
A sequent calculus with procedure calls

Mahfuza Farooque1, Stéphane Lengrand1,2

1 CNRS
2 Ecole Polytechnique

Project PSI: “Proof Search control in Interaction with domain-specific methods”

ANR-09-JCJC-0006

23rd April 2012

Abstract

In this paper, we extend the sequent calculus LKF [LM09] into a calculus LK(T ), allowing
calls to a decision procedure. We prove cut-elimination of LK(T ).

Contents

1 The sequent calculus LK(T ) 2

2 Admissible rules 2

3 Invertibility of the asynchronous phase 3

4 Cut-elimination 5

5 Conclusion 9

1



1 The sequent calculus LK(T )

The sequent calculus LK(T ) manipulates the formulae of first-order logic, with the specificity
that every predicate symbol is classified as either positive or negative, and boolean connectives
come in two versions: positive and negative.

Definition 1 (Formulae) Literals are predicates (a predicate symbol applied to a list of
first-order terms) or negations of predicates. Literals are equipped with the obvious involutive
negation, and the negation of a literal l is denoted l⊥.

Let P be the set of literals that are either predicates with positive predicate symbols, or
negations of predicates with negative predicate symbols.

Positive formulae P ::= p | A∧+B | A∨+B | ∃xA

Negative formulae N ::= p⊥ | A∧−B | A∨−B | ∀xA
Formulae A,B ::= P | N

where p ranges over P .

Definition 2 (Negation) Negation is extended from literals to all formulae:

(p)⊥ := p⊥ (p⊥)
⊥

:= p

(A∧+B)
⊥

:= A⊥∨−B⊥ (A∧−B)
⊥

:= A⊥∨+B⊥

(A∨+B)
⊥

:= A⊥∧−B⊥ (A∨−B)
⊥

:= A⊥∧+B⊥

(∃xA)⊥ := ∀xA⊥ (∀xA)⊥ := ∃xA⊥

Definition 3 (LK(T )) The sequent calculus LK
p(T ) manipulates two kinds of sequents:

Focused sequents Γ ⊢T [P ]
Unfocused sequents Γ ⊢T ∆

where Γ is a multiset of negative formulae and positive literals, ∆ is a multiset of formulae,
and P is said to be in the focus of the (focused) sequent. By lit(Γ) we denote the sub-multiset
of Γ consisting of its literals.

The rules of LK
p(T ), given in Figure 1, are of three kinds: synchronous rules, asynchronous

rules, and structural rules. These correspond to three alternating phases in the proof-search
process that is described by the rules.

If S is a set of literals, T (S) is the call to the decision procedure on the conjunction of all
literals of S. It holds if the procedure returns UNSAT.

2 Admissible rules

Definition 4 (Assumptions on the procedure)
We assume that the procedure calls satisfy the following properties:

Weakening If T (S) then T (S, S′).

Contraction If T (S,A,A) then T (S,A).

Instantiation If T (S) then T (
{

t�x

}

S).

Consistency If T (S, p) and T (S, p⊥) then T (S).

where S is a set of literals.

Lemma 1 (Admissibility of weakening and contraction)
The following rules are admissible in LK(T ).

Γ ⊢ [B]

Γ, A ⊢ [B]

Γ ⊢ ∆

Γ, A ⊢ ∆

Γ, A,A ⊢ [B]

Γ, A ⊢ [B]

Γ, A,A ⊢ ∆

Γ, A ⊢ ∆

Proof: By induction on the derivation of the premiss. �

2



Synchronous rules
Γ ⊢ [A] Γ ⊢ [B]

Γ ⊢ [A∧+B]

Γ ⊢ [Ai]

Γ ⊢ [A1∨
+A2]

Γ ⊢ [
{

t�x

}

A]

Γ ⊢ [∃xA]

p positive literal
Γ, p ⊢ [p]

T (lit(Γ), p⊥)
p positive literal

Γ ⊢ [p]

Γ ⊢ N
N negative

Γ ⊢ [N ]

Aynchronous rules
Γ ⊢ A,∆ Γ ⊢ B,∆

Γ ⊢ A∧−B,∆

Γ ⊢ A1, A2,∆

Γ ⊢ A1∨
−A2,∆

Γ ⊢ A,∆
x /∈ FV(Γ,∆)

Γ ⊢ (∀xA),∆

Γ, A⊥
⊢ ∆

A positive or literal
Γ ⊢ A,∆

Structural rules

Γ, P⊥
⊢ [P ]

P positive
Γ, P⊥

⊢

T (lit(Γ))

Γ ⊢

Figure 1: System LK(T )

Lemma 2 (Admissibility of instantiation) The following rules are admissible in LK(T ).

Γ ⊢ [B]
{

t
�x

}

Γ ⊢ [
{

t
�x

}

B]

Γ ⊢ ∆
{

t
�x

}

Γ ⊢
{

t
�x

}

∆

Proof: By induction on the derivation of the premiss. �

3 Invertibility of the asynchronous phase

Lemma 3 (Invertibility of asynchronous rules)
All asynchronous rules are invertible in LK(T ).

Proof: By induction on the derivation proving the conclusion of the asynchronous rule
considered.

• Inversion of A∧−B: by case analysis on the last rule actually used

–
Γ ⊢ A∧−B,C,∆′ Γ ⊢ A∧−B,D,∆′

Γ ⊢ A∧−B,C∧−D,∆′

By induction hypothesis we get

Γ ⊢ A,C,∆′ Γ ⊢ A,D,∆′

Γ ⊢ A,C∧−D,∆′
and

Γ ⊢ B,C,∆′ Γ ⊢ B,D,∆′

Γ ⊢ B,C∧−D,∆′

–
Γ ⊢ A∧−B,C,D,∆′

Γ ⊢ A∧−B,C∨−D,∆′

By induction hypothesis we get
Γ ⊢ A,C,D,∆′

Γ ⊢ A,C∨−D,∆′
and

Γ ⊢ B,C,D,∆′

Γ ⊢ B,C∨−D,∆′

–
Γ ⊢ A∧−B,C,∆′

x /∈ FV(Γ,∆′, A∧−B)
Γ ⊢ A∧−B, (∀xC),∆′

3



By induction hypothesis we get
Γ ⊢ A,C,∆′

x /∈ FV(Γ,∆′, A)
Γ ⊢ A, (∀xC),∆′

and
Γ ⊢ B,C,∆′

x /∈ FV(Γ,∆′, B)
Γ ⊢ B, (∀xC),∆′

–
Γ, C⊥ ⊢ A∧−B,∆′

C positive or literal
Γ ⊢ A∧−B,C,∆′

By induction hypothesis we get

Γ, C⊥ ⊢ A,∆′

C positive or literal
Γ ⊢ A,C,∆′

and
Γ, C⊥ ⊢ B,∆′

C positive or literal
Γ ⊢ B,C,∆′

• Inversion of A∨−B

–
Γ ⊢ A∨−B,C,∆′ Γ ⊢ A∨−B,D,∆′

Γ ⊢ A∨−B,C∧−D,∆′

By induction hypothesis we get
Γ ⊢ A,B,C,∆′ Γ ⊢ A,B,D,∆′

Γ ⊢ A,B,C∧−D,∆′

–
Γ ⊢ A∨−B,C,D,∆′

Γ ⊢ A∨−B,C∨−D,∆′

By induction hypothesis we get
Γ ⊢ A,B,C,D,∆′

Γ ⊢ A,B,C∨−D,∆′

–
Γ ⊢ A∨−B,C,∆′

x /∈ FV(Γ,∆′)
Γ ⊢ A∨−B, (∀xC),∆′

By induction hypothesis we get
Γ ⊢ A,B,C,∆′

x /∈ FV(Γ,∆′)
Γ ⊢ A,B, (∀xC),∆′

–
Γ, C⊥ ⊢ A∨−B,∆′

C positive or literal
Γ ⊢ A∨−B,C,∆′

By induction hypothesis we get
Γ, C⊥ ⊢ A,B,∆′

C positive or literal
Γ ⊢ A,B,C,∆′

• Inversion of ∀xA

–
Γ ⊢ (∀xA),C,∆′ Γ ⊢ (∀xA),D,∆′

Γ ⊢ (∀xA),C∧−D,∆′

By induction hypothesis we get
Γ ⊢ A,C,∆′

x /∈ FV(Γ,∆′)
Γ ⊢ A,C∧−D,∆′

and Γ ⊢ A,D,∆′

–
Γ ⊢ (∀xA), C,D,∆′

Γ ⊢ (∀xA),C∨−D,∆′

By induction hypothesis we get
Γ ⊢ A,C,D,∆′

Γ ⊢ A,C∨−D,∆′

–
Γ ⊢ (∀xA),D,∆′

x /∈ FV(Γ,∆′)
Γ ⊢ (∀xA), (∀xD),∆′

By induction hypothesis we get
Γ ⊢ A,C,∆′

x /∈ FV(Γ,∆′)
Γ ⊢ A, (∀xC),∆′

–
Γ, C⊥ ⊢ (∀xA),∆′

C positive or literal
Γ ⊢ (∀xA), C,∆′

By induction hypothesis we get
Γ, C⊥ ⊢ A,∆′

C positive or literal
Γ ⊢ A,C,∆′

• Inversion of literals and positive formulae (A)

–
Γ ⊢ A,C,∆′ Γ ⊢ A,D,∆′

Γ ⊢ A,C∧−D,∆′

By induction hypothesis we get
Γ, A⊥ ⊢ C,∆′ Γ, A⊥ ⊢ D,∆′

Γ, A⊥ ⊢ C∧−D,∆′

4



–
Γ ⊢ A,C,D,∆′

Γ ⊢ A,C∨−D,∆′

By induction hypothesis
Γ, A⊥ ⊢ C,D,∆′

Γ, A⊥ ⊢ C∨−D,∆′

–
Γ ⊢ A,D,∆′

x /∈ FV(Γ,∆′)
Γ ⊢ A, (∀xD),∆′

By induction hypothesis we get
Γ, A⊥ ⊢ C,∆′

x /∈ FV(Γ,∆′)
Γ, A⊥ ⊢ (∀xC),∆′

–
Γ, B⊥ ⊢ A,∆′

B positive or literal
Γ ⊢ A,B,∆′

By induction hypothesis we get
Γ, A⊥, B⊥ ⊢ ∆′

B positive or literal
Γ, A⊥ ⊢ B,∆′

�

4 Cut-elimination

Theorem 4 (cut1 and cut2) The following rules are admissible in LK(T ).

T (lit(Γ), p⊥) Γ, p ⊢ ∆
cut1

Γ ⊢ ∆

T (lit(Γ), p⊥) Γ, p ⊢ [B]
cut2

Γ ⊢ [B]

Proof: By simultaneous induction on the derivation of the right premiss.
We reduce cut8 by case analysis on the last rule used to prove the right premiss.

T (lit(Γ), p⊥)

Γ, p ⊢ B,∆ Γ, p ⊢ C,∆

Γ, p ⊢ B∧−C,∆
cut1

Γ ⊢ B∧−C,∆

reduces to

T (lit(Γ), p⊥) Γ, p ⊢ B,∆
cut1

Γ ⊢ B,∆

T (lit(Γ), p⊥) Γ, p ⊢ C,∆
cut1

Γ ⊢ C,∆

Γ ⊢ B∧−C,∆

T (lit(Γ), p⊥)

Γ, p ⊢ B1, B2,∆

Γ, p ⊢ B1∨
−B2,∆

cut1
Γ ⊢ B1∨

−B2,∆

reduces to

T (lit(Γ), p⊥) Γ, p ⊢ B1, B2,∆
cut1

Γ ⊢ B1, B2,∆

Γ ⊢ B1∨
−B2,∆

T (lit(Γ), p⊥)

Γ, p ⊢ B,∆

Γ, p ⊢ ∀xB,∆
cut1

Γ ⊢ ∀xB,∆

reduces to

T (lit(Γ), p⊥) Γ, p ⊢ B,∆
cut1

Γ ⊢ B,∆

Γ ⊢ ∀xB,∆

T (lit(Γ), p⊥)

Γ, p,B⊥ ⊢ ∆

Γ, p ⊢ B,∆
cut1

Γ ⊢ B,∆

reduces to

T (lit(Γ, B⊥), p⊥) Γ, p,B⊥ ⊢ ∆
cut1

Γ, B⊥ ⊢ ∆

Γ ⊢ B,∆

We have T (lit(Γ), p⊥, B⊥) as we assume the procedure to satisfy weakening.
If P⊥ ∈ (Γ, p),

T (lit(Γ), p⊥)

Γ, p ⊢ [P ]

Γ, p ⊢
cut1

Γ ⊢

reduces to

T (lit(Γ), p⊥) Γ, p⊥ ⊢ [P ]
cut2

Γ ⊢ [P ]

Γ ⊢

as P⊥ ∈ (Γ).

5



T (lit(Γ), p⊥)

T (lit(Γ), p)

Γ, p ⊢
cut1

Γ ⊢

reduces to
T (lit(Γ))

Γ ⊢

using the assumption of consistency.
We reduce cut2 again by case analysis on the last rule used to prove the right premiss.

T (lit(Γ), p⊥)

Γ, p ⊢ [B] Γ, p ⊢ [C]

Γ, p ⊢ [B∧+C]
cut2

Γ ⊢ [B∧+C]

reduces to

T (lit(Γ), p⊥) Γ, p ⊢ [B]
cut2

Γ ⊢ [B]

T (lit(Γ), p⊥) Γ, p ⊢ [C]
cut2

Γ ⊢ [C]

Γ ⊢ [B∧+C]

T (lit(Γ), p⊥)

Γ, p ⊢ [Bi]

Γ, p ⊢ [B1∨
+B2]

cut2
Γ ⊢ [B1∨

+B2]

reduces to

T (lit(Γ), p⊥) Γ, p ⊢ [Bi]
cut2

Γ ⊢ [Bi]

Γ ⊢ [B1∨
+B2]

T (lit(Γ), p⊥)

Γ, p ⊢ [
{

t
�x

}

B]

Γ, p ⊢ [∃xB]
cut2

Γ ⊢ [∃xB]

reduces to

T (lit(Γ), p⊥) Γ, p ⊢ [
{

t
�x

}

B]
cut2

Γ ⊢ [
{

t
�x

}

B]

Γ ⊢ [∃xB]

T (lit(Γ), p⊥)

Γ, p ⊢ N

Γ, p ⊢ [N ]
cut2

Γ ⊢ [N ]

reduces to

T (lit(Γ), p⊥) Γ, p ⊢ N
cut1

Γ ⊢ N

Γ ⊢ [N ]

If p′ ∈ Γ, p,

T (lit(Γ), p⊥) Γ, p ⊢ [p′]
cut2

Γ ⊢ [p′]

reduces to
Γ ⊢ [p′]

if p′ ∈ Γ

reduces to
T (lit(Γ), p⊥)

Γ ⊢ [p′]
if p′ = p

Finally,

T (lit(Γ), p⊥)

T (lit(Γ), p, p′
⊥
)

Γ, p ⊢ [p′]
cut2

Γ ⊢ [p′]

reduces to
T (lit(Γ), p′

⊥
)

Γ ⊢ [p′]

since weakening gives T (lit(Γ), p⊥, p′
⊥
) and consistency then gives T (lit(Γ), p′

⊥
). �

Theorem 5 (cut3, cut4 and cut5) The following rules are admissible in LK(T ).

Γ ⊢ [A] Γ ⊢ A⊥,∆
cut3

Γ ⊢ ∆

Γ ⊢ N Γ, N ⊢ ∆
cut4

Γ ⊢ ∆

Γ ⊢ N Γ, N ⊢ [B]
cut5

Γ ⊢ [B]

Proof: By simultaneous induction on the following lexicographical measure:

• the size of the cut-formula (A or N)

• the fact that the cut-formula (A or N) is positive or negative
(if of equal size, a positive formula is considered smaller than a negative formula)

• the height of the derivation of the right premiss

6



Weakenings and contractions (as they are admissible in the system) are implicitly used
throughout this proof.

In order to eliminate cut3, we analyse which rule is used to prove the left premiss. We
then use invertibility of the negative phase so that the last rule used in the right premiss is
its dual one.

Γ ⊢ [A] Γ ⊢ [B]

Γ ⊢ [A∧+B]

Γ ⊢ A⊥, B⊥,∆

Γ ⊢ A∨−B,∆
cut3

Γ ⊢ ∆

reduces to Γ ⊢ [B]

Γ ⊢ [A] Γ ⊢ A⊥, B⊥,∆
cut3

Γ ⊢ B⊥,∆
cut3

Γ ⊢ ∆

Γ ⊢ [Ai]

Γ ⊢ [A1∨
+A2]

Γ ⊢ A⊥

1 ,∆ Γ ⊢ A⊥

2 ,∆

Γ ⊢ A1∧
−A2,∆

cut3
Γ ⊢ ∆

reduces to
Γ ⊢ [Ai] Γ ⊢ A⊥

i ,∆
cut3

Γ ⊢ ∆

Γ ⊢ [
{

t
�x

}

A]

Γ ⊢ [∃xA]

Γ ⊢ A⊥,∆

Γ ⊢ (∀xA⊥),∆
cut3

Γ ⊢ ∆

reduces to Γ ⊢ [
{

t
�x

}

A]

Γ ⊢ A⊥,∆
−−−−−−− − x /∈ FV(Γ,∆)
Γ ⊢ (

{

t
�x

}

A⊥),∆
cut3

Γ ⊢ ∆

using the admissibility of instantiation.
Γ ⊢ N

Γ ⊢ [N ]

Γ, N ⊢ ∆

Γ ⊢ (N⊥),∆
cut3

Γ ⊢ ∆

reduces to
Γ ⊢ N Γ, N ⊢ ∆

cut4
Γ ⊢ ∆

We will describe below how cut4 is reduced.

Γ, p ⊢ [p]

Γ, p, p ⊢ ∆

Γ, p ⊢ (p⊥),∆
cut3

Γ, p ⊢ ∆

reduces to
Γ, p, p ⊢ ∆
−−−− −
Γ, p ⊢ ∆

using the admissibility of contraction.

T (lit(Γ), p⊥)

Γ ⊢ [p]

Γ, p ⊢ ∆

Γ ⊢ (p⊥),∆
cut3

Γ ⊢ ∆

reduces to
T (lit(Γ), p⊥) Γ, p ⊢ ∆

cut1
Γ ⊢ ∆

In order to reduce cut4, we analyse which rule is used to prove the right premiss.

Γ ⊢ N

T (lit(Γ))

Γ, N ⊢
cut4

Γ ⊢

reduces to
T (lit(Γ))

Γ ⊢

if N is not an literal (hence, it is not passed on to the procedure).

Γ, p ⊢

Γ ⊢ p⊥

T (lit(Γ), p⊥)

Γ, p⊥ ⊢
cut4

Γ ⊢

reduces to
T (lit(Γ), p⊥) Γ, p ⊢

cut1
Γ ⊢

if p⊥ is an literal passed on to the procedure.

Γ ⊢ N

Γ, N ⊢ [N⊥]

Γ, N ⊢
cut4

Γ ⊢

reduces to

Γ ⊢ N Γ, N ⊢ [N⊥]
cut5

Γ ⊢ [N⊥] Γ ⊢ N
cut3

Γ ⊢

Γ, P⊥ ⊢ N

Γ, P⊥, N ⊢ [P ]

Γ, P⊥, N ⊢
cut4

Γ, P⊥ ⊢

reduces to

Γ, P⊥ ⊢ N Γ, P⊥, N ⊢ [P ]
cut5

Γ, P⊥ ⊢ [P ]

Γ, P⊥ ⊢

7



Γ ⊢ N

Γ, N ⊢ B,∆ Γ, N ⊢ C,∆

Γ, N ⊢ B∧−C,∆
cut4

Γ ⊢ B∧−C,∆

reduces to
Γ ⊢ N Γ, N ⊢ B,∆

cut4
Γ ⊢ B,∆

Γ ⊢ N Γ, N ⊢ C,∆
cut4

Γ ⊢ C,∆

Γ ⊢ B∧−C,∆

Γ ⊢ N

Γ, N ⊢ B,C,∆

Γ, N ⊢ B∨−C,∆
cut4

Γ ⊢ B∨−C,∆

reduces to

Γ ⊢ N Γ, N ⊢ B,C,∆
cut4

Γ ⊢ B,C,∆

Γ ⊢ B∨−C,∆

Γ ⊢ N

Γ, N ⊢ B,∆

Γ, N ⊢ ∀xB,∆
cut4

Γ ⊢ ∀xB,∆

reduces to

Γ ⊢ N Γ, N ⊢ B,∆
cut4

Γ ⊢ B,∆

Γ ⊢ ∀xB,∆

Γ ⊢ N

Γ, N,B⊥ ⊢ ∆

Γ, N ⊢ B,∆
cut4

Γ ⊢ B,∆

reduces to

Γ, B⊥ ⊢ N Γ, N, B⊥ ⊢ ∆
cut4

Γ, B⊥ ⊢ ∆

Γ ⊢ B,∆

using weakening, and if B is positive or a negative literal.
We have reduced all cases of cut4; we now reduce the cases for cut5 (again, by case analysis

on the last rule used to prove the right premiss).

Γ ⊢ N

Γ, N ⊢ [B] Γ, N ⊢ [C]

Γ, N ⊢ [B∧+C]
cut5

Γ ⊢ [B∧+C]

reduces to

Γ ⊢ N Γ, N ⊢ [B]
cut5

Γ ⊢ [B]

Γ ⊢ N Γ, N ⊢ [C]
cut5

Γ ⊢ [C]

Γ ⊢ [B∧+C]

Γ ⊢ N

Γ, N ⊢ [Bi]

Γ, N ⊢ [B1∨
+B2]

cut5
Γ ⊢ [B1∨

+B2]

reduces to
Γ ⊢ N Γ, N ⊢ [Bi]

cut5
Γ ⊢ [Bi]

Γ ⊢ N

Γ, N ⊢ [
{

t
�x

}

B]

Γ, N ⊢ [∃xB]
cut5

Γ ⊢ [∃xB]

reduces to

Γ ⊢ N Γ, N ⊢ [
{

t
�x

}

B]
cut5

Γ ⊢ [
{

t
�x

}

B]

Γ ⊢ [∃xB]

Γ ⊢ N

Γ, N ⊢ N ′

Γ, N ⊢ [N ′]
cut5

Γ ⊢ [N ′]

reduces to

Γ ⊢ N Γ, N ⊢ N ′

cut4
Γ ⊢ N ′

Γ ⊢ [N ′]

Γ ⊢ N Γ, N ⊢ [p]
cut5

Γ ⊢ [p]

reduces to
Γ ⊢ [p]

since p has to be in Γ.

Γ ⊢ N

T (lit(Γ), p⊥)

Γ, N ⊢ [p]
cut5

Γ ⊢ [p]

reduces to
T (lit(Γ), p⊥)

Γ ⊢ [p]

�

8



Theorem 6 (cut6, cut7, cut8, and cut9) The following rules are admissible in LK(T ).

Γ ⊢ N,∆ Γ, N ⊢ ∆
cut6

Γ ⊢ ∆

Γ ⊢ A,∆ Γ ⊢ A⊥,∆
cut7

Γ ⊢ ∆

Γ, l ⊢ ∆ Γ, l⊥ ⊢ ∆
cut8

Γ ⊢ ∆

Γ, l1, . . . , ln ⊢ ∆ Γ, (l⊥1 ∨− . . .∨−l⊥n ) ⊢ ∆
cut9

Γ ⊢ ∆

Proof: cut6 is proved admissible by induction on the multiset ∆: the base case is the
admissibility of cut4, and the other cases just require the inversion of the connectives in ∆.

For cut7, we can assume without loss of generality (swapping A and A⊥) that A is negative.
Applying inversion on Γ ⊢ A⊥,∆ gives a proof of Γ, A ⊢ ∆, and cut7 is then obtained by cut6:

Γ ⊢ A,∆ Γ, A ⊢ ∆
cut6

Γ ⊢ ∆

cut8 is obtained as follows:

Γ, l⊥ ⊢ ∆

Γ ⊢ l,∆

Γ, l ⊢ ∆

Γ ⊢ l⊥,∆
cut7

Γ ⊢ ∆

cut9 is obtained as follows:

Γ, (l⊥1 ∨− . . .∨−l⊥n ) ⊢ ∆

Γ ⊢ l1∧
+ . . .∧+ln,∆

Γ, l1, . . . , ln ⊢ ∆
=============
Γ ⊢ l⊥1 , . . . , l⊥n ,∆

Γ ⊢ (l⊥1 ∨− . . .∨−l⊥n ),∆
cut7

Γ ⊢ ∆

�

5 Conclusion

It is worth noting that an instance of such a theory is the theory where T (S) holds if and
only if there is a literal p ∈ S such that p⊥ ∈ S.

We proved the admissibility of cut8 and cut9 as they are used to simulate the DPLL(T )
procedure [NOT06] as the proof-search mechanism of LK(T ).

Further work will consist in using the cut-admissibility results to:

• show that changing the polarities of the connectives and predicates that are present in
a sequent, does not change the provability of that sequent in LK(T );

• prove the completeness of LK(T ) with respect to the standard notion of provability
in first-order logic, working in a particular theory T for which we have a (sound and
complete) decision procedure;

• show how the DPLL(T ) procedure can be simulated in LK(T ) (with backtracking as well
as with backjumping and lemma learning).

References

[LM09] C. Liang and D. Miller. Focusing and polarization in linear, intuitionistic, and
classical logics. Theoret. Comput. Sci., 410(46):4747–4768, 2009.

[NOT06] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo Theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J.
of the ACM Press, 53(6):937–977, 2006.

9


