(\mathcal{T})$ with respect to the standard notion of provability in first-order logic, working in a particular theory \mathcal{T} for which we have a (sound and complete) decision procedure;
- show how the $\operatorname{DPLL}(\mathcal{T})$ procedure can be simulated in $\operatorname{LK}(\mathcal{T})$ (with backtracking as well as with backjumping and lemma learning).

References

[LM09] C. Liang and D. Miller. Focusing and polarization in linear, intuitionistic, and classical logics. Theoret. Comput. Sci., 410(46):4747-4768, 2009.
[NOT06] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo Theories: From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J. of the ACM Press, 53(6):937-977, 2006.

